Robust and High-Performance Wide-Area
Consensus Protocols

PhD Public Defense

Pasindu Tennage

Thesis director: Bryan Ford
Thesis co-director: Lefteris Kokoris-Kogias

I
T
"1
—

DEDIS

>N

6.8 —
) Q.MW@/ :
’ l,,,v

14:58 Let's meetatCafedufion
14:58 Let's meet at Pizza pIace)
15:50 Sure, |am good with that

16:58 Which one you meanD
17:58 | assume it is Cafe du flonD

Distributed
Agreement is Hard

Consensus: an agreement
about something

Consensus

>N

3) B0

Albert 200

Albert 200 Albert 200

Albert

Albert 200

(|

Inconsistent State

Albert

200

Albert

Albert

100

Consensus protocols enable a
distributed set of machines to
agree on the same value

Robust and High-Performance Wide-Area

DEDIS

Consensus Protocols

=PFL.

Robust and High-Performance| Wide-Area

DEDIS

Consensus Protocols

=PFL

Distributed Consensus

80s/90s 2000 2010 2020

FLP PBFT Mencius Hotstuff
Paxos Fast Paxos EPaxos Dag-Rider
View Stamp Raft

WPaxos

Pig Paxos

Started thesis

High
Performance

Existing Consensus Protocols

High
Robustness

16

High Performance using Leader-based Consensus

Pl

htt

ZooKeeper: Wait-free coordination for Internet-scale systems

Patrick Hunt and Mahadev Konar Flavio P. Junqueira and Benjamin Reed
Yahoo! Grid Yahoo! Research
{phunt ,mahadev}@yahoo-inc.com {fpj,breed}@yahoo-inc.com

=% — =Y

17

Robustness Problem of Leader Based Protocols

e Network partition.
e Link failures.
e DDoS attacks.

e | eader crash.

18

High
Performance

Existing Consensus Protocols

High
Robustness

19

Robust randomized consensus protocols

> gl

N

Less efficient.

Hard to understand.

Rarely deployed.

20

High
Performance

Existing Consensus Protocols

Can we have the best of both worlds?

High
Robustness

21

Robust and High-Performance |\Wide-Area
Consensus Protocols

DEDIS cPrL

Robust and High-Performance Wide-Area
Consensus Protocols

DEDIS cPrL

Thesis Contributions

»

Baxos

RACS-SADL

QuePaxa

Mahi-Mahi

24

Thesis Contributions

Baxos Robustness against leader-targeted attacks
RACS-SADL Asynchronous liveness and high scalability
Mechanisms to avoid tyranny of timeout
QuePaxa)
problems in consensus
Mahi-Mahi Scalable, asynchronous liveness in BFT

(IEEE CLOUD 2025)

(ACM SOSP 2023)

(IEEE ICDCS 2025)

25

Thesis Contributions

»

Baxos

RACS-SADL

QuePaxa

Mahi-Mahi

26

Outline

e Consensus
e Thesis Contributions
e QuePaxa

e Summary

27

Outline

e (Consensus
e Thesis Contributions
e QuePaxa

e Summary

28

QuePaxa: Escaping the tyranny of timeouts
IN consensus

Pasindu Tennage®, Cristina Basescu*, Lefteris Kokoris-Kogias, Ewa Syta, Philipp Jovanovic, Bryan Ford

SOSP 2023

CLOUDFLARE

29

RoadMap

e Tyranny of timeouts
e Parallels of QuePaxa and hedging
® (QuePaxa algorithm

e FEvaluation

30

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts

Manually configured timeouts

31

Timeout based view change [Multi-Paxos]

Commit Commit Commit Commit

\4 WYY
N Propose\\/ %\ccept ProposW%ccept Propos&\\//%cept Propos&\\//%cept
VY

View 1

As long as the network is synchronous, the leader will keep committing new requests

Timeout based view change [Multi-Paxos]

Commit| ////

O

R1 P A
4
repare oronlee

o o | o [\

N VAR Y

View Change

View 1 View 2

No new commands are committed during view change
Liveness depends on partial synchronous network conditions

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts

Manually configured timeouts

34

Choosing Timeouts in leader based protocols

{ Low Timeout }< Timeout

L

35

Timeout based view change [Multi-Paxos]

wly Commit ,////

S/
% repare e
s da iy
R
R3
R4 \/ \ / \ /

View Change

O

View 1 View 2

< High Recovery Time >
High timeouts result in high recovery time

Choosing Timeouts in leader based protocols

- < Timeout > High Timeout

| High Recovery Time

37

Liveness loss with low timeouts

FREEZN 230
o °,r”°.°‘5~"‘ el
L

R1

Propo it /‘
R2 : '

. Prepare one K

{ IR \@\

R3 5 ; P
; \ repare

R4 5 _
View 1 5 View 2 | View 3 | View 4

No commands are committed when the timeout is low

Choosing Timeouts in leader based protocols

Low Timeout < Timeout > High Timeout

Liveness Loss | | High Recovery Time

Both choices of timeouts have negative consequences

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts

Manually configured timeouts

40

Manual configuration of timeouts
e Stuck with a live but slow leader replica

e Do not consider dynamic network state for leader election

Manual timeouts are sub optimal

Are timeouts necessary for progress?

Can we eliminate the impact of timeout for liveness?

42

Do asynchronous protocols solve this problem?

e Asynchronous protocols do not depend on timeout for progress

o Use randomization to alleviate the FLP impossibility

e Message complexity
o In general asynchronous protocols have O(n?) / O(n*) complexity in the normal case
m In contrast, partially synchronous protocols have O(n)
o Less efficient than leader-based protocols
o Hence rarely deployed

Asynchronous protocols are slow and rarely deployed

An alternative approach?

<1 Leader | Commit / / / ///

/ / / YAV
kil Pro%s\ % /\
Leader2 0\ Commit / / /
/ /]
Propos cept
R3 Leader3 :r\O 5€ coeP!
/ \/ /\< Commit
e

No view No view
change change

Can we change leaders without view changes if the current leader 1s sub optimal?

What if multiple leaders could cooperate instead of interfere?

R1 Leader 1 commit

Propose [& 3
Leader 2 o . J .
R2 \/ p-.) - e
R3 Leader 3 W - e
R4 Leader 4 %

Round 1

Can we support multiple leaders to be non destructive?

RoadMap

e Tyranny of timeouts
e Parallels of QuePaxa and hedging
® (QuePaxa algorithm

e FEvaluation

46

Hedging

e Hedging is a way to curb latency variability

o Key idea: issue the same request to multiple replicas and use the results from whichever replica responds first

do not interfere with each

Multiple responses [Server }
other

/ \

Store 1 Store 2 Store 3

Can we apply hedging to consensus so that multiple proposers don’t interfere?:-

RoadMap

e Tyranny of timeouts
e Parallels of QuePaxa and hedging
® (QuePaxa algorithm

e FEvaluation

48

QuePaxa Contributions

e A consensus protocol that eliminates the tyranny of timeouts
problems

e First consensus protocol to support hedging in consensus

e A novel consensus protocol that

o Under normal network conditions as good as Multi-Paxos /Raft
o Under adversarial network conditions, provides liveness

49

QuePaxa RoadMap

e Operation Overview
e Abstract QuePaxa — a simplified version

e Concrete QuePaxa overview

50

QuePaxa Architecture

Submitter

Proposer

y

Recorder

Replica

Submitter

lient Requests

Proposer

—]

Recorder

Replica

Proposer

Recorder

Replica

51

QuePaxa Log Structure

Slot 1

Slot 2

Slot 3

P1

P2

P3

P4

Round 2

52

QuePaxa Protocol Diagram

Fast Path Slow Path
Decmon Decision
hase 0 % ¢ Phase 1-3 S
Learn MeI] orlt}/ Proposals r Inilarmatlon Propagal

. w AV 'w
o\ ﬂ\\/ b N\
Y. oA

Proposer 2 V\ W\ V\
QuePaxa has a fast path decision and a slow path decision

QuePaxa RoadMap

e Operation Overview
e Abstract QuePaxa - a simplified version

e Concrete QuePaxa overview

Abstract QuePaxa 1s a simplified version of QuePaxa

Introducing threshold broadcast (tcast)

e Divide the problem in to two parts

o Handling asynchrony

Abstract QuePaxa

e Firstignore asynchrony and focus on replica failures

e Using tcast let us assume a synchronous lock step
network

e tcast (threshold synchronous broadcast): an abstraction
which provides lock step synchrony to the consensus
layer

Abstract QuePaxa assumes synchrony and solves the replica failure challenge

Abstract QuePaxa Algorithm

Algorithm 1: Abstract QuePaxa consensus algorithm
Input: v < value preferred by this replica

I——mpaa‘ peilorate-thiough-rounds
" ; I ; et ;

I (F,_) « tcast({p}) /I propagate our proposal
(E,P’) « tcast(P) // propagate existent sets

(C.U) « tcast(P’) // propagate common sets

v « best(C).value // next candidate value

if best(E) = best(U) then // detect consensus

|_ deliver(v) // deliver decision

Abstract QuePaxa is just a few lines of pseudocode!

56

Proposals Bob knows to exist Bob

Proposal Alice knows that pll others know to exist

Proposal Bob knows that ajl others know to exist

Proposal Charlie knows that all others know to exist

Alice | Charlie

Proposals Charlie knows to exist

Proposals Alice knows to exist

e tcast property 1: each node learns a majority of proposals

e tcast property 2: each node learns a proposal that all nodes know to exist

Nodes have no guarantee to learn the same sets! (no consensus yet) >

Towards consensus: approximating what others know

e Sets from one tcast invocation are insufficient for consensus
e Repeat: three tcast invocations, giving each node 1 sets with increasing guarantees

® An existent set
e A common set

® A universal set

Key relationship for consensus: Existent, =2 Commonj = Universal .

Consensus: reaching a safe decision

best(Common,,) Bob doesn’t decide, proposes V’
~ propose _ .
| best(Existent,,) # best(Universal,)
Three tcast rounds
V=
best(CorTmonBob)

best(Existent,) =
best(Universal,)

Existent " = Common_ . =2 Universal .
ice Bob Alice

l Alice decides V l

best(Existent, .) = V = best(Universal, .)

decide

Only possible decision in future is V’ = best(Common,,)= best(Existent, .)=V

Abstract QuePaxa
e Liveness does not depend on timeout because the protocol is randomized
e Robust against adversarial networks
e O(n?%) message complexity hence slow

e Does not support hedging

Abstract QuePaxa is robust but inefficient

QuePaxa RoadMap

e Operation Overview
e Abstract QuePaxa

e Concrete QuePaxa overview

61

From abstract to concrete QuePaxa

e (O(n) complexity in the
normal case

e Robust against

asynchrony

Abstract QuePaxa Concrete QuePaxa

e Support hedging

e Implementation ready
(4368 LOC)

Concrete QuePaxa has all we need!

QuePaxa Architecture

Submitter

Proposer

y

Recorder

Replica

Submitter

lient Requests

Proposer

—]

Recorder

Replica

Proposer

Recorder

Replica

63

Concrete Recorder Protocol (ISR)

e Simulates lock step synchrony using a

Algori ’ ' threshold logical clock
State ; eent logical clock step, initially 0

State | F[s] §rst value recorded at each step, default nil
State | A[s] §ggregate of values in each step, default nil e For each step, records the the first
record (s,0) — (s', f',a’): // handle an invocation value and the aggregate of the values
if s > S then // advance to a higher step . . .
Ses // update current step number submitted in the previous step
F[s] « o // record first value in this step
if s = S then // aggregate all values e (Constant space

| Als] < aggregate(A[s],) // seen in this step

| return (S, F[S],A[S - 1]) /[return a summary

QuePaxa Recorder 1s a constant space interval summary register

Algorithm 4: Protocol for QuePaxa proposer i

Propo S er COde Input: v preferred value of this proposer i

s—4X1+40 // start at round 1, phase 0
p «— (H, iv) // initial proposal template
repeat

pj < p for all recorders j /I prepare proposals

if s mod 4 = 0 and (s > 4 or i is not leader) then

L pj.priority < random(1..H — 1) forall j
Send record(s, p;) in parallel to each recorder j
Await R « quorum of replies (s]/.,fj’, a})

’

if s mod 4 = 0 then // phase 0: propose
if fj'.priority = H in all replies then
L return f,.’.valuefmm any reply in R
p < best; ()t'fj’ from all replies in R
if s mod 4 = 1 then /l phase 1: spread E
L /I no action required
if s mod 4 = 2 then // phase 2: gather E, spread C
if p = best; ofa;. from all replies in R then
| return p.value /I report decision

if s mod 4 = 3 then // phase 3: gather C
L p < best; of a} from all replies in R

se—s+1 // advance to next step

else if any reply in R has s’; > s then
L S, p s;.,fj’ // catch up to step s;.

QuePaxa proposer uses RPC in 4 phases to contact Recorders

Hedging in QuePaxa

oD /L] [/
Propose with /] P
0xA delay
o [/
\J Propose with /17
1xA delay
25
Propose with
2xA delay

QuePaxa supports hedging because multiple proposers do not cancel each other

RoadMap

e Tyranny of timeouts
e Parallels of QuePaxa and hedging
® (QuePaxa algorithm

e Evaluation

67

Evaluation

e (Can QuePaxa guarantee liveness under any timeout?

e Under normal case executions, how does QuePaxa compare with leader-based

protocols?

e Under adversarial conditions, does QuePaxa provide liveness?

68

Setup
e [LAN (N. Virginia)
e WAN (Tokyo, Mumbai, Singapore, Ireland, and Sao Paulo)

e Replicas: c4.4xlarge

o 16 virtual CPUs, 30 GB memory
e Submitters: c4.2xlarge

o 8 virtual CPUs, 15 GB memory

dWS

\./‘7

69

Effect of Hedging in Quepaxa
25000 = = 1' - }(—x—x—/Fmi_ I

4000
1000 4 —— QuePaxa

—+— Multi-Paxos
—— Raft

Throughput

(cmd/sec)

50 100 200 300 500
Leader Timeoutf Hedging Delay (ms)

QuePaxa 1s live for any hedging delay

Effect of Hedging in Quepaxa

25000 | =
94000 A
v 1000 1+ —e—
Throughput = QuePaxa
£ —#— Multi-Paxos
= —>»— Raft
5 4 — ! : —
o :
€9 4f : —e— QuePaxa
Sus 1 Round trip
Bandwidth Cost g &% 4| : latency
(V)] .
E Y— 1F - 1 T
o o :
z —t : | —
50 100 200 300 500

Leader Timeout / Hedging Delay (ms)

QuePaxa has an additional overhead only when hedging delay < RTT

Effect of Hedging in Quepaxa

25000 A

4000 A

Throughput .

(ch/séc)

Ul
1

—e— QuePaxa
—#+— Multi-Paxos
—¢— Raft

T T T T T T

Bandwidth Cost

Average number
of steps per
slot
=N W

—e— QuePaxa
Round trip

latency

3000

—~ 1000 -
V)]

. 'E
Recovery Time ~ 300

[——

T
— BRI

100 | T Y T 1 T y
50 100 200 300 500
Leader Timeout / Hedging Delay (ms)

QuePaxa has low recovery time

Normal case execution in a WAN

800 [

{+ —— QuePaxa

—+— Multi-Paxos

1 —— Epaxos-commit
Epaxos-exec

~
o
o

Ul (o)}
o o
o o

B
o
o

Median Latency (ms)

(OV)
o
o

0 50 100 150 200 250 300
Throughput (x 1k cmd/sec)

QuePaxa performs comparable to Multi Paxos

Performance under adversarial networks

a

—eo— (QuePaxa
—fe— Multi-Paxos
—>¢— Raft

Median latency (ms)
on
S

0 I I I I I I I
0 10 20 30 40 50 60 70

Throughput (x 1k cmd/sec)

QuePaxa 1s live under asynchrony

QuePaxa Contributions

e A consensus protocol that eliminates the tyranny of timeouts
problems

e First consensus protocol to support hedging in consensus

e A novel consensus protocol that

o Under normal network conditions as good as Multi-Paxos /Raft
o Under adversarial network conditions, provides liveness

75

Thesis Contributions

Baxos Robustness against leader-targeted attacks
RACS-SADL Asynchronous Liveness and high scalability
Mechanisms to avoid the tyranny of timeout
QuePaxa)
problems in consensus
Mahi-Mahi Scalable, asynchronous byzantine fault

tolerance

(IEEE CLOUD 2025)

(ACM SOSP 2023)

(IEEE ICDCS 2025)

76

High
Performance

Existing Consensus Protocols

High
Robustness

-

This thesis \

High
Robustness

High
Performance

o

/

77

Distributed Consensus Timeline

=
80s/90s 2000 2010 2020 2021 2022 2023 2024

FLP PBFT Mencius Hotstuff Baxos SADL-RACS QuePaxa Mahi-Mahi
Paxos Fast Paxos EPaxos Dag-Rider

View Stamp Raft M |
WPaxos ‘
Pig Paxos %
Started thesis

78

Robust and High-Performance Wide-Area
Consensus Protocols

PhD Public Defense

Pasindu Tennage

Thesis director: Bryan Ford
Thesis co-director: Lefteris Kokoris-Kogias

DEDIS

I
T
"1
—

