m /,‘1’5?‘
. .. /p% »
Distributed  [/#ge**

Eidgendssische Technische Hochschule Ziirich

i L
Swiss Federal Institute of Technology Zurich ComPUtmg fsSestann

Formalizing Grounded Arithmetic atop Isabelle/Pure
BSc Thesis

Sascha Kehrli
skehrli@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Zirich

Supervisors:
Prof. Dr. Bryan Ford
Prof. Dr. Roger Wattenhofer

30.09.2025



ABSTRACT i

Abstract

This thesis presents a foundational formalization of Grounded Arithmetic (GA), a first-order
arithmetic based on the principles of Grounded Deduction (GD), directly within the Isabelle/
Pure framework. Unlike classical and constructive logics, which impose strict termination
requirements on definitions to preserve consistency, GD admits arbitrary recursion at the
definitional level. To remain consistent, GA weakens other inference rules, many of which
demand explicit habeas quid termination proofs of subexpressions as premises. The goal of
this thesis is to investigate the feasibility of GA as a practical basis for mathematical and
computational reasoning by fully axiomatizing it in Pure.

The formalization, Isabelle/GA, achieves three main contributions. It provides a complete
axiomatization of GA in Pure, together with definitions of core arithmetic functions using the
native recursive definitional mechanism of GA, and proofs of their fundamental properties. It
develops a suite of reasoning tools, such as subgoal solvers, syntactic extensions, and methods
for case analysis and induction, automating many of GA’s habeas quid proof obligations and
moving away from axiom-level proofs. Finally, it shows GA’s expressive power by encoding
inductive datatypes via Cantor tuples and proving their essential properties, demonstrated
by a fully verified List datatype.

The resulting system demonstrates that GA “works”, despite many weakened inference
rules: one can reason productively in it, prove termination of functions beyond primitive
recursion such as Ackermann’s function, and encode arbitrary inductive datatypes. While
the implementation of a fully general definitional mechanism for inductive datatypes remains
future work, the foundations developed here provide the necessary basis. Altogether, this
thesis shows that grounded reasoning is practical and that GA has the potential to mature
into a serious alternative foundation for reasoning about computation.



CONTENTS ii
Contents

1 Introduction 1

1.1 Motivation: Recursive Definitions in Classical and Constructive Logic === 1

L2 Enter GD 2

1.3 Thesis Roadmap . 3

2 Background 4

2.1 Isabelle/Pure 4

2.1.1 Syntax of Pure 4

2.1.2 Equality, Implication, and Quantification as Type Constructors === = . 5

2.1.3 Deduction Rules 5

2.1.4 Formalizing Object Logics in Pure . . . ... ... .. .. .. .. .. ... ... 6

2.2 Grounded Arvithmetic (GA) . . 8

2.2.1 BGA Formalization . . 9

2.2.2 GA with Axiomatized Quantifiers .. . . L. 13

3 Formalizing GA in Pure 14

3.1 Proposotional Axioms 14

3.2 Natural Number Axioms . . . . . . 15

3.3 Grounded Contradiction . . 18

3.4 Syntax Translation for Natural Numbers 19

3.5 Quantifier Axiomatization 20

3.6 Conditional Evaluation Axiomatization 20

3.7 Definitional Mechanism Axiomatization . . . . 21

3.8 Defining Arithmetic Functions in GA . ... . . .. ... . ... ... ... 22

3.9 Termination Proofs . . 24

4 Tooling for Isabelle/GA 32

4.1 (Un)folding (Recursive) Definitions . .. . . ... ... ... ... ... ... . ... ... 32

4.2 Configuring the Simplifier . 33

4.3 A Subgoal Solver for GA 36

4.4 Conditional Rewrites . . . 38

4.4.1 Using simp for conditional rewrites . . . .. .. ... ... .. ... . . ... .. 39

4.4.2 Extending the auto Solver with Conditional Rewrites = 40

4.4.3 Circumventing Weak Equality . . . .. .. . ... .. 42

4.4.4 Proof Search 44

4.5 Manual Substitution 44

4.6 Case Distinction 47

4.7 Induction Method 49

4.8 A Case Study: Proving Strict Monotonicity of cpy .. . . 52

5 Encoding Inductive Datatypes in GA 53

5.1 Inductive Datatypes In General . . . . . . . . 23

5.2 Encoding: Constructors . . . .. 54

5.3 Encoding: Type Membership Predicates . . . . ... ... ... ... ... ... ... .. 54

5.4 Cantor Tuples in GA 26

5.5 The Encoded List Datatype . ... . . . . . . . . . . . .. . . ... . . .. 62

5.5.1 Proving Constructor Distinctness 63



CONTENTS

1ii

5.5.2 Proving Injectivity of Cons
5.5.3 Proving Exhaustiveness
5.5.4 Proving Closure
5.5.5 Proving List Induction
5.6 Tooling for Inductive Datatypes
5.7 Towards An Inductive Datatype Compiler

6 Conclusion

A References

64
64
66
67
68
70

72
73



INTRODUCTION 1

Introduction 1

1.1 Motivation: Recursive Definitions in Classical and Constructive Logic

We start with the simple observation that in logics of both classical and constructive
tradition, there is a seemingly inherent lack of definitional freedom. That is, definitions must
describe provably terminating expressions. The reason for these restrictions is that, without
them in place, these logics would be inconsistent.

To see this for the case of classical logic, consider the definition
L=-L.

Let us imagine that this is a valid definition in a classical logic (that is, a logic that at least
has the law of excluded middle (LEM) and double negation elimination). If the logic allows
us to deduce either of L or —L, the other can be deduced as well by unfolding the definition
and making use of double negation elimination, making the logic inconsistent.

Thanks to the LEM, we can prove that L holds by contradiction.

Assuming —L, we can derive =—L by unfolding the definition once and then L via double
negation elimination. Since we derived both L and —L from hypothetically assuming —L, a
contradiction, this allows us to definitely conclude L.

What went wrong? The law of excluded middle forces a truth value on any term in classical
logic, thus circular or non-sensical definitions such as L = =L, for which no truth value can
or should be assigned, cannot be admitted.

Constructive logics discard the law of excluded middle and are thus safe from a proof by
contradiction like the one shown above. However, in intuitionistic tradition, lambda calculus
terms are interpreted as proof terms, witnessing the truth of the proposition encoded by
their type. Lambda functions of type A = B are then interpreted as producing a proof of B
given a proof of A, which however means that they must always terminate.

To see this, consider the following attempt at a definition of an (ill-founded) term of type
Ya.a, i.e., a proof of every proposition:

prove_anything := Aa. prove anything «

Here, the construct A is the type-level analogue of lambda abstraction: it abstracts over a
type variable and substitutes it in the body. That is, if e has type T, then Aa.e has type
Va.T.

If such a term were permitted in the logic, it would type-check as having type Va.a.
Instantiating it at any type P yields a term of type P, i.e., a proof of P for arbitrary P,
making every proposition in the logic trivially provable.

What went wrong this time? Functions in constructive logics represent logical implication.
If a function has type A = B, the function must provide proof of B, that is, return a term
b: B, given any term a : A. The function witnesses the implication of A to B. If the function
does not terminate on an input however, this proof is not actually constructed and assuming
the hypothetical resulting proof term leads to inconsistency.



INTRODUCTION 2

1.2 Enter GD

Grounded deduction (GD) is a logical framework developed recently at EPFL and whose
development was motivated by precisely the observation made above. The project aims to
axiomatize a consistent (free from contradiction) formal system, in which arbitrary recursion
in definitions is permitted and which is still as expressive as possible.

In Section 2.2, Grounded Arithmetic (GA), a first-order theory of arithmetic based on
grounded principles, is fully formalized based on a formalization by the authors of GD [1].

To get an intuition of the ideas of GA, consider again the definition L = =L and how it
behaves in GA, after already having discussed how it behaves in both a classical and an
intuitionistic logic. The definition L = —L is perfectly valid in GA. However, when trying
to assign a truth value to it, i.e. to prove either L or —L, it is quickly apparent that this
is not possible using the GA inference rules. For example, the derived contradiction rule in
G A provides no help, as opposed to the classical version. The reason for this is an additional
premise of p B, which is a definitional shorthand for p V —p in GA. In a classical logic, this
premise is trivial, as it follows from the law of excluded middle for any p. In GA however,
this is a circular proof obligation, since it asks for the very truth value assignment we are
currently trying to prove. The truth value of L is not grounded in anything.

'kpB TU{-p}Fq TU{-p}k—g
T'kp

Similarly, many other inference rules in GA demand a grounding of the involved values as
additional premises (e.g. p B) compared to their classical counterparts. The authors refer to
these premises as habeas quid conditions.

There is an ongoing formalization project of GD/GA in the proof assistant Isabelle/HOL,
which already yielded a consistency proof of the quantifier-free fragment of GD, showing
great promise for GD as a reasoning framework. However, the other aim of GD is to show
that it is also expressive and importantly, usable as a tool for formalizing mathematics itself.
It is not clear whether grounded reasoning is feasible when aiming to formalize even basic
arithmetic. The GA formalization in the mature HOL logic enables studying meta-logical
properties such as consistency. However, it is not suitable for providing GD/GA as a tool
for formal reasoning itself for a few reasons.

e Formalizing GD within a mature metalogic such as HOL adds the axioms of the metalogic
to the trusted base of GD, which is undesirable from a meta-logical perspective.

o The logical primitives and axioms being embedded within the primitives of another logic
(HOL in this case) makes reasoning within it contrived and needlessly complicated.

e A logic is developed largely for idealistic reasons; the authors believe its reasoning
principles are the right ones for at least some domain. Formalizing such a logic within
another rich logic means that its reasoning principles are simply embedded in the, likely
very different principles, of the meta-logic, defeating that purpose.

It is thus highly desirable to formalize a foundational formal system like GD atop a very
minimal reasoning framework.



INTRODUCTION 3

This is exactly what Isabelle provides with the Pure framework: A minimal, generic logical
calculus to formalize object logics on top of. Any object logic in Isabelle, including Isabelle/
HOL, is formalized atop Pure.

This thesis aims to fully axiomatize GA in Pure, yielding essentially an interactive theorem
prover Isabelle/GA, which can be used for formal reasoning based directly on the reasoning
principles and axioms of GA. The next goal is to formalize large chunks of basic arithmetic to
evaluate the feasibility of GA as a foundation of mathematical reasoning and provide tooling
and proof automation to try and make grounded reasoning as small of an inconvenience over
classical reasoning as possible.

1.3 Thesis Roadmap

The remainder of this thesis is structured as follows.

Chapter 2 (Background) introduces the Isabelle/Pure logical framework and explains how
object logics are formalized on top of it. It also presents Grounded Arithmetic (GA) in
detail, including its syntax, axioms, and inference rules, based on the prior formalization
by the authors of GD. The goal of this chapter is to provide the conceptual and technical
background required to understand the subsequent formalization.

Chapter 3 (Formalizing GA in Pure) develops the core contribution of the thesis: a direct
axiomatization of GA in Isabelle/Pure. The chapter presents the translation of GA’s
axioms into Pure, including propositional reasoning, equality, natural numbers, quantifiers,
conditionals, and the definitional mechanism. It further demonstrates how basic arithmetic
functions can be defined, along with explicit proofs of their termination and key properties.
This chapter establishes the logical foundation of Isabelle/GA.

Chapter 4 (Tooling for Isabelle/GA) builds a suite of proof automation and usability feature.
These include unfolding and folding mechanisms for recursive definitions, configuration of
the simplifier, a dedicated subgoal solver, conditional rewriting strategies, and proof methods
for substitution, case analysis, and induction. A case study illustrates how these tools enable
practical reasoning in Isabelle/GA, as opposed to the cumbersome axiom-level reasoning
required previously.

Chapter 5 (Encoding Inductive Datatypes in GA) demonstrates the expressive power of GA
by presenting a general framework for encoding inductive datatypes into natural numbers
via Cantor tuples. The List datatype is treated as a running example, with detailed proofs
of distinctness, injectivity, exhaustiveness, closure, and induction. The chapter also discusses
additional tooling for inductive datatypes and outlines future work on extending the defin-
itional mechanism to support inductives more directly.

Chapter 6 (Conclusion) summarizes the main results of the thesis, highlights the lessons
learned from formalizing and working with GA in Pure, and outlines directions for future
research on grounded reasoning as a practical foundation for computation.



BACKGROUND 4

Background 2

2.1 Isabelle/Pure

Isabelle provides a logical framework called Pure. It contains a minimal meta-logic, which is
a typed lambda calculus with few additional connectives, some keywords to add types and
constants to said calculus, and a structured proof language called Isar. Any object logic in
Isabelle, for example the highly mature Isabelle/HOL fragment, are formalized atop Pure.
Isabelle itself is implemented in the Standard ML (SML) programming language.

This subsection provides a formalization of the Pure calculus. Unfortunately, there is no
single document that lays out the syntax, axioms, and derivation rules of the Pure calculus
in their entirety. The following is an attempt at providing such a characterization, combining
information from two Isabelle papers [2], [3] and the Isabelle reference manual [4].

2.1.1 Syntax of Pure

The core syntax of Pure is a typed lambda calculus, augmented with type variables, universal
quantification, equality, and implication.

Propositions are terms of the distinct type prop. Propositions in Pure are thus terms and
not types, like they are in type-theory based provers like Rocq or Lean [5], [6].

Type Syntax

TE=Q type variable
|T=7 function type
| prop type of propositions
Term Syntax
5= 5 variable
| c constant
|t application
| Az o 7.t lambda abstraction
[t =t implication
|[t=t equality
| /\ TTd universal quantification

The symbols used for implication, equality, and universal quantification are non-standard to
leave the standard symbols free for object logics.

Even though Pure has type variables, it provides no construct to capture them as an
argument, and thus also has no for-all type like the polymorphic lambda calculus System F.



BACKGROUND 5

2.1.2 Equality, Implication, and Quantification as Type Constructors

The connectives equality, implication, and universal quantification are all type constructors
of the prop type with the following polymorphic type signatures.

= I a = o= prop
—> ! prop = prop = prop

/\ :: (& = prop) = prop

The arguments of = are the two operands to compare, the arguments for = are the sequent
and consequent respectively, while the argument of A is a function from the type whose
inhabitants are quantified over to the term that represents the body of the quantifier.

Since type variables denote only a single, albeit arbitrary, type, there is technically one
instance of each polymorphic connective for every given type. For example, for any type o,
there is a constant = :: ¢ = ¢ = prop.

o2

2.1.3 Deduction Rules

The operational semantics of the underlying lamdba calculus and its typing rules are standard
and thus omitted. The following discusses the more interesting deduction rules, which make
Pure a logical framework.

Relative to an object logic with a set of defined axioms A any axiom a € A can always be
derived, as can any assumption v € T'.

Basic Rules

A axiom (Axiom) Ael
T A xom T-A

(Ass)

The implication and universal quantification introduction and elimination rules are standard.

Implication Deduction Rules

Tu{A}+B =D LFA=B TI,+A
I'A= B LUL B

(= E)

Universal Quantification Deduction Rules

'k B(z) =z not free in T’ 't Az.B(z)
TF Az.B(z) (A1) TF B(a) (AE)

For equality, besides the expected deduction rules corresponding to the equivalence relation
properties, there are also deduction rules for equality of lambda abstractions and prop, the
latter of which is defined as equivalence of truth values (a = b and b = a).



BACKGROUND 6

Equality Deduction Rules

I'kFb=a I'Fa=b Tkb=c
I"_aEa (:Reﬂ) FFaEb (:Sym) Fl_aEC (:Trans)
I'a=0b I'Fa=—b TFb=a
(= Lam) (= pron)

' (Az.a) = (Az.b) F'a=b

The A-conversion rules facilitate equivalence reasoning for lambda abstractions. The rules are
a-conversion, B-conversion and extensionality. The notation a[y/z] expresses the substitution

of  with y in a, that is, all occurences of x in a are replaced with y.

Lambda Conversion Rules

y not free in a
a-Conv -Conv
'k (\z.a) = (\y.aly/x)) ( ) 't (Az.a) b= alb/z] 8 )

I'Ffx=gx xnotfreeinT, f,and g
'kf=g

(Ext)

Finally, the equivalence substitution rule allows substituting a value b for a if a = b.

Equivalence Elimination

I'Fa=b TtFa
| )

2.1.4 Formalizing Object Logics in Pure

An object logic in Pure is created by adding new types, constants and axioms. That is, the
Pure logic is extended.

It is convention to define a new propositional type in an object logic, which is used as the
type of propositions in the object logic, as opposed to the meta logic, which is Pure.

This is achieved using the typedecl keyword, which declares a syntactic type in the Pure
calculus. This type has no known inhabitants or any other information yet.

typedecl o

Any information about o must be axiomatized. For example, the following declares typed
constants disj and True and axiomatizes certain rules about them.

1 axiomatization Isabelle

2 True :: <o> and
3 disj :: <0 = 0 = 0> (infixr <v»> 30)



BACKGROUND 7

4 where

5 true: <True>

6 disjIl: <P = P v Q> and
7 disjI2: <Q - P v Q> and

The axiomatized rules here simply state that True holds and that from either P or Q,
PV @ can be derived. Here, P and @ are implicitly universally quantified, ranging over all
terms of type prop. That is, P and ) can be substituted for any term of the correct type
(which is o for both P and @ here). Now, the type o has known inhabitants and structure.
However, Isabelle (or rather, Pure) cannot reason about it, because it cannot connect the
type o meaningfully with its meta-theory. To resolve this, a judgment must translate from
the object-level proposition type o to the meta-level type prop.

1 judgment

2 Trueprop :: <o = prop> (< » 5)

The syntax annotation (<) 5) means that any term of type o is implicitly augmented with
the Trueprop judgment. The very low precedence value of 5 ensures that the Trueprop
judgment is only applied to top-level terms. For example, the term x V True is the same as
Trueprop (x V True) and both are of type prop due to the Trueprop predicate converting
the formula to that type.

As you might have noticed, we have made use of this implicit conversion from o to prop
already in the axiomatization block from earlier. That is, the Trueprop judgment must be
declared before the axiomatization block, else the latter will just report a typing error.

Now, we can state and prove a first lemma in this tiny object logic, using the previously
defined axioms.

lemma "x v True" Isabelle

1
2 apply (rule disjI2)
3 apply (rule true)
4 done

Applying disjI2 ‘selects’ the second disjunct to prove, which results in the subgoal True,
which in turn we can solve using the true axiom.

This short introduction suffices for now, as we will later implement a much richer logic,
Grounded Deduction, using these same basic constructs. We can clearly see that implement-
ing an object logic in Pure actually extends Pure, in the sense that it adds new types and
deduction rules. For example, our extension added a type and three symbols to the existing
syntax of Pure. If we call the tiny logic formalized above Pure’, the following is its type and
term syntax:

Type Syntax of Pure'



BACKGROUND 8

T type variable
|7=7 function type
| prop type of propositions
| o

type of object logic propositions

Term Syntax of Pure'

te=m variable
| c constant
K2 application
| Az Tt lambda abstraction
[t =1 implication
[ t=t equality
| /\ T Td universal quantification
| True o-typed true constant
RAR o-typed logical or
| Trueprop ¢ conversion function o to prop

Further, we can view the added axioms as new inference rules, with the explicit Trueprop
function application.

I' - Trueprop P (disil1) I' F Trueprop @
I' = Trueprop PV Q I' - Trueprop PV Q

(disjI2)

(true)
I' - Trueprop True

It is technically possible to avoid declaring a new proposition type for an object logic and
instead use prop directly as the type of propositions. However, doing so means that the
(object) logic immediately inherits the built-in connectives and deduction rules, such as
implication (=) and universal quantification (/\), and the sequent-style reasoning built into
the kernel.

Such a structure reduces the control one has over the logic and keeps many reasoning
principles implicit.

2.2 Grounded Arithmetic (GA)

This subsection provides a full characterization of GA, a first-order formalization of arith-
metic based on the principles of GD. This is the fragment that is later formalized in Isabelle.

GA makes definitions first-class objects in the logic and allows arbitrary references of the
symbol currently being defined or other, previously defined symbols, in the expanded term.



BACKGROUND 9

To prevent immediate inconsistency, GA must weaken other deduction rules commonly seen
in classical logic. Specifically, GA adds a so-called habeas quid sequent to many inference
rules. Intuitively, this means that in certain inference rules, a (sub)term must first be shown
to terminate.

2.2.1 BGA Formalization

We start by formalizing the syntax and axioms of Basic Grounded Arithmetic (BGA), the
quantifier-free fragment of GA, based on the formalization in [1]. This formulation later adds
quantifiers by encoding them as unbounded computations in BGA, yielding full GA. This
however requires a sophisticated encoding using Godel-style reflection, i.e. encoding its own
term syntax into natural numbers, which is out of scope for a formalization in Pure. Thus,
we will later add quantifiers by simply axiomatizing them.

The primitive term syntax of BGA is the following.

BGA Primitive Term Syntax

te=m variable
|0 natural-number constant zero
| S(t) natural-number successor
| P(¢) natural-number predecessor
| =t logical negation
|tV logical disjunction
|t=t natural-number equality
| if t then ¢ else ¢ conditional evaluation
| d(t,...,t) application of recursive definition

It is noteworthy that the GA term syntax mixes expressions that are natural numbers and
expressions that are formulas into the same syntactic category. For example, the expression
S(z) = z V x is a valid term according to the syntax, despite the left-hand side shape clearly
indicating a natural number, while the right hand side shape indicates a truth value.

Besides the primitives, other constants and logical connectives are defined as notational
shorthands using the primitives.

Notational Shorthands



BACKGROUND 10

True=0=0 true constant
False =0 = 5(0) false constant
aN=a=a number type
pB=pV-p boolean type
pPAg=—(-pV—q) logical conjunction
p—>q="pVgq implication
psqg=(@—q9AN(@—Dp) biconditional
a+b=-(a=0) inequality

The surprising shorthands are a N and p B. The latter is a predicate over p deciding whether
it is a binary truth value. In a logic with the law of excluded middle, p B would be a tautology
for any p, but in a logic without it, it can be interpreted as a termination certificate for
truth values. Similarly, a N can be interpreted as a termination certificate for natural number
expressions. The shorthand itself is surprising, because if equality is reflexive, a = a is true
for any a. In GA however, equality is not reflexive as we will soon see, and a proof of a = a
is equivalent to a termination proof of the expression.

The syntax does not mean much without a set of axioms giving them meaning. We start
with listing the propositional logic axioms.

In the following, I' denotes a set of background assumptions. For completeness sake, the
explicit structural rules governing this set of assumptions is listed here. Since I is a set, the
usually explicit rules for permuting and duplicating assumptions are not needed.

Structural Rules

S ) _TI'rq
ru{ptkp Fru{ptkgq

Propositional Logic Axioms

I+ T+ Tk—p Ik-
— P (vn) 9% (vI2) & 7 vn)
I'kpVg I'FpVg I'k=(pVyq)
T+ 'kp Tk- T'k—(pV
—L (1B b P (=B Lr-lpva) (V E1)
T'k——p T'kgq LE-=p
'—=(pVyg) (v E2) 'pvg TU{p}tr TU{qgtFr (v E3)
I'F =g Tkr

Rules such as —— IE with a double-line are bidirectional, i.e. they serve as both an intro-
duction and elimination rule.

The propositional axioms are fairly standard, but inclusion of double negation elimination
is notable, as this is common in classical logics, but omitted in computational logics.



BACKGROUND 11

Equality Axioms

'Fa=0 I'Fa=b T'FKa
trazb g (= B)
'Fb=a | )

The equality axioms notably omit reflexivity. Symmetry of equality is an axiom, as is equality
substitution in an arbitrary context K. Transitivity of equality can be deduced using equality
substitution.

Natural Number Axioms

Tha=b Tha=b
(0I) — ) (S=IF) — 7 (P=1)
0N I+ S(a) = S(b) I'tP(a) =P(b)
_ DFFaN (P = I2) _UFaN (S + 0I) I'tc TFaN (?1I1)
F'FP(S(a) =a T'FS(a)#0 'k (if ¢ then a else b) = a
Lroc THON ¢ry [FEO TUNKa}bKS@ TraN o
I' k- (if ¢ then a else b) = b I'~Ka
'FaN TFEDN (= TI) I'teB TFHaN TEHbBHN (27T1)
'Fa=bN I'Fif ¢ then a else b N

The natural number axioms are fairly close to the standard Peano axioms, with some notable
exceptions.

The grounding equality is the 0I axiom, postulating that 0 N, or, by unfolding the definition,
0 = 0. Using the S = I E axiom, S(a) N can be deduced for any a for which a N is already
known. The induction axiom ind has an additional premise of a N, i.e. it requires proof that
the expression induction is performed over indeed terminates and denotes a natural number.

Conditional evaluation is a primitive in GA and its behavior must thus be axiomatized.
The two inference rules correspond to the positive and negative evaluation of the condition,
and they both require that the expression from the corresponding branch is shown to be
terminating (i.e. a N and b N respectively). This additional premise prevents equalities of
potentially non-terminating expressions to be deduced.

GROUNDED CONTRADICTION Although GA is not classical, a contradiction rule can be
derived. The resulting inference rule has an additional p B premise not present in the classical
version, which demands p is first shown to have a truth value. To get a feeling for the logic,
we construct the proof explicitly in a natural deduction style derivation tree.

Theorem 1. Grounded Contradiction
'pB TU{-p}rtq TU{-p}Fk—gq
T'kp

Proof.



BACKGROUND 12

'pB B def 0 FTu{-p}tq FU{ﬁp}l—ﬁqﬁE
Tkpv-p TU{pttp PU{p}Fp,
I'kp

GROUNDED IMPLICATION Impliciation is not a primitive in GA, but rather the shorthand
a — b= —-aVb. From this definition, the classical elimination rule modus ponens can be
derived. However, only a weakened introduction rule, with the now familiar additional habeas
quid premise, can be derived.

Theorem 2. Modus Ponens

'kp TkEp—gq

(— E)
I'kgq
Proof.
T'kp
g LTuf{mptb-p  TU{wp}Fp . TEp—aq 4.
I'u{gttg Fu{-p}tgqg TE-pVq, pg
I'kgq
|
Theorem 3. Implication Introduction
'tpB TU +
p {p}taq (> 1)
I'kp—gq
Proof.
H
_TEpB gy _TUlpiFa gy TUimpiE=p
I'FpV-p Fru{p}t--pvg PTU{ptF=pVa, ps
TFPVa | e
I'Ep—q
]

DEFINITIONAL AXIOMS Finally, the axioms for definitions allow arbitrary substitution of
a symbol with its definition body (and the other way around) in any context. The vector
notation @ denotes an argument vector for the defined function symbol.

Definition Axioms
I'-s(@)=d@ T+ Kd)
'k K s(a) r




BACKGROUND

13

2.2.2 GA with Axiomatized Quantifiers

As already mentioned, the creators of GA claim that quantifiers can be encoded into BGA

using the powerful definitional mechanism [1], yielding full GA “for free”. However, as this

will not be feasible in the formalization within Pure, the following axiomatizes the quantifiers

instead. The axioms correspond to the inference rules that would be derivable from encoded

quantifiers [1].

Quantifier Axioms

Fru{zN}+-Kz
I'EVz.K x

I'FaN T'HFKa
I'F3z.K z

(VI)

31)

I'EVe. Kz TFaN
'K a

(VE)

F'3z.Kz TU{zN Kz}tgq
T'kq

(3E)

Besides the additional habeas quid premises, the quantifier axioms are standard.

Since the quantifiers are primitive here, they must be added to the primitive term syntax,

yielding the full GA primitive term syntax.

GA Primitive Term Syntax
ta=2x
| 0
| S(t)
| P(?)
| -t
|tV
|t=t
| if ¢ then ¢ else t
| d(t,...,t)
| Va.t
| Jx.t

variable

natural-number constant zero
natural-number successor
natural-number predecessor
logical negation

logical disjunction
natural-number equality
conditional evaluation
application of recursive definition
universal quantifier

existential quantifier

This set of axioms is now a full formalization of a grounded flavor of first-order arithmetic,

which we just refer to as GA from now on.



FORMALIZING GA IN PURE 14

Formalizing GA in Pure 3

Having fully formalized Grounded Arithmetic in Section 2.2, this chapter now aims to
translate this natural deduction style formalization into Isabelle/Pure. Formally, this means
that GA is embedded into the Pure calculus, using it as a meta-logic. The typed lambda
calculus Pure is fully characterized in Section 2.1. In the following, all types mentioned are
part of the Pure type system. GA itself has no real (conventional) notion of types, although
the ‘inherited’ types of Pure can also be interpreted as syntactic GA types.

The chapter proceeds by introducing the axioms of GA in a structured manner, starting
with propositional reasoning, equality, and natural numbers. Particular attention is given to
the surprisingly simple definitional mechanism of GA and quantifier axiomatization, which
highlights the first-order nature of GA. Beyond the axiomatization, the chapter defines core
arithmetic functions such as addition and multiplication using the recursive definitional
mechanism, along with explicit proofs of their termination and basic properties. Together,
these sections establish the formal core of Isabelle/GA, laying the groundwork for the
tooling and formalizations of later chapters. An explicit termination proof of the famously
non-primitive recursive Ackermann function, demonstrating the expressive power of GA,
concludes the chapter.

3.1 Proposotional Axioms

We first declare a syntactic Isabelle type for truth values in GA o and a function to convert
from o to the type of truth values of the Pure calculus prop, as explained in Section 2.1.4.

typedecl o

1
2
3 judgment
4 Trueprop :: <o = prop> (< > 5)

Now, we can declare constants disj and not, with the propositional axioms from Section 2.2.1.

axiomatization Isabelle

1

2 disj :: <0 = 0 = 0> (infixr <v»> 30) and
3 not :: <o = o> (<= > [40] 40)

4 where

5 disjIl: <P = P v Q> and

6 disjI2: <Q = P v Q> and

7 disjI3: <«[-P; -Q] = =(P v Q)»> and

8 disjEl: <[P v Q; P - R; Q = R] = R> and
9 disjE2: <«=(P v Q) = —-P> and

10 disjE3: <«=(P v Q) = -Q> and

11 dNegI: <P = (--P)> and

12 dNegE: <(--P) - P> and

13 exF: <[P; =-P] = Q»



FORMALIZING GA IN PURE 15

This immediately introduces the infix notation a V b for disj a b and —a for not a, where
infixr means that the provided syntax is an infix operator that associates to the right.
The precedence of the — operator is 40, it thus binds stronger than the V operator with
precedence 30.

In general, a rule in the natural deduction style formalization from Section 2.2 of the
following shape:

TUA, FP TUA,FPB, .. TUA, P,
THC

Is translated into the following shape in Isabelle:

1 (Al = P1l) = (A2 -P2) = ... = (An = Pn) = C Isabelle

Or, equivalently:

1 [Al - P1; A2 = P2; ...; An=Pn] = C Isabelle

Potential background assumptions I' do not need to be explicitly managed in Isabelle. What
we consider a derivation, i.e. - in GA is just implication => in Pure.

Theorems in this section that are explicitly presented in a theorem block keep using the
natural deduction style to be consistent with Section 2.1 and Section 2.2. In this notation,
deducability from assumptions is denoted -, while in Isabelle the corresponding symbol is
=, i.e. meta-level implication.

3.2 Natural Number Axioms

We declare a type num for natural numbers.

1 typedecl num Isabelle

Before the majority of natural number axioms, we define equality and some connectives
derived from the primitives. We axiomatize equality with unrestricted substitution and
symmetry. Equality is not just defined for num, but for any type 'a, where 'a is a generic
type variable. As expected, equality is a binary infix operator associating to the left.

1 axiomatization
2 eq :: <'a= 'a = 0> (infix1l <=»> 45)

3 where

4 eqSubst: <[a =b; Q a] - Q b> and

5 eqSym: <a =b -b = a»

Transitivity can be proved using the substitution axiom.

1 lemma eq trans: "a=b-b=c=-a=c" Isabelle

2 by (rule eqSubst[where a="b" and b="c"], assumption)



FORMALIZING GA IN PURE 16

However, transitivity is not a very useful lemma, as it just as efficient to directly use equality
substitution.

Inequality, the B and N judgments, and other logical operators can now be defined in terms
of the axiomatized primitives. Notably, B is explicitly typed at o = 0, meaning that e.g.
the term S(zero) B is rejected by the Isabelle parser, as it is not well-typed. Similarly, N is
explicitly typed at num = o, only accepting an argument of type num.

definition neq :: <num = num = o> (infixl <#> 45) Isabelle

1

2 where <a #b =- (a =b)>»

3 definition bJudg :: <o = o> (<_ B> [21] 20)

4 where <(p B) = (p v =p)>

5 definition isNat :: <num = o> (<_ N> [21] 20)
6 where "x N =x = x

7 definition conj :: <0 = 0 = 0> (infix1l <a> 35)
8 where <p A g = =(-p v -q)>

9 definition impl :: <0 = 0 = 0> (infixr <-> 25)
10 where <p - q = -p v >

11 definition iff :: <0 = 0 = 0> (infix1l <> 25)
12 where <p-q=(p—-9q) A (qg-p)

As an example, all the introduction and elimination rules for conjunction A can be proved
now:

lemma conjELl: Isabelle

1

2 assumes p_and_qg: "p A Q"
3 shows "p"

4 apply (rule dNegE)

5 apply (rule disjE2[where Q="-q"])
6 apply (fold conj_def)

7 apply (

8 done

9

rule p_and q)

10 lemma conjE2:

11 assumes p_and q: "p A q"

12 shows "q"

13 apply (rule dNegE)

14 apply (rule disjE3[where P="-p"])
15 apply (fold conj_def)

16 apply (rule p _and q)

17 done

19 lemma conjI:

20 assumes p: "p"

21 assumes q: "q"

22 shows "p A q"

23 apply (unfold conj def)



FORMALIZING GA IN PURE 17

24
25
26
27
28
29

apply (rule disjI3)
apply (rule dNegI)
apply (rule p)
apply (rule dNegI)
apply (rule q)

done

We can now axiomatize the zero constant and pred and suc functions. Compared to the

formalization in Section 2.2, there is an additional axiom here stating P(0) = 0. This will

allow stating some convenient lemmas later, for example that for any n with n N, P(n) < n.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Isabelle

axiomatization
zero :: <num> and
Suc :: <num = num> (<S(_)> [800]) and
pred :: <num = num> (<P(_)> [800])

where

natd: <zero N> and

sucInj: <Sa=Sb-=a=>b> and

sucCong: <a=b=Sa=S5b> and

predCong: <a =b =P a =P b> and

eqBool: <[a N; b N] = (a = b) B> and

eqBoolB: «[x B; y B] = (x =y) B> and

sucNonZero: <a N = S a # zero> and

predSucInv: <a N = P(S(a)) = a> and

predd: <P(zero) = zero> and

ind: <[a N; Q zero; Ax. x N=-0Q x=0QS(x)] = Q a>

The following two crucial inference rules can be proved from these axioms, whose proof is

given directly in the Isabelle formalization.

Theorem 4. Natural Number Typing Rules

I'aN (S N) I'aN P N)
I'-S(a) N I'-P(a) N

Proof.

lemma natS:

assumes a _nat: "a N"
shows "S a N"
apply (unfold isNat def)
apply (rule sucCong)
apply (fold isNat def)
apply (rule a nat)
done



FORMALIZING GA IN PURE 18

10 lemma natP:

11 assumes a nat: "a N"
12 shows "P a N"

13 apply (unfold isNat def)
14 apply (rule predCong)

15 apply (fold isNat def)
16 apply (

17 done

rule a_nat)

The constants True and False can now be defined as canonical truth and falsehood True =
(0 =0) and False = (S(0) = 0).

definition True Isabelle

1

2 where <True = zero = zero»

3 definition False

4 where <False = S(zero) = zero»

3.3 Grounded Contradiction
The grounded contradiction lemma proven as a derivation tree in Section 2.2.1.1 can now

be proven in the Isabelle formalization.

Grounded Contradiction
'pB TU{-p}tq TU{-p}Fk—gq
T'kp

lemma grounded contradiction: Isabelle

assumes p _bool: «<p B>
assumes notp q: <-p = q»
assumes notp notq: <-p - -q>

1

2

3

4

5 shows «<p>
6 proof (rule disjEl[where P="p" and Q="-p"])
7 show "p v —-p"

8 using p_bool unfolding GD.bJudg def .

9 show "p = p" by assumption

10 show "-p - p"

11 proof -

12 assume not p: "-p"

13 have g: "q" using notp q[OF not p]

14 have not q: "—-q" using notp notq[OF not p]
15 from g and not_q show "p"

16 by (rule exF)

17 ged



FORMALIZING GA IN PURE 19

18 qged

3.4 Syntax Translation for Natural Numbers

The axiomatized symbols for natural numbers are of the shape ([SP]* zero) as a regex. For
example, zero and S(S(P zero)) are natural numbers in this GA formalization. It would be
better to use the familiar base 10 system, such that the user can write a base-10 number and
it is correctly interpreted as the corresponding num expression by Isabelle. Luckily, Isabelle
provides powerful syntax translation support.

The following snippet achieves this by first declaring an implicit conversion function from
numerical tokens (resulting from user input) to the natural number type num. The anno-
tation (" ") means it is applied to all such tokens implicitly. Then, an SML file called
peano__numerals. ML provides the function parse gd_numeral, which translates a number
in base 10 to the num version (for example 3 to S(S(S(zero)))).

Finally, the command parse translation specifies that the previously declared gd num
constant performs the action specified by the parse_gd numeral function.

syntax

" gd _num" :: "num_token = num" (" ")

ML file "peano numerals.ML"

1
2
3
4
5
6 parse translation «

7 [ (@{syntax_const " gd num"}, Peano Syntax.parse gd numeral)]

8

As mentioned before, Isabelle is implemented mostly in (a dialect of) Standard ML (SML).
The SML infrastructure of Isabelle is not meant to be completely abstracted away from the
(advanced) user, but rather Isabelle provides a rich API of SML functions and types, which

is collectively referred to as Isabelle/ML. A syntax translation is precisely the kind of task
that can be implemented in SML, hooking into the Isabelle implementation itself.

The following are the contents of the peano__numerals. ML file, providing the translation logic
from a string representation of a base-10 number to a num expression.

1 structure Peano Syntax = struct SML

3 fun nat_to peano 0 = Syntax.const @{const syntax "zero"}

4 | nat_to peano n = Syntax.const @{const syntax "suc"} $ nat _to peano (n -
1)

5

6 fun parse_gd numeral _ [Free (s, )] =

7 (case Int.fromString s of

8 SOME n => nat_to peano n

9 | NONE => error ("Not a numeral: " ~ s))

10 | parse gd numeral = = error "Unexpected numeral syntax"



FORMALIZING GA IN PURE 20

11
12 end

The function Int.fromString is part of the Isabelle/ML API and tries to convert the input
string to an (SML) Int. The translation from Int is then straightforward — 0 is translated
to zero and n to S prepended to the recursive translation of n-1.

3.5 Quantifier Axiomatization

The quantifier axioms exactly implement the ones from the pen-and-paper formalization in
Section 2.2.2, displayed again here for reference.

r N} - K .
U{z N} x (V1) vz Kz TtkaN (VE)
I'FVz.K x I'-Ka
''FaN TFHKa @) '3z.Kz TU{zN Kz}tgq @E)
I'Fdz. K x I'Fgq

A crucial detail is the explicit typing of the quantifiers at the type (num = o) = o. It makes
the quantifiers range only over num, crucial as GA aims to be a first-order theory over the
natural numbers. In a higher-order theory, the quantifiers would range over any type and be
typed at ("a = 0) = o, where ’a is a generic type variable.

axiomatization Isabelle

1
2 forall :: "(num = 0) = 0" (binder "V" [8] 9) and
3 exists :: "(num = o) = o" (binder "3" [8] 9)

4 where

5 forallIl: "[ax. x N = Q x] - ¥Vx. Q x" and

6 forallE: "[Vc'. Q c'; a N] = Q a" and

7 existsI: "[a N; Q a] = dIx. Q x" and

8 existskE: "[di. Q i; Ana. a N=Q a = R] = R"

3.6 Conditional Evaluation Axiomatization

Conditional evaluation cannot seem to be derived from primitives axiomatized so far and
must thus be an axiomatized primitive itself.

The syntax of the conditional operator, with the desired shape of the application cond a b ¢
being if a then b else ¢, seems complicated, but Isabelle is well-equipped to handle syntax
like this, with the ability to specify the ‘holes’ in a syntax expression like in the following
declaration. This type of notation is called mixfix in Isabelle, as it mixes infix and prefix
notation.

Notably, the two branches of the operator and the return type are typed at the generic ‘a,
indicating that the conditional operator in this formalization is polymorphic. Contrary to
the pen-and-paper formalization in Section 2.2.1, this allows for returning truth values in
a conditional evaluator (or any other type at that, for example functions of type num =



FORMALIZING GA IN PURE 21

num), for example the constants True and False. Although these could be encoded with
natural numbers just as well, this requires equality checks of a result and is less elegant.
Due to the habeas quid premises of the two branching axioms, making the arguments of the
syntactic construct generic is not sufficient, it just means that the parser won’t reject a term
such as if ¢ then True else False. Since neither True N nor False N can be proved, this term
cannot be ‘reduced’ using either condIl or condI2. Thus, there are three additional axioms for
conditional evaluation over values of type o, mirroring the ones for conditional evaluation over
num, but with the habeas quid premise of B instead of N. Now, if True then True else False =
True can be proved using the axiom condI1B.

consts

cond :: <0 = 'a= 'a= "'a> («<if _ then else > [25, 24, 24] 24)

1
2
3
4 axiomatization where

5 condIl: <[c; a NJ - (if c then a else b) = a> and

6 condI2: <[-c; b N] = (if c then a else b) = b> and
7 condT: <[c B; a N; b N] = if c then a else b N> and
8 condI1B: <[c; d B] = (if c then d else e) = d> and
9 condI2B: <[-c; e B] = (if c then d else e) = e> and
10 condTB: <[c B; d B; e B] = if c then d else e B»

3.7 Definitional Mechanism Axiomatization

The axioms in the formalization in Section 2.2.1 don’t make it entirely clear what the
definitional operator with the symbol = is. It is not part of the primitive syntax, making it
meta-logical, in the sense that it is outside the logical calculus. However, it is also a premise
in the definitional axioms, implying it behaves like a proposition:

The most straightforward implementation of such a mechanism in Isabelle is to just treat it
as any other logical connective. Its definition and axiomatization make it conceptually very
similar to equality =.

Like equality, the definitional mechanism is polymorphic, allowing the left-hand side and
right-hand side of the definition to be of any (albeit the same) type. The first axiom, called
defE, is exactly the same as equality substitution, and allows the left-hand side of a definition
(the symbol), to be substituted by its right-hand side (the ezpansion) in any context. Instead
of symmetry, the second equality axiom, the definitional operator has the introduction axiom
defI, which ‘folds’ a definition, i.e. replaces the right-hand side of a definition with the left-
hand-side in any context.

1 axiomatization Isabelle
2 def :: <'a = 'a = o> (infix <:=> 10)
3 where



FORMALIZING GA IN PURE 22

4 defE: <[a :=b; Q b] = Q a> and
5 defI: <[a :=b; Q a] = Q b>»

This means that a definition a := b is just another proposition of type o. For example is the
sentence 3 =0V L := L a well-formed term of type o, as long as L is a previously declared
constant.

However, with the current set of axioms, a statement of the shape a := b cannot possibly be
proven, as there is no rule that introduces the definitional operator. However, the ‘truth’ of
a definition can be assumed, for example in the following lemma.

1 lemma

2 assumes 1 def: "l := 0"

3 shows "1 = 0"

4 apply (rule defE[OF 1 def])
5 apply (fold isNat_def)

6 apply (rule nat0)

7 done

The proof first unfolds the definition of 1 using the defE axiom, yielding the goal state 0 = 0,
which can be proved by folding the definition of N, resulting in 0 N, whose truth is postulated
by the nat® axiom.

To get a ‘globally visible’ definition, the definition must be axiomatized. This does not
axiomatize any properties about the defined symbol, it just axiomatizes the ‘equivalence’
of the left-hand side with the right-hand side, which, together with the axioms defE and
defI means they can be substituted for each other in any context. The formalization of GA
in Isabelle/HOL by the authors includes a consistency proof of the axioms given any fixed
finite set of definitions [1]. Thus, axiomatizing definitions maintains consistency, as long as
there is only a single definition per symbol.

3.8 Defining Arithmetic Functions in GA

Having axiomatized full GA in Isabelle/Pure, the next step is to define basic arithmetic
functions and prove some lemmas about them.

The recursive definitions of the arithmetic functions are straightforward and correspond to
case distinctions over the second argument (of zero and non-zero).

1 axiomatization
2 add :: "num = num = num" (infixl "+" 60) and

3 sub :: "num = num = num" (infixl "-" 60) and

4 mult :: "num = num = num" (infixl "*" 70) and

5 div :: "num = num = num" and

6 less :: "num = num = num" (infix "<" 50) and

7 leq 0 "num = num = num" (infix "<" 50)

8 where

9 add_def: "add x y := if y = 0 then x else S(add x (P y))" and

10 sub_def: "sub x y :=if y = 0 then x else P(sub x (P y))" and



FORMALIZING GA IN PURE 23

11 mult def: "mult x y := if y = 0 then 0 else (x + mult x (P y))" and

12 leq_def: "leg x y :=1if x = 0 then 1

13 else if y = 0 then 0

14 else (leq (P x) (P y))" and
15 less def: "less xy :=1if y = 0 then 0

16 else if x = 0 then 1

17 else (less (P x) (P y))" and
18 div_def: "div x y = if x <y =1 then 0 else S(div (x - y) y)"

These definitions show the necessity of the predecessor function P in GA. The comparison
functions < and < are defined to compute natural numbers, where 1 encodes truth and 0
falsehood. Note that the division function does not terminate for y = 0.

The functions > and > can now be defined in terms of < and <.

1 definition greater :: "num = num = num" (infix ">" 50) where Isabelle

2 "greater x y =1 - (x =y)"
3
4 definition geq :: "num = num = num" (infix "=" 50) where

5 "geg x y =1 - (x <y)"

A first property provable about the less function is that x < 0 is always false, i.e. x < 0 = 0.

Theorem 5. Less than zero is false
F'Fx<0=0

Proof.

Unfolding the definition less def using the defE axiom results in the goal state:
1. (if 0 = 0 then O else if x = 0 then 1 else P(z) < P(0)) =0

As the condition holds, applying the condIl axiom results in the goal state:

1. 0=0
2.0N

These can both be discharged easily. The latter is the axiom nat0® and the former is the
unfolded version of this axiom, stated by the lemma zeroRef1l.

lemma less 0 false: "(x < 0) = 0" Isabelle

apply (rule defE[OF less def])
apply (rule condIl)

apply (rule zeroRefl)

apply (rule nat0)

o U~ W N R

done



FORMALIZING GA IN PURE 24

3.9 Termination Proofs

Due to the habeas quid premises of so many axioms, an expression like a + b becomes
truly useful only if a + b N is provable. With the interpretation that a N is a termination
certificate for a,a N = b N = a + b N is essentially a termination proof of the add function,
conditioned on its operands also being terminating natural numbers themselves.

Theorem 6. Termination of add

'tzN TFyN
'Fx+yN

Proof.

By induction on the second argument.

lemma add terminates: Isabelle

assumes X _nat: <x N>
assumes y nat: <y N>
shows <add x y N»

show "y N" by (rule y nat)
show "add x © N"
proof (rule defE[OF add def])

1
2
3
4
5 proof (rule ind[where a=y])
6
7
8
9 show "if (0 = 0) then x else S(add x P(0)) N"

10 apply (rule eqSubst[where a="x"])

11 apply (rule eqSym)

12 apply (rule condIl)

13 apply (rule zeroRefl)

14 apply (rule x_nat)

15 apply (rule x_nat)

16 done

17 ged

18 show ind step: "Aa. a N = ((x + a) N) = ((x + S(a)) N)"
19 proof (rule defE[OF add def])

20 fix a

21 assume a nat: "a N" and BC: "add x a N"
22 show "if (S(a) = 0) then x else S(add x P(S(a))) N"
23 proof (rule condT)

24 show "S(a) = 0 B"

25 apply (rule egBool)

26 apply (rule natS)

27 apply (rule a nat)

28 apply (rule nato)

29 done

30 show "x N" by (rule x nat)

31 show "S(add x P(S(a))) N"



FORMALIZING GA IN PURE 25

32 apply (rule GD.natS)

33 apply (rule eqSubst[where a="x+a"])
34 apply (rule eqSubst[where a="a" and b="P(S(a))"1)
35 apply (rule eqSym)

36 apply (rule predSucInv)

37 apply (rule a nat)

38 apply (fold isNat def)

39 apply (rule BC)

40 apply (rule BC)

41 done

42 ged

43 ged

44 qed

Termination proofs of subtraction and multiplication follow the same structure, as they
also recurse to the immediate predecessor in the second argument. This recursive structure
exactly mirrors induction on the corresponding argument, which is why these proofs are so
straightforward, despite spelling them out at the axiom level at this point.

Things get a bit more interesting with the < function, as it recurses in both arguments. The
solution is to prove a stronger lemma, which universally quantifies over one argument, and
then perform induction on the other argument.

Theorem 7. Termination of leq

'kxaN TkFyN
F'Fz<yN

Proof.

By induction on the second argument in the strengthened proposition Vz. z <y N.

lemma leq terminates: Isabelle

shows "x N -y N- x =y N"
proof -
have H: "y N - ¥x. x = y N"

show "V¥x'. x' = 0 N"

apply (rule foralll)

rule defE[OF leq defl])

1

2

3

4

5 proof (rule ind[where a="y"], simp)
6

7

8 apply

9

apply (rule condT)

(

(

(
10 apply (rule eqgBool)
11 apply (assumption)
12 apply (rule nat0)
13 apply (rule natS)
14 apply (rule nat0)



FORMALIZING GA IN PURE 26

15 apply (rule eqSubst[where a="0"])

16 apply (rule eqSym)

17 apply (rule condIl)

18 apply (rule zeroRefl)

19 apply (rule nato)+

20 done

21 show "Ax. X N = (Vxa. xa = x N) = (Vxa. xa = S(x) N)"
22 proof -

23 fix X

24 assume H: "Vxa. xa = x N"

25 show "X N = Vxa. xa = S(x) N"

26 proof (rule foralll)

27 fix xa

28 show "x N = xa N = xa = S(x) N"

29 apply (rule defE[OF leq _def])

30 apply (rule condT)

31 apply (rule egBool)

32 apply (assumption)

33 apply (rule nat0)+

34 apply (rule natS, rule nat0)

35 apply (rule condT)

36 apply (rule egBool)

37 apply (rule natS, assumption)

38 apply (rule nat0)+

39 apply (rule eqgSubst[where a="x" and b="P S x"])
40 apply (rule egSym, rule predSucInv, assumption)
41 apply (rule forallE[where a="P xa"])
42 apply (rule H)

43 apply (rule natP, assumption)

44 done

45 ged

46 ged

47 ged

48 then show "X N -y N- x =y N"

49 by (rule forallE)

50 ged

Although the key ideas of the proof are straightforward — the strengthening of the proposition
in line 4 and applying induction on the second argument on line 5 are only one line each
— this is clouded by a lot of effort to discharge the habeas quid premises and other simple
things like replacing a P(S(z)) with « in a subexpression. The latter currently requires an
appication of equality substitution, an application of equality symmetry, and then applying
the predSucInv axiom.



FORMALIZING GA IN PURE 27

This issue is tackled in Section 4, where a lot of proof automation and tactics are introduced
to simplify reasoning.

The next goal is to prove termination of the division function. This poses two new challenges.
1. The function does not terminate for y = 0.

2. The recursive pattern is does not mirror induction, i.e. it does not recurse to the immediate
predecessor.

The former is solved relatively easily. One option is to add —y = 0 as an explicit assumption
to the termination proof. Another, more elegant, option is to restate the theorem in the
following way: © N = y N = div z S(y) N. Now, it holds for any natural numbers x and
Y.

To solve the second problem, a strong induction lemma needs to be proven first. This then
allows assuming the induction hypothesis for any vy’ <y when proving the statement for

S(y).

The only difference to the induction axiom is that the hypothesis in the induction step is
stronger — instead of K z it isnow Ay. y <z =1= K y (in Isabelle notation) or y < z =
1+ K y (in natural deduction style notation).

Theorem 8. Strong Induction

I'FaN THFKO TU{zN {yN, y<z=1}+FKy)} K S(x)
'K a

Proof.

By induction on a in the strengthened object-level proposition Vz. (zx <a=1) — K z.

1 lemma strong induction: Isabelle

shows "a N-Q 0 = (Ax. x N= (Ay. y N=-y = x 1-Qy)~-(QS(x))) =20

2 2"

3 proof -

4 have q: "a N-Q0 - (AX. X N= (Ay. yN=y=x=1-0Qvy) - (Q S(x))) -
5 Vx. (x =a=1) - Q x"

6 apply (rule ind[where a="a"], assumption)

7 apply (rule forallIl implI)+

8 apply (rule egBool, rule leq terminates, assumption)

9 apply (rule nat@, rule natS, rule nato)

10 proof -

11 fix x

12 show "X N-=x=0=1-0Q0-0Q x"

13 apply (rule eqSubst[where a="0" and b="x"], rule eqSym)
14 apply (rule leq_0, assumption+)

15 done

16 show "a N = x N =

17 Q0 -

18 (AX. X N=(Ay. yYN=y=x=1=Qy)=0Q(Sx)) =



FORMALIZING GA IN PURE 28

19 Vxa. xa=x=1-0Q xa =

20 Vxa. xa = (S x) =1 - Q xa"

21 apply (rule forallIl implI)+

22 apply (rule eqgBool, rule leq terminates, assumption)
23 apply (rule natS, assumption)

24 apply (rule natS, rule nat0)

25 proof -

26 fix xa

27 assume xa_nat: "xa N"

28 assume hyp: "¥x'. x' = x=1-0Q x"'"

29 assume step: "(AX. X N= (Ay. yN=y=x=1=-0Qvy) =0 (S x))"
30 assume xa_leq sx: "xa =S x = 1"

31 have H: "xa = x =1 - Q xa"

32 by (rule forallE[where a="xa"], rule hyp, rule xa nat)
33 show "x N - Q xa"

34 apply (rule disjEl[where P="xa = x = 1" and Q="- xa = x = 1"])
35 apply (fold GD.bJudg def)

36 apply (rule egBool)

37 apply (rule leq terminates)

38 apply (rule xa nat, assumption)

39 apply (rule natS, rule nat0)

40 apply (rule implE[where a="xa = x = 1"])

41 apply (rule H)

42 apply (assumption)

43 proof -

44 assume xa not leq x: "- xa = x = 1"

45 have xa eq sx: "x N - xa =S x"

46 apply (rule leq_suc _not leq implies eq)

47 apply (rule xa_nat, assumption)

48 apply (rule xa _not leq x)

49 apply (rule xa_leq sx)

50 done

51 have g sx: "x N = Q S(x)"

52 apply (rule step)

53 apply (assumption)

54 apply (rule implE)

55 apply (rule forallE)

56 apply (rule hyp, assumption+)

57 done

58 show "x N = Q xa"

59 apply (rule eqgSubst[where a="S x" and b="xa"])
60 apply (rule eqgSym)

61 apply (rule xa_eq sx, assumption)

62 apply (rule g_sx, assumption)

63 done



FORMALIZING GA IN PURE 29

64 ged

65 ged

66 ged

67 assume step: "(AX. X N= (Ay. yN=y=sx=1-0Qvy) = (Q S(x)))"
68 show '"a N-Q0 -Q a"

69 apply (rule implE[where a="a = a = 1"])

70 apply (rule forallE[where Q="Ax. (x = a =1) - Q x"])
71 apply (rule q)

72 apply (assumption+)

73 apply (rule step)

74 apply (assumption+)

75 apply (rule leq_refl)

76 apply (assumption)

77 done

78 qed

It is necessary to use the object level connectives (i.e. V instead of /\ and — instead of
=) in the stronger proposition induction is performed over, since the induction axiom
only works over expressions of type o (i.e. the object-level truth value type) and not of
type prop (which the meta-level connectives => and /\ are defined on). Thus, applying the
G A induction axiom on the corresponding meta-level proposition Az. (z<a=1)= K z
would not work. It is simply a type error.

The idea of this proof is again very straightforward, but spelling it out using the axioms is
lengthy and challenging.

Using the strong induction lemma, termination of the division function defined earlier can
be proved.

Theorem 9. Termination of div

'txN T'FyN
I'kdivz y N

Proof.

By strong induction on the second argument.

lemma div_terminates: Isabelle

shows "x N = y N = div x S(y) N"
apply (rule strong induction[where a="x"], assumption)
apply (rule defE[OF div_def], simp)

fix x
assume hyp: "Aya. ya N=ya =x =1-= (div ya (Sy) N)"
show "x N = y N - div (S x) (S y) N"

1
2
3
4
5 proof -
6
7
8
9 apply (rule defE[OF div_def])



FORMALIZING GA IN PURE 30

10 apply (rule condT, simp)
11 apply (rule hyp, simp+)
12 done

13 ged

This proof is much shorter than the previous ones despite significantly higher complexity.
The magic lies in the simp method, which invokes the simplifier. This theorem was proven
much later than the previous termination proofs and using a lot of automation. The simplifier
applies numerous previously proven lemmas (which are omitted from this document) here,
for example to automatically solve the base case of div 0 S(y) N.

Section 4 goes into how automation is introduced into an axiomatized logic such as GA
in Pure.

The authors of GA place a lot of emphasis on primitive recursion as a ‘benchmark’ for
the expressivitiy of GA. Namely, they proved that all primitive recursive functions can
be expressed and proven terminating in GA. While such a proof is out of reach for this
formalization, it is more fitting for this formalization to show that GA can actually go beyond
that. The Ackermann function is famously not primitive recursive [7]. With the tooling from
Section 4, a termination proof of the Ackermann function is surprisingly simple to spell out
in GA, using the standard approach of nested induction.

Consider the following standard definition of the Ackermann function in GA.

axiomatization Isabelle

ack :: "num = num = num"

where

else if y = 0 then ack (P x) 1

1

2

3

4 ack def: "ack x y :=if x =0 theny + 1

5

6 else ack (P x) (ack x (P y))"

Theorem 10. Termination of ack

'kxN TkFyN
I'Fackzy N

Proof.
By nested induction and by using a helper lemma.

The outer induction ranges over the second argument and proves the stronger statement
Vn. ack m n N.

lemma [simp]: "n N - ack ®© n =n + 1" Isabelle

by (unfold def ack def, simp)

lemma "n N=m N = ack m n N"

u A W N =

apply (rule forallE[where a="n"1)



FORMALIZING GA IN PURE

31

© 00 N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

apply (induct m)

apply (rule foralll, simp)

apply (rule foralllI)

proof -
fix x z
show "X
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
done
ged

N - Vy. ack x y N-= z N - ack (S x) z N"

(
(
(
(
(

(
(
(
(
(

(
(
(
(
(

induct z)

unfold def ack def)

subst rule: condI2, simp)
subst rule: condIl, simp+)
rule forallE[where a="1"],
rule forallE[where a="1"],
subst rule: condIl, simp+)
rule forallE[where a="1"1],
rule forallE[where a="1"1],
unfold def ack def)

subst rule: condI2, simp+)
subst rule: condI2, simp+)
rule forallE, simp)+

rule foralll, simp+)

rule forallE, simp)

simp)

simp)

simp)
simp)



TOOLING FOR ISABELLE/GA 32

Tooling for Isabelle/GA 4

Having implemented GA in Pure effectively obtained an interactive theorem prover we term
Isabelle/GA, based on the axioms of GA. In its current state however, Isabelle/GA is not a
very useful theorem prover. There is no proof automation, no term rewriting, and no easy
way to formalize higher level mathematics. Users can only reason about natural numbers and
only using axioms or previously proven lemmas, leading to highly verbose and cumbersome
proofs, as seen in Section 3.

This chapter aims for making Isabelle/GA more usable as a proof assistant and, towards
that end, introduces various methods for simpler and cleaner reasoning, a simple auto-solver,
and most importantly, compatibility with the powerful simplifier built into Pure. The goal is
to mostly hide the axiomatic system of GA behind abstract proof methods found in existing
theorem provers and allow proofs to focus on their main idea, rather than being about
mapping to specific axioms and discharging habeas quid premises.

4.1 (Un)folding (Recursive) Definitions

The first methods we implement are the unfold def and fold def methods, which take the
name of a definition (:=) and (un)fold it once in the current goal state.

Example usage:

1 apply (unfold def mult_def) Isabelle

2 apply (fold def mult def)

This corresponds exactly to:

1 apply (rule defE[OF mult def]) Isabelle

2 apply (rule defI[OF mult def])

The method names are intentionally similar to the existing unfold and fold, which (un)fold
an (non-recursive) Isabelle definition.

The implementation in SML is as follows:

1 structure Unfold Def = SML
2 struct

3 fun fold def method thm name ctxt =

4 SIMPLE METHOD' (fn i =>

5 let

6 val defI thm = Proof Context.get thm ctxt "defI"

7 val target thm = Proof Context.get thm ctxt thm name

8 in

9 CHANGED (resolve tac ctxt [defI thm OF [target thm]] i)
10 end)

11

12 fun unfold def method thm name ctxt =



TOOLING FOR ISABELLE/GA 33

13 SIMPLE METHOD' (fn i =>

14 let

15 val defE_thm = Proof Context.get thm ctxt "defE"

16 val target thm = Proof Context.get thm ctxt thm_name
17 in

18 CHANGED (resolve tac ctxt [defE thm OF [target thm]] i)
19 end)

20 end

21

22 val =

23 Theory.setup

24 (Method.setup @{binding unfold def}

25 (Scan.lift Args.name >> Unfold Def.unfold def method)
26 "Unfold a definition using defE"

27 )

28

29 val =

30 Theory.setup

31 (Method.setup @{binding fold def}

32 (Scan.lift Args.name >> Unfold Def.fold def method)
33 "Fold a definition using defI"

34 )

The Isabelle/ML infrastructure is well-equipped to handle such method definitions and
multiple components of the provided infrastructure are visible in the snippet:

1. Parsing: Args.name parses an identifier and the >> combinator passes the parsed argument
on to the defined method.

2. Tactic Combinators: resolve_tac simply applies the given list of theorems (in this case
a singleton list) to subgoal i of the given context. CHANGED takes a tactic and succeeds if
and only if its argument tactic changed the goal state. That is, if there was no definition
to fold/unfold, the method fails, even if the theorem application itself succeeds.

3. Method registration: Method.setup sets up the defined method at the given binding.
SIMPLE_METHOD' converts a value of type int = tactic (usually a function applying a tactic
to the i’th subgoal, where i is ita argument) to a method.

4.2 Configuring the Simplifier

Pure already contains a simplifier. The rewrite rules it uses are theorems of the shape:
complicated expression = simple expression

That is, the Pure simplifier works on meta-level equations. When invoked, the simplifier tries
to match the left-hand side of any rewrite equation in any subexpression and rewrites it to
the right-hand side of the equation.



TOOLING FOR ISABELLE/GA 34

The simplifier uses theorems tagged with [simp] as its rewrite rules. Its exact inner workings
are not of interest here, but it is highly sophisticated and sublinear in the number of rewrite
rules.

The first problem with using the simplifier in GA is that the axioms allow deriving object-
level equality (=), but not meta-level equality (=). Either, GA needs its own simplifier, or
it needs to seek ‘compatibility’ of object equality with meta equality.

The simple solution is to add an axiom to convert object equality to meta equality:

Equality Reflection Axiom

I'Fa=1b
I'Fa=b

This inference rule is not provable from either the Pure axioms or the GA axioms, which is
why it needs to be axiomatized. Using it for rewrites however is completely safe, as any such
rewrite can be achieved using the existing eqSubst axiom.

That is, the following lemma is provable in GA, and thus the axiom is admissible:

Theorem 11.

I'Fa=b THFHKD
I'FKa

Proof.

By equality substitution.

1 lemma "a =b-Qb=-20Qa"
2 apply (rule eqSubst[where a="b" and b="a"l])

3 apply (rule eqSym)

4 apply (assumption+)

5 done

If the simplifier proves a theorem, having substituted a term b for a (due to a meta-equality
theorem), the proof of the original theorem (with no substitution) can be constructed using
the above theorem and the equality a = b. Since the simplifier constructs the meta-equality
from exactly such an equality ¢ = b, no new theorems of type o can be proved from this
axiom.

If a rewrite theorem (that is, a theorem tagged with [simp]) has any premises, the simplifier
only rewrites if it can discharge all its premises. Thus, a key step in configuring the simplifier
for GA is to provide a competent solver that can discharge a wide range of commonly
occuring premises such that the simplifier can apply more rewrites. Precisely such a solver is
engineered in Section 4.3. For now, we already assume its existence at GDAuto.gd auto tac
and use it in the following SML structure that configures the simplifier for GA. It achieves
two main objectives:



TOOLING FOR ISABELLE/GA 35

1. Convert object equality theorems to meta equality theorems on the fly.
2. Set the solver for the simplifier.

structure GD Simp = SML
struct
fun convert _eq to meta eq th: thm = th RS @{thm eq reflection}

1
2
3
4
5 fun match object rule th trm =
6 case trm of

7 Const (@{const name GD.eq}, ) $ $  => [convert eq to meta eq th]
8 | _ =[]

9

10 fun th_to meta eq th th =

11 case Thm.concl of th of

12 Const (@{const name Pure.eq}, ) $ $ => [th]
13 | Const (@{const name GD.Trueprop}, ) $ x => match_object rule th x
14 |  => 11

15 end;

16

17 let

18 val gd_solver =

19 Raw Simplifier.mk solver "GD solver" GDAuto.gd auto tac
20 fun set solver ctxt =

21 Raw Simplifier.setSolver (ctxt, gd solver)

22 fun set ssolver ctxt =

23 Raw Simplifier.setSSolver (ctxt, gd solver)

24 fun configure ctxt =

25 ctxt

26 |> Simplifier.set mksimps GD Simp.th to meta eq th
27 |> set solver

28 |> set ssolver

29 in

30 Theory.setup (Simplifier.map_theory simpset configure)
31 end;

Now, theorems with either a top-level meta equality (=) or object equality (=) can be tagged
with [simp| and the simplifier will use them to rewrite subexpressions when invoked.

For example when invoking the simplifier from the following goal state:

l.aN=2N= 2z +P(S(a)) N

1 apply (simp) Isabelle

The new goal state is:

l.aN=xzN=zxa N



TOOLING FOR ISABELLE/GA 36

The simplifier used the axiom predSucInv stating a N = P(S(a)) N = a to rewrite P(S(a))
to a. This is because the predSucInv axiom was retroactively tagged with [simp].

4.3 A Subgoal Solver for GA

The main idea of the subgoal solver is very simple — keep a set of lemmas of the following
structure that should always be applied if the current subgoal matches their consequent:

simple premise —> complicated consequent

Since this is not an equality, it cannot be applied to a subexpression. It can only be
applied like a normal theorem, when the consequent actually matches the current goal. The
instantiated premise(s) then become(s) the new goal. If there is no premise, the goal is solved
immediately, and if there are multiple premises, the number of subgoals increases, but they
are expected to be easier to solve than the consequent.

Some example lemmas that are suitable:

lemma [auto]: "x N = = S(x) = 0"
lemma natS [auto]: "a N =S a N"

lemma conjI [auto]: "p=-q-=p A Q"

lemma true [auto]: "True"

lemma true bool [auto]: "True B"
lemma neq bool [auto]: "a N- b N- (a # b) B"

N o o BN R

lemma if truel [auto]: "c - if c then True else False"

As can already be seen in this set of lemmas, the solver uses theorems with the [auto] tag.
The solver works in the following way.

1. Fetch the theorems with the [auto] tag using the function Named Theorems.get.

2. Perform one iteration of the solver: Try to solve the current subgoal with the assumptions
in context, else try to solve it with any other assumptions carried around in the simplifier
context, or else try to apply any of the theorems tagged with [auto]. The iteration succeeds
if and only if the goal state changed.

3. Recursively call another iteration on all new subgoals resulting from step 2, but succeed
overall even if the recursive call fails. That is, the solver succeeds if at least one iteration
succeeds.

The solver is extremely simple by design. It is easy to get stuck in a loop for the simplifier,
which is why its subgoal solver should be simple, predictable, and most importantly, termi-
nating. The solver tactic could be even more concise by using the REPEAT ALL NEW tactic
combinator, which implements precisely the recursive structure of solver tac. However,
REPEAT ALL NEW is not bounded, which resulted in unpredictably occurring infinite loops of
the simplifier when using it in the solver. Thus, it was replaced by this explicit recursion
with a bound on the number of iterations.

The iteration bound is controlled by a global attribute in Isabelle and can be modified if
necessary. The default value is 6, which has proved sufficient for all automated proofs in
the GA formalization, while still maintaining acceptable performance. The auto solver can
also be invoked directly. However, it is less powerful than the simplifier on its own, as it



TOOLING FOR ISABELLE/GA

37

does not apply the [simp] rewrite rules and does not rewrite subexpressions. When invoking

auto directly, an optional argument can be supplied to override the iteration bound for that

invocation only.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

40
41

val gd auto depth limit =
Attrib.setup config int @{binding gd auto depth limit} (K 6)

fun TRY' tac i = TRY (tac i)
structure GDAuto =
struct

fun uncond rules ctxt = Named Theorems.get ctxt @{named theorems auto}

fun solver tac _ 0 = K no_tac

| solver tac ctxt k
let
val tac = assume_tac ctxt ORELSE'

resolve tac ctxt (Simplifier.prems of ctxt) ORELSE'
resolve tac ctxt (uncond rules ctxt)

val one iter = CHANGED o tac
val recurse = solver_tac ctxt (k-1)
in
one_iter THEN ALL NEW TRY' recurse
end

fun gd_auto tac ctxt i =
let
val fuel = Config.get ctxt gd auto depth limit
in
CHANGED (REPEAT (CHANGED (solver tac ctxt fuel 1i)))
end

end

val parse nat =
Scan.optional (Scan.lift Parse.nat >> SOME) NONE

val _ =
Theory.setup (
Method.setup @{binding auto}
(parse nat >> (fn opt n => fn ctxt =>

let
val ctxt' = (case opt_n of NONE => ctxt | SOME n => Config.put
gd_auto_depth limit n ctxt)

in
SIMPLE METHOD' (GDAuto.gd auto tac ctxt')

SML



TOOLING FOR ISABELLE/GA 38

42 end))
43 "Simple proof automation for GA"
44 )

There is not much to gain in trying to prune the set of rewrites at each point for the solver,
since it only applies unconditional rewrites that are always the ‘right choice’, i.e. it doesn’t
perform a proof search.

The power of the solver comes not from its sophistication, but from a wealth of useful
theorems that are added to its set of facts. With this simple solver (and a rich set of theorems
tagged [auto] and [simp] respectively), the simplifier becomes capable of solving many kinds
of subgoals entirely. For example, the termination proof of the multiplication function used
to exactly mirror the one for the addition function from Section 3.9. With the new solver,
almost everything can be solved by the simplifier. In particular, no manual reasoning to solve
any habeas quid premises is required.

lemma mult terminates [auto]: Isabelle

1

2 shows <x N = y N - mult x y N>

3 proof (rule ind[where a=y])

4 show "y N = y N" by simp

5 show "x N - mult x @ N"

6 by (unfold def mult _def, simp)

7 fix a

8 show "a N = x N = mult x a N = mult x (S a) N"
9 by (unfold def mult def, rule condT, simp+)

The lemma is itself immediately tagged [auto], such that the simplifier becomes even more
powerful in subsequent proofs.

4.4 Conditional Rewrites

The auto solver exclusively applies assumptions and unconditional rewrites. However, it
would be desirable to have a means to declare certain lemmas as conditional rewrites. This
can mean multiple things, for example could there be a theorem that should only be applied
by an automatic solver if some of its premises can be automatically solved, or a theorem
should be applied entirely for proof search, i.e. it is generally uncertain whether applying it
is productive towards solving the subgoal.

e An example for the former is the following lemma:

1 lemma ""c=b N=dN=Db=d= (if c then a else b) = d" Isabelle

If the current goal is of the shape of the consequent and the first three premises can be
solved, the goal should be reduced to the fourth premise, b = d. Solving only the first
premise is not sufficient, since b and d could be of type o, in which case b N and d N
would not be solvable and the following lemma should have been applied instead:

1 lemma "-c = bB=dB=b=d= (if ¢ then a else b) = d" Isabelle



TOOLING FOR ISABELLE/GA 39

o A simple example for the latter kind would be the eqSym axiom. A goal might be solvable
after applying it, but it generally does not simplify the goal:

a=b-b=a"

1 eqSym:

4.4.1 Using simp for conditional rewrites

The first approach towards conditional rewrites is to use the simplifier. Since it only applies
a rewrite if it can solve all premises, it is a natural choice for conditional rewriting. It is also
highly efficient, much more so than any custom solution anyone could hope to implement
single handedly.

This approach works very well for lemmas like the following;:

1 lemma [simp]: "c = (if c then True else b) = True" Isabelle

2 lemma [simp]: "-c = (if c then a else True) = True"

3 lemma suc_pred inv [simp]: "X N - -x=0-S P x = x"

The amount of complexity that can be moved into solving a premise is arbitrary. For example
does the simplifier try to rewrite P(z) < P(y) to 1 if the premises z N, y N, and z <y =1
can be solved by the auto solver (and recursive simplification on the subgoals) when trying to
apply the following lemma. However, z < y = 1 might be just as difficult to solve as P(z) <
P(y) = 1.

lemma leq monotone pred [simp]: Isabelle

assumes x_nat: "x N"

1

2

3 assumes y nat: "y N"
4 assumes H: "x =y = 1"
5

shows "P x = Py = 1"

There are some key limitations to note for using the simplifier for conditional rewrites:

1. Adding too many rules like leq_monotone pred (with low probability of the solver
succeeding in solving its premises) to the simpset makes the performance of the simplifier
deteriorate quickly, as it essentially ends up performing a proof search.

2. If the premise and consequent can have the same instantiation, the simplifier will run
into an infinite loop. For instance, tagging the eqSym axiom with [simp] makes it enter an
infinite loop on every invocation immediately.

3. The simplifier always tries to solve all premises and does not support reducing the goal
to one or more premises (to be solved manually or by another tactic).

4. The simplifier operates on equalities only. While this is largely solved by the auto solver,
it can only do unconditional applications.

Point (1) suggests moving low-probability-of-success rewrites to a different tool, but points
(2), (3), and (4) ask for a different approach altogether.



TOOLING FOR ISABELLE/GA 40

4.4.2 Extending the auto Solver with Conditional Rewrites

Problem (4) asks for an extension of the auto solver to also handle conditional rewrites,
which also solves problem (3). Thus, the next approach was to add another tag [cond] for
lemmas intended to be used as conditional rewrites and let the auto solver use such a tagged
theorem for rewriting if it can solve its first premise. Since any number of premises can be
‘encoded’ into the first premise by simply conjoining them (A), conditioning on solving the
first premise is sufficient.

Some lemmas that can be handled using this approach and not by the simplifier:

lemma [cond]: "a = a B" Isabelle

1
2 lemma [cond]: "-a = a B"

3 1lemma [cond]: "((c B) A (a N) A (b N)) = if c then a else b N"
4 lemma [cond]: "((c B) A (a B) A (bB)) = if c then a else b B"

Especially the booleanness conditions a B are vital to solve effectively in the subgoal solver
of the simplifier, since they are common habeas quid premises in GA. The first two lemmas
effectively do a proof search and try to solve for both the positive and negative case.

The last two lemmas are equivalent to the axioms condT and condTB, just with the three
premises conjoined into one, such that the auto solver only applies them if all three are
solved. These lemmas show the limitations of using exclusively the simplifier for automation,
since this lemma cannot be expressed as an equality. One would expect that the following
lemmas could be used by the simplifier:

1 lemma [simp]: "¢ B-a N- b N - if c then a else b N

True”

2 lemma [simp]: "¢ B-a B - b B - if ¢ then a else b B True"

However, due to the extraordinarily syntactic nature of equality in GA, these propositions
are not provable. True is defined as the canonical truth 0 =0 in GA and True = a cannot
be derived for any a, as there is no axiom that allows deriving equality of equalities (in
particular, no reflexivity axiom).

With these lemmas presented so far, the approach is the following. Previously, the auto
solver was designed to apply a theorem if it is the single canonical way to solve a goal of a
certain shape. The conditional extension now added the capability of trying multiple different
solution strategies to definitely solve a goal. For examle, if premise ¢ can be solved, the
goal ¢ B is solved completely and no new subgoals are generated. There is however another
category of lemmas that can be integrated with the conditional extension to the auto solver.
Namely, trying different solution strategies to reduce the current goal to a new subgoal that is
likely easier to solve. For example the following lemmas implement this strategy for reducing
if ¢ then a else b constructs:

5fmma [cond]: "(-=c A (b N) A (dN)) = b =4d~ (if c then a else b) = Isabelle
2 lemma [cond]: "(c A (a N) A (d N)) = a=d = (if c then a else b) = d"

With this extension, the simplifier gets an even more competent subgoal solver, providing
another boost to proof automation. Problems (3) and (4) of the initial approach of using
only the simplifier are now solved and the two approaches coexist.



TOOLING FOR ISABELLE/GA 41

The additions in the auto implementation are straightforward. The required additions are
highlighted:

val gd_auto depth limit = SML
Attrib.setup _config int @{binding gd auto depth limit} (K 6)

fun TRY' tac i = TRY (tac i)

structure GDAuto =

1
2
3
4
5
6
7 struct
8

9

fun uncond rules ctxt = Named Theorems.get ctxt @{named theorems auto}

10 [fun cond rules ctxt = Named Theorems.get ctxt @{named theorems cond}]

11

12 fun solver_tac _ 0 = K no_tac

13 | solver tac ctxt k =

14 let

15 (fun apply and solve subgoal i th =)

16 [match_tac ctxt [th] i]

17 (THEN SOLVED' (solver_tac ctxt (k-1)) i)

18 [fun cond_tacs i =]

19 [FIRST (map (apply and solve subgoal i)]

20 [(cond_rules ctxt))]

21 val tac = assume_ tac ctxt ORELSE'

22 resolve tac ctxt (Simplifier.prems of ctxt) ORELSE'
23 resolve tac ctxt (uncond rules ctxt) |ORELSE'
24

25 val one iter = CHANGED o tac

26 val recurse = solver tac ctxt (k-1)

27 in

28 REPEAT ALL NEW one iter

29 end

30

31 fun gd_auto tac ctxt i =

32 let

33 val fuel = Config.get ctxt gd auto depth limit

34 in

35 CHANGED (REPEAT (CHANGED (solver_ tac ctxt fuel 1i)))
36 end

37 end

38

39 val parse nat =



TOOLING FOR ISABELLE/GA 42

40 Scan.optional (Scan.lift Parse.nat >> SOME) NONE

41

42 val =

43 Theory.setup (

44 Method.setup @{binding auto}

45 (parse nat >> (fn opt n => fn ctxt =>

46 let

47 val ctxt' = (case opt_n of NONE => ctxt | SOME n => Config.put
gd_auto_depth limit n ctxt)

48 in

49 SIMPLE METHOD' (GDAuto.gd auto tac ctxt')

50 end))

51 "Simple proof automation for GD logic"

52 )

There is one massive problem with this cond extension however, namely that problem (1) of
the simplifier approach is made even worse here. The auto solver is the subgoal solver of the
simplifier and it now performs quite a bit of proof search, and a completely unoptimized one
at that, which makes the performance of the simplifier suffer.

4.4.3 Circumventing Weak Equality

The automation boost the cond extension from the previous Section 4.4.2 provides is satis-
factory, but it slowed down the simplifier significantly. Although computationally the same
problem, moving the rudimentary proof search capabilities of the cond extension from the
auto solver into the simplifier itself should be much faster, simply due to its (presumably)
more efficient implementation.

Although an equality like the following (which the simplifier could use as a rewrite rule) does
not hold in GA:

1 lemma "-c = b N=dN-= ((if ¢ then a else b) =d) = (b =d)" Isabelle

The following proposition is provable:

1 lemma "-c = b N=d N = (if c then a else b) =d o b = d" Isabelle

Adding a conversion axiom from <> to = makes such lemmas usable as rewrites for the
simplifier.

Iff Reflection Axiom

I'Fa<+b
I'Fa=b

If-and-only-if (+») is effectively an equality for propositions of type o, since object equalities
(=) are not derivable for them (only for expressions of type num). It is unclear whether it is
admissible. However, the following theorem shows that, while for admissibility the theorem



TOOLING FOR ISABELLE/GA 43

a b= K b= K a would be required, the following inference rule that very closely
resembles the axiom itself is readily provable in GA.

Theorem 12. [ff Trueprop Reflection

F'Fa+b
I' + (Trueprop a) = (Trueprop b)

Proof.

Using the equal _intr rule Pure axiom, derive both a = b and b = a.

1 lemma "a < b = (Trueprop a) = (Trueprop b)"
2 apply (rule Pure.equal _intr rule)

3 apply (unfold iff_def)

4 apply (rule implE, rule conjEl, assumption+)

5 apply (rule implE, rule conjE2, assumption+)

6 done

The same proof does not work when trying to prove iff reflection, since the Pure
equal_intr rule only works for meta equalities (=) where both sides are of type prop,
whereas in iff _reflection, the two sides are of type o.

The proof of the theorem shows that the iff reflection axiom is essentially an object-level
version of the meta level equal intr rule, which allows deriving equality = when a = b
and b = a can be derived. While the simplifier could in principle work with lemmas of
the shape Trueprop a = Trueprop b, the left-hand side never matches any subterm in a GA
expression, as it is of type prop, while GA terms are of type o or num. The admissibility of
the axiom might be provable meta-logically by induction on the inference rules of GA, but
Pure is not sufficiently strong as a meta-logic to do so, as it does not have an (meta-level)
induction scheme.

The new axiom allows restating most of the lemmas previously tagged with [cond], such that
the simplifier can rewrite them. An example is the following lemma:

b"

1 lemma [cond]: "a<b=1=aN=DbN=-a

Which was subsequently restated and reproven as:

b o True"

In fact, this is more powerful, since even subexpressions can be rewritten using the latter.

1 lemma [simp]: "a <b=1-aN-DbN--a

While all lemmas intended for conditional rewriting can be reformulated as bicionditional,
not all such reformulated propositions can actually be proven. The reason is the habeas quid
premise of the derivable implication introduction rule in GA, which requires proving the
antecedent of the implication boolean (B). This is not possible for example in the following

lemma:

1 lemma [cond]: "((c B) A (a N) A (b N)) = if ¢ then a else b N" Isabelle



TOOLING FOR ISABELLE/GA 44

While it can be restated as:

lemma [simp]l: "((c B) A (a N) A (b N)) = if c then a else b N «
Isabelle

True"

Proving this proposition requires showing that (if ¢ then a else b N) B, which is equivalent
to solving the halting problem in GA, as it requires proving that the proposition a N is
decidable in general. Thus, rewrites of this shape remain in the domain of the cond extension
of the auto solver.

The configuration of the simplifier needs to be extended in order for it to correctly apply
biconditional theorems. The minimal additional logic is hightlighted in green:

1 structure GD Simp = SML
2 struct

3 fun convert _eq to meta eq th: thm = th RS @{thm eq reflection}

4 [fun convert iff to meta eq th: thm = th RS @{thm iff_reflection}}

5

6 fun match object rule th trm =

7 case trm of

8 Const (@{const name GD.eq}, ) $ $  => [convert eq to meta eq th]

9 [| Const (@{const name GD.iff}, ) $ $ => [convert iff to meta eq th]]
10 | _ =[]

11

4.4.4 Proof Search

The initial approach of using the simplifier to handle conditional rewrites maybe unsurpris-
ingly ended up being the most effective solution, although it did take an extension to make
better use of it. The reason is its sophistication and efficient implementation, which makes
it hard to beat even though it is not designed to be used for even rudimentary proof search.
An approach that might provide additional value over the setup constructed in this section
is a true proof search (implemented on top of the simplifier, and not as its subgoal solver).
However, since a naive implementation is exponential in the number of theorems in the
rewrite set, this requires a sophisticated data structure to search for applicable rules in order
to be tractable at the very least. This might be a valuable addition to the tooling of GA,
but has not been implemented yet for two reasons.
o An efficient implementation is a significant time investment and seemed out of the scope
for this thesis.
e The automation with the existing setup was surprisingly effective and a real proof search
for the sake of better proof automation never seemed exceptionally desirable.

4.5 Manual Substitution

Finally, if the simplifier is not powerful enough to solve all premises of a theorem that would
actually be the right one to apply, a simple substitution command that allows rewriting



TOOLING FOR ISABELLE/GA 45

(including subexpressions) with a specific theorem and solving some of its premises manually
is very helpful.

For example, consider the following goal state reached by an invocation of the simplifier.

l.zN=2' N= (if S(z') =
0 then 0 else if cpx &’ = 0 then S(cpy z’) else P(cpx z’)) N

Another invocation of simp fails.

1 apply (simp) Isabelle

The simplifier is not able to take the second branch of the top-level conditional, since to do
this rewrite, it would have to show that the second branch terminates, i.e. show that it is N,
which it is unable to do.

Now, a command like the following would come in very handy:

1 apply (subst rule: condI2) Isabelle

This performs the rewrite and leaves the unsolved premises as new subgoals, resulting in the
goal state:

1. 2 N= 2’ N = (if cpx 2’ = 0 then S(cpy z’) else P(cpx z’)) N
2. £ N= 2’ N = (if cpx 2’ = 0 then S(cpy z’) else P(cpx ")) N

Here, the same goal appears twice, since the premise of the condI2 rule, to show the second
branch terminates, precisely coincides with the remaining goal after substituting the second
branch for the entire conditional.

Without the subst command, the condI2 theorem couldn’t have been applied directly, since
the substituted conditional is a subexpression; it would have had to be preceded by an
equality substitution and an application of equality symmetry first (which is more or less
what the subst command does). Thus, the subst command is a convenient way of manually
advancing the proof when the simplifier gets stuck.

In fact, more occurences of eqSubst applications can be replaced by a more convenient
method. Consider the following goal state.

1. 2 N= 12’ N = ~(P(z') = P(S(z))) = ~(P(z') = z)

So far, this was solved the following way:

1 apply (rule eqSubst[where a="P S x" and b="x"]) Isabelle

2 apply (simp)

Where the simplifier solves the first resulting subgoal after the equality substitution
P(S(z)) = z automatically and then the second subgoal by assumption.

The eqSubst axiom itself should be hidden and the rewrite should be done automatically
with a simple:

1 apply (subst "P S x = x") Isabelle

This is not a huge difference, but it makes the proof cleaner.



TOOLING FOR ISABELLE/GA 46

The subst command thus has two different modes of operating, one accepting a theorem
name (which is expected to have a top-level equality) and using it to rewrite a match for the
left-hand side to the right-hand side, concluding the first subgoal with the theorem itself,
and the other accepting an equality itself, which it uses to rewrite, and then tries to solve
using the simplifier.

This is implemented in the following SML code, which works as follows:

1. The method parses either a theorem name or a term, whichever succeeds.

2. If the argument is a theorem name, it fetches the theorem and extracts the left-hand
side and right-hand side of its top-level equality (assuming it is of the expected shape),
instantiates the eqSubst theorem with those extracted terms, and then finally applies it.
Then, it applies the eqSym axiom to flip the equality from the first subgoal, which can
then be resolved by the passed theorem itself.

3. If the argument is a term, the code extracts the left-hand side and right-hand side of its
top-level equality (assuming it is of the expected shape), instantiates the eqSubst theorem
with those extracted terms, and then finally applies it. Then, it tries to solve the resulting
first subgoal (the equality itself) by applying the simplifier.

datatype input = AsThm of thm | AsTrm of term SML

structure GD Subst

struct

1

2

3

4

5 fun strip_asms t
6 case t of

7 @{term "(==>)"} $¢ ¢$ t' => strip asms t'
8 | =1

9

10 fun get lhs rhs of eq t =

11 case t of

12 @{term "(Trueprop)"} $ t' => get lhs rhs of eq t'
13 | Const (@{const name GD.eq}, ) $ lhs $ rhs => (SOME lhs, SOME rhs)
14 | => (NONE, NONE)

15

16 fun get eq (AsTrm t) = let val (1, r) = get lhs rhs of eq t in (r, 1) end
17 | get eq (AsThm thm) = get lhs rhs of eq (strip_asms (Thm.prop of thm))
18

19 fun eq_subst tac input ctxt =

20 case (get _eq input) of

21 (SOME pat, SOME rhs) =>

22 let

23 val 1 = (Thm.cterm_of ctxt pat)

24 val r = (Thm.cterm_of ctxt rhs)

25 val eqSub = Proof Context.get thm ctxt "eqSubst"

26 val eqSub' =

27 Drule.infer instantiate' ctxt

28 [SOME r, SOME 1]



TOOLING FOR ISABELLE/GA 47
29 eqSub

30 in

31 resolve tac ctxt [eqSub']

32 end

33 | (_,_) => K no_tac

34

35 fun gd_subst tac (AsThm thm) ctxt =

36 let val eqSym = Proof Context.get thm ctxt "eqSym" in

37 (eq_subst tac (AsThm thm) ctxt) THEN'

38 resolve tac ctxt [eqSym] THEN'

39 resolve tac ctxt [thm]

40 end

41 | gd subst tac (AsTrm trm) ctxt =

42 (eq_subst tac (AsTrm trm) ctxt) THEN'

43 (fn 1 => TRY (SOLVED' (Simplifier.asm full simp tac ctxt) 1))

44

45 end

46

47 val parse subst args : input context parser =

48 (Scan.lift (Args.$$$ "rule" |-- Args.colon) |-- Attrib.thm >> AsThm)
49 || (Args.term >> AsTrm)

50

51 val =

52 Theory.setup

53 (Method.setup @{binding subst}

54 (parse_subst _args >>

55 (fn inp => fn ctxt => SIMPLE METHOD' (GD Subst.gd subst tac inp ctxt)))
56 "Substitute using the given theorem name or term."

57 )

4.6 Case Distinction

What is missing so far is a good way to do case distinction over natural numbers and truth

values. The foundation for these case distinctions is given by the following two lemmas.

Theorem 13. Cases Bool
I'gB TU{¢gtFp TU{—q¢}Fp
T'kp

Proof.

By the ‘case distinction’ axiom disjEl using the fact that ¢ V —¢ by ¢ B.

1 lemma cases bool: Isabelle

2 assumes g bool: "q B"



TOOLING FOR ISABELLE/GA 48

3 assumes H: "q - p"

4 assumes Hl: "-q - p"
5 shows "p"

6 apply (rule disjEl[where P="g" and Q="-q"])
7 apply (fold bJudg def)
8 apply (rule g bool)

9 apply (rule H)

10 apply (assumption)

11 apply (rule H1)

12 apply (assumption)

13 done

Theorem 14. Cases Nat

'FzN TU{z=0}FKO0 TU{yN,z=S(y)}+F K S(y)
'Kz

Proof.

By the ‘case distinction’ axiom disjEl using the fact that x = 0V —(z = 0) and using the
helper lemma num_nonzero, stating that a N = —(a = 0) = 3z. a = S(z)

1 ;?r;l;l? :a(s)e)s(:nat: "X N=(x=0-=-0Q0) = (Ay. y N=x =5S(y) = Q
2 apply (rule disjEl[where P="x = 0" and Q="- x = 0"])
3 apply (fold bJudg def, simp)
4 apply (subst "0 = x", assumption)
5 apply (rule existsE[where Q="Ac. x = S(c)"])
6 apply (rule num _nonzero)

7 proof -

8 fix a

9 show "(Ay. yN=x=Sy=-Q(Sy))=aN-x=S5a-=0Q x"
10 by (subst "S a = x", assumption)

11 ged

Using these theorems, the job of the cases method is very simple — parse the argument and
decide which theorem to apply:

1 datatype input = BoolCaseTac of term | NatCaseTac of term SML
2

3 structure GDCases =

4 struct
5
6

fun try inst thm ctxt t th =



TOOLING FOR ISABELLE/GA 49

7 let val ct = Thm.cterm of ctxt t in

8 try (fn th => Drule.infer_instantiate' ctxt [SOME ct] th) th
end

10

11 fun gd_bool cases tac ctxt x =
12 case (try inst thm ctxt x @{thm cases bool}) of

13 SOME th => resolve tac ctxt [th]
14 | NONE => K no_tac
15

16 fun gd nat cases tac ctxt x =
17 case (try_inst thm ctxt x @{thm cases nat}) of

18 SOME th => resolve tac ctxt [th]
19 | NONE => K no_tac
20

21 fun gd _cases tac ctxt input =
22 case input of

23 BoolCaseTac t  => SIMPLE METHOD' (gd bool cases tac ctxt t)

24 | NatCaseTac t  => SIMPLE METHOD' (gd nat cases tac ctxt t)

25

26 val parse cases args : input context parser =

27 (Scan.lift (Args.$$$ "bool" |-- Args.colon) |-- Args.term >> BoolCaseTac)
28 || (Args.term >> NatCaseTac)

29

30 val _ =

31 Theory.setup

32 (Method.setup @{binding cases}

33 (parse _cases_args >> (fn inp => fn ctxt => gd_cases tac ctxt inp))
34 "case analysis")

35

36 end

4.7 Induction Method

Although there is an induction axiom, this is another opportunity to make GA consistent
with the sorts of commands/methods a user would expect of a proof assistant and provide
a method that wraps the axiom application.

Instead of applying the axiom:

1 apply (rule ind[where a="x"]) Isabelle

The induct method is applied:

1 apply (induct x) Isabelle

And instead of the strong induction lemma:



TOOLING FOR ISABELLE/GA 50

1 apply (rule strong induction[where a="x"1) Isabelle

A flag can be passed to the induct method:

1 apply (induct strong x) Isabelle

For much of this thesis, Isabelle proofs were presented in apply-style scripts. However, Isabelle
also provides a structured proof language called Isar, which aims for emulating natural
language proofs and overall better legibility compared to apply-style scripts. One nice feature
of Isar are named cases; The premises of a theorem can be named and when applying it, the
subgoals (and their respective assumptions) are bound to a case name that can be invoked
with the following general syntax:

proof (method name) Isabelle

case (case 1 name case 1 arg 1 ...)
show ?case
case (case 2 name case 2 arg 1 ...)

1
2
3
4
5 next
6
7 show ?case
8
9

For example, the goal is to be able to provide the following syntax for applying induction:

proof (induct vy) Isabelle

1

2 case Base

3 show case?

4 .

5 next

6 case (Step xa)

7

8

Precisely this functionality is provided by the following SML implementation of the induct
method:

structure GD Induct = SML
struct

val induct_thm = @{thm ind}

val strong induct thm = @{thm strong induction}

fun try inst thm ctxt t th =
let val ct = Thm.cterm of ctxt t in
try (fn th => Drule.infer_instantiate' ctxt [SOME ct] th) th
end

© 00 N O Ul B W N K

=
(o}



TOOLING FOR ISABELLE/GA

11 fun closes first prem ctxt i th st =

12 let

13 val tac =

14 DETERM (

15 resolve tac ctxt [th] i

16 THEN ((SOLVED' (assume_tac ctxt)) i)

17 )

18 in

19 Option.isSome (Seq.pull (tac st))

20 end

21

22 fun apply_tac tac st =

23 let

24 val res = DETERM tac st

25 in

26 case Seq.pull res of

27 SOME (st', ) => st'

28 | NONE => raise THM ("tactic failed", 0, [st])
29 end

30

31 fun induct_tac strong t =

32 CONTEXT SUBGOAL (fn (_, i) => fn (ctxt, st) =>

33 let

34 val th = if strong then strong _induct thm else induct thm
35 val th' = try inst thm ctxt t th

36 val tac =

37 case th' of

38 SOME th'' => DETERM (match_tac ctxt [th''] 1)
39 | NONE => no_tac

40 val st' = apply_tac tac st

41 val (spec, ) = Rule Cases.get th

42 val cases prop = Thm.prop of (Rule Cases.internalize params st')
43 val cases = Rule Cases.make common ctxt cases prop spec
44 val post tac = TRY (SOLVED' (assume_ tac ctxt) 1)
45 in

46 CONTEXT CASES cases post tac (ctxt, st')

47 end)

48

49 fun gd_induct _method (strong, t) =

50 Method.CONTEXT METHOD (K (induct_tac strong t 1))
51 end

52

53 val parse_induct_args =
54 Scan.lift (Scan.optional ((Args.$$$ "strong") >> K true) false)
55 -- Args.term



TOOLING FOR ISABELLE/GA 52

56
57
58
59
60
61
62

val =
Theory.setup
(Method.setup @{binding induct}
(parse_induct _args >> GD Induct.gd _induct method)

"Apply rule ind with where a = <term>"

4.8 A Case Study: Proving Strict Monotonicity of cpy

The following case study reviews the tooling and automation introduced in this section by

presenting a proof of strict monotonicity for the cpy function, which extracts the second

component of a Cantor pair and is central in Section 5.

The cpy function itself is not important here, but the proof is a great example of how the

few methods introduced in this section make up the majority of commands used in a proof

and are a huge step up compared to the axiom level reasoning required before this chapter.

© 00 N O U1 A W IN R

10

12
13
14
15
16
17
18
19
20
21

lemma cpy strict mono [simp]: "x N = cpy (S x) < (S x) = 1" Isabelle

proof (induct strong x)
case Base
from Base show ?case
by (unfold def cpy def, simp)
next
case (Step xa)
fix y
assume hyp: "Ay. yNoy=xa=1-cpy (Sy) < (Sy)=1"
from Step show ?case
apply (unfold def cpy def, simp)

apply (cases bool: "cpx (S xa) = 0")
apply (simp add: cpx_suc)+

apply (cases bool: "cpx xa = 0")
apply (simp add: cpx_suc cpy_suc)+
apply (subst "S P xa = xa", simp)
apply (rule cpx _nz _arg nz, simp)
apply (rule le_monotone suc)+

apply (rule hyp, simp)

done

ged



ENCODING INDUCTIVE DATATYPES IN GA 53

Encoding Inductive Datatypes in GA 5

With Isabelle/GA now being a more convenient proof assistant, the next goal is to make
it easier to extend the domain of discourse beyond just natural numbers. Modern proof
assistants, like Isabelle/HOL or Rocq, contain powerful definitional mechanisms that allow
for straightforward specification of things like inductive datatypes, recursive predicates,
infinitary sets, and so on.

These definitional packages are effectively theory compilers, as they take a high-level
definition, like an inductive datatype declaration, and map it to definitions, axioms, and
automatically proven lemmas, encoding the high-level definition in lower-level existing
primitives.

The goal of this chapter is to take the key steps towards such a definitional mechanism
for inductive datatypes in Isabelle/GA and encode them into the existing natural number
theory. That is, any inductive datatype should be definable and conveniently usable without
adding any axioms.

The roadmap towards this lofty goal is as follows:

o Formalize enough basic number theory to be able to define cantor pairings and the key
properties about them.

e Manually encode an inductive datatype into the natural numbers using the cantor
pairing infrastructure from the first step. Define a type membership predicate, define the
constructors as cantor pairings of their arguments and prove the necessary lemmas (such
as all constructors being disjoint, the type membership predicate returning true for all
values of the constructors, induction on the datatype, and so on).

e Plan out a semantic type system consisting of encoded types embedded within the single
syntactic type of num in Pure and introduce tooling for it.

o Write a definitional package that parses an inductive datatype declaration and compiles
it into the necessary definitions, lemmas, and accompanying proofs.

5.1 Inductive Datatypes In General

In general, an inductive datatype is specificed by a list of constructors, where each constructor
has a finite number of arguments (possibly zero), each constrained by a type (which may itself
be an inductive datatype, and in particular may be the datatype currently being defined).
The datatype itself is then given by the least fixed point of the monotone operator that
closes a set under these constructors [8].

For example, the following is an inductive definition of a list datatype:

1 datatype List =
2 Nil
3 | Cons Nat List

There are two constructors, one called Nil with no arguments (i.e. a constant), and one
called Cons with two arguments, one of type Nat and one of type List itself. The set of Lists
is the least fixed point of the operator that closes under these two constructors. Intuitively,



ENCODING INDUCTIVE DATATYPES IN GA 54

this least fixed point is the limit of successive approximations; starting with the empty set,
the first closure step adds Nil, the next adds all Lists of the form Cons n Nil, the next adds
all lists of the form Cons n (Cons m Nil), and so on, eventually producing all finite lists.

An inductive datatype defined in this way satisfies the following properties:

o Closure (generation): applying a constructor to arguments (that are valid elements
of their respective types) yields a valid element of the type, e.g. n N = is_list xs =
is list (Cons n xs) and is list Nil.

o Exhaustiveness: every element of the datatype must be built from some constructor;
there are no “extra” elements beyond the closure.

o Distinctness: different constructors build different elements, e.g. Nil # Cons n xs for any
n, Xs.

o Injectivity: each constructor is injective in its arguments, e.g. Cons n xs = Cons n xs =
n=mAXSs=ys.

e Induction principle: properties of elements of the datatype can be proved by showing
they hold for each constructor case, assuming the property for recursive arguments.

The goal now is to find an encoding of an inductive datatype into the natural numbers such
that all these properties are fulfilled and can be proved in GA itself without adding any

axioms.

5.2 Encoding: Constructors

The constructor encoding is responsible for ensuring the latter three properties distinctness,
injectivity, and the induction principle. The first two can be ensured by an injective
encoding function, and the third is ensured by an encoding function that is strictly increasing
in all recursive arguments (i.e. the ones of the same type).

The encoding of choice is a right-associative extension to the Cantor pairing function to
Cantor tuples, where each constructor with arguments a4, ..., a,, is encoded as follows:

(type_tag, constructor_tag, a,, ...,a,_1,a,,)
Due to right-associativity, this is equivalent to :

(type_tag, (constructor_tag, (a, (..., {(a,_1,a,)...))))

Where the notation (,-) is the well-known Cantor pairing function, which is a bijection on
the natural numbers and strictly increasing in both arguments for n > 2. It is defined as
follows [9]:

Cantor Pairing Function

_ ((z+y)*+3z+y)
(z,y) = 254

5.3 Encoding: Type Membership Predicates

Since the values of the inductive datatypes are encoded as natural numbers (num), they must
be of the syntactic Isabelle type num themselves. Thus, to determine ‘type membership’, e.g.



ENCODING INDUCTIVE DATATYPES IN GA 55

whether a given num is considered an encoded List, there has to be a predicate that decides
this. For List, such a type membership predicate shall be called is list, and the idea is
that is_list @ is a proposition-level (o) type membership certificate, similar to how x N is a
certificate for a terminating natural number. Thus, GA can be viewed as having a ‘dynamic’
type system embedded within the propositional syntax itself, where the types are B, N, and
now also inductive datatypes such as List.

Since the type membership predicate effectively determines the inhabitants of the type, it
is responsible for the first two properties, closure and exhaustiveness. Formally, the type
membership predicate, which is called is_7 for a given coded type 7, should fulfill the following
properties. For each 7 constructor C; and its arguments a; ;, ...,a;, with their respective

type constraints 7; 4, ..., Tim,:

1. Closure of the type membership predicate: For each constructor Cj, if all its
arguments fulfill their corresponding type membership predicates, then C; applied to these
arguments must fulfill its type membership predicate:

18_7’11 all — ... — IS_Tin a/in — 1S_.T (C'Z (J,ll “ee am)

2. Exhaustiveness of the type membership predicate: If the type membership pred-
icate is_7 is fulfilled by a value z, then there must exist a constructor and a set of
corresponding arguments fulfilling their type membership predicates, such that x equals
the constructor applied to these arguments.

isT1r—=
3(11’1 alynl. 1S_7—1’1 aLl /\ /\ IS_Tl,nl a1’n1 /\ xr = (Cl aLl e a17n1>
a1 o Q- STy Qg A NS Ty, AT = (C’m Q1 o am,nm)

For the List type, these two criteria evaluate to:
e For Nil: is list Nil
For Cons: n N = is list xs = is list Cons n xs
o islist x = z = Nil V 3n xs. n N Ais_list xs A z = (Cons n xs)

For an inductive datatype 7, the type membership predicate is_7 must invert the encoding for
each constructor, i.e. treat it like a Cantor tuple, extract its elements, and check if it matches
the encoding. This guarantees closure, while the bijectivity of the encoding guarantees
exhaustiveness. We will make this more precise and prove it explicitly later.

For the List datatype, the is list predicate fulfilling these properties is the following:

is list def: "is list x := if x = 0
then False
else if x = Nil
then True

1
2
3
4
5 else if is cons x
6 then True
7 else False"
8 and

9

is _cons _def: "is cons x := (cpi 1 x = list type tag)



ENCODING INDUCTIVE DATATYPES IN GA 56

10 A (cpi 2 x = list cons tag)
11 A ((cpi 3 x) N)
12 A (is list (cpi' 4 x))"

Where cpi iz extracts the i'th element of a Cantor tuple (with at least ¢ + 1 elements) and
cpi iz extracts the i’th element of a Cantor tuple with exactly i elements.

The general idea of the type membership predicate is to check for each constructor, whether
the argument matches its encoding shape, and if so, whether all (encoded) arguments
recursively fulfill their respective predicates.

5.4 Cantor Tuples in GA

So far, we have identified the required properties to make an inductive datatype encoding
work and have then identified a scheme for defining constructors and a type membership
predicate that are expected to fulfill all these properties. Next, we have to formalize the
basis for this encoding, namely Cantor pairings and the associated infrastructure to be able
to ‘extract’ elements from one.

Since the Cantor pairing function is bijective, there is an inverse function mapping each
natural number z to the unique pair (z,y) with z = (z,y). In the following, let cpx(z) denote
the first component of this inverse, i.e. the unique z such that there exists an z’ with z =
(x,z"). Analogously, let cpy(z) denote the second component of the inverse.

The standard definition of Cantor pairs and the inverses cpx(z) and cpy(z) are analytic
closed form expressions, which is what the initial formalization in GA used as well. However,
it turns out that in order to prove properties about these functions when they are defined
in such a way, a highly mature library of arithmetic lemmas is required. This was especially
apparent when trying to prove the growth property x < (z,y) (for > 2). However, maybe
unexpectedly, many of these properties turned out to be much easier to prove in GA when
these functions are defined recursively.

Thus, the following recursive GA definition of a Cantor pair is used from now on:

1 cpair_def: "cpair x y := if y = 0 then div (x * S(x)) 2 Isabelle

2 else cpair x P(y) + x + y + 2"

Termination follows by induction on the second argument.

Theorem 15. Termination of cpair

'kxaN TFyN

L'F(z,y) N
Proof.
1 lemma cpair_terminates [auto]: "X N -y N - (x, y) N" Isabelle
2 apply (induct y, simp)
3 apply (unfold def cpair_def, simp)+
4 done



ENCODING INDUCTIVE DATATYPES IN GA 57

To provide syntax for general Cantor k-tuples ({aq, ay, ...,a;)), the following snippet trans-
lates such tuples into right associative nested cpairs.

1 nonterminal cpair_args
2

3 syntax

4 " cpair" :: "num = cpair_args = num" ("¢, )

5 " cpair_arg" :: "num = cpair_args" (" ")

6 " cpair_args" :: "num = cpair_args = cpair _args" (" , ")

7 translations

8 "({x, y)" == "CONST cpair x y"

9 " cpair x (_cpair _args y z)" == " cpair x (_cpair_arg (_cpair y z))"

The inverse functions cpx(z) and cpy(z) can also be defined mutually recursively:

1 cpx_def: "cpx x := if x = 0 then 0 Isabelle

2 else if cpx (P x) = 0 then S(cpy P(x))
3 else P(cpx (P x))" and

4 cpy def: "cpy x := if cpx (P x) = 0 then 0

5 else S(cpy (P x))"

Despite the mutually inductive structure, termination is quite straightforward, as each
recursive call is on a smaller argument.

Theorem 16. Termination of cpx and cpy

'z N 'z N
I'Fcpy N I'Fcpy N

Proof.

The termination proof is mutual as well, by induction on cpx N A cpy = N.

1 lemma cpx _cpy terminate: "x N = (cpx x N) A (cpy x N)"
2 apply (induct x, simp)

3 apply (unfold def cpx def, simp)
4 apply (subst rule: condI2)

5 apply (rule condT, simp)

6 apply (rule conjEl, simp)

7 apply (rule conjE2, simp)

8 apply (rule conjEl, simp)

9 apply (rule condT, simp)

10 apply (rule conjEl, simp)

11 apply (rule conjE2, simp)

12 apply (rule conjEl, simp)

13 apply (unfold def cpy def, simp)
14 apply (rule condT, simp)



ENCODING INDUCTIVE DATATYPES IN GA 58

15 apply (rule conjEl, simp)
16 apply (rule conjE2, simp)
17 done

Before proving the critical injectivity property of the cpair function, the two following
lemmas are required:

Theorem 17. Projection Lemmas for cpx and cpy
'tN T'FyN 'txN T'FyN
I'Fcpx (z,y) =z I'Fcpy (z,y) =y

These are well-known properties of the encoding and are given without explicit proof in
GA, mostly due to time constraint for this thesis. A lemma in Isabelle can be stated and
subsequently used without proof by using the sorry keyword.

a"

lemma cpx_proj [simp]: "a N - b N - cpx (a, b)

sorry

bll

1
2
3
4 lemma cpy proj [simp]: "a N = Db N = cpy (a, b)
5 sorry

Now, injectivity can be proved:

Theorem 18. Injectivity of cpair

'FaN THEON TrFHceN THFHAIN TF({ab)=cd)
I'Fa=cAb=d

Proof.

lemma cpair_inj: Isabelle

assumes eq: "{(a, b) = (c, d)"
shows "a N=b N=cN=dN=a=cAb-=4d"
proof -

1
2
3
4
5 have H: "a N - b N - cpx (a, b) = cpx (c, d)"
6 by (rule eqSubst[OF eql], simp)

7 have a eq c: "aN-bN-cN-=dN=a=c"

8 apply (rule eqSubst[where a="cpx (a, b)" and b="a"], simp)
9

apply (rule eqSubst[where a="cpx (c, d)" and b="c"], simp)

10 apply (rule H, simp)

11 done

12 have H2: "a N - b N - cpy (a, b) = cpy (c, d)"
13 by (rule eqSubst[OF eql], simp)

14 have b eq d: "a N-b N-cN-=-dN=-=b =d"
15 apply (rule eqSubst[where a="cpy (a, b)" and b="b"])



ENCODING INDUCTIVE DATATYPES IN GA 59

16 apply (rule cpy proj, assumption+)

17 apply (rule eqSubst[where a="cpy (c, d)" and b="d"])
18 apply (rule cpy proj, assumption+)

19 apply (rule H2, assumption+)

20 done

21 show "aN-bN-cN-dN-a=cnAb=4d"
22 apply (rule conjI)

23 apply (rule a_eq _c)

24 apply (simp)

25 apply (rule b _eq_d)

26 apply (simp)

27 done

28 ged

The next key property is that a Cantor pair is strictly larger than both its arguments (for
x > 2 and y > 1). This is critical for proving the induction lemma for Lists later.

Theorem 19. Cantor pairing strictly dominates components

'tzN T'kFyN 'FzN TFyN
I'ES(y) <(z,Sy) == I'+S(S(z)) < (S(8(z)),y) ==
Proof.
1 1?mma cpair_strict mono r [simp]: "X N=y N = (Sy) < (x, (Sy)) = Isabelle
2 proof (induct y)
3 case Base
4 show "x N=y N=1< (x,1) = 1"
5 apply (rule less le trans[where b="2"], simp)
6 apply (unfold def cpair_def, simp)
7 done
8 next
9 case (Step xa)
10 show "X N-y N-xaN-S xa< (x, (Sxa)) =1-S5S xa<(x, (SS xa)) =
1II
11 apply (unfold def cpair_def, simp)
12 apply (rule less le trans[where b="S S xa + 2"])
13 apply (simp add: add _assoc)+
14 done
15 qed
1 lemma [simp]: Isabelle

2 "X N=yN=SSx<{((SSx), y)=1"
3 apply (induct vy)



ENCODING INDUCTIVE DATATYPES IN GA 60

apply (unfold def cpair def, simp)

apply (rule less le trans[where b="div (2 * (S S S x)) 2"], simp)

(
(

apply (simp add: mult _div_inv)
(rule leq mono div, simp+)
(

apply (unfold def cpair def, simp)

4
5

6

7 apply
8

9 done

|

The next key lemma to prove is the reconstruction lemma, stating that the pair (cpx z, cpy z)
constitutes the inverse of the Cantor pairing.

Theorem 20. Reconstruction Lemma

'FzN
't z = (cpx z,cpy 2)

Proof.

Using surjectivity of the Cantor pairing function and the projection lemmas.

1 lemma [auto]: "z N - z = (cpx z, cpy z)"
2 apply (rule existsE[where Q="Ab. z=(cpx z,b)"])

3 apply (rule existsE[where Q="Ac. 3Ji. z=(c,i)"])

4 apply (simp)

5 proof -

6 fix a

7 show "z N-aN-3i. z = (a,i) = 3i. z = (cpx z,1i)"
8 apply (subst "a = cpx z")

9 apply (rule existsE[where Q="Ai. z=(a,i)"])

10 apply (simp+)

11 done

12 show "z N-a N-=2z = (cpx z,a) = z = (cpx z,cpy z)"
13 apply (subst "a = cpy z")

14 apply (subst "(cpx z, a) = z")

15 apply (subst rule: cpy proj)

16 done

17 qed

The proof of this theorem relies on the surjectivity of the Cantor pairing function on the
natural numbers, which is another of its well-known properties. In the GA formalization,
this fact is stated without proof, as proving it would have exceeded the scope and time
constraints of this thesis.

Theorem 21. Surjectivity of the Cantor pairing function



ENCODING INDUCTIVE DATATYPES IN GA 61

I'-zN
F'F3zy z=(z,vy)

1 lemma cpair_surjective [auto]: "a N - 3b c. a = (b,c)" Isabelle

2 sorry

To project the i-th component of a Cantor k-tuple, we first define cpi' ¢ to return the i-th
element of a right-associated Cantor i-tuple.

1 cpi' def: "cpi' n z :=1if n = 0 then 0 Isabelle

2 else if n = 1 then z
3 else cpy (cpi' (n-1) z)"

Intuitively, cpi' i performs i successive selections of the second component (cpy) of the
outermost Cantor pair. If the value is a Cantor i-tuple, the result is exactly the i-th element.
In the other case where the value is a Cantor k-tuple with k > ¢, the term cpi' 7 z yields
the suffix Cantor k — ¢ + 1-tuple beginning at the i-th position and thus an additional cpx
application is required to extract the i-th position. This is what the cpi function does:

1 definition cpi :: "num = num = num" where Isabelle

2 "cpi 1 x = cpx (cpi' i x)"

The termination proof of cpi' is by induction over the first argument and omitted here,
although it is included in the Isabelle formalization. The next interesting lemma is a version
of the reconstruction lemma for Cantor 4-tuples. The lemma is stated for 4-tuples specifically,
since the Cons constructor of the List datatype is encoded as a Cantor 4-tuple.

Theorem 22. Reconstruction lemma for Cantor 4-tuples

I'zN T'kaN TN TFHeN T'FHdN
I'2z=(cpil z,cpi2 zcpi3 zcpi4z)

Proof.

Stated in a slightly different way for ease of application. Using the reconstruction lemmas
for cpx and cpy.

1 ire)r;\m;)c(pi_;eionstr:"xN=>aN:bN=cN=>dN=cpilx—a=
2 cpi 3 x=c=cpi'4x=d-=

3 x = (a,b,c,d)"

4 apply (rule cpair eq I, simp)

5 apply (subst "cpi 1 x = cpx x", auto)

6 apply (rule cpair _eq I, simp)

7 apply (subst "cpi 2 x = cpx (cpy x)", auto)

8 apply (rule cpair eq I, simp)

9 apply (subst "cpi 3 x = cpx (cpy (cpy x))", auto)

10 apply (subst "cpi' 4 x = cpy (cpy (cpy x))", auto)



ENCODING INDUCTIVE DATATYPES IN GA 62

11 done

5.5 The Encoded List Datatype

With the Cantor pairing infrastructure, everything is ready for defining the full List datatype
and proving all the properties required for an inductive datatype listed in Section 5.1.

List is introduced as a type synonym for the num type. This means Isabelle treats List
as num internally, but it can still be written as a type by the user. The definition of the
constructors and the is list predicate were already given previously and are restated here
for completeness’ sake.

1 type_synonym List = num
2

3 definition list type tag where

4 "list _type tag = 1"

5

6 definition list nil tag where

7 "list nil tag = 1"

8

9 definition list cons tag where

10 "list cons tag = 2"

11

12 definition Nil :: "List" where

13 "Nil = (list type tag,list nil tag)"

14

15 definition Cons :: "num = List = List" where

16 "Cons n xs = (list type tag,list cons_tag,n,xs)"

17

18 axiomatization

19 is list :: "num - o" and

20 is cons :: "num = o"

21 where

22 is cons def: "is cons x := (cpi 1 x = list type tag)
23 A (cpi 2 x = list cons_tag)
24 A ((cpi 3 x) N)

25 A (is list (cpi' 4 x))" and
26 is list def: "is list x (= if x = 0

27 then False

28 else if x = Nil

29 then True

30 else if is cons x

31 then True

32 else False"



ENCODING INDUCTIVE DATATYPES IN GA 63

The first important lemma states termination of the is list predicate, which essentially
means that type membership checking is decidable.

Theorem 23. Termination of is list and is_cons

'z N 'z N
I'+is list z B I' -is cons =z B

Proof.

First, prove that Nil and Cons are terminating natural numbers for any arguments (nil_nat
and cons_nat). Then, prove termination of is_list and is_cons mutually inductively using
the strong induction lemma.

lemma nil nat [auto]l: "Nil N" Isabelle

unfolding Nil def 1list type tag def by simp
lemma cons _nat [auto]: "n N - xs N - Cons n xs N"

lemma list cons_term [auto]: "x N - (is _list x B) A (is_cons x B)"

1
2
3
4
5 unfolding Cons_def list type tag def by simp
6
7
8 proof (induct strong x)

9

case Base
10 show "x N - (is list 0@ B) A (is cons 0 B)"
11 apply (unfold def is list def)
12 apply (unfold def is cons def)
13 apply (unfold def is list def)
14 apply (simp)
15 done
16 next
17 case (Step xa)
18 fix y
19 assume hyp: "(Ay. y N-y =xa =1- (is list y B) A (is _cons y B))"
20 from Step show ?case
21 apply (unfold def is list def)
22 apply (unfold def is cons_def)
23 apply (simp)
24 apply (rule condTB, simp)+
25 apply (rule conjEl, rule hyp, simp, rule le suc_implies leq, simp)+
26 done
27 qed

5.5.1 Proving Constructor Distinctness

Distinctness follows immediately from disjoint constructor tags in the encoding.



ENCODING INDUCTIVE DATATYPES IN GA 64

Theorem 24. List constructor distinctness

I'FnN T'FxsN I'FknN T'FxsN
I' F = Nil = Cons n xs I' - Cons n xs = Nil

Proof.

1 lemma [auto]: "n N = xs N = = Nil = Cons n xs" Isabelle

2 unfolding Nil def Cons_def by simp

3

4 T1lemma [auto]: "n N = xs N = - Cons n xs = Nil"
5 unfolding Nil def Cons_def by simp

5.5.2 Proving Injectivity of Cons

Injectivity reduces to injectivity of the Cantor pairing function.

Theorem 25. Injectivity of Cons
'kEaN TFmN T'kFxsN T'FysN I'FConsnxs= Consmys

'Fn=mAxs=ys

Proof.

Lemna

"n N=mN=xs N=ys N-Cons nxs =Cnsmys-=n=mA Xs = ys"

unfolding Cons_def

1

2

3

4 apply (rule cpair_inj)

5 apply (rule cpair_inj r, rule cpair_inj r, simp)
6

done

5.5.3 Proving Exhaustiveness

Exhaustiveness is essentially a case-distinction lemma and states that every element recog-
nized by is_list is either Nil or has Cons-shape with well-typed arguments. We first prove
a decoding lemma for Cons-shapes, then a decoding lemma for List in general, and finally
the full case distinction rule.

Theorem 26. List exhaustiveness

I'Fisconsx I'Fz N
I'F 3n xs. (n N) A (is list xs) A z = (Cons n xs)




ENCODING INDUCTIVE DATATYPES IN GA 65

I'kislistx I'kax N
I'2x=NilV3nxs. (n N)A (is_list xs) A z = (Cons n xs)

Proof.

1 lemma cons_decode [auto]:

2 "is cons x = x N = 3dn xs. ((n N) A is list xs A x = Cons n xs)"

3 apply (rule existsI[where a="cpi 3 x"], simp+)

4 apply (rule existsI[where a="cpi' 4 x"], simp+)

5 apply (unfold Cons_def)

6 apply (subst rule: cons 1 tag)

7 apply (subst rule: cons 2 2)

8 apply (rule cp4 reconstr, simp+)

9 done

10

11 lemma list decode: "x N = is list x = (x = Nil) v (3n xs. (n N) A is list xs
A (x = Cons n xs))"

12 apply (rule implE[where a="is list x"])

13 apply (unfold def is list def)

14 apply (cases bool: "x=Nil", simp+)

15 apply (rule implI, simp)

16 apply (rule disjIl, simp)

17 apply (cases bool: "is cons x", simp+)

18 apply (rule implI)

19 apply (rule condTB, simp)+

20 apply (simp+)

21 apply (rule implI, simp)
22 apply (rule exF[where P="False"], simp)

23 done
|
Theorem 27. List cases
Phislissz THzN TU{z=Nil}Fp TU{nN,xsN,islist xs, z = Cons n xs} - p
p

Proof.
1 lemma cases list [case names _ HQ Nil Cons, cases]: "is list x - Isabelle
2 (x N) =
3 (x = Nil = Q) =
4 (An xs. n N=xs N=1is list xs = x = Cons n xs = Q)
5 - OII
6 apply (rule disjE1[OF list cases], simp, assumption)
7 apply (rule existsE[where Q="An. 3Ixs. (n N) A is list xs A x = Cons n xs"])



ENCODING INDUCTIVE DATATYPES IN GA 66

8 apply (assumption)

9 proof -

10 fix a

11 show "is list x =

12 (x = Nil - Q) =

13 (An xs. n N = xs N-is list xs = x = Cons n xs = Q) =
14 dn xs. (n N) A is list xs A x = Cons n xs =

15 aN-3xs. (a N) A is list xs A x = Cons a xs - Q"

16 apply (rule existsE[where Q="Axs. (a N) A is list xs A x = Cons a xs"])
17 apply (assumption)

18 proof -

19 fix aa

20 show "

21 (An xs. n N = xs N-is list xs = x = Cons n xs = Q) -
22 aa N - (a N) A is list aa A x = Cons a aa - Q"

23 apply (rule Pure.meta mp[where P="a N"])

24 apply (rule Pure.meta mp[where P="is list aa"l)

25 apply (rule Pure.meta mp[where P="x = Cons a aa"l)
26 apply (assumption)

27 apply (rule conjE2, simp)

28 apply (rule conjE2, rule conjEl, simp)

29 apply (rule conjEl, rule conjEl, simp)

30 done

31 ged

32 qed

5.5.4 Proving Closure

Closure states that every constructor application yields an element of the encoded datatype.
For List, this is immediate from the definition of is list and the Cons-shape predicate.

Theorem 28. List closure

I'FnN T'kFxsN TI'Fislist xs
' Fis_list Nil I' - is list (Cons n xs)

Proof.

1 lemma [auto]: "- Nil = 0"
2 unfolding Nil def by simp

3

4 lemma [auto]: "is list Nil"

5 by (unfold def is list def, simp)



ENCODING INDUCTIVE DATATYPES IN GA 67

1 lemma [auto]: "n N - xs N - is list xs - is cons (Cons n xs)"
2 unfolding Cons_def by (unfold def is cons def, simp)

3

4 lemma cons_is list [auto]:

5 "n N-xs N=1is list xs = is list (Cons n xs)"

6 apply (unfold def is list def)

7 apply (unfold def is cons_def)

8 apply (unfold Cons_def)

9 apply (simp)

10 done

5.5.5 Proving List Induction

The key for deriving an induction principle for List is that recursive calls (in the Cons
constructor) can be justified using the growth property xs < Cons n xs = 1. The proof is
then by strong induction on the num code.

Theorem 29. List induction

tislista I'kaN T FKNil TU{zN,xsN,islist xs, K xs} - K (Cons x xs)
K a

Proof.

lemma [simp]l: "xs N = is list xs = n N = xs < Cons n xs = 1" Isabelle

2 unfolding Cons_def by simp

1 lemma [case names _ HQ Nil Cons, induct]: Isabelle

"is list a = a N-=0Q Nil = (Ax xs. x N - xs N - is list xs = Q xs = Q (Cons
X Xs))
- Q aII

apply (rule implE[where a="is list a"])

=

apply (induct strong a)

apply (rule implI, simp)

apply (rule exF[where P="is list 0"], simp)
apply (rule implI, simp)

© 00 N O U b~ W

proof -

10 fix xa

11 assume hyp: "(Ay. yN-y =xa=1-1is listy -Q y)"

12 assume cons: "(AX xs. X N = xs N - is list xs = Q xs = Q (Cons x xs))"
13 show "a N - xa N - is list S xa - Q Nil =

14 Q S xa"

15 proof (cases "S xa", simp)

16 case Nil



ENCODING INDUCTIVE DATATYPES IN GA 68

17 from Nil show ?case

18 by (simp+)

19 next

20 case (Cons n xs)

21 from Cons and cons show ?case
22 apply (simp)

23 apply (rule cons, simp)

24 apply (rule obj impl)

25 apply (rule hyp, simp)

26 apply (rule le suc_implies leq, simp+)
27 done

28 ged

29 ged

5.6 Tooling for Inductive Datatypes

To make the induction and case distinction mechanisms of List useful, they are integrated
with the existing induct and cases tactics.

The idea is that the induction lemma of an inductive type is annotated with the [induct] tag,
and the corresponding case distinction lemma is annotated with [cases]. To accommodate the
new inductive types, the induct and cases tactics are extended accordingly. The behavior
of the induct tactic is now as follows:

o If the argument strong is supplied, the strong induction lemma is applied.
o Otherwise, the method iterates over all theorems annotated with the [induct] tag and
proceeds as follows for each candidate theorem:

» Instantiate the theorem with the given term .

» Check whether the first subgoal resulting from the instantiation can be discharged using
only the assumptions currently available in the proof context (this check is performed
without committing to the application). For List induction, this would for example be
is list x. If it can be discharged from only the assumptions, induct decides that x is
a List and applies List induction.

» If this succeeds, the theorem is selected, applied to the goal, and the first subgoal
is solved.

» Finally, the corresponding cases are generated from the theorem definition, making use
of the case names annotation.

The following is the final implementation of the induct method, implementing the logic
described above. The cases method is adapted using an analogous logic.

structure GD_Induct = SML
struct

val induct_thm = @{thm ind}

val strong induct thm = @{thm strong induction}

u A W N =



ENCODING INDUCTIVE DATATYPES IN GA 69

6 fun try inst thm ctxt t th =

7 let val ct = Thm.cterm of ctxt t in

8 try (fn th => Drule.infer _instantiate' ctxt [SOME ct] th) th

9 end

10

11 fun closes first prem ctxt i th st =

12 let

13 val tac =

14 DETERM (

15 resolve tac ctxt [th] i

16 THEN ((SOLVED' (assume_tac ctxt)) i)

17 )

18 in

19 Option.isSome (Seq.pull (tac st))

20 end

21

22 fun select induct thm ctxt t i st =

23 let

24 val induct thms = Named Theorems.get ctxt @{named theorems induct}

25 fun is_instantiable th =

26 case (try inst thm ctxt t th) of

27 NONE => NONE

-8 | SOME th' => if (closes first prem ctxt i th' st) then SOME th else

NONE

29 in

30 case (get first is instantiable induct thms) of

31 SOME th => th

32 | NONE => induct_thm

33 end

34

35 fun apply_tac tac st =

36 let

37 val res = DETERM tac st

38 in

39 case Seq.pull res of

40 SOME (st', ) => st'

41 | NONE => raise THM ("tactic failed", 0, [stl)

42 end

43

44 fun induct tac strong t =

45 CONTEXT SUBGOAL (fn (_, i) => fn (ctxt, st) =>

46 let

47 val th = if strong then strong _induct thm else (select induct thm ctxt
t i st)

48 val th' = try inst thm ctxt t th



ENCODING INDUCTIVE DATATYPES IN GA 70

49 val tac =

50 case th' of

51 SOME th'' => DETERM (match tac ctxt [th''] 1)

52 | NONE => no_tac

53 val st' = apply_tac tac st

54 val (spec, ) = Rule Cases.get th

55 val cases prop = Thm.prop of (Rule Cases.internalize params st')
56 val cases = Rule Cases.make common ctxt cases prop spec
57 val post tac = TRY (SOLVED' (assume_tac ctxt) i)

58 in

59 CONTEXT _CASES cases post_tac (ctxt, st')

60 end)

61

62 fun gd_induct method (strong, t) =

63 Method.CONTEXT METHOD (K (induct tac strong t 1))

64 end

65

66 val parse induct args =
67 Scan.lift (Scan.optional ((Args.$$$ "strong") >> K true) false)

68 -- Args.term

69

70 val _ =

71 Theory.setup

72 (Method.setup @{binding induct}

73 (parse_induct_args >> GD Induct.gd induct method)
74 "Apply rule ind with where a = <term>"

75 )

5.7 Towards An Inductive Datatype Compiler

This concludes the proof of all the required properties stated in Section 5.1. Thus, the
encoding of Nil and Cons together with the is list predicate constitute a full inductive
datatype in GA. Since most of the steps undertaken to get there followed a clear template,
in the future, an inductive datatype should be able to be compiled from a simple description
of the constructors:

1 declaretype List = Isabelle
2 Nil
3 | Cons of "num" "List"

To make inductive datatypes truly practical in GA, it would be desirable to provide
an accompanying definitional mechanism, accepting high-level specifications such as the
following;:

1 fun sum :: "List = num" where Isabelle

2 sum _nil: "sum Nil = 0" and



ENCODING INDUCTIVE DATATYPES IN GA 71

3

sum_cons: "sum (Cons n xs) = n + sum xs"

That is then compiled into the following encoding-aware recursive GA definition:

1
2
3
4
5
6

axiomatization Isabelle

sum :: "List = num"
where
sum_def: "sum x := if x = Nil then 0

else if (is_cons x) then (cpi 3 x) + (sum (cpi' 4 x))
else omega"

From which a termination proof and the defining equations can be derived:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

lemma [auto]: "x N - is_list x = sum x N"
proof (induct x, simp)
case Nil
show ?case
by (unfold def sum def, simp add: sum def)
next
case (Cons n xs)
from Cons show ?case
apply (unfold def sum_def)
apply (subst rule: condI2)
apply (subst rule: condIl)
apply (unfold Cons def, simp+)
apply (unfold def is cons_def, simp)
done
ged

lemma [simp]: "sum Nil = 0"
by (unfold def sum def, simp)

lemma [simp]: "n N - xs N - is list xs = sum (Cons n Xxs) = n + sum xs"
apply (rule eqgSym)

apply (unfold def sum_def)

apply (unfold def is cons_def)

apply (unfold Cons_def Nil def, simp)

done

While a full implementation of these mechanisms is outside the scope of this thesis, the
foundations have been developed, and what remains is largely an engineering task left for

future work.



CONCLUSION 72

Conclusion 6

This thesis set out to test whether Grounded Arithmetic (GA) can function as a practical
foundation for formal reasoning. The development of Isabelle/GA demonstrates that this is
indeed possible.

GA supports productive reasoning, allowing for the straightforward definition of basic
number-theoretic functions, along with proofs of many of their simpler properties. A central
question was whether the habeas quid premises carried by many GA inference rules would
pose a major obstacle. This turned out to be manageable: termination proofs were as
simple as expected, even for non-primitive recursive functions such as Ackermann’s function.
Throughout the formalization, no unexpected inconsistencies arose, in line with the comple-
mentary metalogical results of the GD authors, but important as a confirmation from direct
mechanization.

The Isabelle/Pure framework adapted well to the demands of GA. The built-in simplifier
was configured with little effort, though GA’s habeas quid premises required dedicated
automation through a custom subgoal solver. With these adaptations, reasoning in Isabelle/
GA reached a level of usability approaching that of classical reasoning.

The recursive definitional mechanism native to GA proved highly effective. It enabled the
construction of nontrivial functions such as Cantor pairing and its inverses using recursive
and even mutually recursive definitions, along with proofs of termination and properties like
the strict growth property of the Cantor pairing function (z < (z,y) for x > 2 and y < (z,y)
for y > 1). Without a mature arithmetic library, these proofs would not have been possible
using the standard analytic closed-form definition. This highlights recursion as a central
asset of GA, providing expressivity “out of the box”.

The framework for encoding arbitrary inductive datatypes further confirmed GA’s expressive
power. Distinctness, injectivity, exhaustiveness, closure, and induction were all proved for a
manually encoded List datatype. This construction mainly serves as a blueprint for future
tooling: a definitional datatype mechanism for Isabelle/GA, comparable to Isabelle/HOL’s
inductive datatype package.

Several lessons emerge from these results. GA works as intended: its natural deduction style
axioms translated almost directly into Isabelle/Pure and its definitional freedom enabled
the formalization of nontrivial functions and proofs without reliance on a large library of
arithmetic results.

Future work should extend these foundations by developing an inductive datatype compiler,
following the blueprint from Section 5, and by improving proof automation through a
dedicated proof search procedure. Building on inductive datatype support, another line of
work could pursue reflective reasoning in Isabelle/GA, enabling meta-reasoning about GA
within GA itself, as envisioned by the original GD authors [1]. In conclusion, this thesis
demonstrates that grounded reasoning can be practical, and that GA has the potential to
mature into a serious alternative foundation for reasoning about computation.



REFERENCES 73

A References

1]

EDNNETRE

=

B. Ford, “Reasoning Around Paradox with Grounded Deduction.” [Online]. Available:
https://arxiv.org/abs/2409.08243

L. C. Paulson, “Isabelle: The Next 700 Theorem Provers.” [Online]. Available: https://
arxiv.org/abs/cs/9301106

L. C. Paulson, “The foundation of a generic theorem prover,” J. Autom. Reason., vol. 5,
no. 3, pp. 363-397, 1989, doi: 10.1007/BF00248324.

L. Paulson, T. Nipkow, and M. Wenzel, “The Isabelle Reference Manual,” 1998.
“The Rocq Prover..” [Online]. Available: https://rocq-prover.org/

L. d. Moura and S. Ullrich, “The Lean 4 Theorem Prover and Programming Language,”
in Automated Deduction — CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12-15, 2021, Proceedings, Berlin, Heidelberg: Springer-
Verlag, 2021, pp. 625-635. doi: 10.1007/978-3-030-79876-5_37.

R. Péter, Recursive functions in computer theory. Ellis Horwood, 1981.

L. C. Paulson, “A fixedpoint approach to (co)inductive and (co)datatype definitions,”
in Proof, Language, and Interaction, Essays in Honour of Robin Milner, G. D. Plotkin,
C. Stirling, and M. Tofte, Eds., The MIT Press, 2000, pp. 187-212.

L. Meri, “Some remarks on the Cantor pairing function,” Le Matematiche, vol. 62, p. ,
2007.


https://arxiv.org/abs/2409.08243
https://arxiv.org/abs/cs/9301106
https://arxiv.org/abs/cs/9301106
https://doi.org/10.1007/BF00248324
https://rocq-prover.org/
https://doi.org/10.1007/978-3-030-79876-5_37

	Introduction
	Motivation: Recursive Definitions in Classical and Constructive Logic
	Enter GD
	Thesis Roadmap

	Background
	Isabelle/Pure
	Syntax of Pure
	Equality, Implication, and Quantification as Type Constructors
	Deduction Rules
	Formalizing Object Logics in Pure

	Grounded Arithmetic (GA)
	BGA Formalization
	Grounded Contradiction
	Grounded Implication
	Definitional Axioms

	GA with Axiomatized Quantifiers


	Formalizing GA in Pure
	Proposotional Axioms
	Natural Number Axioms
	Grounded Contradiction
	Syntax Translation for Natural Numbers
	Quantifier Axiomatization
	Conditional Evaluation Axiomatization
	Definitional Mechanism Axiomatization
	Defining Arithmetic Functions in GA
	Termination Proofs

	Tooling for Isabelle/GA
	(Un)folding (Recursive) Definitions
	Configuring the Simplifier
	A Subgoal Solver for GA
	Conditional Rewrites
	Using simp for conditional rewrites
	Extending the auto Solver with Conditional Rewrites
	Circumventing Weak Equality
	Proof Search

	Manual Substitution
	Case Distinction
	Induction Method
	A Case Study: Proving Strict Monotonicity of cpy

	Encoding Inductive Datatypes in GA
	Inductive Datatypes In General
	Encoding: Constructors
	Encoding: Type Membership Predicates
	Cantor Tuples in GA
	The Encoded List Datatype
	Proving Constructor Distinctness
	Proving Injectivity of Cons
	Proving Exhaustiveness
	Proving Closure
	Proving List Induction

	Tooling for Inductive Datatypes
	Towards An Inductive Datatype Compiler

	Conclusion
	References

