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Abstract

This thesis explores fractional delegation in Liquid Democracy, where voters can split
their vote among multiple delegates, aiming to reduce vote concentration and improve
representational fairness. We formalize the mode and a method of resolving the final
voting power of each participant. We then present and evaluate three implementations
of this method: using a solver for systems of linear equations, a linear programming
solver, and an iterative implementation. We prove that, under well-formed conditions,
delegation graphs have a unique, power-conserving solution. A preprocessing pipeline
ensures graphs are resolvable by eliminating problematic cycles. Through evaluation
on synthetic, social, and real-world graphs, we find that the solver for systems of linear
equations is fastest in most cases, while the iterative implementation struggles with
certain graphs. Our findings demonstrate that fractional delegation is both feasible and
scalable, paving the way for more expressive digital democratic systems.
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1. Introduction

In democratic systems, the balance between direct participation and practical represen-
tation remains an ongoing challenge. On the one hand, direct democracy ensures that
voters retain full control over political outcomes. On the other hand, representative
systems introduce intermediaries who can make informed decisions on behalf of voters,
addressing scalability and engagement issues. In recent years, Liquid Democracy
has emerged as a compelling hybrid model, allowing voters to either vote directly or
delegate their vote to another agent, who may in turn delegate again. This approach has
the potential to increase participation while maintaining flexibility and accountability.

However, while the flexibility of Liquid Democracy is attractive, its implementation
introduces several theoretical and technical difficulties. Chief among these are the
concentration of voting power in few highly trusted individuals, the presence of
cycles in delegation graphs which can trap votes, and the computational burden of
resolving such graphs, meaning to determine who ends up with how many votes.
These challenges become more pronounced as the number of voters and complexity of
delegation relationships grow.

Motivated by this problem, this thesis introduces a variant of Liquid Democracy
with fractional delegation, allowing voters to split their vote among multiple delegates.
This approach captures the diversity and redundancy of trust in real communities,
increases resilience to vote loss, and reduces the risks of vote concentration. However,
this generalization complicates the task of computing the final distribution of voting
power, especially in the presence of cycles.

We formalize this model of fractional Liquid Democracy and propose three different
methods for resolving delegation graphs: using a solver for systems of linear equations,
using a linear programming formulation, and simulating the delegation process with
an iterative algorithm. We also introduce preprocessing techniques to handle ill-formed
graphs and turn arbitrary graphs into delegation graphs.

The core contribution of this thesis is that delegation graphs in a fractional Liquid
Democracy model can be resolved efficiently and fairly using methods based on systems
of linear equations, while maintaining conservation of voting power and tolerating
cyclic delegations through preprocessing.

We evaluate these approaches through benchmarks on synthetic, social, and real-
world graphs. We show that in many cases the solver for systems of linear equations
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1. Introduction

beats the other two implementations, but that there are exceptions, such as very large
graphs.

This thesis contributes: (1) a formal definition of fractional delegation in Liquid
Democracy, (2) three distinct and implementable resolution algorithms, (3) a prepro-
cessing method for handling delegation cycles, and (4) a benchmark analysis across
a variety of graph classes. These insights contribute to building scalable, fair, and
expressive voting systems for digital democracy.

The rest of the paper is structured as follows: Chapter 2 provides necessary back-
ground on Liquid Democracy and fractional delegation. Chapter 3 formalizes the
problem and our design choices. Chapter 4 discusses the implementation of the pro-
posed algorithms. Chapter 5 evaluates their performance across diverse delegation
graphs. Chapter 6 reviews related literature, and Chapter 7 concludes with key insights
and future work.

2



2. Background

2.1. Liquid Democracy

Liquid Democracy is a voting system that blends aspects of direct and representative
democracy. Although there is no universally accepted definition, Liquid Democracy
generally allows agents to either cast their votes directly or delegate them to a proxy
who votes on their behalf. Most formulations of Liquid Democracy also support
transitive delegation: an agent who receives delegated votes may, in turn, delegate
them further, creating chains of delegations. [10, 5, 26, 4]

2.1.1. Motivation

Liquid democracy is generally motivated by two core shortcomings of traditional
democratic systems: the low participation often observed in direct democracy, and
the limited accountability that is characteristic of representative democracy [11, 6].
While democracy depends on active participation, direct voting is not always feasible or
convenient for individual voters due to constraints such as lack of information, interest,
or time. Liquid democracy addresses this by allowing voters to delegate their vote to a
trusted proxy, thereby enabling indirect yet meaningful participation. Conversely, rep-
resentative democracies frequently suffer from diminished accountability, particularly
when representatives are elected for long, fixed terms and drawn from a small pool.
Liquid democracy mitigates this by opening the pool of potential representatives to
all voters. Furthermore, it allows delegations to be updated or revoked at any time,
restoring agency to the voter [6]. In doing so, liquid democracy emerges as a promising
hybrid model, offering a flexible middle ground between participatory engagement
and representational practicality.

2.1.2. Challenges

While liquid democracy offers a promising balance between direct and representative
models, it also introduces several challenges. First, it is inherently more complex
than traditional voting mechanisms. Voters must understand not only how to vote
or delegate, but also the implications of transitive delegation. This added complexity

3



2. Background

may deter participation, especially among less politically engaged people. Second,
empirical studies, most notably within the German Pirate Party, have highlighted
a recurring problem of vote concentration, where a small number of highly visible
or trusted individuals accumulate disproportionate amounts of voting power. This
phenomenon will be introduced in detail in section 2.2.1. Finally, from a computational
standpoint, resolving the outcome of a delegative vote is no longer a matter of just
counting ballots. Instead, the resolution process involves traversing potentially large
and cyclic delegation graphs. These technical hurdles necessitate robust infrastructure
and may raise questions about transparency, efficiency, and verifiability in large-scale
deployments.

2.1.3. Applications

One of the most prominent real-world applications of Liquid Democracy was in the
German Pirate Party, where members participated in decision-making through a Liquid
Democracy platform between 2010 and 2015. Throughout the period 2010 - 2013,
499,009 votes on 6,517 topics were cast, with pirate party members having made 14,964
delegations. [16] Other case studies of Liquid Democracy include the Student Union
of the Faculty of Information Studies in Novo Mesto, ProposteAmbrosoli2013, a pilot
used in regional election in the Lombardi Region of Italy, Google Votes - a proposal
dissemination feature used within Google’s internal corporate network - and the Partido
de la Red - an Argentinian political party. [24]

2.2. Fractional Delegation

The subject of this paper is an implementation of liquid democracy, in which agents do
not need to choose only one proxy to delegate their vote to. They can delegate fractions
of their vote to multiple other agents. We call this feature fractional delegation.

2.2.1. Motivation

Allowing fractional delegation is motivated by the observation that implementations of
classic Liquid Democracy, where each agent may delegate their vote to only one other
person, suffer from a well-documented tendency for voting power to concentrate in
the hands of a few individuals, or, in some cases, even a single person [16, 8, 1]. When
the German Pirate Party used Liquid democracy to allow their members to vote on
the party’s goals, Martin Haase, a linguistics professor, gained such a large backing,
that his vote was "like a decree"; he was able decide the outcome of votes practically
alone. [2] This concentration undermines the democratic ideal, effectively creating an
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2. Background

oligarchic structure in which a small group of powerful individuals can determine
voting outcomes with little accountability to their delegators. Such a system is not
only less representative but also more vulnerable to corruption or manipulation, as
influencing a few powerful delegates may be easier and cheaper than persuading a
broad and diverse electorate. Moreover, if a powerful agent fails to participate in a
decision, a large number of voters find themselves voiceless in the outcome.

A further shortcoming of classic liquid democracy is that agents are forced to either
vote themselves or delegate their one vote to exactly one person. Even if agents don’t
end up using the option of delegating to multiple people, we still believe it to be a
valuable feature, as it better reflects the nuanced trust relationships present in real-
world communities. In many cases, agents may trust several individuals to represent
different aspects of their interests or to provide redundancy. By allowing fractional
delegation, this diversity of trust is better captured, leading to a more resilient and
representative aggregation of preferences.

Finally, Liquid Democracy faces the challenge of cyclic delegation. When one
participant, say A, delegates their vote to another, B, and B in turn delegates it back to
A, the vote becomes trapped in a cycle and is effectively lost. [3] Allowing fractional
delegations mitigates this problem: if either A or B had delegated a portion of their
vote to a third party, that fraction could eventually reach someone who casts a vote,
thus reducing the number of votes lost within the system.

2.2.2. Existing Methods to Deal with Vote Concentration and Cyclic
Delegation

The problem of vote concentration has been addressed in literature. Partly in response
to this problem, Boldi et al. propose Viscous Democracy, which introduces a damping
factor into the delegation process: the further a vote is delegated, the weaker it becomes.
Viscous Democracy offers a promising way to prevent excessive concentration of power
and reflects the intuition that trust diminishes as a vote moves further from its original
source. However, it also conflicts with the democratic principle that every vote should
carry equal weight. [5]

Gölz et al. and Kotsialou & Riley take a different approach. They both propose
allowing agents to nominate multiple potential delegates. An algorithm then selects
the most suitable delegate for each agent, aiming to minimize power concentration
and avoid delegation cycles. Even in this approach, however, each delegator ultimately
entrusts their vote to only one delegate. Kotsialou & Riley’s algorithm also tries to
minimize lost power through cyclic delegations. [17, 14]

5



3. Design

This section describes our implementation of liquid democracy with fractional delega-
tion. We start by introducing the problem, then introducing prerequisite definitions
and finally the method to resolve delegations.

3.1. Problem Statement

We consider a fractional delegation model, where voters may distribute their vote across
multiple delegates. Each voter can either retain their full vote or delegate it to others
in fractional amounts summing to one. The voter’s final power must be zero if they
delegate, and equal to the proportion of votes delegated to them in addition to their
own initial vote if they don’t. All votes must be conserved, unless they are lost due to
cyclic delegation.

More precisely, we pose the following problem.

1. Given a set of voters and their delegations, where each voter has one initial vote,
and either:

a) votes directly

b) delegates their vote in its entirety

2. We want to find the final voting power of each voter ("resolve the delegation
graph") such that:

a) A voter’s final voting power is zero if they choose to delegate and not vote
directly.

b) A voter’s final voting power is equal to the amount of votes delegated to
them, including their own initial vote and transitive delegations, otherwise.

c) Power is conserved. The sum of the final power of all nodes must be equal
to the amount of votes initially in the graph. This does not include power
that is stuck as a result of cyclic delegation. What exactly this entails will be
detailed in section 3.2.3

6



3. Design

3.2. Implementing Liquid Democracy with Fractional
Delegation

3.2.1. Definitions

Delegation graphs represent delegations between voters using weighted, directed
edges between nodes. Power refers to a fractional amount of votes. Each node v
initially has one vote, or an initial power p(0)v = 1. Each delegation between two nodes
has a weight w ∈ [0, 1]1. Resolving delegations means to determine how much power
each node holds according to the delegations. After resolving delegations, a node v’s
final power is pv. A more rigid definition of a nodes final power will be introduced in
section 3.3.

As per the problem statement, voters are strictly given the choice to either delegate
their vote (fractionally) in its entirety, or vote directly. The electorate is thus divided
into two disjoint sets, sinks S, who actually vote, and delegators D.

We thus define a delegation graph as a finite, directed, weighted graph G = (V, E),
with sinks S and delegators D as follows:

1. V = S
⋃̇︁

D, meaning that V is the union of the two disjoint sets of sinks and
delegators.

2. Each edge e ∈ E is a triple (u, v, w) denoting a delegation from node u to node v
of weight w.

3. Each sink s ∈ S has no outgoing edges.

4. Each delegator d ∈ D has n ∈ N outgoing edges, each with a positive weight,
such that the sum of all of its outgoing edge weights equals 1.

3.2.2. Conservation of Power

A vital property we set for the delegation graph in the problem statement is the
conservation of power. While some authors have experimented with implementations
of liquid democracy where this is not the case, we believe that for a system to be truly
democratic, we must assert delegating is not penalized, so a vote cast by a sink should
not be different in value to a vote cast by a sink through delegation from a delegator.
[4, 5] Thus, any implementation should have mechanism to ensure that the sum of the

1Edge weights should generally not be zero, since that signifies the absence of a delegation, hence the
absence of an edge. However, this does not need to be enforced, since edges with a weight of zero
don’t break the method.
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3. Design

Figure 3.1.: Closed delegation cycles

final power of all sinks is equal to the sum of the initial power of all nodes. We touch
upon how this requirement can be implemented in section 3.3.

3.2.3. Closed Delegation Cycles

We define a closed delegation cycle C ⊆ V in a delegation graph G = (S
⋃̇︁

D, E) as a
cycle in G such that for every node v ∈ C, there exists no path from v to any sink node
in S.

Figure 3.1 shows exemplary closed delegation cycles. These cycles lead to contradic-
tory situations, as power delegated within never reaches a sink. Some works discuss
ways to handle power stuck in such cycles or mitigate the risk of such cycles appearing,
but effectively it is lost [3, 6]. This means that none of the nodes in a closed cycle
will vote, which is in line with the will of voters, who all wish to not vote themselves,
instead delegate their power, letting their delegate(s) decide what to do with this power.

In practice, such cycles need to be addressed before resolving delegations in a
preprocessing step, since our method of resolving delegation graphs introduced in
section 3.3 is not equipped to handle such cycles by itself. Our approach to this is
to find all such cycles, and collapse them into an additional sink node in the graph.
Any delegation toward nodes within the cycle is redirected into this added sink, thus
ensuring the graph no longer has any closed delegation cycles.

This is true since, before the preprocessing step, any power delegated by a node not
affected by a closed delegation cycle, meaning it is neither part of the delegation cycle
nor delegates its votes such that it ends up in a delegation cycle, had a way to a sink.
After the preprocessing step, even power delegated by nodes that are affected by a
closed delegation cycle is either removed from the graph since its node got collapsed,
or has a way to a sink, namely the specially added sink.

The algorithm for this preprocessing step so can be found in the appendix in sec-
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3. Design

Figure 3.2.: Sample delegations

tion A.1.3
We prove below, that given the absence of such closed delegation cycles, delegations

are resolvable in a delegation graph.

Theorem 1. Let G = (S
⋃̇︁

D, E) be a delegation graph. If G contains no closed delegation
cycles, then for every delegator d ∈ D, there exists a path from d to a sink node s ∈ S.

Proof. Suppose, for contradiction, that G contains no closed delegation cycle, but there
exists a d ∈ D such that no path from d leads to any sink s ∈ S. Since G is a finite
graph, any walk from d must eventually repeat nodes, implying a cycle. If at least one
node in this cycle can reach a sink, there would be a path for all others in the cycle to
reach a sink via this node as well, thus all nodes in the cycle can not reach a sink either.
Thus, G does contain a closed delegation cycle.  

We define a well-formed delegation graph as a delegation graph, which contains
no closed delegation cycles. Note, that while a self loop, so a delegates to oneself, of
weight one is trivially not allowed in a well-formed delegation graph, a self loop of
weight w < 1 is permitted as long as the rest of the node’s power eventually flows to
a sink. Since a delegator cannot vote themselves, any power it delegates to itself will
"flow" back into the node, and then be redistributed to its delegates.

3.3. Resolving Delegations

We will use the sample delegation chain in fig. 3.2 to create an intuition on how we
will resolve delegation graphs. Sink node C receives its own initial vote, and is also
delegated a fraction w2 of B’s vote. Node B, in turn, receives its own vote and a fraction
w1 of A’s vote. Let p′A andp′B denote the standing power of nodes A and B, i.e. the total
amount of power they have, including their own initial vote and any power delegated
to them. Then, the final power of C, assuming no other incoming delegations, is:

9



3. Design

pC = 1 + w2 p′B
= 1 + w2(1 + w1 p′A)

= 1 + w2(1 + w1 · 1)

This motivates the recursive definition of standing power in a delegation graph
G = (V, E) as:

p′v = 1 + ∑
(u,v,w)∈E

wp′u

Using this definition, and in line with the problem statement that delegating nodes
must not retain any power, we define the final voting power pv of a node as:

pv =

{︄
p′v if v ∈ S

0 if v ∈ D

The problem of finding each node’s standing power is thus a problem of solving a
system of linear equations, namely calculating the standing power for all nodes. We
prove below, that given a well-formed delegation graph, this method returns a unique
solution, in which power is also conserved.

3.3.1. Existence of a Unique Solution

We first introduce notation, which will be used within the proof. The system of linear
equations p′v = 1 + ∑(u,v,w)∈E wp′u can also be rearranged to be in matrix form:

p′ = 1 + W p′ =⇒ p′ −W p′ = 1

=⇒ (I −W)p′ = 1

where p′ ∈ R
|V|
+ is the vector of standing power values for each node, W ∈ [0, 1]|V|×|V|

is the adjacency matrix of the graph (with Wij denoting the weight of the edge from
node j to node i), and 1 is the all-ones vector.

Theorem 2. Given a well-formed delegation graph G = (V, E), the equation p′v = 1 +

∑(u,v,w)∈E wp′u has a unique solution for all v ∈ V.

Proof. We prove the theorem by modifying the delegation graph into an absorbing
Markov chain, and then making use of some of its properties.

10



3. Design

The theorem holds trivially if |V| = 0, since the statement “for all v ∈ V” is vacuously
true.

Assume now that G = (V, E) contains at least one node. Let G′ = (V, E′), where

E′ = E ∪ {(s, s, 1) | s is a sink in V}.

By construction, each node in G′ has outgoing edges whose weights sum to 1, so G′ is
a Markov chain. Furthermore, G satisfies the following:

1. There exists at least one sink (follows from well-formedness of G and |V| > 0),

2. Every node has a path to at least one sink (follows from well-formedness of G).

Thus, G′ is an absorbing Markov chain: every state can reach an absorbing state (a
sink with a self loop) in finite steps. A standard result for such Markov chains is that
their transition matrix P can be rearranged as:

P =

[︃
Q R
0 Ir

]︃
,

where Q describes transitions between transient (non-sink) states, R transitions
from transient to absorbing states, and Ir, the identity matrix, the transitions from
absorbing states, which necessarily always transition back into themselves. After infinite
transitions, the probability of still being in a transient state is zero, thus limk→∞ Qk = 0,
which implies that Q’s spectral radius ρ(Q) < 1.

Now consider the system of linear equations

(I −W)p′ = 1

Let WT be W’s transpose. Then WT structurally resembles a Markov chain’s transition
matrix, with row sums = 1.

Define the subgraph D ⊂ G, containing only all delegating (non-sink) nodes. Let WT
D

be the transpose of the weight matrix for D, which only includes delegations among
delegating nodes.

Then WT
D = Q, so WD = QT and thus ρ(WD) = ρ(Q) < 1. The equality of the

two matrices follows from the observation that the construction of G′ from G only
adds self-loops to sink nodes, leaving all delegating nodes and their outgoing edges
unchanged.

Note that standing power values for delegating nodes depend only on the values of
other delegators — never on sink nodes. This justifies restricting the analysis to the
submatrix WD, as the equation system governing these nodes is self-contained.
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3. Design

We now restrict our attention to the system of equations over only the transient
nodes:

(I −WD)p′D = 1.

Since ρ(WD) < 1, the Neumann series

(I −WD)
−1 =

∞

∑
k=0

Wk
D

converges, and thus (I −WD) is invertible. Therefore, p′D has a unique solution.
Finally, since the standing power of each sink depends only on the standing power

values of delegators, and those are uniquely determined, the standing power value of
all nodes is uniquely determined as well.

3.3.2. Conservation of Power

In order to assure that the power is conserved during delegation, it may seem intuitive
to add a constraint ∑s∈S ps = |V| to the system of linear equations. However, we prove
that such an equation is not necessary, as the other equations in the system of equations
already imply the conservation of power.

Theorem 3. For a well-formed delegation graph G = (V, E), with V = S
⋃̇︁

D, ∑s∈S ps = |V|
holds.

Proof. We start with the solutions {p′v|v ∈ V}.
Summing over all v ∈ V:

∑
v∈V

p′v = ∑
v∈V

(︄
1 + ∑

(u,v,w)∈E
wp′u

)︄

= ∑
v∈V

1 + ∑
v∈V

(︄
∑

(u,v,w)∈E
wp′u

)︄
= |V|+ ∑

(u,v,w)∈E
wp′u (3.1)

Now regroup the second term by the source node u:

∑
(u,v,w)∈E

wp′u = ∑
u∈V

(︄
∑

(u,v,w)∈E
wp′u

)︄
= ∑

u∈V
p′u ∑

(u,v,w)∈E
w

12



3. Design

According to our definition of a delegation graph, all sinks have no outgoing notes, and
all delegators’s outgoing node weights add up to 1. So, for any node u:

∑
(u,v,w)∈E

w =

{︄
1, u ∈ D

0, u ∈ S

Thus we can split the outer sum:

=

(︄
∑

u∈D
p′u ∑

(u,v,w)∈E
w

)︄
+

(︄
∑
u∈S

p′u ∑
(u,v,w)∈E

w

)︄

=

(︄
∑

u∈D
p′u · 1

)︄
+

(︄
∑
u∈S

p′u · 0
)︄

= ∑
u∈D

p′u (3.2)

At the same time, V = S
⋃︁

D , and S and D are disjunct, we can split the term
∑v∈V p′v into:

∑
v∈V

p′v = ∑
v∈S

p′v + ∑
v∈D

p′v (3.3)

Therefore, combining (3.2) and (3.3), the original equality (3.1) turns into:

∑
v∈S

p′v + ∑
v∈D

p′v = |V|+ ∑
u∈D

p′u

=⇒ ∑
v∈S

p′v = |V|

3.3.3. Resolving Delegations by Solving a System of Linear Equations

With the insights gained in the previous sections in mind, it is now possible to formulate
the following method to resolving delegation graphs.

1. Set up a system of linear equations, such that for each node v ∈ V there is an
equation p′v = 1 + ∑(u,v,w)∈E wp′u

2. Solve the system of linear equations to find the value of p′v for all v ∈ V

3. For each s ∈ S set ps = p′s

4. For each d ∈ D set pd = 0

13



4. Implementation

This design above allows for multiple implementations, which will be introduced in
this section. This section will also discuss briefly the robustness of the implementations,
meaning how they respond to invalid input graphs. This paper will cover three
implementations, which were chosen as they promise efficiency and scalability.

The implementations were coded in Python. Python is versatile, simple, performant,
and offers a large collection of helpful libraries like NetworkX, a library for working
with graphs [15]. Links to the implementations can be found in the appendix at
section A.1.1

The algorithms take as input python dictionaries ("dicts"), which map a key to a
value [25]. The delegation graph is represented in a "dict of dicts" format, where every
key in the outer dict is a node, and the value is another dict, which has the node’s
delegates as keys, and the weight of the delegation as value. The algorithms use as
input inverse dict-of-dicts, where the inner dictionaries represent a node’s incoming
rather than outdoing delegations. Figure 4.1 shows an example of this. Considering
that the standing power equations used in the system of linear equations list contain
the incoming delegations for each node, this design choice improves efficiency as an
algorithm can look up a node in the dictionary and immediately learn about all of its
incoming delegations.

4.1. Linear Systems Solver

The first approach uses a dedicated linear system solver. We use SciPy’s scipy.sparse-
.linalg.spsolve solver, which is optimized for sparse matrices [29]. A sparse solver is
better equipped to resolve delegations, if we assume that realistically each delegator
only delegates to a few delegates. Since each entry in matrix W can be mapped to
one unique edge (u, v, p) ∈ E, the matrix likely has relatively few non zero entries
compared to its size.

The implementation makes use of SciPy’s Compressed Sparse Column (CSC) arrays,
which builds matrixes using (x, y) coordinates and their corresponding data, which
unless explicitly set, is 0 [29].

The solver solves the system of linear equations directly, using the SuperLU solver,
meaning it will always solve the system of linear equations perfectly accurately, unlike
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4. Implementation

(a) Delegation graph (b) Inverse dict representation

Figure 4.1.: Delegation graph and its inverse dict representation

the other implementations discussed below [21]. The solver’s results are then cleaned,
setting each node with outgoing edges’, so each delegator’s, power to zero, and
returned.

The implementation will be referred to as Linear Systems Solver (LS) throughout the
paper.

4.2. Linear Programming Solver

Secondly, we use the Python library PuLP, which provides an interface to linear
programming solvers [23]. To resolve the delegation graphs, we use the "Coin-or branch
and cut" (CBC) solver, since it is free and open-source [13]. Given the academic context
and the moderate size of our delegation graphs, CBC provides a balance between
performance and accessibility. Moreover, since our model solves a system of linear
equations with a unique solution, the choice of solver has little influence on the outcome
itself, even if CBC is not the most optimized solver for this class of problems. While
commercial solvers may offer faster runtimes, CBC is sufficient for our use case and
ensures reproducibility without licensing constraints.

The algorithm first sets up the linear program, setting up an equation p′v = ∑(u,v,w)∈E 1+
wp′u for each node v ∈ V. This is then solved by the CBC solver, with the primal tol-
erance set to 5 ∗ 10−3 to level the playing field compared to the iterative algorithm,
which will be introduced in the next section. A tolerance of 5 ∗ 10−3 assures that
|p′v −∑(u,v,w)∈E 1 + wp′u| < 5 ∗ 10−3, so the solutions will be correct when rounded to
the second decimal place [12]. Finally, the algorithm cleans the p′v values, setting any
delegators power to 0.

The implementation will be referred to as Linear Programing Solver (LP) throughout
the paper.
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4. Implementation

4.3. Iterative Solver

The iterative solver aims to leverage the format of the input, and eliminate any un-
necessary overhead. It is based on the Jacobi method of solving systems of linear
equations, which solves the system by iteratively refining the solution [7], however we
will prioritize an intuitive explanation of the procedure.

4.3.1. Approach

A delegation can be thought about as liquid throwing through a graph. Each delegator
is a "source", and power flows from its source between nodes until it eventually ends in
a sink. If a delegator A delegates half their vote to B and the other half to other nodes,
half of A’s power should flow to B. An algorithm should thus add 0.5 to Bs power,
and remove it from A. If B is a sink, the algorithm is done resolving this delegation.
However, B may not be a sink, in which case, the power continues to flow further,
to B’s delegates. An algorithm would need to iterate over the graph multiple times,
until an equilibrium has been reached, where all power in the graph has flown into
a sink. Algorithm 1 shows such an algorithm drafted in pseudocode. Each iteration,
a snapshot of the power’s of each node is taken, and the reassignments of power are
based on this snapshot1.

Another valid approach would be a queue-approach, where the algorithm pops node
off a queue and delegates their power, and each delegate of this node gets re-added to
the queue. A sweeping method treating the entire graph at once was chosen due to its
increased simplicity and runtime analysis.

The following notation will be used throughout the next sections.
Let p(i)v , i ∈ N0 be powers[v] after the i-th iteration of the repeat-until loop, with

p(0)v being the initial power of a node before the first iteration has started. Using
this notation, our termination condition for the repeat-until loop of algorithm 1 is:
∀v ∈ V : p(i−1)

v = p(i)v

Let P(i)
D = ∑d∈D p(i)d and P(i)

S = ∑s∈S p(i)s be the sums of the power values all delega-
tors and all sinks after each iteration.

Let δ
(i)
(u,v,w)

= w ∗ p(i)u be the delta assigned in line 10 of algorithm 1 during the ith
iteration.

1If the algorithm forwent the use of such a snapshot, it would lead to inconsistencies in the edge case of
a self-delegation of weight less than 1, since the self-delegator’s power would change in the middle of
reassigning the power. This is also how the Jacobi method approaches this challenge. Each iteration, a
solution vector containing intermediate results is created, and passed as input into the next iteration.
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Algorithm 1 Iterative algorithm

1: // Initialize each node’s power to 1.0
2: for all v ∈ nodes do
3: powers[v]← 1.0
4: end for
5: repeat
6: prev_powers← powers.copy() ▷ snapshot of previous iteration
7: for all v ∈ nodes do
8: // For each incoming delegation (u→ v), move wuv× previous power of u
9: for all (u, w) ∈ delegations[v] do

10: δ← w× prev_powers[u]
11: powers[u] −= δ

12: powers[v] += δ

13: end for
14: end for
15: until prev_powers = powers ▷ a steady state has been reached

4.3.2. Conservation of Power

We show, that this algorithm conserves power throughout iterations.

Theorem 4. Given a well-formed delegation graph, in algorithm 1, P(i)
t = P(i)

D + P(i)
S is equal

to |V| for any i ∈N0.

Proof. We prove the theorem inductively. When i = 0 (before the first iteration), each
node is assigned a power of 1. So

∀v ∈ V : p(0)v = 1 =⇒ P(0)
t = |V|

Assume that for a k ∈ N0 : P(k)
t = |V|. During iteration k + 1, the algorithm will

iterate over all delegations, and for each (u, v, w) ∈ E, it will remove some δ
(k+1)
(u,v,w)

from
node u, but add this same amount to node v. Since the delegation graph is well formed,
the outgoing weights of any delegator add up to 1, so for all delegators u ∈ D, the total
amount of power they delegate away during iteration k + 1 adds up to the power they
held in iteration k. Formally, for any node u ∈ V:
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∑
(u,v,w)∈E

δ
(k+1)
(u,v,w)

= ∑
(u,v,w)∈E

wp(k)u

= p(k)u · ∑
(u,v,w)∈E

w

= p(k)u · 1

= p(k)u

Thus, throughout the iteration of the outer loop, any delegator u only ever moves
power it already has, and for each "moving around" of power, conservation is guaran-
teed since any power subtracted from a delegator is re-added to the delegate. Thus
P(k+1)

t = |V|.
By the principles of induction, the assumption holds for any i ∈N0

Similarity to the Previous Approach

Observing the algorithm reveals that the same equations used in the previous approach
to resolve delegations can be re-found here. The algorithm starts with a vector of ones,
indicating an initial power of each node of one. Furthermore, during each iteration,
each node v ∈ V gains power amounting to ∑(u,v,w)∈E δ

(i)
(u,v,w)

. This can be rearranged
as follows:

p(i)v + = ∑
(u,v,w)∈E

δ
(i)
(u,v,w)

+ = ∑
(u,v,w)∈E

wp(i−1)
u

Since power is conserved, if this node is a delegator, power amounting to p(i−1)
v will

be delegated out of it. Nevertheless, each iteration the algorithm essentially solves:

p(i)v = ∑
(u,v,w)∈E

wp(i−1)
v ∀v ∈ V

This is the same as the standing power assigned to all nodes in the previous approach.
(p′v = 1 + ∑(u,v,w)∈E wp′u). Thus, this algorithm solves the same problem as the system
of linear equations introduced in the previous section.
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Figure 4.2.: Delegation graph with a cycle

This section will show, that the algorithm does not necessarily terminate despite
being input a well formed delegation graph. We then propose an amended algorithm.

We first prove that the algorithm terminates at iteration i + 1 exactly when P(i)
D = 0.

Lemma 5. p(i)v = p(i+1)
v ∀v ∈ V ⇔ P(i)

D = 0.

Proof.

P(i)
D = 0⇔ p(i)d = 0, ∀d ∈ D

⇎ ∃(d, v, w) ∈ E : δ
(i+1)
(d,v,w)

> 0 (δ of a node with power 0 is 0)

⇔ p(i)v = p(i+1)
v ∀v ∈ V (pv doesn’t change if zero is added to it)

This insights lets us prove, that the algorithm may never terminate.

Theorem 6. Given a well-formed delegation graph, algorithm 1 may not terminate.

Proof. Assume the algorithm terminates on a well-formed delegation graph..
Take the following well formed delegation graph G = (S

⋃̇︁
D, E) with S = {C} and

D = {A, B}, visualized in fig. 4.2. Since the algorithm terminates, there must be an
i ∈N such that P(i)

D = 0 (theorem 5).
In each iteration i, half of B’s power is passed to A, which immediately returns it in

the next iteration. This creates an infinite back-and-forth delegation loop between A
and B, where power keeps circulating and leaking only partially to the sink C.

The power values of the three nodes as the algorithm iterates are shown in table 4.1.
The power values for A and B decrease, but never reach zero, which implies that:

∀i : P(i)
D > 0
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Table 4.1.: p(i)v values of nodes in the graph in fig. 4.2
i pA pB pC

0 1 1 1
1 0.5 1 1.5
2 0.5 0.5 2
3 0.25 0.5 2.25
4 0.25 0.25 2.50
5 0.125 0.25 2.625
...

Practically, the algorithm needs a cutoff condition, which terminates the repeat-until
loop once the power values calculated are close enough to the real, final values. Since
these are unknown before the algorithm terminates, we can count how much power
is being shifted throughout the graph each iteration, and terminate once this value is
sufficiently small. An extension to algorithm 1 could look like algorithm 2. We now
show that is also conserves power, and that it terminates.

Conservation of Power

Theorem 4 states that algorithm 1 conserves power across iterations. The same proof
applies to algorithm 2, since only the if-condition of the outer loop has changed, but the
algorithm works the same way. So while the algorithm will iterate less, power remains
conserved across iterations.

Termination

Lemma 7. Given a well-formed delegation graph, algorithm 2 terminates if cutoff > 0.

Proof. For this proof, we use the fact that this method of resolving delegation essentially
implements the Jacobi method for solving linear equations. In the Jacobi method, the
system of linear equations is iteratively refined as follows. Note, that we use the matrix
representation of the system of linear equations from section 3.3.1.

p(i+1) = W p(i) + 1

p(i) is the vector of power values after iteration i. Unfolding this recursive equation,
with p0 = 1, the vector of ones, yields:
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Algorithm 2 Iterative Algorithm with a cuttoff value. Changes from algorithm 1 are
highlighted.

// Initialize each node’s power to 1.0
for all v ∈ nodes do

powers[v]← 1.0
end for
repeat

prev_powers← powers.copy()
total_change← 0

for all v ∈ nodes do
// For each incoming delegation (u→ v), move wuv× previous power of u
for all (u, w) ∈ delegations[v] do

δ← w× prev_powers[u]
powers[v] += δ

powers[u] −= δ

total_change += δ

end for
end for

until total_change < cutoff

p(1) = W p(0) + 1

p(2) = W p(1) + 1 = W(W p(0) + 1) + 1 = W2 p(0) + W1 + 1

p(3) = W p(2) + 1 = W3 p(0) + W21 + W1 + 1

...

p(n) = Wn p(0) +
n−1

∑
k=0

Wk1

Since the system of linear equations has a unique solution, as proven in section 3.3.1,
we know that matrix ρ(W) < 1. This implies, that:

lim
k→∞

Wk = 0 and
∞

∑
k=0

Wk = (I −W)−1

Thus, p(n) converges. This means, that the changes in power per iteration must
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shrink strictly monotonically, meaning the total_change shrinks strictly. Thus, it will
eventually fall under the cutoff and the algorithm terminates.

4.4. Robustness

This section describes the different implementations behavior when a delegation graph
is not well formed. Specifically, their behaviors when outgoing delegation weights are
invalid, so not adding up to 1, and if the delegation graph contains a closed delegation
cycle.

4.4.1. Invalid delegations

On their own, neither of the three implementations will definitively cause an error
when delegations are invalid. The iterative implementation is "dumb", in the sense
that it moves around power as is instructed by the delegations. If a delegator delegates
more than they are meant to, meaning the outgoing edge weights add up to a value
greater than 1, the algorithm behavior becomes undefined, since the delegators power
may become negative, at which point the delta in power calculated from its power also
becomes negative, which messes with the total_change value in unpredictable ways.

If a delegate delegates less than their vote, this causes less of an issue. As long as the
delta calculated at δ← w× prev_powers[u] does not become negative, the algorithm’s
will still find the power correctly. A well-formed delegation graph is allowed to contain
self-delegations as long as their weight is lower than 1, such as the delegation in
fig. 4.3a. In this situation, power still leaves the node, but less slowly. When the iterative
algorithm goes over the graph, not delegating enough weight has the same effect as
such a self-delegation, since in the former situation power gets subtracted and then
re-added to the node, while in the latter it just remains untouched. Thus, the two
graphs in fig. 4.3 yield the same result, B having a power of 2.

For the two implementations directly based on solving systems of linear equations,
this is different. Node B’s power would end up as 1.1, since the system of linear
equations looks as follows:

pA = 1

pB = 1 + 0.1pA

As long as the delegations form a matrix that is singular, there will be a unique
solution, so even with invalid delegations, the algorithm will find power values, however
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(a) Permissible delegation graph (b) Invalid delegation graph

Figure 4.3.: Two similar delegation graphs

they most likely differ from the power values that would be expected, and probably
will not conserve total power properly.

4.4.2. Closed Delegation Cycles

If the delegations form a closed delegation cycle, the iterative algorithm will not
terminate, since the algorithm will iterate any power that is in or enters the cycle
around the cycle indefinitely.

For the other two algorithms however, such a cycle can be caught. The equations for
the standing power of the nodes within the cycle are linearly dependent on each other,
thus the matrix resulting from them is not singular, and hence doesn’t have a single
solution. Solvers of systems of linear equations catch this and throw an error. Similarly,
the LP solver will find that the linear program is infeasible.

What is worth mentioning however, is that since we allow fractional delegation, it
suffices if just one node in a closed delegation cycle decides to delegate to a node
outside of a delegation cycle (or turns into a sink), for the delegations to become
resolvable again. The cycles that will be explored in section 5.2.4 are example of such a
situation.
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The three solvers will be evaluated based on their runtime and scalability. The eval-
uation will first cover synthetically generated delegation graphs including randomly
generated small and big graphs as well as corner cases, then delegations graphs gen-
erated based on social behaviors, so-called social graphs, and finally graphs based on
real-world datasets.

All results and code used in this section can be found in the annex in section A.2.

5.1. Method

5.1.1. Generating Random Delegation Graphs

For section 5.2 on synthetically generated graphs we built an algorithm, that builds
custom delegation graphs. The algorithm generates an empty graph with n nodes, and
then adds between zero and three delegations per node to random other nodes, ensuring
that there are no closed delegation cycles. This algorithm can be found using the link
at section A.1.2. We acknowledge that these assumptions may not accurately reflect
real-world delegation graphs. As has been introduced in section 2.2.1, studies have
shown that delegates do not choose randomly; instead, votes often concentrate among
a few individuals. This approach also overlooks potential behavioral tendencies, such
as voters preferring to delegate to those they perceive as more competent or confident,
and the emergence of highly popular "super-voters" who accumulate disproportionate
influence. These concerns are addressed in section 5.3, when delegation graphs based
on social graphs are benchmarked.

5.1.2. Preprocessing

In order to be able to benchmark algorithms that resolve delegations, the input graphs
need to be well-formed delegation graphs. Many of the graphs we use for benchmarking
are not well-formed delegation graphs out-of-the-box. This subsection details the
process of how any arbitrary graphs, including undirected and unweighted graphs, can
be turned into well-formed delegation graphs. An overview of this process is shown in
fig. 5.1.
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Figure 5.1.: Preprocessign pipeline to turn any graph into a delegation graph

If the graph is undirected, is it given a direction. This is done arbitrarily, with the
algorithm interpreting undirected edges stored as (u, v) as directed edges from u to
v. If the algorithm fails to find a weight for an edge, it will also assign it a weight
of one. Next, any multiple edges, so parallel edges going from the same node to the
same node are merged, with any weights being added together. If less than n% of the
graph’s nodes are sinks, the algorithm randomly removes all outgoing delegations of
delegators, turning them into sinks. This n value can be adjusted depending on the user
case. After this, the algorithm searches for any closed delegation cycles, and collapses
all it finds into a single sink node. Specifically, the algorithm searches for strongly
connected components (STCCs) in the graph, so components of the graph where each
node can reach each other node, and checks if it it is a closed delegation cycle, by
checking if any of the nodes within this STCC delegate to a node outside of the STCC.
An exception to this are sinks who have no delegators, these are technically STCCs
with no outgoing edges, however they are not closed delegation cycles. All closed
delegation cycles are collapsed into a "lost" node, which means that any delegations to
the cycle get re-directed to this specially created node. As shown in section 3.2.3, the
resulting graph from this operation is a well-formed delegation graph, since all power
that flows into closed delegation cycles now flows into a sink, so the graph is free of
closed delegation cycles.

The code for the preprocessing algorithm can be found in section A.1.3.

5.1.3. Measurement

Despite all algorithm’s taking in put in inverse dict-of-dicts format, there may still be
preprocessing necessary. While the iterative solver can use the inverse dict-of-dicts
directly, using it as a lookup table as it spreads power around the graph, the other
solvers require the system of linear equations in specific formats, which need to be
set up from the inverse dict-of-dicts input. Including such set-up time in benchmarks
may be misleading, as this time is not spent on actually resolving delegations, thus
we separated the set-up and resolving, and in the benchmarks only the time spent
actually resolving the delegations is used; any set-up time is ignored. Nevertheless,
in practice, the set-up time can be a relevant factor, depending on the use case and
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Figure 5.2.: Runtimes to resolve randomly generated delegation graphs

data format, when choosing between different approaches or implementations. The
set-up procedures required for each implementation are described in more detail in the
sections below.

To minimize the impact of background noise and measurement fluctuations on the
benchmarks, algorithms with very short runtimes were executed multiple times, and
the average runtime was recorded. The recorded runtimes always indicate just the
runtime for the algorithms to resolve the delegations, times for set-up are not included.

Furthermore, all runtimes are reported based on the actual number of nodes present
in the resolved graph. For example, if a delegation graph initially contains 5000 nodes,
but 500 of are in closed delegation cycles, these are collapsed into a single sink node.
When the algorithm is thus resolving the graph, all of these 500 nodes are in effect just
one node. Thus, when presenting benchmarks results, for this graph, we will show the
amount of nodes resulting in the presented runtime as 4501.

5.2. Synthetic Graphs

5.2.1. Small Graphs

In order to explore the three algorithm’s behavior on small graphs, we used the graph
generator to generate graphs with zero to 1000 nodes. Figure 5.2 shows the results of
this benchmark.

We see, that the LS Implementation, optimized for sparse matrices, outperforms the
other two algorithms. Its growth in runtime is so small, that the line looks to be staying
flat on the x-axis. However, with a graph of 1000 nodes, its runtime is about 0.002
seconds. Both the LS and LP implementations display a rather steady, yet growing
runtime. The LP solver seems to have some overhead, since even when the graph has
zero nodes, it has a runtime of about 0.02 seconds.
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Figure 5.3.: Runtimes to resolve randomly generated delegation graphs

Furthermore, we can observe large spikes in the runtime of the iterative approach. For
example, resolving the delegation graph with 650 nodes takes the algorithm more than
double the amount of time than the graph with 700 nodes. Exploring this phenomenon
more closely, we find that a graph with 13 nodes takes the iterative algorithm a lot
more time than the graph with 12 or 14 nodes, as shown in fig. 5.3. At 12 nodes, the
runtime of the iterative algorithm is just about 0.2 milliseconds, at 14 nodes it is about
0.3 milliseconds, but at 13 nodes it is 4.3 milliseconds.

A possible explanation for this spike may be, that when the graph has 12 and 14
nodes, it iterates only 23 and 39 times respectively, before cutting off, while when it has
13 nodes it iterates 740 times before cutting off. Figure 5.4 shows the two graphs with
12 and 13 nodes.

When the graph has 13 nodes, power entering the sink node 0 only has a delegation
of weight 0.1. Each iteration, 10% of the power within node 2 enters the sink, but the
other 90% is dispersed into the graph. This forces the iterative algorithm to iterate this
power around the graph until eventually enough of it has collected in node 0. In the
graph with 12 nodes on the other hand, this effect is visibly less present. A delegation
from node 3 to sink node 7 only has a weight of 0.1 too, but the other 0.9 of this vote
are directed toward another sink node 10.

This is an important shortcoming of the iterative algorithm. Power can easily get
trapped within permissible delegation cycles that only have a small drain allowing the
power to escape from the cycle. Each iteration, if a great proportion of the nodes with
draining edges’ power is sent back into a cycle, the algorithm needs to continuously
iterate until the power is back at the drain nodes, however depending on the cycle this
may happen very inefficiently. This phenomenon will be tested more in section 5.2.4
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(a) 12 nodes (b) 13 nodes

Figure 5.4.: Delegation graphs with 12 and 13 nodes (blue nodes are sinks)

5.2.2. Large Graphs

Delegation graphs may grow arbitrarily large. National elections for example can
contains up to hundreds of millions of participants. This section explores how the
algorithms perform when having to resolve graphs with a lot of nodes. Again, the
graphs will be randomly generated, such that each nodes has between 0 and 3 delegates.

Figure 5.5 shows that even as the delegation graphs get larger, the LS solver’s runtime
grows faster than that of the other two implementations. For resolving smaller graphs,
the LS solver outperforms the LP solver, with a runtime of almost zero for empty
or very small graphs, while the LP solver has a clearly non-zero runtime even for
very small graphs. However, at around 12 000 nodes, this changes, as the LP solver’s
runtime’s slower growth catches up with that of the LS solver, closely followed by the
iterative implementation.

Looking at the loglog graph, the runtime growths seem to be following a power
law. Fitting the data into different curves confirms, that the implementations likely
all grow according to a power law, with the LS solver growing the quickest, about
O(n3.07), n being the amount of nodes, the LP solver fitting into an O(n1.41) curve and
the iterative solver O(n1.20). These growth classes are probably not generalizable to all
delegation graphs, since the runtime may grow with different coefficients depending
on the underlying delegation graphs. This will be explored in the following sections.
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(a) Linear scale (b) Loglog scale

Figure 5.5.: Runtimes to resolve large, randomly generated delegation graphs

5.2.3. Dense Graphs

While we expect most delegators in any delegation graph to only delegate to a handful
of people, a well formed delegation graph can have any number of delegates per
delegator. Thus, it is also interesting to compare how the three algorithms compare
when resolving more dense graphs. In this section, we test the three implementations on
NetworkX’s Gn,p graph generator gnp_random_graph, which returns a directed graph
with n nodes, where each node connected to each other node with probability p, which
is set to 0.5 for the remainder of this section [15]. All of the nodes in these graphs are not
sinks, since they all have outgoing edges. Normally, these graphs would be one large
closed delegation cycle, where nobody votes, and the preprocessing pipeline would
collapse them all into one sink node. Thus, in order to be able to resolve meaningful
power values, we turn 10% of nodes into sinks by removing the outgoing edges. Then,
each delegators vote is equally distributed among all of its outgoing edges, such that
the edge weights add up to 1. Finally, any remaining closed delegation cycles are
collapsed, however, all graphs that the benchmark was run on ended up having no
closed delegations after the measures were applied.

Figure 5.6 shows the runtime of these three algorithms. The runtimes are greater
than the runtimes found in the previous section. At 2000 nodes, the runtimes on
the randomly generated, relatively sparse, graphs was well under a second for each
algorithm, while it takes the iterative and LP solver 49 and 76 seconds respectively. The
LS solver’s runtime grows from about 0.03 to 0.61 to resolve the dense graph. The LS
solver surprisingly outperforms both solvers, however looking at its runtime growth in
a loglog graph reveals, that it grows at a similar rate to the others. Which algorithm

29



5. Evaluation

(a) Linear scale (b) Loglog scale

Figure 5.6.: Runtimes to resolve dense delegation graphs

is the slowest depends on the amount of nodes in the graph, with the iterative solver
showing slower runtime growth, eventually outperforming the LP solver at around
1300 nodes. The delegations in this graph are very fine grained, since each delegating
node delegates to half of all nodes, and the delegators vote is distributed equally to all
its delegates, the weight of each delegation is just:

1
0.5n

=
2
n

Intuitively, this should put the iterative algorithm at a disadvantage, since it needs
to iterate around a lot of delegations, each only moving around small amounts of
power at a time. However, it seems that the LP implementation struggles with these
graphs as well, likely because the large amount of delegations results in lot of long
linear equations to solve. Even though the LS solver is optimized for sparse matrices, it
demonstrates impressive efficiency at solving these kinds of problems.

Testing the three algorithms on larger dense graphs, reveals that the LP solver’s
runtime is considerably worse than that of both the iterative and LS solver. The results
of this benchmark are visualized in fig. 5.7. A dense graph with 5,000 nodes, takes the
LS solver only about eight seconds, the iterative solver 306 seconds, and the LP solver
1632 seconds. Fitting curves on these runtimes again reveals that they likely follow
a power law, the runtime classes for the LS, LP and iterative solver being O(n2.89),
O(n3.51) and O(n2.24) respectively. As is also visible in fig. 5.7b, this means the iterative
algorithm has the best runtime class, however for dense graphs of the size that was
tested, it is not the most performant algorithm.
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(a) Linear scale (b) Loglog scale

Figure 5.7.: Runtimes to resolve larger dense delegation graphs

Figure 5.8.: A delegation graph with a cycle that retains a lot of its power

5.2.4. Cycles Which Retain a Lot of their Power

To explore one of the iterative algorithm’s shortcomings, this section will explore and
compare runtime behavior for delegation cycles which are not closed, but contain only
few, weak edges for power to drain, thus forcing power to iterate around in the cycle
before it reaches a sink. Such situations cause the iterative algorithm’s runtime to
spike, as has already been observed in fig. 5.4b, as the algorithm needs to move around
the power within these cycles until enough as drained for the total_change to fall
below the threshold. A further example of such a cycle, motived by graphs which
we encountered while experimenting on delegation graphs is the tail-shaped graph in
fig. 5.8.

For the benchmarking, we construct graphs with a circular shape, where delegates
all delegate power to the next node in the cycle. One node in the cycle contains an edge
with weight 0.1 to a sink, while the other 0.9 of its power goes to the first node in the
cycle. Figure 5.9 contains an exemplary image of such a graph with 10 nodes.

The runtimes in fig. 5.10a show, that as expected, the iterative algorithm struggles
considerably with the resolution of these graphs, while the other two algorithms exhibit
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Figure 5.9.: An example of the cycles used for the benchmarks. The blue node is the
sink

(a) Linear scale (b) Loglog scale

Figure 5.10.: Runtimes to resolve cycles which retain a lot of their power

behavior similar to that on randomly generated sparse delegation graphs. The growth
of the runtimes seems to be polynomial, with the iterative algorithm belonging to the
runtime class O(n2.12). Being able to resolve these kinds of loops is one of the greatest
strength of the two approaches, which don’t simulate power as flow through the graph.
By directly solving the system of linear equations, they better equipped to deal with
this corner case.

As seen in fig. 5.11, which shows the LS and LP solver’s runtimes as this type of
graph scales to 200000 nodes, their runtime growth is linear. In fact, they fit almost
perfectly into a linear regression, both with a slope of almost zero, suggesting that even
as these graphs scale to even greater orders of magnitude, the solver’s runtime is barely
affected. An explanation for this efficiency may include the very sparse nature of this
graph, as each node except for one has only one delegation.
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(a) Linear scale (b) Loglog scale

Figure 5.11.: Runtimes to resolve cycles which retain a lot of their power. The iterative
solver’s runtime, to allow inspection of the LS and LP solver’s runtimes.

5.2.5. No Delegations

The runtime of the implementations on delegation graphs where all nodes have no
outgoing edges can also provide insight, such as the runtime behavior on graphs where
only few nodes delegate, or delegations are very short. Figure 5.12 shows how long it
takes for the implementations to resolve graphs which have no edges at all.

The iterative algorithm outperforms the other two on these graphs, which is not
surprising, since it only needs to iterate over the empty dict of delegations once,
registers a total_change of zero, and terminates. All three solvers’ runtimes seem to
grow about linearly, where even at 200 000 nodes, the slowest solver, the LP solver,
takes only about 2.5 seconds, suggesting they grow linearly with a slope close to one.
A linear regressions confirms this observation.

5.3. Social Graphs

Social graphs provide an excellent way to create scalable models of trust within
communities without real datasets. We will use them to create sample delegation
graphs based on social behaviors, which can predict ways humans may delegate if
given the chance to delegate fractionally. These graphs are only based on models,
but they have the advantage that they can be scaled, allowing us to explore how the
algorithms scale.
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(a) Linear scale (b) Loglog scale

Figure 5.12.: Runtimes to resolve delegation graphs with no edges

5.3.1. Small World Graphs

Small world graphs are graph which exhibit a relatively high clustering coefficient,
meaning nodes are very interconnected, with short path lengths between arbitrary
nodes. Watts and Strogatz propose a graph generator to generate these kinds of graphs
artificially. The graph generator takes three parameters n, k, and p. It connects each
of the n nodes with k of their neighbors, and once this is done, "rewires" each edge
to a different node with probability p. Watts and Strogatz recommend a value for
p of around 0.1, to get the two desired qualities of a small world graph: short path
lengths between all nodes and high "cliqueness", meaning if two nodes are friends,
their respective friends are also likely to be friends with eachother. Furthermore, they
suggest that k >> ln(n) in order to guarantee that the graph is connected. [30]

The graphs as they are recommended by Watts and Strogatz are not usable as
delegation graphs. Firstly, no node in this graph is a sink, since each node has k
outgoing edges. Secondly, each node has too many, a lot more than ln(n), delegates.
This is does not scale. In a graph with e.g. 10000 nodes, each node would delegate
to almost ten people, and as the graph grows this number increases. Normally we
would not expect the total size of the graph to have a very big effect on the amount
of delegations per person, since delegation of votes is a personal, individual question.
Thus, we adapt these Watts-Strogatz graph generation graphs in the following ways.

1. Each node is connected to its exactly k = 4 neighbors.

2. 60% of the edges in this graph are removed.

3. Finally, as the graphs get preprocessed in the preprocessing pipeline, we enforce
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Figure 5.13.: A Watts-Strogatz graph with (n, k, p) = (40, 4, 0.1), where 60% of the edges
have been removed

(a) Linear scale (b) Loglog scale

Figure 5.14.: Runtimes to resolve the Watt-Strogatz based delegation graphs. The grey
line indicates the amount of cycles found in the graph. It does not include
closed delegation cycles, which the preprocessing pipeline collapsed.

that 20% of the nodes in this graph are sinks my removing outdoing edges of
nodes.

This way, we assume that each node has four trusted friends, but of these trust
relationships, only 40% are strong enough for the nodes to want to let their friend vote
for them. The value of 20% is a middle ground between observations which will be
made in the following sections, where some social graphs have a lot more than 20%
sinks, while other have a lot less. The p of 0.1 thats Watts and Strogatz recommend is
kept. A sample of how a graph generated with way is shown in fig. 5.13. The algorithm
for generating these graphs can be found in section A.1.2.

Figure 5.14 shows the benchmarks for these graphs. They are similar to the results
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Figure 5.15.: A directed, weighted R-Mat graph with (a, b, c, d) = (0.45, 0.25, 0.25, 0.15),
N = 40, M = 400, where edges with weight < 2 removed

achieved when benchmarking the big cycle graphs, where the LS and LP solvers
perform quite well compared to the iterative solver. The iterative solver also has a lot
rather unpredictable peaks. Investigating this pattern reveals, that even despite our
measures, the graphs still contained a lot of (permissible) cycles, i.e. cycles which the
LS and LP solvers can solve directly, but where the iterative algorithm needs to iterate
power around the loops. The amount of such cycles is shown in fig. 5.14 as a grey
line. Since there is bit of randomness involved in the creation of these graphs, it can
happen that those cycles vary starkly in retentiveness, meaning the amount of power
they force the algorithm to re-loop through a cycle, which leads to peaks and troughs
in the iterative solver’s runtime.

5.3.2. R-Mat Graphs

Another method for generating artificial social graphs is the R-MAT (Recursive Matrix)
model. This model requires four parameters, a, b, c, and d, which are probabilities that
sum to one, as well as the desired number of nodes N and edges M. The algorithm
begins with an empty

√
N ×
√

N adjacency matrix, where a nonzero entry at position
(i, j) indicates a directed edge from node i to node j. To determine where to place each
edge, the matrix is recursively subdivided into four quadrants, with the probability
of selecting a quadrant governed by the parameters a, b, c, and d. This recursive
partitioning continues until a single cell (1× 1) is reached, and an edge is added at that
location. The process is repeated until all M edges have been assigned. [9]

As parameters we will use (a, b, c, d) = (0.45, 0.15, 0.15, 0.25). These are often con-
sidered the "default" parameters to generate social graphs, and fit the recommended
scheme by Chakrabarti et al., the creators of this algorithm, to generate social graphs
that resemble "real-world scenarios". Furthermore, a common estimate for the average
outdegree in a social graph is between around three and 15. [9, 31] Thus, we set
M = 10N. R-Mat graphs tend to have well-connected cores, well connected enough
to turn the entire core into one, big closed delegation cycle. This is not an interesting
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graph to explore, since the preprocessing pipeline would collapse this core into a single
node, ignoring the complex connections within the core. To avoid this, we implemented
a multi-edge version of the R-Mat algorithm, which, unlike the original algorithm,
places edges even if they happen to land in a cell that already has an edge. We then add
the total amount of edges per node-pair and direction, and remove all edges where this
sum adds up to less than two. This way, we define the threshold for trust that is strong
enough to warrant a delegation as edges which the algorithm placed at least twice.
Another important difference to the original R-Mat algorithm is that our resulting
graphs are directed, whereby we simply interpret the y-axis of the adjacency matrix as
the source node and the x-axis as the destination node when placing edges. Figure 5.15
shows an example of such a generated graph with 40 nodes.

As these graphs get pre-processed, there is no need to add any artificial sinks to the
graphs, since unlike the Watts-Strogatz graphs, they do generally contain sinks. In
the event of closed delegation cycles, these get collapsed into a common sink node,
where all the power delegated into closed delegation cycles gets collected. In the case
of these delegation graphs, we find that generally well under 1% of the graph’s nodes
are affected by this collapse. Furthermore, the weight of the nodes is taken into account
adding delegation nodes, so a node with two outdoing edges of weight two and three
respectively, will end up delegating to the first node with weight 0.4 (= 2

2+3 ), and to
the second node with a weight of 0.6.

The runtimes of the algorithms on these graphs can be seen in fig. 5.16. Here,
the runtimes resemble more closely those of the no-edges synthetic graphs and the
runtimes of the LS and LP solver resemble the runtime they exhibited when resolving
the big cycle graphs. As mentioned before, the generated R-Mat graphs contain a
relatively dense community at the core, and many single nodes which neither delegate
nor are delegated to. By enforcing a minimum level of trust, the amount of nodes in
the periphery of the graph increases, since nodes which are connected to the core by
just a single edge are disconnected from the core by the algorithm. Thus, only between
around 7%− 9% of nodes in these graphs actually have delegations either incoming or
outdoing, thus explaining why the runtimes behave very similar to how they did when
the graph contained no edges at all.

5.4. Real-World Datasets

This section evaluates the three algorithms on some real-world datasets. While liquid
democracy without fractional delegation has been implemented and tested in studies, to
the authors knowledge there are no datasets for authentic fractional delegations. As an
alternative, we have fallen back to transforming datasets which may resemble fractional
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(a) Linear scale (b) Loglog scale

Figure 5.16.: Runtimes to resolve the R-Mat based delegation graphs

delegations into delegation graphs. We introduce the three datasets individually,
followed by a joint evaluation in section 5.4.4.

5.4.1. Bitcoin OTC Trust Network

Users trading Bitcoin on the platform "Bitcoin OTC" maintain a record of trust to other
users, in order to prevent transactions with untrustworthy users. The Stanford Network
Analysis Project (SNAP) provides the Bitcoin OTC Trust Graph, a graph of this trust
between users. [19, 18] The graph is directed and weighted, with weights ranging from
-10 to 10, total distrust to total trust.

The graph was first cleaned, to remove all edges with a non-positive trust values,
before being turned into a delegation graph via the preprocessing pipeline, again not
adding any sinks artificially. The preprocessing pipeline normalizes edge weights,
meaning outgoing trust levels are scaled down proportionally to add up to one, pre-
serving relative differences in trust. The pipeline turns no edges into sinks; the n-value
of the algorithm is set to zero. The finished graph contains 5573 nodes, of which about
0.15% are sinks. The outdegree distribution in the Bitcoin OTC Trust Graph is shown
in fig. 5.18a.

During the preprocessing of this graph, 43 of the graph’s 5573 nodes were to be
removed since they were in a closed delegation cycle. About 111.2 units of power were
lost to closed delegation cycles, 0.02% of the total power in the graph. The distribution
of powers after resolving is shown in fig. 5.20a
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5.4.2. Epinions

Epinions.com is a "general consumer review site", in which members can decide
whether to "trust" each other. SNAP provides a web-of-trust graph generated from this
relations. [27] The graph is directed and unweighted, thus an existing edge implies
trust, and a missing edge implies the lack thereof.

After preprocessing the graph into a delegation graph, with the n% sink threshold
set to zero, so the algorithm does not add any new sinks to the graph by removing
outgoing edges of nodes, we observe the following statistics for the delegation graph,
which will be called the Epinions Graph. The Epinions Graph contains 75139 nodes,
of which about 0.21% are sinks. Figure 5.18b shows the distribution of outdegrees in
the Epinions Graph, outdegree meaning the amount of outdoing edges of a node. The
mean outdegree is 6.76.

330 closed delegation cycles were collapsed, which affected 740 nodes, about 0.01%
of nodes in the graph. Interestingly, the most powerful node after resolving is the "lost"
node, the node where power goes, that was delegated into closed delegation cycles. The
total amount of power lost adds up to 2777.056087, which accounts for about 0.037% of
power in the graph. The distribution of powers after resolving is shown in fig. 5.20b.

5.4.3. Slashdot Zoo

The Slashdot technology news size has a "zoo" feature, in which users can tag other
users as friends and foes. The Distributed AI Laboratory in Berlin (DAI Labor) provides
a graph based on this data. [20] It is a directed and weighted graph, where an edge
weight of +1 indicates a friend relationship, and an edge weight of -1 indicates a foe
relationship.

This graph was also cleaned to only contain positive edges and turned into a dele-
gation graph, again not adding any sinks artificially. The delegation graph contains
69995 edges, of which about 0.4% are sinks. The outdegree distribution in this graph is
shown in fig. 5.18c. 1061 nodes were removed due to being in a closed delegation cycle.

5.4.4. Evaluation of the datasets

The runtime results show that for the two bigger graphs, the iterative solver is the
fastest, followed by the LS solver, and then the LP solver. For the Bitcoin OTC graph,
the LS solver is the fastest, followed by the LP and then the iterative solver. Figure 5.18
shows histograms for the outdegrees of the three graphs. The x-axis uses a logarithmic
scale, so these graphs show, that most nodes in the graphs have a rather low outdegree.
Figure 5.19 shows, that most nodes have an outdegree of zero and one. Furthermore,
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(a) Bitcoin OTC dataset (b) Epinions dataset (c) Slashdot Zoo dataset

Figure 5.17.: Runtimes

(a) Bitcoin OTC dataset (b) Epinions dataset (c) Slashdot Zoo dataset

Figure 5.18.: Histogram of outdegrees

histograms of the final nodes power in fig. 5.20 show that most nodes also have very
low power values.

Interestingly, there are no nodes in either of the three datasets that have a power of
exactly 1.0, suggesting that there are no isolated nodes. Despite this, the iterative solver
performs the fastest on the two bigger graphs, while it is clearly outperformed in the
Bitcoin OTC graph, the smallest of the three. This suggests, that this solver scales better
than the other two. It can also suggest, that the Epinions and Slashdot Zoo graphs are
rather free of retentive cycles. Other explanations for this low runtime can include that
paths to sinks are rather short. This would mean that the algorithm does not need to
iterate over the graph very often.

5.5. Key Insights

This evaluation effectively compares three different solvers for systems of linear equa-
tions in the context of resolving delegation graphs. The investigations showed, that
for smaller delegation graphs, the LS solver generally provides the best results. When
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(a) Bitcoin OTC dataset (b) Epinions dataset (c) Slashdot Zoo dataset

Figure 5.19.: Distribution of outdegrees between 0 and 50

(a) Bitcoin OTC dataset (b) Epinions dataset (c) Slashdot Zoo dataset

Figure 5.20.: Distribution of powers

graphs are very sparse or very large, the iterative solver outperforms the LS solver,
however, the iterative solver is less precise than the LS solver, meaning that unless a
bit of uncertainty in the power values is acceptable, the LS solver provides both great,
scalable performance and perfect accuracy. When resolving large, randomly generated
delegation graphs, the LS solver’s runtime grows a lot faster than the LP solver’s for big
graphs. Also when resolving Watts-Strogatz based delegation graphs, the LS solver’s
runtime grew at a faster rate. However, in general the LS solver is still the more efficient
choice since it generally has a faster or similar runtime growth than the LP solver, but
faster runtime overall.
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The idea of allowing the fractional splitting of votes in Liquid Democracy is not entirely
new. In 2014, Degrave first proposed "multi-proxy delegation", which closely resembles
our understanding fractional delegation, in that each delegators can delegate to more
than one proxy (delegate) at a time. They enforce in their implementation that the
delegated vote is divided equally among the chosen proxies; for example, a voter
delegating to three proxies would assign one third of their vote to each. Degrave
also introduces a method for resolving multi-proxy delegations, which also entails
constructing a system of linear equations, however being rather short, the article does
not describe in detail how or why the method works, and does not evaluate any
practical implementations of it. [10]

Bersetche revisits and extends the idea of fractional delegation in 2022 under the
term multi-agent delegation. Their approach allows an arbitrary fraction of votes to
be delegated, not necessarily equal fractions to each delegate. Furthermore, voters
are permitted to delegate part of their vote while still retaining a fraction for them-
selves—enabling them to vote directly and delegate simultaneously. They explore the
"presence of equillibrium states" in "delegation games" using multi-agent delegation,
meaning a collection of delegations so that no agent can unilaterally change their
delegations to increase their voting power. The paper finds that such states exist for
delegation graphs allowing multi-agent delegation. [4]

Utke and Schmidt-Kraepelin use the term fractional delegation, although with a
slightly different meaning than in this thesis. Their 2023 paper studies delegation
rules that take as input ranked delegations, where each voter specifies a preference
ordering over potential delegates, but not explicit vote fractions. The delegation rule
then distributes voting power fractionally across sinks based on these rankings. While
delegators cannot directly assign fractions to each delegate, the outcome resembles
fractional delegation, in that multiple sinks may receive fractional amounts of a single
voter’s power. The authors analyze such rules and show that, unlike non-fractional
delegation rules, they can simultaneously satisfy desirable properties like anonymity,
confluence, and copy-robustness. [28]

Nils Wandel has implemented fractional delegation and makes the product and its
codebase available via a web interface and a GitHub repository. The website can be
visited at electric.vote. No accompanying literature exists, but an inspection of the
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source code reveals that Wandel also resolves delegations using a system of linear
equations. Unlike in this paper, Wandel does not calculate the power values of nodes
explicitly, rather the code determines the outcome of votes with multiple option to vote
for. The algorithm takes as input votes from sinks and delegations from delegators,
and then first determines the standing power of each delegator, and then combines this
with the votes of the sinks to determine the final aggregated result for each proposal.
That this split of first resolving the standing power of delegators and then applying
this to sinks is possible follows from the proof in section section 3.3.1, where the matrix
P can be split into sub-matrices. Transposed, effectively turning it into the W matrix of
our resolution problem, P looks as follows

PT =

[︃
Q 0
R Ir

]︃
,

The first rows of this matrix are the equations for the standing power of delegators
(transient states). Evidently, as seen by the zero matrix next to Q, they don’t depend on
the standing power of any sinks, thus their standing power can be found out without
knowing the standing power of any sinks. [22]
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7. Conclusion and Further Research

This thesis explored the resolution of delegation graphs in Liquid Democracy under
the extension of fractional delegation. By allowing voters to distribute their vote across
multiple delegates, we tried to address shortcomings of traditional Liquid Democracy,
including vote concentration and vulnerability to closed delegation cycles.

We proposed a formal model of fractional delegation and introduced three implemen-
tations to compute final voting power: using a solver for systems of linear equations,
using a linear programming solver, and an iterative simulation of power flow. We
demonstrated that the linear systems formulation yields a unique solution and en-
sures conservation of power under well-formed graphs. Furthermore, we introduced a
preprocessing pipeline that transforms arbitrary graphs into well-formed delegation
graphs, enabling resolution of delegations even in the presence of complex structures
like cycles.

Our evaluation across synthetic, social, and real-world graphs shows that the linear
systems solver outperforms other methods on sparse graphs, while the iterative solver
scales more favorably in dense settings, void of cycles which retain a lot of power. The
Linear Programming-based method proved less efficient in most circumstances.

Looking ahead, this thesis leaves several questions open. While we hypothesize that
fractional delegation may reduce vote concentration by allowing voters to distribute
their trust among multiple delegates, this claim requires empirical validation. A
practical implemented fractional delegation platform would enable real-world testing
of not only the resolution of delegations, but the entire Liquid Democracy process,
including the collection of votes, and the calculation of which option wins the vote.
Moreover, a user study could provide insight into how people delegate, and how easy
it is for them to grasp and engage with fractional delegation, which is an open and
critical question when it comes to evaluating how feasible, effective, and democratic
Liquid Democracy with fractional delegation is.
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A. Appendix

A.1. Algorithms

A.1.1. Resolution Algorithms

Linear Systems Solver: https://github.com/davidholzwarth/bachelors-thesis/blob/
main/LE.py

Linear Programming Solver: https://github.com/davidholzwarth/bachelors-thesis/
blob/main/LP.py

Iterative Solver: https://github.com/davidholzwarth/bachelors-thesis/blob/main/
iterative.py

A.1.2. Graph Generator

Random Delegation Graph Generator: https://github.com/davidholzwarth/bachelors-thesis/
blob/main/graph_gen.py

A.1.3. Preprocessing

The algorithm for removing closed delegation cycles is in step five of the pipeline at
the following link.
https://github.com/davidholzwarth/bachelors-thesis/blob/main/graph_tools.

py

A.2. Results

The runtimes for the benchmarks for these graphs can be found at the following link.
The files follow the following naming scheme: "n-m_type", where n is the lower bound
of nodes in the benchmark, m is the upper bound of nodes, type is the type code of
graph this benchmark was run on. Each subsection of this annex will detail what type
code is used for graphs in this section. For example, dense graphs have type code
dense, so the runtimes for such a dense graph on graphs containing between zero and
2000 nodes will be: 0-2000_dense
https://github.com/davidholzwarth/bachelors-thesis/tree/main/data
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A. Appendix

A.2.1. Small Graphs

Type code: random
Other statistics and the code to generate the graph can be found at this link:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

runtime_exploration.ipynb

A.2.2. Large Graphs

Type code: random
Other statistics and the code to generate the graph can be found at this link:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

runtime_exploration.ipynb

A.2.3. Dense Graphs

Type code: dense
Other statistics and the code to generate the graph can be found at this link:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

dense_graphs.ipynb

A.2.4. Cycles Which Retain a Lot of their Power

Type code: big_loop
Other statistics and the code to generate the graph can be found at this link:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

big_loop.ipynb

A.2.5. No Delegations

Type code: no_del
Other statistics and the code to generate the graph can be found at this link:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

no_edges.ipynb

A.2.6. Watts-Strogatz Small World Graphs

Type code: small_world
Other statistics and the code to generate the graph can be found at this link:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

small_world.ipynb

52

https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/runtime_exploration.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/runtime_exploration.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/runtime_exploration.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/runtime_exploration.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/dense_graphs.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/dense_graphs.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/big_loop.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/big_loop.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/no_edges.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/no_edges.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/small_world.ipynb
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/small_world.ipynb


A. Appendix

A.2.7. R-Mat Graphs

Type code: rmat
Other statistics and the code to generate the graph can be found at this link:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

r-mat.ipynb

A.2.8. Bitcoin OTC Trust Network

The runtimes can be found here:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/data/bitcoinotc_

dataset.txt
The code to prepare this graph and its analysis can be found here:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

bitcoin_otc_trust_dataset.ipynb

A.2.9. Epinions

The runtimes can be found here:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/data/epinions_

dataset.txt
The code to prepare this graph and its analysis can be found here:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

epinions_dataset.ipynb

A.2.10. Slashdot Zoo

The runtimes can be found here:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/data/slashdot_

dataset.txt
The code to prepare this graph and its analysis can be found here:
https://github.com/davidholzwarth/bachelors-thesis/blob/main/Benchmarking/

slashdot_zoo.ipynb
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