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Abstract

Secure messaging systems are essential for ensuring privacy and confidentiality in today’s
digital communication. Thanks to the widespread adoption of end-to-end encryption, mes-
sages are accessible only to intended users, and advancements in protocol resilience against
secret compromise have enhanced messaging systems’ protection guarantees. However,
several open challenges remain. This thesis investigates three of these challenges—active
attack detection, metadata protection during key retrieval, and real-world deniability—
and presents cryptographic and system-level solutions to strengthen the security and
privacy of modern secure messaging systems.
The first contribution of this thesis addresses active attack detection in messaging. We
address scenarios where the network can delay and drop messages, and where adversaries
can impersonate parties and inject forged messages. We propose out-of-band detection
mechanisms that always detect active attacks, and in-band mechanisms that detect
attacks as soon as an honest message goes through. Optimizing these schemes, we also
explore how active attack detection can be practically achieved.
The second contribution addresses challenges in distributing cryptographic keys that
enable parties to establish secure messaging channels. Metadata protection is crucial
to safeguard users’ social graphs, and security issues arise from potentially malicious
service providers distributing adversarially-controlled keys. To address these challenges,
we introduce authenticated private information retrieval, a cryptographic primitive that
ensures clients 1) do not reveal their social graph to the messaging service and 2) either
retrieve the correct key or abort. We implement and evaluate all our schemes, assessing
the practicality of multi-server authenticated private information retrieval with Keyd, a
PGP key-directory server we develop.
Finally, we analyze cryptographic deniability in secure messaging systems and its practical
relevance from technical and legal perspectives. Although often presented as a key feature
in protocols like Signal, our technical modeling, which incorporates real-world factors,
along with legal analysis of 140 court cases in Switzerland, reveals that deniability typically
fails in practice. Based on these findings, we discuss whether deniability is desirable and
explore the challenges of designing systems that offer practical deniability.
Together, these contributions advance the resilience, privacy and practical applicability
of secure messaging systems in the face of real-world adversaries.

Keywords: secure messaging, active attack, detection, private information retrieval,
authenticated, deniability, real world, legal analysis, Signal
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Sommario

I sistemi di messaggistica sicura sono cruciali per garantire la privacy e la riservatezza
nella comunicazione digitale odierna. Grazie alla diffusione della crittografia end-to-end,
i messaggi sono accessibili solo agli utenti coinvolti e la sicurezza di questi sistemi è
assicurata dall’evoluzione della resilienza dei protocolli in caso di compromissione dei
segreti crittografici. Tuttavia, rimangono ancora aperte numerose sfide. Questa tesi
esplora tre di esse—il rilevamento degli attacchi attivi, la protezione dei metadati durante
la distribuzione delle chiavi crittografiche e la negabilità (deniability) in contesti reali—
proponendo soluzioni sia a livello crittografico che di sistema per migliorare la sicurezza
e la privacy dei moderni sistemi di messaggistica.
Il primo contributo di questa tesi riguarda il rilevamento di attacchi attivi nella messag-
gistica. Ci focalizziamo su scenari in cui la rete può ritardare o bloccare messaggi e dove
gli avversari possono impersonare gli utenti e inviare messaggi contraffatti. Proponiamo
meccanismi di rilevamento fuori banda che identificano sempre gli attacchi attivi e
meccanismi in banda che rilevano gli attacchi non appena un messaggio autentico viene
ricevuto. Ottimizzando questi schemi, esploriamo anche come il rilevamento di attacchi
attivi possa essere implementato concretamente.
Il secondo contributo affronta le sfide poste dalla distribuzione di chiavi crittografiche
che consentono agli utilizzatori di stabilire canali di comunicazione sicuri. La protezione
dei metadati è essenziale per proteggere i grafi sociali degli utenti, mentre la sicurezza
è minacciata da fornitori di servizi di messaggistica potenzialmente malintenzionati
che distribuiscono chiavi controllate da avversari. Per risolvere queste problematiche,
introduciamo il recupero privato di informazioni autenticate (authenticated private
information retrieval), un protocollo crittografico che garantisce che gli utenti 1) non
rivelino i loro grafi sociali al servizio di messaggistica e 2) ricevano la chiave corretta o
interrompano l’operazione. Implementiamo e valutiamo tutti i nostri schemi, testando la
praticità del recupero privato di informazioni autenticate in un contesto multi-server con
Keyd, un servizio di distribuzione per chiavi PGP da noi sviluppato.
Infine, analizziamo la negabilità crittografica nei sistemi di messaggistica sicura e la
sua rilevanza pratica sia tecnica che legale. Nonostante sia spesso presentata come una
caratteristica fondamentale di protocolli come Signal, il nostro modello tecnico, che
integra fattori reali, e un’analisi legale di 140 casi giudiziari in Svizzera, indicano che la
negabilità in generale fallisce. Basandoci su questi risultati, valutiamo se la negabilità
sia auspicabile ed esploriamo le sfide nella progettazione di sistemi che possano renderla
concretamente realizzabile.
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Sommario

Nel loro insieme, questi contributi migliorano la resilienza, la privacy e l’applicabilità
concreta dei sistemi di messaggistica sicura a fronte di avversari reali.

Parole chiave: messaggistica sicura, attacco attivo, rilevamento, recupero privato di
informazioni, autenticato, negabilità, casi reali, analisi legale, Signal
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1 Introduction

Problem selection is the most obvious
aspect in determining our community’s
impact, and secure messaging, in all its
forms, remains the most outstanding
problem in crypto-for-privacy.

Phillip Rogaway, The Moral Character
of Cryptographic Work [Rog15, Part 4]

The ability to communicate securely and privately has always been crucial to human
persona, social and political progress. From ancient methods of encoding messages to
today’s encrypted communication, the desire to protect privacy is universal—just as the
attempts to breach it. With the rise of smartphones, communication has largely shifted
to the digital realm, reshaping personal and professional interactions. Now, most of our
communication travels through digital networks rather than on paper or via sound waves.

This shift has brought fast, convenient, and user-friendly communication methods, but
it also presents significant security and privacy challenges. Fundamental properties of
real-world in person communication—such as trust, privacy, ephemerality, deniability,
protection from eavesdropping, metadata resistance, and ease of access—are hard to fully
replicate in the digital world. These gaps create opportunities for surveillance and abuse
by state and private actors alike.

Edward Snowden’s revelations about the mass surveillance practices of the National
Security Agency (NSA) and other governmental and private entities exposed widespread
mass surveillance practices [Gua13, Gre14b]. This ignited a surge of interest and research
into secure communication, particularly secure messaging. In an increasingly connected
world, where governments and corporations have unprecedented access to personal data,
the need for secure messaging solutions—and secure communication in general—has
never been greater.
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Chapter 1. Introduction

The key feature of modern secure messaging is end-to-end encryption: the sender encrypts
messages that only intended recipients can decrypt. This ensure that if Alice starts a
conversation with Bob, only Alice and Bob can read the messages. The messaging server
operator, Internet service providers, telecommunication companies and malicious actors
cannot access the content while the messages are in transit. End-to-end encryption, as
opposed to client-to-server encryption, is now the default in most messaging solutions,
largely thanks to the standard set by Signal.

The advent and widespread adoption of end-to-end encryption represent a major step
forward for privacy and security, but significant challenges remain. Messaging conversa-
tions, which often last for extended periods, expose users to various types of attacks. A
malicious actor may gain access to a device—during an arrest [ABJM21] or via malware
like Pegasus [SRCM+22]—and clone the device’s content to analyze past and future
communications. Modern secure messaging solutions mitigate these risks by continuously
updating key material, preventing adversaries from using cloned keys to decrypt prior or
future messages. However, mechanisms for detecting such attacks, which would enable
users to respond, are still lacking. Even if message content remains secure and active
attacks like state exposure can be detected, metadata—information unrelated to the
message’s content—can still expose valuable insights to malicious actors. Details such
as the time a message is sent or its recipient can reveal highly sensitive information. As
Michael Hayden, former director of the NSA, stated during a debate at Johns Hopkins
University, “We kill people based on metadata”1. Finally, even if the application encrypts
conversations and protects metadata, malicious actors may still access plaintext messages,
for example through coercion. Therefore, it is important to consider properties that
protect message authors even after disclosure. One such property is deniability, which
allows a party to plausibly deny authorship of a message. While deniability exists at the
cryptographic level in several modern messaging solutions, its applicability to real-world
scenarios remains questionable.

This thesis contribute to these three practical challenges in secure messaging. First, we
propose cryptographic solutions to detect active attacks on secure messaging solutions.
Next, we focus on metadata privacy by introducing a new cryptographic primitive
that enables users to privately and securely retrieve public encryption keys of their
communication partners. Finally, we examine the limitations of cryptographic deniability
and propose ways to bridge the gap between theory and real-world applicability.

In the next section, we provide an overview of the thesis. This is followed by the necessary
background and a technical summary of our results. We conclude the introduction with
bibliographic notes and a list of the notation used throughout the thesis.

1The full debate is available on YouTube and the sentence that we cite is pronounced at 17:59
(https://www.youtube.com/watch?v=kV2HDM86XgI).
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1.1 Thesis overview

1.1 Thesis overview

In this section we present a high level overview of the thesis.

In Chapter 2, we focus on cryptographic protocols, particularly on active attack detection
in messaging with immediate decryption. We consider an adversary that can impersonate
parties and inject messages on their behalf. If the adversary continues impersonating a
party indefinitely, in-band detection is impossible. However, if the compromised party
regains control, e.g., due to non-persistent malware like some versions of NSO’s Pegasus,
detection mechanisms can be deployed. Immediate decryption [ACD18, ACD19], which
allows messages to be dropped or reordered at the protocol level without stalling future
communication, adds complexity to both analysis and design. Out-of-order messages
must not be mistaken for adversarially injected messages and detection mechanisms
must handle dropped messages. We propose solutions for both in-band and out-of-band
detection and explore practical optimizations and performance/security trade-offs.

In Chapter 3, we explore the integration of cryptographic protocols into messaging systems.
We propose novel approaches to defining maliciously-secure private information retrieval
and applies them to public-key servers. Private information retrieval (PIR) [CGKS95]
enables a client to fetch a record from a database while hiding the query from the database
server(s), but most existing schemes do not protect data integrity in the presence of a
malicious server. If a client uses PIR to query a public-key server, a malicious server
could force the client to fetch a false public key for which the adversary controls the
secret key. We address this issue by defining authenticated PIR: the client either retrieves
the correct database record or aborts. We present single- and multi-server schemes and
evaluate their performance with PGP key-directory servers.

In Chapter 4, we analyze these systems and how their properties integrate in the real
world. To this end, we analyze whether cryptographic deniability holds in the real
world, with a particular focus on messaging. We adopt an approach that combines
cryptographic and legal analysis. We propose a formal model that considers the entire
communication system to analyze deniability in practice and apply it to the Signal
application and DKIM-protected email. Our findings demonstrate that these systems do
not offer practical deniability guarantees. We also analyze 140 court cases in Switzerland
where conversations from messaging applications were used as evidence. None of these
cases consider deniability, suggesting that this property does not impact the legal setting.
Based on these findings, we assess whether deniability is a desirable property and the
challenges and shortcomings of designing a system that is deniable in practice.

We continue this introduction with a general background on secure messaging and
then introduce the three chapters that compose this manuscript and their respective
contributions.

3



Chapter 1. Introduction

1.2 Background

In this section, we provide an overview of secure messaging, focusing on three concentric
layers: cryptographic protocols, systems and their interaction with the real world.

Protocols. At the core of modern secure messaging solutions are cryptographic proto-
cols, which enable parties to exchange messages while ensuring various cryptographic
guarantees. These guarantees include traditional properties of secure communication
systems, providing confidentiality, integrity, and authenticity: only the intended recipients
can read the messages, which cannot be altered and must come from the correct sender.
Beyond these classic properties, modern secure messaging protocols address more nuanced
concerns.

Given the prevalence of surveillance [BSJ+15] and the fact that messaging sessions
usually spans years researchers and practitioners have had to address state exposure
or compromise [CCG16] when designing cryptographic protocols. Two key security
concepts that mitigate state exposure are forward secrecy and post-compromise security.
Forward secrecy [Gün89, BG21] ensures that even if a party’s secret state is compromised,
previous encrypted conversations remain secure. Post-compromise security [CCG16]
ensures that, even after an attacker compromises a messaging session, the security of future
communications can be restored. The cryptographic protocols achieve these properties by
regularly updating, or ratcheting, the cryptographic keying material [BGB04, BSJ+17].

Some of these protocols also ensure additional properties [UDB+15]. For instance, de-
niability [DNS98] enables parties to plausibly deny their participation in a protocol
execution, or authorship of a message. Immediate decryption [ACD19], which ensures
that the protocol handles dropped or out-of-order messages, enhances the protocol’s re-
silience to network failures and enable bandwidth optimizations, for example by buffering
large messages. This thesis explores some of these properties and their interaction with
messaging systems and real-world conditions.

The de-facto standard [EM19] protocols that ensure these properties are Signal’s key
exchange protocol X3DH [MP16] and the Double Ratchet algorithm [PM16], both of
which are used in applications like Signal, WhatsApp, Wire, Skype and Facebook Messen-
ger’s “Secret Conversations” feature. X3DH, the extended triple Diffie-Hellman protocol
that builds on the triple Diffie-Hellman [BJM97], is an authenticated key exchange
protocol [DvOW92] that enables two parties to securely establish initial keying material
for the messaging session while authenticating the parties. This protocol uses a public-key
infrastructure to establish a channel even when one party is offline. The Double Ratchet,
descendant of the Off-The-Record (OTR) protocol [BGB04], enables parties to encrypt
messages while updating their keys. Forward secrecy builds on a symmetric hash-based
ratchet, while the protocol ensures post-compromise security using an asymmetric ratchet,
which operates as a continuous Diffie-Hellman key exchange [DH76].
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1.2 Background

Systems. The cryptographic protocols that ensure the security properties discussed in
the previous paragraphs do not operate in isolation but are part of a larger messaging
system. The transition from cryptographic protocol to full messaging systems introduces
new security and privacy risks, as well as usability challenges. A typical messaging session
between two parties—which is the focus of this thesis—involves multiple actors: the
two participants (Alice and Bob), their devices and the (logical) server that manages
the public key infrastructure and routes the messages. The interaction between these
actors introduce new security and privacy risks that cryptographic protocols alone are
not designed to address, as they typically focus on securing communication between
parties but may not account for system-level vulnerabilities like server trust and device
management [MP17, CFKN20, CDDF20, CJN23].

One notable example is the security risks posed by the PKI. When Alice wants to initiate
a conversation with Bob, she queries the server for Bob’s public key. A malicious server
could respond with a false public key for which the adversary controls the secret key,
thereby enabling the adversary to impersonate Bob. Different approaches have been
proposed to mitigate this risk. Signal’s safety numbers protocol [Mar17b] enables parties
to compare the long-term keys provided by the PKI through an out-of-band channel, such
as scanning a QR code. Assuming that the out-of-band channel provides authenticity,
this enables parties to audit the PKI and prevent these impersonation attacks. A fruitful
line of work [MPC+18, TGL+19, CDGM19, CDG+22, MKS+23] initiated by the authors
of CONIKS [MBB+15], proposes ensuring consistency for the PKI’s bindings using ideas
adapted from transparency log systems [Lau14, Rya14]. However, these approaches also
rely on out-of-band channels, with the associated usability challenges [KFR09], and do
not address a critical issue related to the PKI’s role in messaging: privacy.

Privacy is also compromised during the key retrieval process. When Alice fetches Bob’s
key, she informs the server of her intention to communicate with Bob, enabling the server
to construct Alice’s social graph—a detailed view of her interactions via the messaging
application [NS09, BDK11, NSR11]. Solutions to address this and other privacy challenges
that arise during data queries usually relies on cryptographic primitives such as PIR or
hardware enclave technology [MPC+18, DFD+21]. However, these solutions are in some
cases costly to deploy and fail to address the key binding issue discussed in the previous
paragraph.

The PKI privacy issue mentioned above is just one example of metadata leakage, a broader
challenge that many secure messaging systems continue to face. Metadata, unlike the
content of messages, reveals information about communication patterns, such as who is
communicating with whom and when. Metadata are leaked during various processes, such
as contact discovery [KRS+19, HWS+21, HSW23, MSGJ24] or authentication with the
messaging server [Lun18]. As we will explore in this thesis, the leakage of such metadata
can undermine the security and privacy properties provided by cryptographic protocols.
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Real world. Every secure messaging system interfaces with the real world, and the secu-
rity properties it provides—or claims to provide—must hold under real-world conditions.
This interaction is multifaceted, encompassing security, privacy, usability, legal considera-
tions, user interaction challenges and other aspects. Each of these dimensions presents
unique challenges that must be addressed to ensure the system’s overall robustness. It is
equally important to consider both the technology and the social dynamics it serves, the
power relationship it creates, and the contexts from which it stems. Secure messaging
systems, as every computer system, do not exist in a vacuum: they are influenced by the
social, economic, and political environments in which they are create and in which they
operate. Neglecting these factors may lead to incomplete and ineffective solutions at best
or draconian ones at worst [GGV20, AJ20, AAB+24, Vau22].

Studying secure messaging systems, and compute systems more broadly, in relation to
society often requires multidisciplinary approaches, which are increasingly prominent in
our fields (cf. [FPS+18, AJ20, SV21, ABJM21, DSKB21, RMA+23, YGS23] for a non-
exhaustive list). One example of such an approach is the combination of cryptographic
and legal analysis to evaluate how a cryptographic property (does not) apply in the real
world.

First, the security and privacy guarantees offered by cryptographic properties, which are
designed to function within specific boundaries (i.e., under a defined threat model), may
break down when exposed to more sophisticated and powerful real-world adversaries.
For example, classic information retrieval protocols do not provide integrity guarantees
if the server is malicious, or, from a system perspective, a malicious server managing a
public-key infrastructure can mount impersonation or MITM attacks by serving wrong
public keys. This gap between the theoretical security properties and the practical reality
must be acknowledged and addressed in the design and deployment of secure messaging
systems.

Second, information security interacts with and is influenced by various external factors,
particularly legal and regulatory frameworks. The legal environment plays a crucial role in
shaping how cryptographic systems are perceived and used [Bla12], and, similarly, advances
in information security can have a positive impact on policies and state-controlled mass
surveillance. Surveillance and abuse by state and private actors often occur within or are
enabled by legal mechanisms, making it essential for security properties to be recognized
not only in technical terms but also in legal contexts. For instance, encryption and
cryptographic protections may be undermined by legal mandates, such as subpoenas, key
disclosure laws or backdoor requirements. Therefore, security properties must be robust
enough to resist not only technical attacks but also legal exploitation.
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1.3 Technical overview

In this section we outline the three main contributions of this thesis.

Active attack detection in messaging with immediate decryption

Forward secrecy and post compromise security protect cryptographic protocols against
state exposure, but do not address the detection of such attacks. If an adversary compro-
mises the PKI, it can impersonate one of the parties. To mitigate this several messaging
systems enable parties to verify their long-term keys using an out-of-band channel.
However, if the adversary compromises the session after key establishment—during the
Double Ratchet protocol—existing out-of-band detection mechanisms are insufficient.
In such cases, the adversary can mount an active attack and impersonate parties, even
if the PKI remains uncompromised. Detecting these active attacks requires an authen-
tic out-of-band channel. Without it, the adversary can block all honest messages that
a compromised party sends and replace them with forged ones. Solutions have been
proposed to address this, but they either fail to fully authenticate the conversation
transcript [DH21] or require multiple rounds of interaction without formally supporting
immediate decryption [DGP22].

Out-of-band channels are not always available and even when they are, they may reduce
usability or be underutilized [KFR09]. Durak and Vaudenay [DV19] propose a compro-
mise: if a single honest message can pass through after a compromise, parties can detect
active attacks using the same in-band channel that they already use for message exchange.
In other words, once an honest message reaches its destination, in-band active attack
detection becomes possible. They introduce RECOVER security, later extended by Caforio
et al. [CDV21], which enables active attack detection under these conditions. RECOVER
security builds on two complementary notions: r-RECOVER ensures that a party receiv-
ing a forged message will reject all subsequent honest messages from the counterpart,
effectively aborting communication as soon as the first honest message is received. The
complementary notion, s-RECOVER, guarantees that a party must not accept messages
from someone that has received a forgery. These notions and corresponding constructions,
however, do not support immediate decryption, making them unsuitable for systems like
the Signal application that rely on the Double Ratchet protocol.

Chapter 2 addresses these issues by exploring active attack detection for messaging with
immediate decryption, considering both in in-band and out-of-band settings. We extend
the work of Durak and Vaudenay, and Caforio et al., introducing two security notions
(r-RID and s-RID) that generalize the r-RECOVER and s-RECOVER to support immediate
decryption. We then present a construction that builds on a classic messaging scheme
and is secure under both notions. Additionally, we introduce two analogous security
notions (r-UNF and s-UNF) for the out-of-band setting, where parties use an authentic

7



Chapter 1. Introduction

out-of-band channel, and we design schemes that are secure under these notions. The
extended abstract [BCC+23a] on which Chapter 2 demonstrated that satisfying r-RID
and r-UNF security notions causes the ciphertext size to grow linearly in the number
of messages sent and security parameter in the worst case. This result implies that our
naïve construction, which attaches all previously sent ciphertexts to each new message
to achieve r-RID security, is asymptotically optimal. The same applies to r-UNF in the
out-of-band setting. Given this inefficiency, we show that the complementary notions,
s-RID and s-UNF, impose a lower overhead and can be sufficient in practice, as they
provide r-RID-like and r-UNF-like guarantees after an honest round-trip. We propose
several optimizations, culminating in a scheme whose communication overhead for s-RID
security is reduced to a single hash digest and a few message indices, with the exact
number depending on how synchronized the communication is. Since s-RID security
provides r-RID-like guarantees after an honest round trip, we posit that this solution is
efficient enough for practical adoption. In the out-of-band setting we propose a three-move
authentication protocol that similarly reduces communication overhead.

Authenticated private information retrieval

The cryptographic protocols that ensure the security properties discussed in the previous
section do not operate in isolation but are part of a larger system.

In Chapter 3, we address these security and privacy issues by introducing authenticated
private information retrieval and applying the schemes of this new cryptographic primitive
to a PGP key directory server. While this chapter shifts focus from messaging to PGP,
which is primarily used to secure email communications, the principles of authenticated
PIR can be applied in various settings.

Private information retrieval (PIR) [CGKS95] enables a client to fetch a record from
a database while hiding from the database server(s) which specific record(s) the client
retrieves. Beyond its use in privacy-preserving key retrieval, PIR has numerous other
applications, such as metadata-private messaging [AS16, ACLS18], certificate trans-
parency [LG15, Rya14], video streaming [GCM+16], password-breach alerting [TPY+19,
LPA+19, ALP+21], retrieval of security updates [Cap13] and private SQL-like queries on
public data [OG10, WYG+17]. However, most PIR protocols do not ensure data authen-
ticity in the presence of malicious servers. In many multi-server PIR schemes [CGKS95,
BGI16], a single adversarial server can corrupt the client’s output by flipping any subset
of bits. In all single-server PIR schemes [KO97] we know of prior to the publication of
the extended abstract [CNCG+23a] on which Chapter 3 builds (c.f., [KO97, CMS99,
Lip05, AMBFK16, PPY18, BIPW17, ACLS18, GH19, CK20, PT20, ALP+21, MCR21,
MW22, HHCG+23, DPC23] for a non-exhaustive list), a malicious server can choose the
exact output that the client will receive by substituting all the database records with a
chosen record before processing the client’s request. In applications where data integrity
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matters, such as a PGP public-key directory, unauthenticated PIR is inadequate. While
PIR can help Alice retrieve Bob’s public key without disclosing this information to the
PKI, it cannot prevent a malicious PKI from returning a false public key.

Authenticated private information retrieval augments the standard privacy properties of
classic PIR with strong—in a cryptographic sense that we precisely define—authenticity
guarantees. In the multi-server setting, we propose authenticated-PIR schemes for:

• Point queries, in which a client wants to fetch a particular database record. For
example, “What is the public key for user@epfl.ch?”

• Predicate queries, where a client wants to apply an aggregation operator—such as
COUNT, SUM, or AVG—to all records matching a predicate. For example, “How many
keys are registered for email addresses ending in @epfl.ch?”

Our multi-server authenticated-PIR schemes guarantee integrity as long as at least one
of the PIR servers in honest, i.e., in the anytrust model [WCGFJ12]. In contrast, prior
work addressing malicious of faulty PIR servers in the multi-server setting either requires
a majority or supermajority of honest servers [BS02, BS07, Gol07, DGH12] or relies on
expensive public-key cryptography operations [ZS14]. Our multi-server scheme, however,
use only fast symmetric cryptography and ensure authenticity through two different
mechanisms. The scheme for point queries carefully combines a Merkle tree and a classic
PIR scheme to enable the client to verify the servers’ responses. The scheme for predicates
queries uses function secret sharing [BGI15, BGI16, WYG+17] and information-theoretic
message authentication codes [CDF+08, DPSZ12] to provide integrity.

In the single-server setting, we introduce authenticated-PIR schemes for point queries
which provide authentication as long as the client can obtain a short digest of the database
via out-of-band means. We propose two different schemes that rely on the decisional Diffie-
Hellman [Bon98] and learning with errors assumptions [Reg05]. Both schemes extend the
classic Kushilevitz-Ostrovsky scheme based on additively homomorphic encryption [KO97,
OS07], and operate on single-bit records, though we propose extensions for handling
larger records at the price of increased client computation.

In both settings, privacy and authenticity holds also in the presence of selective-failure
attacks by malicious servers [HKE13, KS06, KO97]. In such attacks, a malicious server
answers the client’s query with respect to a database that differs from the true database
in a few rows. By observing whether the client accepts or rejects the resulting answer,
the server can learn information about which rows the client had queried. To defend
against these attacks, our security definitions require that any misbehavior on the part
of a malicious server causes a client to reject the servers’ response
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Real-world deniability in messaging

In Chapter 4, we analyze whether cryptographic deniability in messaging holds in the
real world. Deniability, according to the online dictionary www.dictionary.com, is “the
ability to deny something, as knowledge of or connection with an illegal activity”. Despite
the negative connotation, this definition captures the coarse notion agreed upon by re-
searchers and practitioners: deniability enables a user to plausibly deny their involvement
in executing some scheme or protocol. The Signal protocol [MP16, PM16]—which encom-
passes X3DH and the Double Ratchet—claims to offer deniability. Moxie Marlinspike,
one of the designers of Signal, discusses deniability in the context of OTR [BGB04] as
follows [Mar13]:

“If someone receives an OTR message from you, they can be absolutely sure
you sent it (rather than having been forged by some third party), but can’t
prove to anyone else that it was a message you wrote.”

In the cryptographic literature, deniability is typically formalised as a game played
between abstract entities. A protocol is deniable if a judge cannot differentiate between
a real execution of the protocol and a simulated one. However, considering what we
discussed before, it is crucial to question whether cryptographic deniability (1) holds
technically in a complex ecosystem such as Signal, and (2) has a tangible impact in the
real world, such as in a court of law [Gre14a]. Chapter 4 analyzes these two parallel
aspects of deniability.

On the technical side, we propose a new model for deniability in secure messaging, that
captures the fact that, in practice, messages are routed between users via a server that
usually authenticated users. In our model, the judge receives Bob’s state (e.g., their
entire phone or screenshots of the conversation) after allegedly communicating with Alice.
The judge also has data from the server and any other relevant information available.
We posit that the system is deniable if there exists a practical simulator who, under
application-specific constraints, can interact with the server and simulate a state that is
indistinguishable from Bob’s. This approach extends the classical notions, which only
consider the cryptographic transcript, by providing the judge with Bob’s state, which
can include his entire phone, a portion of the server’s state and arbitrary auxiliary
data [RGK06]. Our model broadens the purely cryptographic approach incorporating
real-world evidence and higher-level components that can undermine deniability. We
apply this model to two real-world applications: Signal, and KeyForge [SPG21], a solution
for deniability of email with DomainKeys Identified Mail (DKIM) protection [CHK11].
Using our model, we show that Signal is not deniable in practice and that KeyForge also
poses challenges to practical deniability.

On the legal side, we analyze 140 legal cases in Switzerland that uses WhatsApp conver-
sations as evidence. Since WhatsApp uses the same core protocol as Signal for two-party

10

https://www.dictionary.com/browse/deniability


1.4 Bibliographic notes

messaging, these conversations are cryptographically deniable. We find that (1) in only
two cases the legitimacy of such evidence is questioned, (2) judges always accept this
evidence, even if disputed, and (3) no case mentions or considers deniability. Although our
findings cannot be generalized to other countries, our analysis suggest that cryptographic
deniability does not hold up in a legal setting.

Both technical and legal analysis show that cryptographic deniability is ineffective in the
real world. In the last part of Chapter 4 we discuss whether deniability should be a goal
of messaging solutions by analyzing the issues and shortcomings that practical deniability
brings. Given our model to analyze deniability and the analysis of technical and legal
limitations, we claim that deniability should either not be a goal of messaging solutions
or these must aim for practical real-world deniability. We argue that for deniability to be
practical, it must be easily accessible to all users. Under our notion, Signal would achieve
deniability if the application allowed users to modify, insert or delete messages stored on
their devices, enabling all users to simulate conversations in practice. If deniability is
a goal, we advocate to implement message modification on the local device, in Signal
and other secure messaging applications. We also discuss the risks that such editing
capabilities entail.
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1.5 Notation

In this section we present the notation that we will use throughout this thesis.

Sets. We use N to denote the set of natural numbers. For N ∈ N, [N ] = {1, . . . , N}. For
a finite set S, we write x←$ S to indicate that x is sampled independently and uniformly
at random from S. Given a set S, S∗ (respectively Sn) is the set of all strings of arbitrary
length (resp. of length n) whose elements are in S. We denote the empty string by ε. For
finite sets S and T , we use Funs[S, T ] to denote the set of all functions from S to T .

Algebra. We denote with Zm the ring of integers modulo m. We use F to denote a finite
field. We will typically take F to be the set of integers modulo a prime p with addition
and multiplication modulo p. For a group G, we use 1G to denote the identity element.

Vectors. For vectors x = (x1, . . . , xn) ∈ Fn and y = (y1, . . . , yn) ∈ Fn, we use ⟨x, y⟩ to
denote their inner product

∑n
i=1 xiyi ∈ F. We denote with ei ∈ Fn the unit vector of

length n, which is zero everywhere except at a single coordinate i, where it has value 1.

Indistinguishability and algorithms. We use := to define a new function or symbol.
We use negl(·) to denote a negligible function and poly(·) to denote a fixed polynomial.
The symbol ⊥ is an output that indicates rejections. PPT abbreviates “probabilistic
polynomial time”, which we use in the context of algorithms bounded in terms of the
security parameter λ. By “efficient algorithm” we refer to a probabilistic polynomial time
algorithm.

Maps. We use maps, or associative arrays, to associate keys with values. A map is
initialized as m[·]← x, where all values are initially set to x. The expression m[k] returns
the element indexed by key k. Keys can be tuples of any length n ≥ 1. We index maps
with integers starting from 1; in this case, m[a : b] returns the list of elements whose
keys fall between a and b. Tuple elements are accessed using dot notation. The function
length(m) returns the total number of keys in the map m.

Probability distributions. We use SD(·, ·) to denote the statistical distance between
two distributions. We write D0 ≈c D1 to denote that the distributions D0 and D1 are
computationally indistinguishable.

Participants. In Chapters 2 and 4 we consider two parties that take part in a protocol.
We consider in this case Alice and Bob, which we denote as A and B. Let P be one party
(A resp. B) and P be their partner (B resp. A).
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2 On active attack detection
in messaging with immediate decryption

The widely used Signal protocol provides protection against state exposure attacks through
forward and post-compromise security but does not enable parties to detect such attacks.
Additionally, it supports immediate decryption, allowing messages to be re-ordered or
dropped at the protocol level without impacting correctness. In this chapter, we consider
active attack detection for secure messaging with immediate decryption, enabling parties
to detect active attacks instantly under certain conditions. We first consider in-band
active attack detection, where compromised participants can detect an attack if they are
able to send a single message to their partner. We propose two complementary notions
to capture security, and present a compiler that provides security with respect to both
notions. Our notions generalise existing works (RECOVER security [DV19, CDV21])
which only supported in-order messaging. We also explore out-of-band attack detection
by leveraging out-of-band authenticated channels and propose analogous security notions.
The extended abstract on which this chapter builds [BCC+23a] shows that one of our
two notions in each setting imposes a linear communication overhead in the number of
sent messages and security parameter. This implies that each message must information-
theoretically encapsulate all previous messages, making our naïve construction, which
effectively attaches the entire message history to each new message, asymptotically
optimal. We then explore ways to bypass this lower bound and highlight the feasibility
of practical active attack detection compatible with immediate decryption.

An extended abstract corresponding to this work appeared at CRYPTO 2023 [BCC+23a],
with a full version available on the Cryptology ePrint Archive [BCC+23b]. The work
presented in this chapter results from a close collaboration with Daniel Collins, with
additional contributions from Khashayar Barooti, Loïs Huguenin-Dumittan and Serge
Vaudenay. The author of this thesis significantly contributed to the definition of (authen-
ticated) ratcheted communication and the corresponding security properties, as well as
to the design of schemes for out-of-band active attack detection and their optimizations.
Due to the close collaboration, much of the content in this chapter also appears in Daniel
Collins’ PhD thesis [Col24]. Daniel Collins is the primary contributor to the epoch-based
optimization presented in Section 2.5.3, which is included here for completeness.
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Chapter 2. On active attack detection in messaging with immediate decryption

2.1 Introduction

As highlighted in Chapter 1, since the Snowden revelations and given the unprece-
dented rise of mass surveillance, many messaging solutions have strengthened their
security guarantees. The vulnerability to state exposure attacks has motivated re-
searchers and practitioners to develop ratcheting-based schemes, which ensures forward
secrecy—protecting the confidentiality of messages sent prior to state exposures—and
post-compromise security—enabling parties to automatically restore confidentiality after
a compromise [CCG16].

The asynchronicity of messaging and the unreliability of certain network protocols have
further driven the design of ratcheting-based schemes with immediate decryption [ACD19,
PP22, CZ22]. These schemes support out-of-order delivery and handle message loss
at the protocol level, ensuring that receivers can decrypt legitimate messages as soon
as they arrive and place them correctly among other received messages, even if earlier
messages are delayed. Furthermore, communication can continue even if some messages
are permanently lost—a feature Alwen et al. term message-loss resilience [ACD19, Section
1]. As discussed in Chapter 1, the Signal protocol [PM16] supports immediate decryption,
whereas many other schemes in the literature fail when even a single message is lost. (see
[BSJ+17, PR18a, DV19, CDV21, CGCD+17] for a non-exhaustive list).

The aforementioned security notions do not guarantee message authentication when
the adversary impersonates parties, e.g., through state compromise. The lack of au-
thentication implies that parties cannot detect active attacks. A recent phishing attack
against Signal’s phone number verification service enabled attackers to re-register ac-
counts to another device, demonstrating the practicality of impersonation attacks via
secret state compromise [Sup22]. Similar attacks that steal verification codes to hijack
accounts affect a plethora of messaging applications. The proliferation of spyware such
as NSO Group’s Pegasus represents an additional—and worrying—threat for secret
exfiltration [SRCM+22].

The most widely used mechanisms for detecting active attacks rely on an out-of-band
authenticated channel. All such mechanisms we are aware of, whether deployed in prac-
tice [Mar17b] or proposed in the literature [DH21, DGP22] assume the availability of such
a channel. Solutions like Signal’s safety numbers [Mar17b] enables parties to authenticate
long-term keys distributed by the Signal server by comparing a sequence of numbers or
QR codes in person. However, Dowling and Hale [DH20, DH21] point out that Signal’s
approach—and all similar methods to our knowledge—does not provide any guarantees
after a user’s state is compromised, since safety numbers only authenticate initial keys
(in Signal’s case, the keys that the X3DH key agreement protocol generates). Dowling
and Hale remark on Signal’s approach [DH20]:
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“A successful verification indicates that an attacker has not modified the
long-term keys of either party in the session. However, as the verification
is tied only to long-term keys and not the current session state, there is no
indication of who the current communication partner really is. Following a
compromise, an attacker can send/receive messages and impersonate a partner
device, and this will not be detected during the Signal entity authentication
protocol.”

To address this issue, Dowling and Hale [DH21] proposed adding an additional au-
thentication key to each iteration of Signal’s asymmetric ratchet for on-demand use in
out-of-band authentication. Their construction enables parties to immediately—that is,
without additional communication rounds—authenticate their entire asymmetric ratchet
out of band. However messages forged under symmetric keys will never be detected.
The only other construction in the literature to our knowledge, proposed by Dowling,
Günter and Poirrier [DGP22], requires three rounds of in-band communication before
an out-of-band hash comparison can take place. Unlike Dowling and Hale’s solution,
this approach authenticates all messages (though does not formally treat out-of-order
messages), but the additional communication rounds pose challenges, especially in the
presence of an active adversary. This brings us to our first research question:

1. Can we authenticate all messages in a single round of out-of-band communication
to detect active attacks in the immediate decryption setting?

Out-of-band authentication is not always practical or even possible [KFR09]. A convenient
alternative is to detect active attacks in-band, i.e., using the same channel as the messaging
protocol. The adversary can, in the worst case, block all messages sent by honest parties,
thereby forcing users to resort to out-of-band communication, but mounting such a
persistent attack requires considerable resources. Durak and Vaudenay [DV19] introduce
RECOVER security to model in-band active attack detection: if a party receives a forgery,
then this party does not accept subsequent messages sent honestly by his counterpart.
Caforio et al. [CDV21] extend RECOVER security to enable a party to detect whether
their partner was compromised, i.e., whether they received a forgery. By contrast to out-
of-band authentication, no additional messages are required to support attack detection:
in-band ciphertexts contain the authentication information. However, these notions and
the corresponding constructions assume in-order message delivery and fail on message
dropping. This raises a second question, first suggested by Alwen et al. [ACD18, ACD19]:

2. Can we achieve extended RECOVER security—immediate in-band active attack
detection—while supporting immediate decryption?

To detect active attacks, parties need to authenticate their entire message history: each
message may be a forgery, i.e., the result of an active attack. With immediate decryption,
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parties cannot be sure which messages their partner has received until they receive an
honest reply from them. Intuitively, each message needs to “contain” the message history
up until when it was sent. The extended abstract corresponding to the content of this
chapter proves this intuition [BCC+23a, Section 6], which motivates the exploration
of performance/security trade-offs and optimisations. In this regard, existing protocols
for both in-band and out-of-band active attack detection represent only a subset of the
potential design space. Consequently we also ask:

3. What are the communication costs of in- and out-of-band active attack detection
for messaging with immediate decryption, and what useful performance/security
trade-offs can be made?

Technical overview

We assume a network where parties communicate over two types of channels: insecure
channels and out-of-band authenticated channels. The adversary has full control over
insecure channels, allowing her to read, deliver, modify and delay messages. In the authen-
ticated channels, however, the integrity and authenticity of the messages are protected,
meaning the adversary can still read, deliver, duplicate, and delay messages but cannot
modify them. In the Signal application, the insecure channel corresponds to the usual
network, while the out-of-band channel is used for safety number verification [Mar17b],
typically conducted in person.

(Authenticated) ratcheted communication. We introduce a syntax for ratcheted
communication (RC) in which sent and received messages are associated with totally
ordered ordinals (epoch/index pairs in Signal [ACD19]). Ordinals enable our protocol to
support immediate decryption [ACD19], i.e., message loss and re-ordering on the network.
We build on this syntax to define authenticated ratcheted communication, or ARC, which
comprises two additional functions AuthSend and AuthReceive. A party can use AuthSend
to send an authentication tag through the out-of-band channel that the counterpart
processes with AuthReceive. AuthSend outputs an ordinal that is at least as large as
the last sent ordinal for that party. AuthReceive, if successful, should authenticate all
messages up to that ordinal; this is captured in UNF security. Our notion ORDINALS
enforces these semantics even in presence of adversarial forgeries.

RID security. We revisit the definitions of RECOVER security [DV19, CDV21] in the
immediate decryption setting. We define two complementary security notions for RID
security:

• r-RID ensures that the receiver of a forgery does not accept honest messages with
ordinals larger than that of the forgery.
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• s-RID security enables a party to detect if their counterpart has ever received a
forgery (i.e., the sender was victim of a forgery before sending the honest message).

Immediate decryption imposes particular care in defining the two notions: parties cannot
rely on messages’ order of arrival to detect forgeries. If a scheme is both r-RID-secure and
s-RID-secure, then it is RID-secure (recover with immediate decryption). These notions
are orthogonal to forward security and post-compromise security guarantees in secure
messaging.

We propose a construction that transforms any ratcheted communication scheme into a
provably RID-secure one. In the construction, both parties keep track of messages they
have sent and received. Every time they send a message, they attach all messages (i.e., the
ciphertexts from the underlying RC) they have sent and received so far to their ciphertext.
When a party receives a message that “contradicts” what it has sent or received, it can
deduce that an active attack took place.

To reduce bandwidth, parties send ordinals and hashes of messages, instead of complete
ciphertexts. For r-RID security, a receiver P compares the input message and the sender
P’s supposed set of sent messages with what P has received previously. For s-RID, it
suffices for a receiver P (who knows exactly what it sent) to check whether the sender
claims to have received anything that P did not send. Here, P only needs to send a single
hash alongside the set of received ordinals (which are generally smaller than hashes),
since P can recompute the hash locally. Since the channel is insecure, parties need to
perform a series of checks on the ciphertexts to prevent the adversary from tampering
with the sets of sent and received messages sent. Both r-UNF- and s-UNF-security build
on the collision resistance of the hash function.

UNF security. We define notions analogous to r-RID and s-RID for authenticated ratch-
eted communication schemes. i.e., for schemes that use both in-band and out-of-band
authenticated channels. The r-UNF (receiver unforgeable) notion ensures that a party
does not accept authentication tags after receiving a forgery, whereas s-UNF (sender
unforgeable) ensures that a party does not accept authentication tags coming from a
counterpart that received a forgery. If a scheme is both r-UNF-secure and s-UNF-secure,
then it is UNF-secure. We show that a RID-secure scheme can be turned into a UNF-secure
scheme. The transformation highlights the similarity between RID and UNF security. In
the former, parties authenticate all messages they have sent and received in band, whereas
in the latter the messages are authenticated out of band. Concretely, the transformation
uses the ciphertext of a RID-secure RC scheme as the authentication tag for an ARC
scheme, by moving authentication material to the out-of-band channel.

Practical active attack detection. We explore how to overcome the linear communica-
tion complexity that r-RID and r-UNF impose [BCC+23a]. Notably, we observe that s-RID

17



Chapter 2. On active attack detection in messaging with immediate decryption

and s-UNF can provide r-RID/r-UNF-like guarantees after a single communication round.
If P detects that their partner P has received a forgery, P can notify P, allowing P to
learn that they have received a forgery, effectively achieving r-RID/r-UNF guarantees.

We demonstrates that protocols can achieve s-RID/s-UNF security at a significantly lower
cost than r-RID/r-UNF. A party P needs only to send a single hash of received messages
along with corresponding ordinals, since partner P can recompute the hash if it stores
all previously sent messages.

To further reduce communication overhead, we introduce the use of epochs [ACD19],
similar to Signal’s Double Ratchet [PM16]. Each party starts with with epochP = 0
epochP = 1, respectively, and increments their epoch upon receiving a message with an
epoch one greater than their own, ensuring that epochs stay one step apart. This epoch-
based “ping-pong” approach ensures that parties only need to exchange the hash and
ordinals of messages received in the last two epochs to achieve s-RID security. Informally,
a full communication round-trip implicitly acknowledges the reception and verification of
the hash and ordinals. If the communication between the parties is balanced, this leads
to a concrete reduction in the communication overhead.

For out-of-band UNF security, we compress authentication tags by adding explicit ac-
knowledgements, similar to the implicit acknowledgments used in the in-band setting.
Since the out-of-band channel is authentic, parties can trust the sets of sent and received
messages, allowing them to prune messages that have already been authenticated.

Finally, we leverage the delayed r-UNF-like guarantee discussed above to formalize a
lightweight three-move protocol and corresponding security model for bidirectional mes-
sage authentication over the out-of-band channel. In the first and second moves, participant
P (resp. P) sends their set of received messages to their partner. In the second and
third moves, P (resp. P) sends a bit indicating whether the set of received messages is
consistent with what they actually sent.

2.1.1 Summary

To summarize, in this chapter we make the following contributions:

• We introduce (Section 2.2) a new primitive, authenticated ratcheted communication,
which captures immediate decryption and models communication through both
insecure in-band and authentic out-of-band channels.

• In Section 2.3, we formalise in-band active attack detection for immediate decryption
with two notions: r-RID and s-RID security. These notions capture detection of
active attacks towards the receiver and on reception of messages from the sender
after that the sender was attacked, respectively. Together, these notions comprise
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RID security. We propose a scheme secure under these notions.

• Section 2.4 formalizes out-of-band active attack detection by introducing r-UNF
and s-UNF notions, which together form UNF-security, analogous to the in-band
notions. We construct an UNF-secure scheme from a RID-secure scheme and present
an UNF-secure ARC scheme given an RC scheme.

• In Section 2.5, we explore optimization techniques. First, we show that s-RID provide
r-RID-like security after a honest round trip. We then discuss ways to optimize
the s-RID-secure scheme by reducing detection overhead when communication
is balanced between parties. Additionally, we optimize the authenticated out-of-
band channel variant using pruning-based techniques. Finally, we highlight the
performance benefits of a three-move authentication procedure.

2.2 (Authenticated) ratcheted communication

In this section we introduce the ratcheted communication (RC) cryptographic primi-
tive and an extension authenticated ratcheted communication (ARC) supporting out-
of-band authentication. These primitives augment classic ratcheted secure messaging
schemes [JMM19, ACD19, CDV21] in two ways: (i) messages that parties send and receive
are associated with ordinals, and, for ARC, (ii) the syntax encompasses two additional
stateful algorithms AuthSend and AuthReceive.

Ordinals associated with messages serve three purposes: (1) ordering incoming messages
in the immediate decryption setting; (2) tracking the number of messages that have
passed through the communication channel; and (3) identifying which messages have
been authenticated using the out-of-band channel. Ordinals, which we denote as num,
can be elements of any set on which a total order is defined. We assume that ⊥ is always
the smallest num, regardless of the set to which num belongs. In the models of Alwen et
al. [ACD19] and Bienstock et al. [BFG+22a] for the Signal protocol, an ordinal num is a
pair of integers (e, c) such that (e, c) < (e′, c′) if e < e′ or both e = e′ and c < c′. We refer
to this modeling as Signal’s epoch/index pairs. Below, we formally define a ratcheted
communication scheme.

Definition 1 (Ratcheted communication (RC)). A ratcheted communication (RC) scheme
comprises the following four efficient algorithms:

• Setup(1λ)→ pp. Given a security parameter λ, expressed in unary, return public
parameters pp.

• Init(pp)→ (stA, stB, z). Given public parameters pp return a state stP forP ∈ {A, B}
and public information z.
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• Send(stP , ad, pt)→ (st′
P , num, ct). Take as input a state stP , associated data ad and

a plaintext pt and output a new state st′
P , an ordinal num and ciphertext ct.

• Receive(stP , ad, ct)→ (acc, st′
P , num, pt). Take as input a state stP , associated data

ad and ciphertext ct and outputs an acceptance bit acc ∈ {true, false}, state st′
P ,

ordinal num and plaintext pt.

The Receive algorithm returns dummy st′
P , num, pt which are ignored when acc = false.

Signal’s Double Ratchet [PM16] can be viewed as an RC. In the work of Alwen et
al. [ACD19], a secure messaging scheme consists of an initialisation algorithm and party-
specific Send and Receive algorithms with no associated data. The Receive algorithms,
but not the Send algorithms, output an epoch/index pair (t, i) ∈ N2 which plays the role
of an ordinal. Signal as defined by Alwen et al. [ACD19] can thus be considered an RC
by modifying its Send algorithm to output each (t, i) pair as an ordinal and enforcing
that ad = ⊥ is always input to Send and Receive.

In an ARC, parties use AuthSend and AuthReceive to authenticate the communication over
a possibly narrowband out-of-band authenticated channel. AuthSend takes the current
state as input and outputs an updated state, an authentication tag and an ordinal.
AuthReceive takes a state and an authentication tag to output an authentication bit,
an updated state and an ordinal. Intuitively, the authentication that the sender sends
via the out-of-band channel, enables the receiver to detect active attacks using the
AuthReceive algorithm. Participants can decide when to invoke the algorithms and thus
use the authentication tag on-demand, e.g., when the participants meet in person and
the out-of-band channel is available.

AuthSend and AuthReceive output ordinals with the same semantics as Send and Receive.
The num that AuthSend outputs is greater or equal to the last num that Send outputs;
besides ordering authentication tags with respect to messages the party has sent or
received, the ordinal indicates which messages (all up until num) the authentication tag
authenticates. Similarly, for AuthReceive, the ordinal num indicates that the received
authentication tag authenticates all messages with num′ ≤ num.

Definition 2 (Authenticated ratcheted communication (ARC)). An authenticated ratch-
eted communication (ARC) scheme comprises the following efficient algorithms:

• Setup, Init, Send, Receive defined as in RC (Definition 1).

• AuthSend(stP)→ (st′
P , num, at). Input a state stP and return a new state st′

P , an
ordinal num and an authentication tag at.

• AuthReceive(stP , at)→ (auth, st′
P , num). Take as input a state stP and authentica-

tion tag at and output an authentication bit auth ∈ {true, false}, an updated state
st′

P and an ordinal num.
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The AuthReceive algorithm returns dummy st′
P , num which the scheme ignores when

auth = false.

One could alternatively define AuthSend/AuthReceive to output sets of ordinals, rather
than single ones, corresponding to which messages have been authenticated. Our security
notions ensure that this information can be efficiently computed by parties using the
ordinal that the algorithms output.

We define correctness for an RC and ARC scheme using the CORRECT, presented in
Figure 2.1. The game inputs a security parameter and a schedule sched, which models
the message flow between the participants. Participants can (1) send a message, (2)
receive a message, and for ARC schemes only, (3) send an authentication tag, or (4)
receive a sent authentication tag. More precisely, sched is an ordered list of instructions
either of the form (P, “send”, ad, pt), (P, “rec”, j), and for ARC only, (P, “authsend”), and
(P, “authrec”, j), where P ∈ {A, B}, ad denotes associated data, pt denotes a plaintext,
and j ∈ N indicates either the (ad, ct) pair or the at to be received and processed by
Receive or AuthReceive, respectively.

A correct (A)RC scheme must recover the correct plaintext from the corresponding asso-
ciated data/ciphertext pair. Moreover, the scheme must satisfy the following properties.

• Subsequent calls to the Send algorithm outputs increasing ordinals (line 6 in
Figure 2.1).1

• Ordinals are equal for corresponding calls to Send (resp. AuthSend for ARC) and
Receive (resp. AuthReceive for ARC) (lines 11 and 21).

• For ARC, AuthSend outputs an ordinal greater or equal to the ordinal returned by
the last call to Send (line 15).

We require that these properties hold in the adversarial setting (in particular when
forgeries are received) and enforce them in the ORDINALS game presented in Figure 2.3.

We formally define correctness for an (A)RC scheme in Definition 3.

Definition 3 (CORRECT). Consider the correctness game CORRECT presented in
Figure 2.1. An RC (resp. ARC) scheme is correct if, for all λ ∈ N, and all sequences of
the form sched with elements of the form (P, “send”, ad, pt), (P, “rec”, j), (resp. also of
the form (P, “authsend”), (P, “authrec”, j)), for P ∈ {A, B}, we have

Pr[CORRECT(1λ, sched)⇒ 1] = 0.
1This could alternatively require Send to output strictly increasing ordinals based on P’s calls to Send

and Receive. While the work of Alwen et al. [ACD19] fulfills this requirement, we chose not to adopt it to
maintain generality.
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Game CORRECT(1λ, sched)
1 : pp← Setup(1λ); (stA, stB, z)← Init(pp)
2 : ad∗[·], pt∗[·], ct∗[·], at∗[·]← ⊥; received[·], sent[·]← false; sent-num∗ ← 0
3 : for i = 1 to length(sched) do
4 : if sched[i] parses as (P, “send”, ad, pt) for ad, pt,P ∈ {A, B} then
5 : (stP , num, ct)← Send(stP , ad, pt)
6 : if i > 1 ∧ num ≤ sent-numP then return 1
7 : sent[i]← true; adP [i]← ad; ptP [i]← (num, pt); ctP [i]← ct; sent-numP ← num
8 : elseif sched[i] parses as (P, “rec”, j) for j ∈ N,P ∈ {A, B} then
9 : if ¬sent[j] ∨ received[j] ∨ atP [j] ̸= ⊥ then continue

10 : (acc, st′
P , num, pt)← Receive(stP , adP [j], ctP [j])

11 : if ¬acc ∨ ((num, pt) ̸= ptP [j]) then return 1
12 : received[j]← acc; stP ← st′

P

13 : elseif sched[i] parses as (P, “authsend”) for P ∈ {A, B} then
14 : (stP , num, at)← AuthSend(stP)
15 : if num < sent-numP then return 1
16 : sent[i]← true; atP [i]← (num, at)
17 : elseif sched[i] parses as (P, “authrec”, j) for j ∈ N,P ∈ {A, B} then
18 : if ¬sent[j] ∨ received[j] ∨ atP [j] = ⊥ then continue
19 : (numP , atP)← atP [j]
20 : (auth, st′

P , num)← AuthReceive(stP , atP)
21 : if ¬auth ∨ num ̸= numP then return 1
22 : received[j]← true; stP ← st′

P

23 : return 0

Figure 2.1: Correctness game for an RC/ARC scheme. Highlighted statements are only
executed for when considering an ARC.

Correctness states that AuthSend must output an ordinal greater or equal to the ordinal
that the last call to Send returned. If AuthSend does not increase the ordinal, then
it is clear which messages are authenticated; if the ordinal increases in AuthSend, the
application designer must keep track of the last num that Send returned to infer what
the tag authenticates. Nonetheless, the latter case may be desirable to ensure that all
ordinals output by Send and AuthSend are distinct.

Our security notions for RC and ARC schemes build on a common set of oracles, introduced
in Figure 2.2. The SEND (resp. RECEIVE) oracle enables the adversary to send (resp.
receive) a message on behalf of a party P . In SEND, the caller can specify the randomness
used by Send with the r variable, or let the challenger sample randomness uniformly by
passing r = ε. The SEND oracle does not keep track of randomness manipulation because
our security analysis do not need this information. For ARC, AUTHSEND enables the
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adversary to send an authentication tag on behalf of a party P , whereas AUTHRECEIVE
handles AuthReceive. The oracles EXPpt(j) and EXPst(j) expose plaintexts and states,
respectively.

All the oracles use associative arrays to store information about the calls. The state and
plaintext arrays store the internal state of a party and the sent or received plaintext,
respectively; they serve the exposure oracles. The log array keeps track of which operations
the adversary performs and we use it to define the security properties.

Oracle SEND(P, ad, pt, r)
1 : i← i + 1
2 : if r = ε then r←$R
3 : (stP , num, ct)← Send(stP , ad, pt; r)
4 : state[i]← stP

5 : plaintext[i]← pt
6 : log[i]← (“send”,P, num, ad, ct)
7 : return (num, ct)

Oracle AUTHSEND(P)
1 : i← i + 1
2 : (stP , num, at)← AuthSend(stP)
3 : auth[(P, i)]← at
4 : state[i]← stP

5 : log[i]← (“authsend”,P, num, at)
6 : return (num, at)

Oracle EXPpt(j)
1 : i← i + 1
2 : log[i]← (“ptexp”, j)
3 : return plaintext[j]

Oracle RECEIVE(P, ad, ct)
1 : (acc, st, num, pt)← Receive(stP , ad, ct)
2 : if ¬acc then return ⊥
3 : i← i + 1
4 : stP ← st; state[i]← stP

5 : plaintext[i]← pt
6 : log[i]← (“rec”,P, num, ad, ct)
7 : return num

Oracle AUTHRECEIVE(P, j)
1 : at← auth[(P, j)]
2 : if at = ⊥ then return ⊥
3 : (auth, st, num)← AuthReceive(stP , at)
4 : if ¬auth then return ⊥
5 : i← i + 1
6 : stP ← st; state[i]← stP

7 : log[i]← (“authrec”,P, num, at)
8 : return num

Oracle EXPst(j)
1 : i← i + 1
2 : log[i]← (“stexp”, j)
3 : return state[j]

Figure 2.2: Oracles which use variables state, plaintext, log, auth, st∗ and i, all initialized
in games where the oracles are used. AUTHSEND and AUTHRECEIVE are only used
when considering ARC

The oracles of Figure 2.2 models a communication network composed of insecure in-band
and authentic out-of-band channels. The SEND and RECEIVE oracles enable the adversary
to read, deliver, modify and delay messages, but AUTHSEND and AUTHRECEIVE do not
allow the modification of authentication tags.
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We assume an always-authentic out-of-band channel. To our knowledge, all deployed
solution for out-of-band authentication and relevant literature [DH20, DGP22] assume
this. One can define a stronger model where the out-of-band channel is authentic only in
some cases, e.g., the tampering rate is bounded, or multiple out-of-band channels exist
but the adversary can compromise only a subset of them. As a not-always-authentic
out-of-band channel is a stronger version of an insecure in-band channel, the discussions
in Section 2.3 apply.

For RC and ARC schemes we require that even in the presence of an adversary that injects
forgeries, the Send and Receive (as well as AuthSend and AuthReceive for ARC schemes)
algorithms output correct ordinals. An RC or ARC scheme has correct ordinals if (1) the
Send algorithm always outputs increasing ordinals with respect to all previously sent or
received ordinals; (2) corresponding calls to Send and Receive (resp. to AuthSend and
AuthReceive) output the same ordinal; and (3) for an ARC scheme, AuthSend outputs an
ordinal greater or equal to the ordinal returned by the last call to Send. We consider these
properties in CORRECT (Figure 2.1), but they must hold also in presence of forgeries.
We formalize this notion with the ORDINALS game in Figure 2.3.

In this game the challenger verifies three predicates, which correspond to the conditions
for correct ordinals presented above. In Definition 4 we formalize ORDINALS-security for
(A)RC schemes.

Definition 4 (ORDINALS). Consider the ORDINALS game in Figure 2.3. We say that an
(authenticated) ratcheted communication scheme is ORDINALS secure if, for all possibly
unbounded adversaries A we have

Pr[ORDINALSA(1λ)⇒ 1] = 0.

The ORDINALS game in Figure 2.3 is not suited to the case where ordinals can be
arbitrary and in particular collide between parties. Thus, the protocol must associate
each party with disjoint ordinals: practical schemes like the Signal protocol do this by
associating one party with even epochs and the counterpart with odd epochs.

2.3 In-band active attack detection: RID

In this section we consider in-band active attack detection in the immediate decryption
setting.

Caforio et al. [CDV21] define RECOVER security, which encompasses both r-RECOVER
security and s-RECOVER security, by assuming that the channel ensures in-order message
delivery. Intuitively, r-RECOVER security prevents a party from being able to deliver
an honest message after delivering a forgery, and s-RECOVER security allows a party
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Game ORDINALSA(1λ)
1 : pp← Setup(1λ); (stA, stB, z)← Init(pp)
2 : state[·], plaintext[·], log[·], auth[·], st∗ ← ⊥
3 : i← 0
4 : ASEND,RECEIVE,EXPpt,EXPst,AUTHSEND,AUTHRECEIVE(z)
5 : if ∃ P, num, num′, ad, ct, x, y :
6 : not-increasing(log,P, num, num′, x, y) ∨
7 : different(log,P, num, num′, ad, ct, at) ∨
8 : auth-monotonic(log,P, num′, y) then
9 : return 1

10 : return 0

not-increasing(log,P, num, num′, x, y)
1 : return ((“send”,P, num, ·, ·) = log[x] ∨ (“rec”,P, num, ·, ·) = log[x]) ∧
2 : (“send”,P, num′, ·, ·) = log[y] ∧ (0 < x < y) ∧ (num ≥ num′)

different(log,P, num, num′, ad, ct, at)
1 : return (((“send”,P, num, ad, ct) ∈ log∧ (“rec”,P, num′, ad, ct) ∈ log)) ∨
2 : ((“authsend”,P, num, at) ∈ log ∧ (“authrec”,P, num′, at) ∈ log))) ∧ (num ̸= num′)

auth-monotonic(log,P, num′, y)
1 : num← max{⊥ ∪ {num′′ : (“send”,P, num′′, ·, ·) = log[x] ∧ 0 < x < y}}
2 : return (“authsend”,P, num, ·, ·) = log[y] ∧ (num > num′)

Figure 2.3: ORDINALS game. Highlighted statements are only considered for an ARC.

to detect and stop communication when their partner has delivered a forgery. We
extend these notions to handle out-of-order message delivery by introducing r-RID and
s-RID, which we formally present in Figure 2.4 and illustrate in Figure 2.5. Combined,
these two properties ensure RID security. Note that these definitions are orthogonal to
the usual forward and post-compromise security notions that the ratcheting literature
considers [BSJ+17, ACD19].

The winning condition in RID consists of three predicates:

• forgery verifies whether a forgery was accepted by one of the participants by taking
into account both injection and modification of messages. In the predicate, we
denote the impersonated party as P and the recipient of the forgery as P.

• bad-P checks whether the recipient of the forgery manages to detect the attack.
This predicate corresponds to r-RID security.
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• bad-P establishes whether P, i.e., the participant that the adversary impersonates
to send the forgery, fails to detect the attack. Since P is the recipient of the forgery,
the detection of the attack by P relies on a ciphertext sent by P and honestly
delivered. This predicate corresponds to s-RID security.

The game imposes that if forgery returns true, then at least one between bad-P and bad-P
must return true for the adversary to win the game.

Definition 5 (RID). A RC is (q, t, ϵ)-r-RID (resp. s-RID) secure, if for all adversaries A
which make at most q oracle queries and which run in time at most t, we have:

Pr[r-RIDA(1λ)⇒ 1] ≤ ϵ (resp. Pr[s-RIDA(1λ)⇒ 1] ≤ ϵ),

where game r-RIDA (resp. s-RIDA) is defined in Figure 2.4.

Game r-RIDA(1λ) s-RIDA(1λ)
1 : pp← Setup(1λ); (stA, stB, z)← Init(pp)
2 : state[·], plaintext[·], log[·]← ⊥
3 : auth[·], st∗ ← ⊥
4 : i← 0

5 : AO(z)
6 : if ∃ P, num, num′, ad, ct, ad′, ct′, x, y :
7 : forgery(log,P, num, ad, ct, x) ∧

8 : bad-P(log,P, num, num′, ad′, ct′) then

9 : bad-P(log,P, num′, ad′, ct′, x, y) then

10 : return 1
11 : return 0

Game RIDA(1λ)
1 : return r-RIDA(1λ) ∨ s-RIDA(1λ)

forgery(log,P, num, ad, ct, x)
1 : return (“send”,P, num, ad, ct) /∈ log∧
2 : (“rec”,P, num, ad, ct) = log[x]

bad-P(log,P, num, num′, ad′, ct′)
1 : return (“send”,P, num′, ad′, ct′) ∈ log∧
2 : (“rec”,P, num′, ad′, ct′) ∈ log∧
3 : (num < num′)

bad-P(log,P, num′, ad′, ct′, x, y)
1 : return (y > x) ∧
2 : (“send”,P, num′, ad′, ct′) = log[y] ∧
3 : (“rec”,P, num′, ad′, ct′) ∈ log

Figure 2.4: r-RID, s-RID and RID games for O = {SEND, RECEIVE, EXPpt, EXPst}.

Although r-RID seems to be stronger than s-RID at first glance, the two notions are not
comparable. There exist schemes which provide r-RID and not s-RID security and vice
versa, e.g., the scheme proposed in Figure 2.7 if the checks for either r-RID or s-RID are
removed from the checks subroutine given the underlying RC is not r-RID or s-RID secure,
respectively (the Double Ratchet is neither, for example).

However, we observe the following link between the two notions. In a s-RID-secure scheme,
P can detect that P has received a forged message. If P subsequently sends an “abort”
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Sender P Receiver P

(num1, ct1)

...

(numm, ctm)

(num, ct) log[x]

...

num′ > num (num′, ct′) win?

Receiver P Sender P

(num1, ct1)

...

(numm, ctm)

log[x] (num, ct)

...

log[y] (num′, ct′) win?

Figure 2.5: Visualizing r-RID (left) and s-RID (right). Each figure showcases an adversary’s
winning condition in the respective game. The dashed arrows are forged messages. If P
accepts the message at time “win?” then the adversary wins.

message to P , P will be able to detect the forgery after one honest round-trip of messages.
In other words, s-RID RC schemes can be transformed (by adding an “abort” message)
into RC schemes with a weak variant of r-RID security: r-RID after a honest round-trip.
We discuss this delayed guarantee further in Section 2.5.1.

Fine-grained security. Suppose A sends five messages with num ∈ {1, . . . , 5}, B receives
a forgery with num = 1000, and then A sends five messages with num ∈ {6, . . . , 10}. If
B never sends (i.e., A is the sender and B the receiver), RID-security only guarantees
that the forgery might be detected when A sends the honest message with num′ = 1001.
Indeed, the condition “num < num′” in predicate bad-P in Figure 2.4 mandates that the
honest message that P (A in our example) sends and P, the victim of the forgery B in
our example, correctly receives, must detect the forgery if the forgery num is smaller
than the num’ of the honest message. Intuitively, B should be able to detect the forgery
upon receiving the honest message with num = 6, as this message is “independent” of
the forgery with num = 1000. By the not-increasing predicate of ORDINALS security
(cf. Figure 2.3), all messages that A sends after one round-trip will have num > 1000,
meaning that such an attack will be eventually detected. Capturing fine-grained security
for these scenarios require tracking state exposures and message delivery timing, adding
definitional complexity; we leave this as an open area for further exploration. While our
construction below defeats some forgeries, it is likely necessary to leverage the security of
the underlying RC to build a scheme providing this kind of fine-grained security. Looking
ahead, this observation also applies to UNF-secure ARC schemes defined in Section 2.4.
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Game CRA(1λ)
1 : hk← Gen(1λ)
2 : m1, m2 ← A(hk)
3 : return 1{H.Eval(hk, m1) = H.Eval(hk, m2) ∧m1 ̸= m2}

Figure 2.6: Collision resistance game CR for a hash function H.

2.3.1 A RID-secure RC

In this section we build a RID-secure RC scheme given a correct and ORDINALS-secure
RC scheme and a collision-resistant hash function H (Definition 7). We present our
transformation in Figure 2.7.

Preliminary: collision resistant hash function

We formally introduce the syntax of an hash function and define collision resistance.
For theoretical reasons within the concrete-security framework, we define a keyed hash
function; see Rogaway’s work for more details [Rog06].

Definition 6 (Hash function). A hash function H comprises the following efficient
algorithms:

• Gen(1λ)→ hk. Given a security parameter λ, expressed in unary, return a hash key
hk.

• Eval(hk, pt)→ h. Input a hash key hk and a message pt ∈ {0, 1}∗ and output digest
h.

Definition 7 (Collision resistance). We say that a hash function H is (t, ϵ)-collision
resistant if, for all adversaries A running in time at most t, we have:

Pr[CRA(1λ)⇒ 1] ≤ ϵ,

where game CRA is defined in Figure 2.6.

Scheme description

Each party P keeps track of every message it has sent and received (in S and R, respec-
tively). This information is communicated to P every time P send a message by calling
Send (via variables S and R′).
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RRC.Setup(1λ)
1 : pp0 ← RC.Setup(1λ)

2 : hk← H.KGen(1λ)

3 : hk′ ← H.KGen(1λ)
4 : pp← (pp0, hk, hk′)
5 : return pp

RRC.Send(stP , ad, pt)
1 : (st′

P , hk, hk′, S, R, ·, ·)← stP

2 : nums′ ← {num′ : (num′, ·) ∈ R}
3 : R′ ← (nums′, H.Eval(hk′, R))
4 : ad′ ← (ad, S, R′)
5 : (stP .st′

P , num, ct′)← RC.Send(st′
P , ad′, pt)

6 : ct← (ct′, S, R′)
7 : h← H.Eval(hk, (num, ad, ct))
8 : stP .S← S ∪ {(num, h)}
9 : return (stP , num, ct)

RRC.Receive(stP , ad, ct)
1 : (ct′, SP , RP)← ct
2 : (st′

P , hk, ·, ·, R, Sack, ·)← stP

3 : ad′ ← (ad, SP , RP)
4 : (acc, st′

P , num, pt)← RC.Receive(st′
P , ad′, ct′)

5 : if ¬acc then return (false, stP ,⊥,⊥)
6 : h← H.Eval(hk, (num, ad, ct))
7 : if checks(stP , ct, h, num) then
8 : return (false, stP ,⊥,⊥)
9 : stP .R← R ∪ {(num, h)}

10 : stP .Sack ← Sack ∪ SP

11 : stP .st′
P ← st′

P

12 : return (acc, stP , num, pt)

RRC.Init(pp)
1 : (pp0, hk, hk′)← pp
2 : (st′

A, st′
B, z′)← RC.Init(pp0)

3 : max-num← ⊥
4 : S, R, Sack ← ∅
5 : stA ← (st′

A, hk, hk′, S, R, Sack, max-num)
6 : stB ← (st′

B, hk, hk′, S, R, Sack, max-num)
7 : z ← (z′, pp)
8 : return (stA, stB, z)

checks(stP , ct, h, num)
1 : (nums′, h′)← ct.R
2 : R∗ ← {(num′, ·) ∈ stP .S : num′ ∈ nums′)}
3 : s-bool← (H.Eval(stP .hk′, R∗) ̸= h′)
4 : R′ ← {(num′, ·) ∈ stP .R : num′ ≤ num}
5 : r-bool← (R′ ̸⊆ ct.S)
6 : r-bool← r-bool ∨
7 : (∃(num∗, ·) ∈ ct.S : num∗ ≥ num)
8 : if num < stP .max-num then
9 : r-bool← r-bool ∨ ((num, h) ̸∈ stP .Sack)

10 : r-bool← r-bool ∨ (ct.S ̸⊆ stP .Sack)
11 : Sack

′ ← {(num′, ·) ∈ stP .Sack :
12 : num′ < num}
13 : r-bool← r-bool ∨ (Sack

′ ̸⊆ ct.S)
14 : else
15 : stP .max-num← num
16 : r-bool← r-bool ∨
17 : (∃(num′, ·) ∈ stP .Sack \ ct.S :
18 : num′ < stP .max-num)
19 : return r-bool ∨ s-bool

Figure 2.7: RID-secure RC scheme RRC based on a RC scheme RC (Definition 1) and a
hash function H (Definition 6). RRC requires the following variables: max-num represents
the largest received num. S is the set of (num, h) pairs; R is the set of received (num, h)
pairs; Sack is the set of (num, h) which are expected to be received (according to the
received ciphertext ct). All sets are append-only.
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The Send procedure prepares the set R′, which contains the ordinals and a hash of all
received messages (line 3). This step can be optimized by using an incremental hash
function as we discuss in Section 2.5.2. Next, it calls RC.Send with input (ad′, pt) where
ad′ = (ad, S, R′) is the associated data. The ciphertext ct contains both ct′ and sets S
and R′. Finally, it adds the pair (num, h) to S (line 8), where the hash h is computed as
H.Eval(stP .hk, (ad, ct)), where ct = (ct′, S, R′). Intuitively, (num, h) acts as a summary of
P’s state after calling RC.Send which can be checked by P for inconsistency.

When P invokes Receive, the procedure calls RC.Receive, which outputs num ̸= ⊥ if the
call is successful. Since ct contains RP , P checks that what P received so far was correct
(line 3 in checks). In addition, using the S set contained in the ciphertext ct, P can
further check whether the ciphertexts received so far have indeed been sent by P . This is
verified from lines 5 to 18 of the checks procedure. Some checks detect tampering of ct
by the adversary (e.g. ct.S should not contain ordinals larger than the one of the current
ciphertext, or if ct was sent earlier than another ciphertext already received, ct.S should
be consistent with messages already acknowledged, etc.). If everything verifies, Receive
stores (num, h) in R and adds ct.S to the set of acknowledged messages (lines 9 and 10).

The sets S and R′ included in the ciphertext are also included in the authenticated
data passed to the underlying RC scheme: the tuple (S, R′) is always authenticated
in Figure 2.7. This is actually not needed for RID security, but for authentication and
confidentiality. Even if we do not define authentication and confidentiality for (A)RC, we
use authenticated encryption for completeness.

Remark 8. Our scheme outputs a generic error symbol ⊥ in all cases. In particular, it
returns the same symbol regardless of whether the error was due to detecting active attack,
or from the situation where the adversary did not expose any states and simply send a
malformed ciphertext. Treating both scenarios identically could lead to a denial-of-service
attack vector, so in practice, they should be distinguished. We leave this differentiation
to future work.

Security analysis

Correctness of the RRC scheme follows from the correctness of the underlying scheme
RC and the fact that the checks always outputs false when only honest messages are
received. Similarly, ORDINALS-security follows from the ORDINALS-security of RC, as
RRC outputs the same num that RC outputs. As the next theorems state, the construction
of Figure 2.7 is r-RID-secure (Theorem 9) and s-RID-secure (Theorem 10), and therefore
RID-secure.

Theorem 9. Let H be a (tcr, ϵcr)-collision resistant hash function. Then RRC (defined
in Figure 2.7) is a (q, t, ϵcr)-r-RID-secure RC where tcr ≈ t and q is upper bounded by t.
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Proof. Let us assume there exists an adversary Ã playing the r-RID game, running in
time t̃ and making at most q̃ queries. We call the advantage of this adversary ϵ̃, hence
we have

Pr[r-RIDÃ(1λ)⇒ 1] = ϵ̃.

Let E be an event that occurs when r-RIDRRC(Ã) outputs 1. The strategy is to construct
an adversary A∗, running in time ≈ t̃ such that

Pr[CRA∗(1λ)⇒ 1 | E] = 1.

By definition of r-RID, E occurring means there exist P, (num, ad, ct), (num′, ad′, ct′), x

such that bad-P(log,P, num, num′, ad′, ct′) and forgery(log,P, num, ad, ct, x) are both true.
This means that the message with ordinal num was not sent by P but received at some
point by P (cf. the condition (“rec”,P, num, ad, ct) = log[x] in the forgery predicate), and
the message with ordinal num′, with num < num′, was also received and was actually
sent by P (cf. the bad-P predicate).

We separate the two cases where 1) the message with ordinal num (the forged message) is
received before the message with ordinal num′ (the honest message), and 2) the message
with ordinal num′ is received first. We first analyse the former case.

We argue that unless the adversary found a collision, the message with ordinal num′

(the honest message) would not have been delivered. Assume by contradiction that the
honest message was successfully delivered. Let stP be the state of the receiver P while
receiving message num′, and stP be the state of the sender P while sending the message
(num′, ad′, ct′). As (“rec”,P, num′, ad′, ct′) ∈ log, it means RRC.Receive(stP , ad′, ct′) →
(true, st′

P , num′, pt′), which implies that checks(stP , ct′, num′, H.Eval(hk, (num′, ad′, ct′)))
returned false.

As num ≤ num′, we have

(num, H.Eval(hk, (num, ad, ct))) ∈ R′ and (num, H.Eval(hk, (num, ad, ct))) ∈ ct′.S,

as otherwise r-bool would have been set to true in line 5. Let hf ← H.Eval(hk, (num, ad, ct)).
As (num, hf ) ∈ ct′.S, we have

(num, hf ) ∈ stP .S (2.1)

since ct′ was sent by P. This would mean that P did send a message with ordinal num,
let us call it (num, adh, cth). Hence, we have that,

(H.Eval(hk, (adh, cth, num)), num) ∈ stP .S (2.2)

By combining (2.1) and (2.2) and the fact that num can appear only once in stP (since
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RRC is ORDINALS-secure), we get the collision

H.Eval(hk, (num, adh, cth)) = H.Eval(hk, (num, ad, ct)).

This is a collision since (adh, cth) ̸= (ad, ct) as (“send”,P, num, adh, cth) ∈ log and
(“send”,P, num, ad, ct) /∈ log.

Now consider the case where (num′, ad′, ct′) is received before (num, ad, ct). Since num ≤
num′, this implies that, while receiving (num, ad, ct), max-num ≥ num′ ≥ num. Conse-
quently, (num, h) ∈ stP .Sack, otherwise the condition on line 9 would not have been
satisfied. Since Sack is updated only by adding the elements in SP when a message is
received, and since (num, hf ) is not in ct∗.S, for any honest ct∗, there must exist a forged
message (num′′, ad′′, ct′′) received before (ad, ct, num) such that (num, hf , ) ∈ ct′′.S. Given
that we considered (num, num′) as the first pair of messages violating the r-RID property,
it follows that num′′ > num′ > num.

We consider two cases: when (num′′, ad′′, ct′′) is received before (num′, ad′, ct′), and when
it is received afterward. Let us consider the first case. In this case, we argue that the
honest message (num′, ad′, ct′) would not be accepted. Since num′′ is received before num′,
it follows that num′ < num′′ ≤ max-num. Moreover, since r-bool = false, it holds that
S′

ack ⊆ ct′.S (line 12). However (num, hf ) ∈ S′
ack, as it was in ct′′.S, hence it should also

be in ct′.S. This implies that hf = H.Eval(hk, adh, cth, num), leading once again to a
collision.

Now let us consider the case where the message (num′′, ad′′, ct′′) is received after the
message (num′, ad′, ct′). We argue that (num′′, ad′′, ct′′) should not have been accepted. We
split the cases where num′′ ≥ max-num and num′′ < max-num. Let us consider the later
first. As (ad′′, ct′′, num′′) was accepted, and hence r-bool = false, ct′′.S ⊂ Sack (line 10).
Now (num, hf ) ∈ ct′′.S, so (num, hf ) ∈ Sack. As without loss of generality we can imagine
(num′′, ad′′, ct′′) being the first message vouching for (hf , num), this would mean (num, hf )
was added to Sack by an honest message, i.e. hf = hh which leads to a collision again.

Finally for the case in which num′′ ≥ max-num, again, considering that (num′′, ad′′, ct′′) is
the first message vouching for (hf , num), we have (num, hf ) ∈ Sack \ ct′′.S (and so r-bool
would be set to true) unless hf = hh. Moreover, at this point (num′, ad′, ct′) has already
been received so, max-num ≥ num′ > num. Hence, unless hf = hh, r-bool would be set to
true in line 7. This concludes the proof that (num′, ad′, ct′), (num, ad, ct) are accepted if
and only if H.Eval(hk, (num, adh, cth)) = H.Eval(hk, (num, ad, ct)).

Now we describe the CR adversary A∗. A∗ runs the initialisation of RRC by replacing the
sampling step of hk with the hk given by the CR game, then runs Ã as a subroutine, and
computes (“rec”,P, num, adf , ctf ) ∈ log, and (“send”,P, num, adh, cth) ∈ log such that
(adf , ctf ) ̸= (adh, cth) and hf = hh if possible. Given event E, this pair always exists as
we have Pr[CRA∗(1λ)⇒ 1 | E] = 1. Moreover, as A∗ is just running Ã as a subroutine
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and not doing anything extra, the time it runs is also ≈ t̃. Finally, we have

Pr[CRA∗(1λ)⇒ 1] ≥ Pr[CRA∗(1λ)⇒ 1|E] · Pr[E] = Pr[r-RIDÃ(1λ)⇒ 1] = ϵ̃.

Hence, ϵ̃ ≤ Pr[CRA∗(1λ)⇒ 1]. This means that if H is (tcr, ϵcr)-collision resistant, then
the RRC scheme is (q, t, ϵcr)-r-RID secure with tcr ≈ t.

Theorem 10. Let H be a (tcr, ϵcr)-collision resistant hash function. Then RRC (defined
in Figure 2.7) is a (q, t, ϵcr)-s-RID-secure RC where tcr ≈ t and q is upper bounded by t.

The s-RID security of RRC reduces to the collision resistance of the hash function H. The
proof strategy is identical to the one that we use for the proof of Theorem 9, we therefore
present the complete proof in Appendix A.1.

Optimizations

The s-RID notion imposes less overhead than r-RID, and the construction can be further
optimized while retaining s-RID security. Section 2.5 covers our optimizations, with
Section 2.5.2 discussing why s-RID incurs less overhead than r-RID, and Section 2.5.3
presenting an optimization for s-RID that leverages communication epochs—such as
Signal’s epoch/index pairs [ACD19]—to reduce the communication overhead associated
with this notion.

2.4 Out-of-band active attack detection: UNF

In-band active attack detection is not always possible, as an adversary can block all
honest messages within the network. For example, modern messaging solutions often rely
on a possibly malicious third party server to relay messages between participants. This
introduces a single point of failure for in-band communication. Consequently, we consider
out-of-band active attack detection, where parties exchange authentication tags through
an authenticated out-of-band channel, and define unforgeable security (UNF).

An ARC scheme is unforgeable if, as soon as one of the two parties accepts a forgery, both
parties can detect this out-of-band. We formalize this security notion through the UNF
game (Figure 2.8), which, similarly to RID, encompasses r-UNF and s-UNF. The winning
condition in UNF consists of three predicates: forgery, bad-P (corresponding to r-UNF)
and bad-P (corresponding to s-UNF) that are essentially the same as the predicates that
we use to define RID security (Definition 5), except they rely on authentication tags
instead of ciphertexts for forgery detection. This also implies that parties perform active
attack detection on-demand, i.e., only when they use the out-of-band channel.
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Game r-UNFA(1λ) s-UNFA(1λ)

1 : pp← Setup(1λ); (stA, stB, z)← Init(pp)
2 : state[·], plaintext[·], log[·]← ⊥
3 : auth[·], st∗ ← ⊥
4 : i← 0
5 : AO(z)
6 : if ∃ P, num, num′, ad, ct, at, x, y :
7 : forgery(log,P, num, ad, ct, x) ∧
8 : bad-P(log,P, num, num′, at) then

9 : bad-P(log,P, num′, at, x, y) then

10 : return 1
11 : return 0

Game UNFA(1λ)
1 : return r-UNFA(1λ) ∨ s-UNFA(1λ)

forgery(log,P, num, ad, ct, x)
1 : return (“send”,P, num, ad, ct) /∈ log ∧
2 : (“rec”,P, num, ad, ct) = log[x]

bad-P(log,P, num, num′, at)
1 : return (“authrec”,P, num′, at) ∈ log ∧
2 : (num ≤ num′)

bad-P(log,P, num′, at, x, y)
1 : return (y > x) ∧
2 : (“authsend”,P, num′, at) = log[y] ∧
3 : (“authrec”,P, num′, at) ∈ log

Figure 2.8: r-UNF, s-UNF and UNF games for O = {SEND, RECEIVE, EXPpt, EXPst,
AUTHSEND, AUTHRECEIVE}.

Definition 11 (UNF). Consider the r-UNF (resp. s-UNF) game in Figure 2.8. We say
that an ARC scheme is (q, t, ϵ)-r-UNF (resp. s-UNF) secure if, for all adversaries A which
make at most q oracle queries, and which run in time at most t, we have:

Pr[r-UNFA(1λ)⇒ 1] ≤ ϵ (resp. Pr[s-UNFA(1λ)⇒ 1] ≤ ϵ).

As for RC schemes, we do not define message indistinguishability for ARC schemes. All
the schemes include in the authentication tag only public material, i.e., messages that
have already transited through the insecure channel. Since the adversary already has
access to the entire transcript of the insecure channel, the authentication material does
not give any additional advantage in a message indistinguishability game.

2.4.1 UNF-secure ARC from a RID-secure RC

This section shows that RID-secure RC schemes imply UNF-secure ARC schemes. Specifi-
cally, we construct an UNF-secure ARC scheme from a RID-secure RC (see Figure 2.9).
The ARC scheme uses the Setup, Gen, Init, Send, Receive functions of the underlying
scheme RC. To send an authentication tag with AuthSend, the ARC scheme calls RC’s
Send on a dummy message to generate a ciphertext ct that acts as authentication tag.
AuthReceive is implemented as a Receive call on this authentication tag/ciphertext.

34



2.4 Out-of-band active attack detection: UNF

RC-ARC.Setup(1λ)
1 : return RRC.Setup(1λ)

RC-ARC.Init(pp)
1 : return RRC.Init(pp)

RC-ARC.Send(stP , ad, pt)
1 : ct′ ← RRC.Send(stP , ad, pt)
2 : ct← (0, ct′)
3 : return ct

RC-ARC.Receive(stP , ad, ct)
1 : (b, ct′)← ct
2 : if b ̸= 0 then return (false,⊥,⊥,⊥)
3 : return RRC.Receive(stP , ad, ct′)

RC-ARC.AuthSend(stP)
1 : (st′

P , num, ct)← RRC.Send(stP , 0, 0)
2 : return (st′

P , num, (1, ct))

RC-ARC.AuthReceive(stP , at)
1 : (b, at′)← at
2 : if b ̸= 1 then return (false,⊥,⊥)
3 : (acc, st′

P , num, pt)← RRC.Receive(stP , 0, at′)
4 : return (acc, st′

P , num)

Figure 2.9: UNF-secure ARC scheme based on a RID-secure RC scheme RRC.

This approach enables Theorem 12, which also implies that the scheme of Figure 2.9 is
also r-UNF- and s-UNF-secure, since the theorem states that the scheme of Figure 2.9 is
UNF-secure.

Theorem 12. Let RRC be a RC scheme and RC-ARC be the ARC scheme built on RRC
as Figure 2.9 shows. If RRC is RID-secure, ORDINALS-secure and correct, then RC-ARC
is UNF-, ORDINALS-secure and correct.

Proof. Correctness follows from the correctness of the underlying scheme RRC and the
use of domain separation for tags and ciphertexts. ORDINALS-security follows from the
construction.

Now, we sketch the proof that RID security of RRC implies UNF security of RC-ARC.
For any adversary A playing the UNF game with RC-ARC, we build a RID adversary
B for RRC. Each query made by A to the oracles SEND, RECEIVE, EXPpt, EXPst are
forwarded by B to its own corresponding oracles (and domain separation is correctly
implemented where needed). Queries of the form AUTHSEND(P) are simulated by B
querying at′ ← SEND(P, 0, 0) and setting at ← (1, at′), which perfectly simulates the
generation of a tag in ARC. Finally, AUTHRECEIVE queries are simulated using the
RECEIVE oracle on the tag/ciphertext. B can perfectly simulate the UNF game for A.

Now, let us assume that the UNF adversary A wins with the forgery and bad-P predicates
evaluating to true. It means a forgery was received by a party P, then, later, that party
sent a tag (i.e. a ciphertext in the RID game played by B) that is honestly and successfully
delivered to a party P . That implies that in the RID game played by B, a party received a
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forgery, then sent a message that was successfully delivered, which is a winning condition
for B.

The second case is when the UNF adversary A wins with the forgery and bad-P predicates
evaluating to true. This means that a forgery was received by a party P with ordinal
num, then a tag with ordinal num′ ≥ num was successfully received. Note that in our
RC-ARC construction the tags are ciphertexts, thus the ordinals are strictly increasing,
i.e., num′ > num. Therefore, in the RID game played by B, a forgery with ordinal num was
received by P, then later a honest ciphertext with ordinal num′ > num was successfully
delivered to P, making the bad-P predicate in the RID game true.

Hence, for any adversary A winning the UNF game, there exists a RID adversary B that
wins with at least the same probability.

2.4.2 UNF-secure ARC from any RC

We present a non-optimized UNF-secure ARC scheme given a RC scheme (Definition 1),
i.e. we define the two additional algorithms AuthSend and AuthReceive. We present our
scheme in Figure 2.10.

Scheme description

The Setup procedure runs the corresponding procedure of the underlying RC scheme.
Init initializes the states for parties A and B. The Send and Receive procedures call the
respective procedures of the underlying RC scheme. The Send procedure stores the hash
of (ad, ct) for the message being sent, together with the corresponding num that the
underlying RC.Send algorithm returns. The tuple composed of num and the hash is
stored in a set S, which is in turn stored in the internal state of the party. The Send
algorithm also updates the ordinal num in the state. The Receive procedure verifies if the
RC.Receive algorithm accepts the inputs and that the received message is not a forgery
on a previously authenticated message, which is by construction contained in Sack. If both
checks pass, Receive stores the hash of (ad, ct) together with the ordinal num returned by
RC.Receive in a set R.

AuthSend puts in the authentication tag at the hashes of the sent and received messages
along with the last num returned by RC.Send. Since the adversary can reorder messages
in both the normal and out-of-band channels, the ordinal num indicates to the recipient
of the tag which messages to compare against at. AuthReceive parses the authentication
tag and checks whether the messages received by the counterpart are in the local S set.
Then it verifies whether the local set of received messages, without the messages not
encompassed by at, is a subset of the messages sent by the counterpart. If one of these
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ARC.Setup(1λ)
1 : pp0 ← RC.Setup(1λ)

2 : hk← H.KGen(1λ)
3 : return (pp0, hk)

ARC.Init(pp)
1 : (pp0, hk)← pp
2 : (st′

A, st′
B, z′)← RC.Init(pp0)

3 : num, max-num← ⊥; S, R, Sack ← ∅
4 : stA ← (st′

A, hk, S, R, Sack, num, max-num)
5 : stB ← (st′

B, hk, S, R, Sack, num, max-num)
6 : z ← (z′, pp)
7 : return (stA, stB, z)

ARC.Send(stP , ad, pt)
1 : (st′

P , hk, S, ·, ·, ·, ·)← stP

2 : (stP .st′
P , num, ct)← RC.Send(st′

P , ad, pt)
3 : h← H.Eval(hk, (ad, ct))
4 : stP .S← S ∪ {(num, h)}
5 : stP .num← num
6 : return (stP , num, ct)

ARC.AuthSend(stP)
1 : (·, ·, S, R, ·, num, ·)← stP

2 : at← (S, R, num)
3 : return (stP , num, at)

ARC.Receive(stP , ad, ct)
1 : (st′

P , hk, ·, R, Sack, ·, max-num)← stP

2 : (acc, st′
P , num, pt)← RC.Receive(st′

P , ad, ct)
3 : if ¬acc then
4 : return (false, stP ,⊥,⊥)
5 : h← H.Eval(hk, (ad, ct))
6 : if num ≤ max-num ∧ (num, h) /∈ Sack then
7 : return (false, stP ,⊥,⊥)
8 : stP .R← R ∪ {(num, h)}
9 : stP .st′

P ← st′
P

10 : return (acc, stP , num, pt)

ARC.AuthReceive(stP , at)
1 : (·, ·, S, R, Sack, num, max-num)← stP

2 : (SP , RP , numP)← at
3 : // P received a forgery

4 : if RP ⊈ S then
5 : return (false, stP , num)

6 : RP
⊆ ← {(num, ·) ∈ R : num ≤ numP}

7 : // P received a forgery

8 : if RP
⊆ ⊈ SP then return (false, stP , num)

9 : stP .Sack ← Sack ∪ SP

10 : stP .max-num← max{max-num, numP}

11 : return (true, stP , numP)

Figure 2.10: UNF-secure ARC scheme based on a RC scheme RC (Definition 1). The
scheme uses four additional variables compared to RC: S is the set of sent (num, h); R is
the set of received (num, h); Sack is the set of (num, h) which are expected to be received
(according to the received authentication tag at); max-num represents the largest num
received in an at. All sets are append-only. For simplicity of exposition, we omit the
optimisation where R is sent as a single hash and n ordinals as done in Figure 2.7 for
RID security.

37



Chapter 2. On active attack detection in messaging with immediate decryption

conditions is not satisfied, then a forgery is detected. The sent messages authenticated
by the counterpart are stored in a set Sack. The procedure Receive uses this set to avoid
forgeries on already authenticated num’s.

The size of the authentication tags and the state of each party in the scheme of Figure 2.10
is linear in the number of sent and received messages. Messages can nevertheless be
efficiently exchanged out-of-band in practice, e.g., using Bluetooth. Otherwise, parties
can send authentication information over the insecure channel and authenticate it using
the out-of-band channel by hashing and comparing digests [PV06]. If we assume that the
underlying network channel is ordered (e.g., by using TCP), then the hashes of the last
sent and received messages suffice to detect forgeries [CDV21].

Security analysis

We now analyze the security properties of the scheme in Figure 2.10. Correctness of the
scheme follows from the correctness of the underlying RC scheme. Similarly, ORDINALS
security follows from the ORDINALS security of RC, as the scheme of Figure 2.10 outputs
the same num that RC outputs.

The UNF-security of the ARC scheme presented in Figure 2.10, lies in the collision
resistance of the hash function that the scheme uses. When one party P wants to
authenticate the communication it produces an authentication tag containing the hashes
of all the messages inboxed and outboxed by P. These hashes can be compared with
the counterpart P to detect if any forgery has been received and accepted by one of the
participants. In what follows we prove that the scheme of Figure 2.10 is UNF-secure.

Theorem 13 (Unforgeability of ARC). Let H be a (tcr, ϵcr)-collision resistant hash
function (Definition 6). Then the ARC scheme, that we present in Figure 2.10, is (q, t, ϵcr)-
UNF secure ARC scheme where t ≈ tcr.

Proof. Assume an adversary A playing the UNF game (Figure 2.8), which makes at most
q oracle queries and runs in time at most t. We assume the advantage of A is ϵ, hence
by Definition 11 we have Pr[UNFA(1λ)⇒ 1] = ϵ. We construct an adversary B, running
in time approximately equal to t, which, running A as a subroutine, wins the collision
resistance game for H (Definition 7), that is

Pr[CRBA(1λ)⇒ 1] = 1.

The UNF adversary A wins when one party accepts a forgery (predicate forgery) and
at least one of the two parties fails to detect the forgery (predicates bad-P and bad-P).
Suppose there exist P , num, num′, ad, ct, at, x, y such that forgery(log,P, num, ad, ct, x) =
true. We analyze the predicates bad-P and bad-P separately, starting with the latter.
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CR adversary BA(hk)
1 : (1λ, hk0)← hk; pp← ARC.Setup(1λ); (pp0, hk′)← pp; pp′ ← (pp0, hk)
2 : (stA, stB, z)← ARC.Init(pp′)
3 : state[·], plaintext[·], log[·], auth[·], st∗ ← ⊥; i← 0
4 : AO(z)
5 : if ∃ num,P, ad, ct, ad′, ct′ :
6 : (“send”,P, num, ad, ct) ∈ log∧ (“rec”,P, num, ad′, ct′) ∧ (ad, ct) ̸= (ad′, ct′) then
7 : return (ad, ct), (ad′, ct′)
8 : else abort

Figure 2.11: Adversary B where O = {SEND, RECEIVE, AUTHSEND, AUTHRECEIVE,
EXPpt, EXPst} for the proof of Theorem 13.

The forgery predicate states that (“send”,P, num, ad′, ct′) ∈ log and
(“rec”,P, num, ad, ct) = log[x] for some x ∈ N, where (ad′, ct′) ̸= (ad, ct). This
means that (num, H.Eval(hk, (ad′, ct′)) ∈ SP and (num, H.Eval(hk, (ad, ct)) ∈ RP ,
otherwise the forgery is trivially detected because (num, ·) /∈ RP . Moreover, by the
bad-P predicate we know that RP

⊆ ⊆ SP for any num ≤ num′, which implies that
(num, H.Eval(hk, (ad′, ct′))) = (num, H.Eval(hk, (ad, ct))). By correctness, (num, ·) can
appear only once in SP , respectively in RP , and by assumption (ad′, ct′) ̸= (ad, ct),
therefore we have a collision for H.Eval(hk, ·).

We now analyze the bad-P predicate. The forgery predicate states that
(“send”,P, num, ad′, ct′) ∈ log and (“rec”,P, num, ad, ct) = log[x] for some x ∈ N,
where (ad′, ct′) ̸= (ad, ct), otherwise the forgery is trivially detected. This implies
that (num, H.Eval(hk, (ad, ct)) ∈ RP when ARC.Receive(·, ad, ct) → (true, ·, num, ·). By
the bad-P predicate we know that P sends an authentication tag at after accept-
ing (ad, ct), since (“authsend”,P, num′, at) = log[y] and y > x, which means that
(num, H.Eval(hk, (ad, ct)) is in the RP that at contains. The rest of the argument fol-
lows the same approach as the previous paragraph.

Figure 2.11 describes the adversary B which plays against the collision resistance game. B
runs the ARC.Setup procedure and replaces the hash key hk′ that the procedure returns
with the hk that the adversary receives from the CR challenger. After running A as a
subroutine, B analyzes the log array to find the (ad, ct), (ad′, ct′) pairs that represents a
forgery and returns those. If A wins the UNF game, then B wins the CR, that is

Pr[CRB(1λ)⇒ 1] ≥ Pr[UNFA(1λ)⇒ 1] = ϵ.

Moreover, B runs A as a subroutine and executes an additional negligible amount of
work, so t ≈ tcr.
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P A P

1 : Send(·, ·, pt1) ct1 block ct1

2 : forge ct ct Receive(·, ·, ct)→ (true, ·, ·, ·)

3 : Receive(·, ·, ct1)→ (false, ·, ·, ·)
ct2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Send(·, ·, pt2)

4 : Send(·, ·, “abort”)
ct3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Receive(·, ·, ct3)→ (true, ·, ·, “abort”)

Figure 2.12: Visualising r-RID security after one honest round trip. For clarity, associated
data and certain inputs and outputs of the Send and Receive algorithms are omitted. We
denote the adversary by A.

2.5 Performance and security trade-offs

The extended abstract corresponding to this chapter demonstrates [BCC+23a, Section
6] that r-RID and r-UNF impose linear communication complexity for RC and ARC
schemes (i.e., the ciphertext and tag lengths grow linearly in the number of sent messages
and security parameter) in the worst-case scenario, where one party continuously sends
messages without receiving any from their counterpart. This section explores methods to
bypass these lower bounds and propose practical protocols for active attack detection.

We first recall (Section 2.5.1) that s-RID and s-UNF provide delayed r-RID/r-UNF guar-
antees, i.e., protocols achieve r-RID and r-UNF security after one honest round trip. We
then argue (Section 2.5.2) that protocols can achieve s-RID/s-UNF security at a sig-
nificantly lower cost than their r-RID/r-UNF counterparts. As ciphertext sizes remain
unbounded in the schemes presented so far, we propose two pruning approaches to reduce
communication overhead. The first, presented in Section 2.5.3, leverages communication
epochs [ACD19] to prune after each full round trip the set of received messages that
that parties send to achieve s-RID security. In Section 2.5.4, we introduce an optimised
scheme for UNF security that prunes redundant messages from authentication tags, taking
advantage of the authenticity of the out-of-band channel. We conclude the section with a
lightweight three-move protocol that builds on s-UNF’s delayed r-UNF-like guarantees to
authenticate communication bidirectionally over the out-of-band authenticated channel
(Section 2.5.5).

2.5.1 Delayed r-RID/r-UNF security from s-RID/s-UNF security

In this section we explain how s-RID provides r-RID after a honest round trip. While
focus here on security notions for the in-band channel, similar arguments apply to the
out-of-band channel.

Figure 2.12 illustrates the delayed r-RID guarantees that s-RID offers. Suppose parties
use a s-RID-secure scheme, which ensures that P can detect that P received a forged
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message. Assume that P receives and accepts a forged message (line 2 in Figure 2.12)
and subsequently sends a message to P (line 3). Given s-RID security, P detects that P
received a forgery (thus, P’s call to Receive on line 3 rejects). If upon detecting that P
was victim of a forgery, P sends an “abort” message to P (line 4), P is able to decrypt
the message, detect the forgery and abort the communication after one honest round-trip
of messages.

This informal argument indicates that s-RID-secure RC schemes can be transformed
(by adding an “abort” message) into RC schemes that ensure a weaker form of r-RID
security: r-RID after a honest round-trip. Additional care is needed to formalize this
property and implement it in practice; for instance, if P rejects ct2 in Figure 2.12 due to
a network-induced bit-flip, the application should avoid a false-positive communication
abort. This is approach is noteworthy since s-RID imposes less overhead compared to
r-RID, a point we will elaborate in the next section. Furthermore, the tree-move out-of-
band bidirectional authentication protocol that we present in Section 2.5.5 builds on this
concept of delayed r-UNF-like security, which we formalize to design a practical scheme.

2.5.2 Practicality of s-RID and s-UNF security

Security notion r-RID s-RID

Overhead O(nλ + cn) O(λ + cn)
Optimized overhead (Section 2.5.3) N/A O(λ + cnfresh)

Table 2.1: Overhead induced by the two RID security notions. We assume that n messages
are received and ci is the space needed to encode i ordinals. We indicate the encoding
space with a different variable since compression mechanisms such as run-length encoding
can be used in this case. The variable nfresh refers to the number of messages received in
the last two epochs.

We focus here on s-RID security, but similar arguments hold for s-UNF security. The RRC
scheme in Figure 2.7 achieves s-RID security by sending to the counter part the list of
received nums and an hash of the R set. Informally, this suffices for security because a
party can immediately detect when their counterpart has received a forgery (by keeping in
state their sent messages and recomputing the hash). Table 2.1 summarizes the overheads
of the two notions together with the optimization presented in Section 2.5.3, where we
show that it is enough to only send information about messages received during the
two last epochs. This significantly reduces the overhead for the scenarios in which the
communication is “balanced”.

One can reduce ciphertext size further by optimising for the “good case” scenario where
messages are delivered in-order; in this case, ordinals can be encoded in ranges. For epochs
with no lost messages, it suffices to encode only the last index. In any case, as the size of
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a single message in today’s secure messaging applications can be several kilobytes, the
overhead that s-RID imposes seems reasonable. We leave a deeper and concrete analysis
to determine the impact of RID/UNF security in practice to future work.

In Figure 2.7, the entire set of received messages is hashed (using a regular hash function)
every time a message is sent by P. Consequently, when P receives a new message, the
entire hash must be re-computed when P sends their next message. To avoid this, the
scheme can use an incremental hash function [BGG94, CDvD+03] such that, when a
message is received, an efficient operation only depending on the new message and the
previous digest can be executed to derive the new digest. Hash digests can be as small
as a group element [CDvD+03]. This enables parties to prune their set of sent/received
messages in state. For example, if P receives a message m claiming that P has received
the first k messages from P, and P has received messages for all possible ordinals that
precede the ordinal of m, then P can safely store just the incrementally-hashed value
corresponding to the first k messages, since P can no longer claim to have only received
a strict subset of the k messages.

Remark 14. The RID-secure RC of Figure 2.7 sends the set of received ordinals for
authentication (line 2 of the RRC.Send algorithm). Since ordinals are elements of a set
on which a total order is defined, a simple optimization—that could reduce the overhead
by up to 50%—consists in sending the smallest set among the set of received ordinals or
the set of not received ordinals alongside a bit indicating which type of set has been sent.
This optimization applies to all schemes that send sets of ordinals.

2.5.3 Epoch-based optimisation for s-RID security

In this section, we describe how to design an optimized s-RID-secure RC scheme based
on a correct and ORDINALS-secure RC scheme. The formal description of the optimized
s-RID-secure RC scheme is given in Figure 2.13. We begin with a high-level description
of the optimization.

The parties start at epoch = 0 and epoch = 1, respectively. Each time a party sends a
message, they attach their current epoch to it (line 4 of the Send procedure in Figure 2.13)
Upon receiving a message, a party P with epoch = t checks whether the attached epoch
from the other party P is at most t + 1, that is epochP ≤ t + 1, accounting for possible
out-of-order messages from earlier epochs (see the checks function in Figure 2.13). If the
received epoch equals t + 1, i.e, Pepoch = t + 1, the party P updates their epoch to t + 2
(lines 12 and 13 and the Receive function). This “ping-pong” style of updating epochs
mirrors the Double Ratchet’s asymmetric ratchet [PM16], ensuring the parties’ epoch
values remain one apart as they communicate.

To achieve s-RID security, whenever sending a message with epoch = t, the sender attaches
the accumulated hash and the corresponding nums of all messages received during the time
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their epoch was t and t−2. This means that the parties report only the messages from the
current and last epoch, as opposed to all previous messages, improving efficiency compared
to the original s-RID construction. Intuitively, the “ping-pong” updating of epochs enables
the parties to regularly inform each other about the messages they receive, allowing
them to reliably consider those messages authenticated. In other words, a complete
round-trip of honest messages implicitly acknowledges the reception and verification of
the hash and associated nums. In Section 2.5.4 we use a similar mechanism with explicit
acknowledgments in the out-of-band channel to design our three-move bidirectional
authentication protocol.

We now state the main theorem of this section, with a proof sketch provided in Ap-
pendix A.2. The proof strategy relies on the fact that epoch values only increase when
both parties have received a message. An adversary cannot force a party to skip epochs,
as a receiver P only accepts messages with epochP ≤ t + 1. This ensures that conveying
information about the messages received in the last two epochs is sufficient to achieve
s-RID security.

Theorem 15. Let H be a (tcr, ϵcr)-collision resistant hash function. Then s-RID-RC
(Figure 2.13) is a (q, t, ϵcr)-s-RID-secure RC where tcr ≈ t and q is upper bounded by t.

2.5.4 Reducing bandwidth for UNF security

In Figure 2.14, we present a scheme that optimizes bandwidth consumption for UNF
security by leveraging the authenticity of the out-of-band channel, which prevents the
adversary from forging messages in the out-of-band channel. Suppose that P sends an
authentication tag to P, then P acknowledges reception of the tag to P. At this point,
P no longer needs to send the information that P has already obtained. Our scheme
supports out-of-order communication even on the authenticated channels. However, this
approach requires parties to keep track of, e.g., which tags their partner has received to
determine what is safe to prune from state (in Sat-Seen).

Scheme description

The Send procedure stores the hash of (ad, ct) for the message being sent, together with
the corresponding num that the underlying RC.Send algorithm returns. The algorithm
stores (num, h) in a set S, which the schemes stores in the party’s internal state. The
Send algorithm also updates the ordinal num in the state.

The Receive procedure verifies whether the RC.Receive algorithm accepts the inputs and
verifies that the received message is not a forgery on a previously authenticated message,
which is by construction contained in Sack. If both checks pass, Receive stores the hash of
(ad, ct) together with the ordinal num returned by RC.Receive in a set R.
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s-RID-RC.Setup(1λ)
1 : pp0 ← RC.Setup(1λ)

2 : hk← H.KGen(1λ); hk′ ← H.KGen(1λ)
3 : pp← (pp0, hk, hk′)
4 : return pp

s-RID-RC.Init(pp)
1 : (pp0, hk, hk′)← pp
2 : (st′

A, st′
B, z′)← RC.Init(pp0)

3 : epoch← 0
4 : S, Rcurr, Rprev ← ∅
5 : stA ← (st′

A, hk, hk′, S, Rcurr, Rprev, epoch)
6 : stB ← (st′

B, hk, hk′, S, Rcurr, Rprev, epoch + 1)
7 : z ← (z′, pp)
8 : return (stA, stB, z)

s-RID-RC.Send(stP , ad, pt)
1 : (st′

P , hk, hk′, S, Rcurr, Rprev, epoch)← stP

2 : nums′ ← {num′ : (num′, _) ∈ Rcurr ∪ Rprev}
3 : R′ ← (nums′, H.Eval(hk′, Rcurr ∪ Rprev))
4 : ad′ ← (ad, epoch, R′)
5 : (stP .st′

P , num, ct′)← RC.Send(st′
P , ad′, pt)

6 : ct← (ct′, epoch, R′)
7 : h← H.Eval(hk, (num, ad, ct))
8 : stP .S← S ∪ {(num, h)}
9 : return (stP , num, ct)

s-RID-RC.Receive(stP , ad, ct)
1 : (ct′, epochP , RP)← ct
2 : (st′

P , hk, hk′, S, Rcurr, Rprev, epoch)← stP

3 : ad′ ← (ad, epochP , RP)
4 : (acc, st′

P , num, pt)← RC.Receive(st′
P , ad′, ct′)

5 : if ¬acc then return (false, stP ,⊥,⊥)
6 : h← H.Eval(hk, (num, ad, ct))
7 : if checks(stP , ct, h, num) then
8 : return (false, stP ,⊥,⊥)
9 : stP .Rcurr ← Rcurr ∪ {(num, h)}

10 : stP .st′
P ← st′

P

11 : // Advance epochs accordingly

12 : if epochP = stP .epoch + 1 then
13 : stP .epoch← stP .epoch + 2
14 : stP .Rprev ← Rcurr

15 : stP .Rcurr ← ∅
16 : return (acc, stP , num, pt)

checks(stP , ct, h, num)
1 : (nums′, h′)← ct.R
2 : epoch′ ← ct.epoch
3 : if epoch′ > stP .epoch + 1 then
4 : s-bool← true
5 : R∗ ← {(num′, _) ∈ stP .S : num′ ∈ nums′)}
6 : s-bool← s-bool ∨ (H.Eval(stP .hk′, R∗) ̸= h′)
7 : return s-bool

Figure 2.13: Optimized s-RID-secure RC scheme given a correct and ORDINALS-secure
RC scheme. The set Rprev is the set of (num, h) received in the previous epoch, while Rcurr
is the set of (num, h) that the party receives in the current epoch. The variable epoch
indicates the current epoch for each party.
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The AuthSend procedure is similar to the unoptimized one, except that (1) it stores the
set of sent messages S authenticated within the current at into an array Sat, indexed by
counter cntat, and (2) it empties the set Sat-Seen, which is already in at and whose goal is
to communicate to the other parties which authentication tags the AuthReceive function
processed, as explained later.

AuthReceive behaves like ARC.AuthReceive, but with optimizations. It firstly verifies
whether cntat

P ≤ max-cntat. The goal of this check is to avoid processing old authentication
tags, since AuthReceive already authenticated their content with the newer (in terms of
cntat

P) tag. The max-num-at keeps indeed track of the most recent authentication tag
that the procedure processed. In other words, older tags either contain less information
than newer, already accepted tags or they contain outdated information that has already
been verified and pruned. AuthReceive also performs garbage collection. It first stores
the counter of the input at into Sat-Seen, which will be sent to the counterparty in the
next call to AuthSend. Then it removes the already authenticated messages from memory.
The party already authenticated the subset RP

⊆ and it can remove the corresponding
messages from the set R, which represents now the set of currently unauthenticated
received messages. Similarly, AuthReceive uses the set of authentication tags that the
counterpart already processed to prune the set of sent messages. In detail, the pruning of
sent messages works as follows.

When a party P receives a set of messages Sat
P [cntat]← S sent by the counterpart with

the authentication tag number cntat, it stores them in a set Sack. Then, when P sends
a subsequent authentication tag back to P, it informs P that the authentication tag
cntat was received using the Sat-SeenP set. When this tag is delivered, P can remove
the acknowledged messages Sat

P [cntat] for all counters in Sat-SeenP from its set SP .
This reduces the size of the authentication tag as, on every round-trip on the out-
of-band channel, all authenticated messages can be removed from the sets S and R.
To reduce the size even further, we can use hashing optimization for the received set.
Instead of sending R = {(num1, h1), . . . , (numk, hk)} in AuthSend, one can send R′ =
{(num1, . . . , numk), H.Eval(hk, h1, . . . , hk)}. On reception, AuthReceive can recompute
the hashes of the single messages and authenticate R′. Pruning does not affect this
optimization, since AuthReceive removes from S only messages that the counterpart
already authenticated. A similar technique was employed by Dowling et al. [DGP22].

Security analysis

We informally argue that the scheme prunes only messages that have already been
authenticated. The procedures rely on sets stP .S and stP .R to detect active attacks.
AuthReceive prunes stP .R by removing elements in RP

⊆; since the procedure authenticates
the elements in RP

⊆ at line 11, it is safe to prune stP .R. Similarly, AuthReceive prunes stP .S
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ARC-OP.Setup(1λ)
1 : pp0 ← RC.Setup(1λ); hk← H.KGen(1λ)
2 : return (pp0, hk)

ARC-OP.Init(pp)
1 : (pp0, hk)← pp
2 : (st′

A, st′
B, z′)← RC.Init(pp)

3 : num, max-num, cntat, max-cntat ← 0
4 : S, R, Sack, Sat, Sat-Seen← ∅
5 : stA ← (st′

A, hk, S, R, Sack, num, max-num,

6 : cntat, max-cntat, Sat, Sat-Seen)
7 : stB ← (st′

B, hk, S, R, Sack, num, max-num,

8 : cntat, max-cntat, Sat, Sat-Seen)
9 : z ← (z′, pp)

10 : return (stA, stB, z)

ARC-OP.Send(stP , ad, pt)
1 : (st′

P , hk, S, · · · )← stP

2 : (stP .st′
P , num, ct)← RC.Send(st′

P , ad, pt)
3 : h← H.Eval(hk, (ad, ct))
4 : stP .S← S ∪ {(num, h)}
5 : stP .num← num
6 : return (stP , num, ct)

ARC-OP.Receive(stP , ad, ct)
1 : (st′

P , hk, ·, R, Sack, ·, max-num, · · · )← stP

2 : (acc, st′
P , num, pt)← RC.Receive(st′

P , ad, ct)
3 : if ¬acc then return (false, stP ,⊥,⊥)
4 : h← H.Eval(hk, (ad, ct))
5 : if num ≤ max-num ∧ (num, h) /∈ Sack :
6 : return (false, stP ,⊥,⊥)
7 : stP .R← R ∪ {(num, h)}
8 : stP .st′

P ← st′
P

9 : return (acc, stP , num, pt)

ARC-OP.AuthSend(stP)
1 : (·, ·, S, R, ·, num, ·, cntat, ·, Sat-Seen)← stP

2 : at← (S, R, num, cntat, Sat-Seen)
3 : stP .cntat ← stP .cntat + 1
4 : stP .Sat[stP .cntat]← S
5 : stP .Sat-Seen← ∅
6 : return (stP , num, at)

ARC-OP.AuthReceive(stP , at)
1 : (·, ·, S, R, Sack, num, max-num,

2 : cntat, max-cntat, Sat, ·)← stP

3 : (SP , RP , numP , cntat
P , Sat-SeenP)← at

4 : RP
⊆ ← {(num, ·) ∈ R : num ≤ numP}

5 : if cntat
P ≤ max-cntat :

6 : prune(stP , RP , cntat
P , Sat-SeenP , RP

⊆)

7 : return (true, stP , numP)
8 : // P received a forgery

9 : if RP ⊈ S then return (false, stP , num)
10 : // P received a forgery

11 : if RP
⊆ ⊈ SP then return (false, stP , num)

12 : stP .Sack ← stP .Sack ∪ SP

13 : stP .max-num← max{max-num, numP}

14 : stP .max-cntat ← max{cntat
P , stP .max-cntat}

15 : prune(stP , RP , cntat
P , Sat-SeenP , RP

⊆)

16 : return (true, stP , numP)

prune(stP , RP , cntat
P , Sat-SeenP , RP

⊆)
1 : stP .Sat-Seen← stP .Sat-Seen ∪ {cntat

P}

2 : stP .R← stP .R \ RP
⊆

3 : for i ∈ Sat-SeenP do
4 : stP .S← stP .S \ stP .Sat[i]; stP .Sat[i]← ∅

Figure 2.14: Optimised UNF-secure ARC scheme ARC-OP based on a RC scheme RC
(Definition 1). The sets S, R and Sack are as in Figure 2.7. The variable max-num represents
the largest num received in an at. The counters cntat and max-cntat keep track of how
many at have been sent and largest cntat received in an at, respectively. Sat-Seen is the
list of cntat of received at since the last sent one; Sat[i] contains the content of S sent in
the ith authentication tag at.
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by removing elements in stP [i] for i ∈ Sat-SeenP . The set Sat-SeenP contains counters of
the tags that P sent to P and P successfully received. Moreover, AuthReceive updates
st.Sat-SeenP at line 1, after the integrity checks. Since the AuthSend stores the set of sent
messages S authenticated within the current at into the array Sat, pruning stP .S only
removes messages that have already been received and authenticated by P.

The adversary can only delete and replay authentication tags in the out-of-band channel.
We informally discuss how the scheme handles these cases. Assume P andP exchange some
messages, P receives an authentication tag atP from P and then sends the authentication
tag atP ; the adversary removes atP from the channel. This implies that P does not
acknowledge the reception of atP to P (because AuthSend empties stP .Sat-Seen at every
invocation). Consequently, P does not prune stP .S: these messages will be authenticated
with the next authentication tag and security is preserved. The AuthReceive procedure
handles adversarial reordering of authentication tags with counters cntat at line 5.

Formally, we state the security of ARC-OP in the next theorem.

Theorem 16. Let H be a (tcr, ϵcr)-collision resistant hash function (Definition 6). Then
the ARC-OP scheme (Figure 2.14) is correct, ORDINALS secure, and (q, t, ϵcr)-UNF secure,
where t ≈ tcr.

Proof. Correctness and ORDINALS-security for the transformation of Figure 2.14 follow
from the scheme in Figure 2.10.

The scheme identical to that in Figure 2.10, modulo the optimizations we introduced.
Consequently, the proof of the theorem reduces to showing that the optimizations preserve
the security properties of the unoptimized scheme in Figure 2.10. Observe that stP .R
and stP .S are used to detect active attacks. We begin by showing that pruning these sets
does not compromise UNF security.

• The set stP .R is pruned by removing elements from RP
⊆, which was authenticated

on line 11 of AuthReceive. We therefore know that messages in RP
⊆ are honest. Thus,

we can stop sending them to P hereafter.

• stP .S is pruned by all sets stP .Sat[i] for i ∈ Sat-SeenP . By construction we know
that Sat-SeenP contains counters for which P accepted the authentication tags, since
those are included in line 1 of prune. Therefore, {stP .Sat[i]}i∈Sat-SeenP contains all
messages in stP .S that P correctly received and authenticated, which the procedure
stores in stP .Sack for future checks. Hence, P can safely stop sending those and
prune S correspondingly.

We proceed by showing that UNF security still holds. By the arguments above, an
authentication tag at that the AuthSend procedure generates after another authentication
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tag at′, will contain only messages that have not been authenticated in at′. Therefore the
check on line 5 preserves security.

The check on line 9 verifies whether RP ⊆ S. Without pruning, this property is met in
the absence of forgeries as shown for ARC. Assume for contradiction that RP contains
a message not authenticated yet, but S does not contain this message due to pruning.
This means that the message was removed from S by removing one of the values in
stP .Sat whose counter cntat was present in Sat-SeenP . Since the counter is present in
Sat-SeenP , we know that P accepted the authentication tag containing cntat, i.e., P
correctly received and authenticated the message. But this means by construction that P
pruned the message from R on line 2 of prune, which leads to a contradiction. Therefore
the check preserves UNF security.

The check on line 11 verifies whether RP
⊆ ⊆ SP . Without pruning, this property is met in

absence of forgeries as shown for ARC. Note that P removes from R only messages that
have been authenticated (on line 2 of prune), therefore RP

⊆ only contains unauthenticated
messages. Similarly, by the argument presented in the paragraph above, SP contains
messages included in at’s whose counter was not included in Sat-SeenP , and therefore
unauthenticated messages. We conclude that this check also preserves UNF security.

ARC-OP (Figure 2.14) sends all the authentication material through the out-of-band
channel This might be impractical when the authenticated out-of-band channel is narrow-
band, e.g., if parties use QR-codes to authenticate the communication. We can improve
the scheme by using both channels: use the insecure channel to send the authentication
data and the possibly narrowband authenticated channel to verify the integrity of those
data [BSSW02]. While the idea of using both channels for authentication is natural, some
security risks might arise when the scheme does not correctly match the two messages.
Since UNF-security depends on both the messages, and therefore on the messages being
correctly matched, it might be safer to enforce this property at the scheme level. In
the full version of this the work on which this chapter builds [BCC+23b, Appendix G]
we propose BW-UNFORGEABLE, a security game that enforces matching of the two
authentication messages at the scheme level.

2.5.5 Lightweight bidirectional authentication

We propose a three-move bidirectional authentication protocol, outlined at a high level
in Figure 2.15. In this protocol, parties include only their set of received messages in
the authentication tag. The receiver then compares their counterpart’s set of received
messages with their own sent messages. This approach suits situations where participants
meet in person or online and can simultaneously authenticate each other’s view of the
conversation, as required in Signal (safety numbers) and other services.
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P P

AuthSend(stP) RP

AuthReceive(stP , at)

RP , at-succ AuthSend(stP)

AuthReceive(stP , at)

AuthSend(stP) at-succ

AuthReceive(stP , at)

Figure 2.15: Description of the three-move authentication procedure. The boolean at-succ
indicates whether the counterpart’s set of received messages is a subset of the local set of
sent messages.

Security model

We modify the UNF game (Section 2.4) by requiring the adversary to run authentication
sessions in sequence. We present the corresponding game in Figure 2.16.

When the adversary initiates the authentication protocol with P as initial sender via the
the AUTHSEND′ oracle, the adversary’s access to AUTH∗, SEND′ and RECEIVE′ oracles
is restricted until the three-move authentication session completes between P and P . This
restriction is managed by the next-oob-op variable and is primarily for clarity; in practice,
it may not be necessary to limit SEND′ and RECEIVE′ calls. However, participants who
authenticate in person would generally not send messages during this time. To handle this,
parties can buffer messages during authentication, to be authenticated in the following
session. However, buffering messages implies that an attack carried out during the out-of-
band authentication will not be detected until the next authentication protocol. For this
reason we block in-band communication during the three-move protocol and we encourage
this restriction to be maintained also in practice. Moreover, parties are guaranteed slightly
weaker security than in the UNF game. Namely, after receiving the first authentication
message, the receiver can deduce that their counterpart has not received a forgery but
not that they themselves have until they receive the third message in the protocol.

In Definition 17 we define 3M-UNFORGEABLE-security for ARC schemes.

Definition 17 (3M-UNFORGEABLE). Consider the 3M-UNFORGEABLE game of Fig-
ure 2.16. We say that an ARC scheme is (q, t, ϵ)-3M-UNFORGEABLE secure if, for all
adversaries A which make at most q oracle queries, and which run in time at most t, we
have:

Pr[3M-UNFORGEABLEA(1λ)⇒ 1] ≤ ϵ.
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Game 3M-UNFORGEABLEA(1λ)
1 : auth-state[·]← 0; next-oob-op← ⊥

2 : play UNF with AO(z)

Oracle SEND′(P, ad, pt, r)
1 : if auth-state[P] ̸= 0 then return ⊥
2 : return SEND(P, ad, pt, r)

Oracle RECEIVE′(P, ad, ct)
1 : if auth-state[P] ̸= 0 then return ⊥
2 : return RECEIVE(P, ad, ct)

Oracle AUTHSEND′(P)
1 : if next-oob-op ̸∈ {(P, “authsend”),⊥} then
2 : return ⊥
3 : i← i + 1
4 : (stP , num, at)← AuthSend(stP)
5 : auth[(P, i)]← at; state[i]← stP

6 : init← 1{auth-state[P] = 0}
7 : auth-state[P]← auth-state[P] + 1 mod 3
8 : log[i]← (“authsend”,P, num, at, init)
9 : next-oob-op← (P, “authrec”, i)

10 : return (at, num)

forgery(log,P, num, ad, ct, x)
1 : return (“send”,P, num, ad, ct) /∈ log ∧
2 : (“rec”,P, num, ad, ct) = log[x]

Oracle AUTHRECEIVE′(P, j)
1 : if next-oob-op ̸= (P, “authrec”, j) then
2 : return ⊥

3 : at← auth[(P, j)]
4 : if at = ⊥ then return ⊥
5 : (auth, st, num)← AuthReceive(stP , at)
6 : if ¬auth then return ⊥
7 : i← i + 1
8 : auth-state[P]← auth-state[P] + 1 mod 3
9 : if auth-state[P] = 0 ∧

10 : auth-state[P] = 0 then
11 : next-oob-op← ⊥
12 : else
13 : next-oob-op← (P, “authsend”)
14 : stP ← st; state[i]← stP

15 : log[i]← (“authrec”,P, num, at)
16 : return num

bad-P(log,P, num′, at, x, y)
1 : return (y > x) ∧
2 : (“authsend”,P, num′, at, ·) = log[y] ∧
3 : (“authrec”,P, num′, at) ∈ log

bad-P(log,P, num, num′, at)
1 : return num ≤ num′ ∧

2 : (“authrec”,P, num′, at) ∈ log ∧
3 : (“authsend”,P, num′, at, false) ∈ log

Figure 2.16: 3M-UNFORGEABLE game for O = {SEND′, RECEIVE′, AUTHSEND′,
AUTHRECEIVE′, EXPpt, EXPst}. Highlighted statements correspond to differences rel-
ative to the UNF game (Figure 2.8).
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The oracles in Figure 2.16 require participants to send all authentication tags via the
out-of-band channel. By not providing security guarantees for the first authentication
tag, it is possible to send the first tag over the in-band channel and later authenticate it
in the second message with an additional hash [PV06]. This approach makes the protocol
nearly non-interactive out-of-band: the initiator sends the first authentication tag via
the in-band channel and the counterpart responds with the authentication tag and hash
out-of-band, such as through a QR code. The final at-succ bit can then be determined
based on the QR code scanning success or failure. In contrast, solutions like Signal’s
safety numbers [Mar17b] require both parties to scan QR codes out-of-band.

Scheme description

We present a 3M-UNFORGEABLE-secure scheme in Figure 2.17. The AuthSend and
AuthReceive procedures encode the three-move authentication protocol of Figure 2.15. To
identify the different states of the bidirectional authentication, we borrow the terminology
from TCP and refer to SYN, SYN-ACK, and ACK messages and roles. When a party P
first calls AuthSend, it takes the SYN role and sends to P the set of received messages and
the current num, i.e., at← (R, num); this set is stored in a separate set Rat. As described
below, we use Rat in AuthReceive to optimize the scheme. The counterpart P replies with
a SYN-ACK message, containing its set of received messages, the current ordinal num and
the bit at-succ. The bit at-succ indicates whether P ’s set of received messages is included
in P’s set of sent messages (line 10), i.e., at-succ indicates whether the authentication
of P’s set of received messages was successful. As the counterpart, P stores the current
set of received messages in Rat. Upon receiving the SYN-ACK message, the initiator P
checks whether at-succP = true and rejects the authentication tag otherwise. P then
sends the ACK message at← (num, at-succ). Finally, P calls AuthReceive to process the
ACK message. The party checks the at-succ variable to verify that the set RP is a subset
of SP . If the check passes, the authentication protocol ends.

The optimization of the scheme consists in pruning the set of received messages as soon
as the counterpart authenticates them. This reduces the size of the authentication tags,
since parties include in at only the received messages that have not been authenticated
yet. The AuthReceive algorithm on line 11 checks whether the counterpart authenticated
set of received messages R. If this is the case, all the authenticated messages are stored
in Rack—this set is used in the Receive algorithm to avoid replay attacks—and at the
same time those messages are removed from R thanks to set Rat, thereby reducing the
size of the next authentication tag and memory consumption. After the pruning, the R
set contains only received messages that the counterpart still needs to authenticate.

Remark 18. Dowling et al. [DGP22] propose a scheme that is broadly similar to ours. In
particular, their protocol uses three moves in-band to allow parties to agree on a common
set of respectively received messages R and R′. Then, to authenticate messages and detect
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3M-ARC.Setup(1λ)
1 : // As in Figure 2.10

2 : return ARC.Setup(1λ)

3M-ARC.Init(pp)
1 : (pp0, hk)← pp
2 : (st′

A, st′
B, z)←$ RC.Init(pp0)

3 : num← ⊥
4 : S, R, Rack, Rat ← ∅
5 : role-at, at-succ← ⊥
6 : stA ← (st′

A, hk, S, R, num, role-at,
7 : at-succ, Rack, Rat)
8 : stB ← (st′

B, hk, S, R, num, role-at,
9 : at-succ, Rack, Rat)

10 : z ← (z′, pp)
11 : return (stA, stB, z)

3M-ARC.Send(stP , ad, pt)
1 : // As in Figure 2.10

2 : return ARC.Send(stP , ad, pt)

3M-ARC.AuthSend(stP)
1 : (·, ·, ·, R, num, role-at, at-succ, ·, Rat)← stP

2 : if role-at = ⊥ then
3 : stP .role-at← SYN
4 : at← (R, num); stP .Rat ← R
5 : elseif role-at = SYN-ACK then
6 : at← (R, num, at-succ)
7 : stP .Rat ← R; stP .at-succ← ⊥
8 : else // role-at = ACK

9 : at← (num, at-succ)
10 : stP .role-at, stP .at-succ← ⊥
11 : return (stP , num, at)

3M-ARC.Receive(stP , ad, ct)
1 : (stP , hk, ·, R, ·, ·, ·, Rack, ·)← stP

2 : (acc, st′
P , num, pt)← RC.Receive(st′

P , ad, ct)
3 : if ¬acc then return (false, stP ,⊥,⊥)
4 : h← H.Eval(hk, (ad, ct))
5 : if ∃ h′ : (num, h′) ∈ Rack ∧ h ̸= h′ then
6 : return (false, stP ,⊥,⊥)
7 : R← R ∪ {(num, h)}
8 : stP ← (stP , hk, ·, R, ·, ·, ·, Rack, ·)
9 : return (acc, stP , num, pt)

3M-ARC.AuthReceive(stP , at)
1 : (·, ·, S, R, ·, role-at,
2 : at-succ, Rack, Rat)← stP

3 : RP ← ∅; at-succP ← true
4 : if role-at = ⊥ then

5 : role-at← SYN-ACK; (RP , numP)← at
6 : elseif role-at = SYN then

7 : (RP , numP , at-succP)← at
8 : else // receive ACK case

9 : (numP , at-succP)← at

10 : at-succ← (RP ?
⊆ S) // Boolean

11 : if at-succP then
12 : Rack ← Rack ∪ Rat; R← R \ Rat

13 : Rat ← ∅
14 : else // failure

15 : return (false, stP , num)
16 : stP ← (·, ·, S, R, num, role-at,
17 : at-succ, Rack, Rat)

18 : return (at-succ, stP , numP)

Figure 2.17: Optimised 3M-UNFORGEABLE-secure ARC scheme 3M-ARC based on a RC
scheme RC (Definition 1). ARC refers to the unoptimised ARC defined in Figure 2.10.
We assume ARC.Send updates the local variable num. As before, the representation of R
communicated can be optimised to contain only a single hash.
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active attacks, parties compare a hash H(R, R′) for hash function H out-of-band. Note
however that they do not consider RID security and that they do not formally treat
out-of-order message delivery.

Security analysis

In this section we analyze the security of the 3M-ARC scheme, which we introduce in
Figure 2.17. Correctness of 3M-ARC follows form the correctness of the underlying RC
scheme. Similarly, ORDINALS security is inherited from the underlying RC scheme. As
usual, we argue that 3M-UNFORGEABLE security follows from the collision resistance of
the underlying hash function.

Theorem 19 (Unforgeability of 3M-ARC). Let H be a (tcr, ϵcr)-collision resistant hash
function (Definition 6). Then the 3M-ARC scheme, that we present in Figure 2.17 is
(q, t, ϵcr)-3M-UNFORGEABLE secure ARC scheme where t ≈ tcr.

Proof. We proceed similarly to the proof of Theorem 13. Without loss of generality, we
analyze the authentication of P, who we assume to be the initiator, towards P. The
adversary cannot call the SEND′ and RECEIVE′ oracles once the authentication process
is started, therefore the sets S and R of both parties are fixed until the completion of the
protocol.

To authenticate the set of received messages RP , P first sends at← (RP , num) to P. To
verify the authenticity of RP , the party P verifies whether RP ⊆ SP . By the arguments
of the proof for Theorem 13, this reduces to the collision-resistance of the hash function
H where the reduction runs in time t ≈ tcr. After receiving the first tag, P is able
to detect forgeries received by P but not by itself. This is taken into account in the
3M-UNFORGEABLE game (line 3 in bad-P), which states that a forgery received by P is
valid only if it is not detected after receiving the second or third tag in the authentication
process. Then, when receiving the second tag (RP , numP , at-succP) from P, P is able to
tell if itself received a forgery if the at-succP = false. By the same arguments as before,
P can tell whether P received a forgery by checking RP ⊆ SP . Finally, upon receiving
the third tag, P can detect a forgery using at-succP .

The optimization maintains 3M-UNFORGEABLE-security. Recall that the goal of the
optimization (lines 11-13 in Figure 2.17) is to reduce the size of the R set by storing
authenticated messages in Rack. To achieve this reduction, the party executing AuthReceive
removes from R the set Rat, which is the set of received messages authenticated by the
counterpart through the at-succ variable. Since by construction all the messages in Rat
have been already authenticated by the counterpart, removing them from R does not
remove unauthenticated messages from R.
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2.6 Related work

A growing body of research explores the performance and security of messaging in both
two-party [BSJ+17, PR18b, JS18, DV19, CDV21, BRV20] and group settings [ACJM20,
ACDT21, AJM22]. Some works offer similar [JS18] and sometimes weaker [JMM19]
guarantees for in-band active attack detection, assuming in-order communication. To
our knowledge, in-band active attack detection has not been explicitly explored in group
messaging. However, schemes like the Messaging Layer Security (MLS) [ACDT21, AJM22]
ensure that if the state of two parties is forked, their states become incompatible, in some
protocol-specific sense.

Naor et al. [NRS20] introduced the concept of immediate key delivery for key exchange: if
one goes offline, the remaining ones should be able to complete it successfully by returning
a shared secret. This property is orthogonal to immediate decryption as it focuses on
keys instead of messages.

Immediate decryption was first formalized by Alwen et al. [ACD19]. Pijnenburg and
Poettering [PP22] recently extend the classic ratcheting paradigm by taking into account
the progression of physical time, thereby formalizing ciphertext expiration in order to
reduce the negative impacts of immediate decryption on forward security.

Apart from Durak and Vaudenay and Caforio et al. who introduced the RECOVER
notions, Dowling et al. [DHRR22] provide r-RECOVER, but not s-RECOVER security via
signatures, while providing anonymity guarantees even upon state exposure. Dowling
et al. [DGP22] frame their authentication guarantees as follows: if no long-term keys
are compromised, then all messages exchanged are authentic. Otherwise, active attacks
can be detected out-of-band. They achieve this by signing all messages with long-term
keys. Our protocols and security notions can be adapted to achieve these guarantees.
In distributed computing, the problem is formalised in terms of accountability, which
enables parties to detect faulty (Byzantine) nodes [HKD07, CGG+22]. In multi-party
computation, a line of work has explored security with identifiable abort [IOZ14] which
ensures that if parties fail to compute a given function, they can identify the party that
caused the failure.

In more applied work, Milner et al. [MCYR17] consider in-band detection of secret misuse
in a more general setting but achieve weaker security guarantees than e.g. RECOVER
security [CDV21]. In CONIKS [MBB+15] and a subsequent improvement like SEEM-
less [CDGM19], users can audit a PKI through a tag that is assumed to be gossiped in
an authenticated manner by parties, using ideas from transparency log systems.
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2.7 Conclusion

This chapter explores active attack detection for secure messaging systems with immediate
decryption. We propose both in-band and out-of-band detection mechanisms, addressing
scenarios where adversaries can impersonate users and inject messages on parties’ behalf.
Given the inherent performance limitations of r-RID and r-UNF security [BCC+23a,
Section 6], we investigate performance and security trade-offs to ensure that active attack
detection is both efficient and practical for real-world applications. Our analysis highlights
the importance of balancing detection accuracy with system performance, paving the way
for practical implementations that maintain robust security without sacrificing usability.
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3 Authenticated private information
retrieval

This chapter introduces protocols for authenticated private information retrieval. These
schemes enable a client to fetch a record from a remote database server such that (a) the
server does not learn which record the client reads, and (b) the client either obtains the
“authentic” record or detects server misbehavior and safely aborts. Both properties are
crucial for many applications. Standard private-information-retrieval schemes either do
not ensure this form of output authenticity, or they require multiple database replicas
with an honest majority. In contrast, we offer multi-server schemes that protect security
as long as at least one server is honest. Moreover, if the client can obtain a short digest
of the database out of band, then our schemes require only a single server. Performing an
authenticated private PGP-public-key lookup on an OpenPGP key server’s database of
3.5 million keys (3 GiB), using two non-colluding servers, takes under 1.2 core-seconds of
computation, essentially matching the time taken by unauthenticated private information
retrieval. Our authenticated single-server schemes are 30–100× more costly than state-of-
the-art unauthenticated single-server schemes, though they achieve incomparably stronger
integrity properties.

An extended abstract of this work appeared at USENIX Security 2023 [CNCG+23a] and
the full version is available on the Cryptology ePrint Archive [CNCG+23b]. This chapter’s
contributions result from a collaboration with Kirill Nikitin, Henry Corrigan-Gibbs, David
J. Wu and Bryan Ford. The author of this thesis significantly contributed to defining
multi-server and single-server authenticated PIR, designing and proving the security of
multi-server schemes, and implementing and evaluating multi-server schemes and Keyd,
a PGP key-directory server introduced in this chapter. Kirill Nikitin’s PhD thesis [Nik21]
also details the single-server authenticated PIR construction based on the decisional
Diffie-Hellman assumption (Section 3.5.2), that we include here for completeness.
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3.1 Introduction

Private information retrieval (PIR) [CGKS95] enables a client to fetch a record from
a database while hiding from the database server(s) which specific record(s) the client
retrieves. PIR has numerous privacy-protection uses, such as in metadata-private mes-
saging [AS16, ACLS18], certificate transparency [LG15, Rya14, HHC+23], video stream-
ing [GCM+16], password-breach alerting [TPY+19, LPA+19, ALP+21, PIB+22], private
blocklist lookups [KC21], retrieval of software security updates [Cap13], private web
search [HDCZ23], public-key directories [Mar17a], and private SQL-like queries on public
data [OG10, WYG+17].

Most PIR protocols, however, do not ensure data authenticity in the presence of malicious
servers. In many multi-server PIR schemes [CGKS95, BGI16], a single adversarial server
can flip any subset of bits in the client’s recovered output. In all single-server PIR
schemes we know of (c.f., [KO97, CMS99, Lip05, AMBFK16, PPY18, BIPW17, ACLS18,
GH19, CK20, PT20, ALP+21, MCR21, MW22, HHCG+23, DPC23] for a non-exhaustive
list), a malicious server can choose the exact output that the client will receive by
substituting all the database records with a chosen record before processing the client’s
request. In applications where data integrity matters, such as a PGP public-key directory,
unauthenticated PIR is inadequate.

This paper introduces authenticated private information retrieval, which augments the
standard privacy properties of classic PIR with strong authenticity guarantees. In the
multi-server setting, we propose authenticated-PIR schemes for:

• Point queries, in which a client wants to fetch a particular database record. For
example, “What is the public key for user@usenix.org?”

• Predicate queries, where a client wants to apply an aggregation operator – such as
COUNT, SUM, or AVG – to all records matching a predicate. For example, “How many
keys are registered for email addresses ending in @usenix.org?”

Our authenticated-PIR schemes guarantee integrity in the anytrust model [WCGFJ12]:
as long as at least one of the PIR servers is honest. In contrast, prior work that deals with
malicious or faulty PIR servers in the multi-server setting either requires a majority or
supermajority of servers to be honest [BS02, BS07, Gol07, DGH12] or requires expensive
public-key cryptography operations [ZS14]. Our schemes use only fast symmetric-key
cryptography in the multi-server setting.

In the single-server setting, we offer authenticated-PIR schemes for point queries which
provide authentication as long as the client can obtain a short digest of the database via
out-of-band means (Figure 3.1). Prior work for the single-server setting [KO97, WZ18,
ZWH21] ensures only that the server truthfully answers the query with respect to some
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Figure 3.1: In multi-server authenticated PIR, k ≥ 2 servers hold an exact replica of
the database and the client’s output is consistent with the honest server’s view of the
database. If at least one server is honest, the client detects any malicious behaviour
from the other servers that reply with respect to an altered database, and rejects the
answers. In the single-server setting, a potentially-malicious PIR server holds the database
outsourced by the data owner. The client’s output is consistent with a database digest
that the client obtained from the honest data owner.

database—not necessarily the database the client queried. Table 3.1 summarizes prior
work and Section 3.8 gives the complete discussion.

New definitions. Our first contribution is a new definition of integrity for private
information retrieval. In our multi-server PIR schemes, a client communicates with
several database servers, and client privacy holds as long as at least one server is honest.
In this multi-server setting, we say that a PIR scheme satisfies integrity if, whenever
the client accepts the servers’ answers, the client’s output is consistent with an honest
server’s view of the database.

Defining integrity in the single-server setting is more tricky: If the single database server
is malicious, who is to say what the “right” database is? Our approach assumes that
the client can obtain a short digest of the database via some out-of-band means. A
single-server PIR protocol satisfies integrity if the client accepts the protocol’s output
only if the output is consistent with the database that the digest represents. In some
applications of PIR, the client could obtain this database digest via a gossip mecha-
nism, as in CONIKS [MBB+15], or from a collective authority [STV+16], or from a
signature-producing blockchain [NKKJ+17]. In other applications of PIR such as video
streaming [GCM+16], a database owner—distinct from the PIR servers—might produce,
sign, and distribute this digest.

A subtle and important point is that our security definitions require protection against
selective-failure attacks by malicious servers [KO97, KS06, HKE13]. In this class of
attacks, a malicious server answers the client’s query with respect to a database that
differs from the true database in a few rows. By observing whether the client accepts
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or rejects the resulting answer, the server can learn information about which rows the
client had queried. To defend against these attacks, our security definitions require that
any misbehavior on the part of a malicious server causes a client to reject the servers’
response.

New constructions. We construct new authenticated-PIR schemes in the multi- and
single-server settings.

Multiple servers, point queries. Our first multi-server PIR scheme allows the client to make
only point queries—to fetch single records from the database. The scheme is simple to
implement and has minimal performance overhead. In this scheme, the servers compute a
Merkle tree over the database rows and send the client the Merkle root. The client aborts
if the servers send different roots. The client then uses unauthenticated PIR to fetch its
desired row and a Merkle inclusion proof with respect to the root. The scheme provides
authentication when composed with certain—though not all—standard PIR schemes.
(Kushilevitz and Ostrovsky suggested using Merkle trees in this setting [KO97], though we
are the first to formalize the approach and identify the class of PIR schemes for which it is
secure.) On a database containing N records of ℓ bits, and on security parameter λ, our two-
server authenticated-PIR scheme for point queries has communication cost O(λ log N +ℓ),
which matches the cost of the best unauthenticated schemes. Experimentally, this form
of authentication imposes less than 3× computational and 1.6× bandwidth overhead,
compared with unauthenticated PIR.

Multiple servers, predicate queries. Our multi-server scheme for predicate queries starts
with an existing unauthenticated scheme based on function secret sharing [BGI15, BGI16,
WYG+17]. We cannot use Merkle trees for authentication: the space of possible queries
is exponentially large, so the servers cannot precompute and authenticate each potential
answer as before. The client instead uses an information-theoretic message-authentication
code—common in malicious secure multiparty protocols [DPSZ12, CDF+08]—to detect
whether a server has tampered with its answer. Asymptotically, the communication and
computation of our authenticated-PIR scheme for predicate queries matches the costs
of the corresponding unauthenticated scheme. Empirically, the authenticated scheme
incurs a median overhead of less than 1.02× for both user time and bandwidth. Our
multi-server scheme for predicate queries is concretely more computationally expensive
(at least 350×) than our scheme for point queries because the cost of evaluating the
function secret shares is non-trivial. Thus, this scheme does not scale as well to a large
number of servers compared to our specialized multi-server scheme for point queries.

Single server, point queries. Finally, we give two single-server authenticated-PIR protocols:
one from the learning-with-errors assumption, and one from the decisional-Diffie-Hellman
assumption. Like many recent single-server PIR protocols [AMBFK16, ACLS18, ALP+21,
HHCG+23], our schemes extend the classic Kushilevitz-Ostrovsky scheme based on

60



3.1 Introduction

additively homomorphic encryption [KO97, OS07]. Our schemes incorporate additional
randomness that the client uses to authenticate the server’s response. The client verifies
the server’s reply using a short database digest that the client obtains via out-of-band
means. Our schemes operate with single-bit records. We propose extensions for handling
larger records, but they require increased client computation: more efficient single-server,
multi-bit authenticated PIR remains a promising area for future work. Over a database
of size N and with security parameter λ, our single-server authenticated-PIR schemes
have communication cost

√
N · poly(λ). In contrast, unauthenticated schemes have

communication cost as low as log N · poly(λ). Our fastest single-server scheme is 30-100×
more computationally expensive than the fastest unauthenticated scheme.

An example application. To evaluate authenticated PIR in the context of a practical
application, we design and build Keyd, a privacy-preserving PGP public-key directory
deployed in the two-server setting. A Keyd client can query the servers for the PGP public
key corresponding to a particular email address without leaking the queried email address
to the servers. Moreover, a Keyd client can also query the servers for private analysis of
the PGP public keys dataset by issuing conjunctive COUNT, SUM and AVG queries without
leaking the parameter of the keys over which the predicate is computed. For example, a
client can issue a query of the form SELECT COUNT(*) FROM keys WHERE keyAlgorithm
= p, where p represents the hidden parameter of the predicate, e.g., RSA or ElGamal.
Our new authenticated-PIR schemes provide the client with a strong integrity guarantee
about the output of the protocols. When run on a recent dump of the SKS PGP key
directory, including over 3.5 million keys, querying for a particular key takes the client
1.11 seconds, compared with 1.10 seconds with unauthenticated PIR. Issuing predicate
queries with Keyd on the same database imposes an overhead of 1.01× on user time and
of 1.05× on bandwidth compared with unauthenticated PIR.

3.1.1 Summary

In summary, in this chapter we make the following contributions:

• In Section 3.3 we introduce the first definition of authenticated PIR in both
dishonest-majority and single-server settings. These schemes atomically ensure
query privacy and authenticity of the data that the client retrieves.

• In Section 3.4 we present a multi-server authenticated PIR scheme for point queries
and another multi-server authenticated PIR scheme for predicate queries, which
enables a client to compute a non-trivial function over the database records.

• Section 3.5 introduces two single-server schemes for point queries. The first scheme
builds on the decisional Diffie-Hellman assumption and the other on the learning
with errors assumption.
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Multi-server schemes
Robust PIR [BS02, BS07] 1 ✗ ✗ ✓ ✓

Byzantine PIR [BS02, BS07, Gol07, DGH12, Kur19] >2k/3 ✓ ✓ ✓ ✓

Fault-tolerant PIR [YXB02] >k/2 ✓ ✓ ✓ ✓

Verifiable PIR [ZS14] 1 ✓ ✓ ✗ ✗

Authenticated PIR (§3.4, §3.5) 1 ✓ ✓ ✓ ✗

Single-server schemes
KO97 [KO97] 0 ✓ ✗ ✗ ✗

Verifiable PIR [WZ18, ZWH21] 0 ✓ ✗ ✗ ✗

Authenticated PIR (§3.5) 0 ✓ ✓ ✗ ✗

Table 3.1: Summary of PIR schemes that tolerate dishonest servers. The multi-server
schemes assume a total of k servers. Malicious indicates whether the schemes resist
malicious adversaries, rather than just faulty servers. Selective-failure secure indicates
schemes designed to resist selective-failure attacks [KS06]. No public-key cryptography
refers to schemes that require only fast symmetric primitives; single-server schemes always
require public-key operations [CMO00]. Recovery indicates whether, in case of a server’s
misbehaviour, the client is able to recover the correct output or just aborts.

• We implement (Section 3.6) and evaluate (Section 3.7) all the schemes that we
propose, assessing the practicality of authenticated PIR with Keyd, a PGP public-
key directory service that we build our multi-server authenticated PIR schemes.

3.2 Background and motivation

This section reviews classic PIR schemes, and why naïvely introducing integrity protection
into them is unsafe.

3.2.1 Private information retrieval (PIR)

A PIR protocol [CGKS95] takes place between a client and one or more servers. Each
server holds a copy of a database consisting of a set of equal-length records. The client
wants to query the database without revealing the details of its query to the servers.
Modern PIR protocols support two types of queries: (1) the client can fetch a single
record from the database, without revealing which record it retrieved, or more generally,
(2) the client can evaluate a function on all the database records, without revealing which
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function it evaluated. Non-trivial PIR schemes must also be communication efficient,
requiring the client and servers to exchange a number of bits sublinear in the database
size. Otherwise, the client could simply download the entire database and perform the
query locally.

There are two main types of PIR protocols: multi-server and single-server. In multi-server
PIR [CGKS95], the client communicates with k > 1 database replicas; correctness holds if
all k servers are honest and privacy holds if at least one server is honest. Multi-server PIR
schemes traditionally offer information-theoretic privacy. In single-server PIR schemes
(k = 1) [KO97], correctness holds if the single server is honest and privacy holds against
a dishonest server. Single-server PIR schemes require a computationally-bounded server
and public-key cryptographic operations [CMO00].

In many applications, the database is a list of (keyword, value) pairs; the PIR client holds
a keyword and wants the associated value. In this chapter, we construct authenticated
PIR schemes for integer-indexed arrays, and we use off-the-shelf methods [CGN98, GI14]
to convert these schemes into authenticated keyword-based PIR schemes.

3.2.2 Why integrity matters in PIR

Standard PIR schemes give the client no integrity guarantees. If any one of the servers in
a single- or multi-server scheme deviates from the protocol, the malicious server can—in
many PIR protocols—completely control the output that the client receives. In other
words, classic PIR protocols do not ensure correctness against even just one malicious
server.

This lack of integrity protection is extremely problematic in many applications of PIR:

• Public-key server : If a client uses PIR to query a PGP or Signal key server for
a contact’s public keys, a malicious server could cause the client to fetch a false
public key for which the adversary controls the secret key.

• Domain name system: If a client uses PIR to query a DNS resolver, a malicious
PIR server could cause the client to recover the wrong IP address for a hostname
and thus poison the client’s DNS cache.

• Online certificate status protocol (OCSP): If a client uses PIR to query the revocation
status of a public key, a malicious PIR server could trick the client into trusting a
certificate that was revoked by the CA after compromise.

• Content library: If a client uses PIR to fetch a movie [GCM+16] or a software
update, a malicious PIR server could cause the client to recover a malware-infected
file instead.

Non-private variants of these applications can already offer integrity. For example,
CONIKS [MBB+15] provides integrity of key bindings for public-key directory servers
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and DNSSEC [AAL+05] ensures integrity of DNS data. The challenge is thus to ensure
integrity in the private variants of these applications.

3.2.3 Selective failure and other attacks on PIR

We can always compose standard authentication mechanisms with PIR. For example, a
database owner – the party responsible for its creation – can append to each database row a
digital signature on the record under the database owner’s key or a Merkle inclusion proof
with respect to a known root. The database owner can then outsource the authenticated
database to an untrusted PIR server. After performing a query, the client simply checks
the authentication tag on the row it retrieved.

This attempt at authenticated PIR is insecure and vulnerable to selective-failure at-
tacks [KS06]. In such attacks, a malicious PIR server selectively corrupts the database
so that only targeted queries fail the integrity check. Suppose a malicious PIR server
“guesses” that the client is likely to access a particular record, and corrupts only that
record. The client’s integrity check then fails only if the attacker’s guess was correct. If
the attacker can determine whether the client accepted or rejected the PIR protocol’s
output—e.g., via the client’s subsequent behavior—the attacker can violate client privacy.

Naïve composition can yield other security and privacy hazards. For example, if authenti-
cation tags attached to database rows do not uniquely identify the database version and
row number, then a malicious PIR server might undetectably swap or duplicate rows or
replay old database versions.

Even in a multi-server setting where one malicious server cannot unilaterally corrupt
database rows independently, but is limited to blindly flipping bits in its answer without
knowing which row these bit-flips will affect, more subtle attacks on naïve compositions
may be readily feasible. If rows are protected by malleable digital signatures [DDN91],
for example, then a malicious server might flip signature bits in the result so that the
signature of a particular “guessed” database row becomes a different still-valid signature
the client will accept, while the signatures on all other rows become invalid.

3.3 Defining authenticated PIR

We now define authenticated PIR in the multi- and single-server settings. In both models,
we wish to ensure that the client either obtains “correct” (authentic) output, or else safely
rejects the answer without leaking any private information. Privacy must hold even if
the PIR servers learn whether the client has accepted or rejected the answer. Therefore,
our protocols protect against selective-failure attacks (Section 3.2.3).
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3.3.1 Multi-server definition

We now define k-server authenticated PIR schemes, for k ≥ 2. Our definition generalizes
private information retrieval to weighted functions of the database rows: the client has a
secret function f in mind, which must come from a particular class of functions F . The
servers hold a database (x1, . . . , xN ) and public “weights” (w1, . . . , wN ), one per database
row. The client’s goal is to get the weighted sum of its private function f applied to
each of the rows:

∑
i∈[N ] wif(i, xi). When the function class F is expressive enough, this

general syntax subsumes not only the usual definition of multi-server PIR, but also more
expressive PIR schemes for predicate queries.

Definition 20 (k-server authenticated PIR for predicate queries). A k-server authenti-
cated PIR scheme for function class F ⊆ Funs[[N ]× {0, 1}ℓ,F], database size N ∈ N, and
weights w ∈ FN , consists of three efficient algorithms:

• Query(1λ, f)→ (st, q1, . . . , qk). Given a security parameter λ, expressed in unary,
and a function f ∈ F , return secret client state st and queries q1, . . . , qk, one per
server.

• Answer(X, w, q) → a. Apply query q to database X = (x1, . . . , xN ) ∈ ({0, 1}ℓ)N

together with weights w = (w1, . . . , wN ) ∈ FN and return answer a.

• Reconstruct(st, a1, . . . , ak) →
{ ∑

i∈[N ] wif(i, xi),⊥
}

. Take as input client state st
and answers a1, . . . , ak and return the weighted output of the function f applied to
the rows of database X, or an error ⊥.

A k-server authenticated-PIR protocol must satisfy the following properties, which we
state formally and informally.

Correctness. Informally, an authenticated-PIR scheme is correct if, when an honest
client interacts with honest servers, the client always recovers the weighted output of its
chosen function applied to the database, i.e.,

∑
i∈[N ] wif(i, xi).

Definition 21 (Multi-server authenticated PIR correctness). A k-server
authenticated-PIR scheme Π = (Query, Answer, Reconstruct) for function class
F ⊆ Funs[[N ]× {0, 1}ℓ,F] and database size N ∈ N satisfies correctness if for every
X = x1, . . . , xN ∈ {0, 1}ℓ, ℓ ∈ N, w ∈ FN , λ ∈ N, f ∈ F , the following holds:

Pr



y =
∑
i∈[n]

wif(i, xi) :

(st, q1, . . . , qk)← Query(1λ, f)
aj ← Answer(X, w, qj) ∀j ∈ [k]
y ← Reconstruct(st, a1, . . . , ak)


= 1,
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where the probability is computed over all the random coins used by the algorithms of
the scheme.

Integrity. An authenticated-PIR scheme preserves integrity with error ϵ if, when an
honest client interacts with a set of k servers, where at most k − 1 can be malicious and
might arbitrarily deviate from the protocol, the client either: outputs the sum of products
of its desired function and weights applied to the database, or outputs the error symbol
⊥, except with probability ϵ. If the scheme has negligible integrity error, we just say that
it “preserves integrity.” Classic PIR schemes do not ensure this integrity property.

Definition 22 (Multi-server authenticated PIR integrity). A k-server authenticated-PIR
scheme Π = (Query, Answer, Reconstruct) for function class F ⊆ Funs[[N ]× {0, 1}ℓ,F]
and database size N ∈ N preserves integrity with error ϵ if for every efficient adversary
A, and for every X = x1, . . . , xN ∈ {0, 1}ℓ, ℓ ∈ N, w ∈ FN , λ ∈ N, f ∈ F , jgood ∈ [k], the
following probability is negligible in the security parameter λ:

Pr



y ̸∈

 ∑
i∈[N ]

wif(i, xi),⊥

 :

(st, q1, . . . , qk)← Query(1λ, f)
{aj}j ̸=jgood

← A(X, w, {qj}j ̸=jgood)

ajgood ← Answer(X, w, qjgood)
y ← Reconstruct(st, a1, . . . , ak)


≤ ϵ,

where the probability is computed over all the random coins used by the algorithms of
the scheme.

Privacy (against malicious servers). An authenticated-PIR scheme satisfies privacy if
any coalition of up to k− 1 malicious servers “learns nothing”—in a strong cryptographic
sense—about which function in the function class F the client wants to evaluate on the
database, even if the servers learn whether the client’s output was the error symbol ⊥
during reconstruction. Standard PIR schemes do not necessarily satisfy our strong notion
of privacy, since such schemes may be vulnerable to selective-failure attacks (Section 3.2.3);
authenticated-PIR schemes that provide privacy are not.

Definition 23 (Authenticated PIR privacy). Let Π = (Query, Answer, Reconstruct) be
a k-server authenticated-PIR scheme for function class F ⊆ Funs[[N ]× {0, 1}ℓ,F] and
database size N ∈ N. For X = x1, . . . , xN ∈ {0, 1}ℓ, ℓ ∈ N, w ∈ FN , λ ∈ N, f ∈ F ,
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jgood ∈ [k], and an adversary A = (A0,A1), define the distribution

REALA,jgood,f,λ,X,w =


β̂ :

(st, q1, . . . , qk)← Query(1λ, f)
ajgood ← Answer(X, w, qjgood)(
stA, {aj}j ̸=jgood

)
← A0(X, w, {qj}j ̸=jgood)

y ← Reconstruct(st, a1, . . . , ak)
b← 1{y ̸= ⊥}
β̂ ← A1(stA, b)


.

Similarly, for a simulator S = (S0,S1), define the distribution

IDEALA,S,F ,λ,X,w =


β :

(stS , Q)← S0(1λ,F , X, w)
(stA, A)← A0(X, w, Q)
b← S1(stS , A)
β ← A1(stA, b)


.

We say Π is private if for every efficient adversary A = (A0,A1), and for every X =
(x1, . . . , xN ) ∈ ({0, 1}ℓ)N , w ∈ FN , there exists a simulator S = (S0,S1) such that for all
λ ∈ N, f ∈ F , jgood ∈ [k], the following holds:

REALA,jgood,f,λ,X,w ≈c IDEALA,S,F ,λ,X,w

We say that an authenticated-PIR scheme is secure if it satisfies both integrity and
privacy. We define integrity and privacy separately because, as Section 3.3.3 shows, we
can reduce the integrity error of a PIR scheme that provides privacy.

Remark 24 (Selective-failure attacks). Including the acceptance bit in the adversary’s
view ensures protection against selective failure attacks, where whether a client accepts
or not leaks information about the client’s query. For example, an authenticated-PIR
scheme execution, a malicious server could replace a single record i in the database
with garbage. Now, if the client’s query does not depend on the value of record i, then
everything proceeds normally. However, if the query does depend on the value of record
i, then it receives a garbage value. Depending on the application, receiving a garbage
value could cause the client to abort the protocol prematurely, or retry the protocol; in
both of these cases, if the client engages in some kind of recovery mechanism, the server
immediately learns information about the client’s chosen index i. Definition 23 captures
security against selective failure attacks by requiring that the probability of whether the
client’s response is valid or not (i.e., whether y ̸= ⊥) is not correlated with the client’s
query (since the same simulator works for all functions f and moreover, the simulator is
not provided f as input). In this way, a malicious server that learns whether the protocol
completed successfully or not still cannot learn anything about the client’s query.
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Example 25 (PIR for point queries—Standard PIR). In authenticated-PIR schemes for
point queries, as in a standard PIR scheme, a client privately fetches a single database row.
We can recover this functionality from Definition 20, where we take the row length ℓ = 1 for
simplicity. The class of functions F is the class of point functions F = {f (1), . . . , f (N)} ⊆
Funs[[N ]× {0, 1},F], where f (i)(i, ·) = 1 and f (i)(i′, ·) = 0 for all i′ ̸= i. The weights are
the database entries themselves, i.e., wi = xi ∈ {0, 1} ⊆ F, for i ∈ [N ].

Example 26 (COUNT query). A COUNT predicate query counts the database entries
satisfying a predicate. A client can count the occurrences of a string σ ∈ {0, 1}ℓ in
a database x1, . . . , xN ∈ {0, 1}ℓ using the class of functions F ⊆ Funs[[N ] × {0, 1}ℓ,F],
where f(·, xi) = 1 if xi = σ and f(·, xi) = 0 otherwise, with constant weights wi = 1F,
i ∈ [N ].

Remark 27 (Security against k − 1 malicious servers). The form of authenticated
PIR we define above requires security to hold even against coalitions of up to k − 1
malicious servers. This defines the minimal requirement for multi-server PIR schemes,
which do not support complete collusion, and is a model frequently used in anonymous
communication systems [WCGFJ12, KLDF, AS16]. In particular, the colluding servers
can share their queries with each other and agree on the answers. The protocols that
we construct satisfy this strong notion of security. A weaker definition requires security
to hold against only adversaries that control a lower threshold t < k − 1 of the servers.
Prior work [BS02, BS07, Gol07] takes t < k/2 or t < k/3. We discuss these and other
related approaches in Section 3.8.

Remediation measures. Authenticated-PIR schemes guarantee security with abort:
the client either receives the authentic output or aborts, except with negligible probability.
This work does not specify what actions a client could take following an abort, such as
identifying the misbehaving server or recovering to continue the protocol. However, we
briefly outline potential extensions to incorporate such remediation measures.

In the event of an abort, several strategies can address server misbehavior while balancing
privacy and accountability. One approach is to accept the abort, acknowledging that
denial-of-service attacks remain possible regardless of the (authentication) PIR protocol.
For instance, a server could simply deny having received the client’s query. If identifying
the misbehaving server is not essential, the client may take no further action. However, if
accountability is desired, servers could sign both the query and corresponding answer,
enabling the client to publicly present evidence of misbehavior without compromising
query privacy.

• Database replication and verification: The client can download the entire database,
replicate the servers’ computations, and identify discrepancies between expected and
actual responses. Misbehaving servers can then be held accountable by publishing
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the incorrect query and answer (qi, ai) pairs, for i ∈ [k]. While this approach incurs
a communication overhead linear in the database size, it enables the client to blame
malicious servers without compromising privacy.

• Zero-knowledge proofs: A server could use zero-knowledge proofs to demonstrate
that its signed (qi, ai) pair, i ∈ [k], matches the correct computation on the database
for a well-formed query. This method allows the server’s integrity to be verified
without revealing the client’s query, maintaining privacy. However, it is likely to
incur significant concrete costs.

• Cut-and-choose protocols [ZHKS16]: The client could send trap queries specifically
crafted to verify server honesty. A cut-and-choose mechanism would detect incon-
sistencies and identify misbehavior while preserving query privacy. This approach
is likely the most efficient in terms of communication and computation overhead.
Dietz and Tessaro utilize similar verification queries in their work on fully malicious
authenticated PIR [DT24].

These strategies represent potential extensions to authenticated-PIR protocols for address-
ing server misbehavior while preserving the system’s privacy and integrity guarantees.
Formalizing and evaluating these remediation measures is left as an open problem for
future work.

3.3.2 Single-server definition

This section defines single-server authenticated PIR. One challenge to providing integrity
in the single-server setting is that the client has no source of information about the
database content other than the server itself. (In the multi-server setting, the honest
server acts as a source of “ground truth.”) A malicious server can answer the client’s
query with respect to a database of the server’s choosing, and completely control the
client’s output. We address this problem by introducing a public database digest that
cryptographically binds the server to a given database and serves as the ground truth in
the scheme. In applications, the client must obtain this digest via out-of-band means,
e.g., via gossip, as in CONIKS [MBB+15], or from the database owner if the latter is
distinct from the PIR server.

We now give the formal definition of a single-server authenticated-PIR scheme, which
differs from the multi-server definition in its use of a digest and in the absence of complex
queries. We assume for simplicity that each database record consists of a single bit. The
definition generalizes naturally to databases with longer rows.

Definition 28 (Single-server authenticated PIR for point queries). A single-server au-
thenticated PIR scheme, for a database of size N ∈ N, consists of the following algorithms:
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• Digest(1λ, x) → d. Take a security parameter λ (in unary) and a database x ∈
{0, 1}N and return a digest d.

• Query(d, i)→ (st, q). Take as input a digest d and an index i ∈ [N ] and return a
client state st and a query q.

• Answer(d, x, q) → a. Apply query q to database x ∈ {0, 1}N with digest d and
return answer a.

• Reconstruct(st, a) → {0, 1,⊥}. Take as input state st and answer a and return a
database bit or an error ⊥.

A single-server authenticated-PIR scheme must satisfy analogous properties to those
in the multi-server setting: correctness, integrity and privacy. If a scheme satisfies both
integrity and privacy, we say that the scheme is secure. We now present the formal
definitions.

Definition 29 (Single-server authenticated PIR correctness). A single-server
authenticated-PIR scheme (Digest, Query, Answer, Reconstruct) satisfies correctness if for
every database x ∈ {0, 1}N , i ∈ [N ], and λ ∈ N, the following holds:

Pr

x′
i = xi :

d← Digest(1λ, x)
(st, q)← Query(d, i)

a← Answer(d, x, q)
x′

i ← Reconstruct(st, a)

 ≥ 1− negl(λ),

Definition 30 (Single-server authenticated PIR integrity). A single-server authenticated-
PIR scheme (Digest, Query, Answer, Reconstruct) has integrity error ϵ if for every efficient
(non-uniform) adversary A, every database x ∈ {0, 1}N , and index i ∈ [N ],

Pr

x′
i ̸∈ {xi,⊥} :

d← Digest(1λ, x)
(st, q)← Query(d, i)

a∗ ← A(d, x, q)
x′

i ← Reconstruct(st, a∗)

 ≤ ϵ(λ) + negl(λ),

where the probability is only taken over the choice of query randomness1. We say the
scheme provides integrity if it has integrity error 0.

Remark 31 (On non-uniform hardness). As written, Definition 30 requires integrity to
hold against non-uniform adversaries. This version of the assumption explicitly captures
the fact that the probability of an integrity failure is only taken over the randomness
of query generation (and not the adversary). Thus, a malicious server cannot induce

1Note that since the adversary is allowed to take non-uniform advice, we can assume without loss of
generality that the adversary is deterministic (and incur at most a constant loss in advantage).
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correlated integrity failures across multiple independently-generated queries. This property
is very useful for our integrity amplification transformation (Appendix B.1). We could
also consider a more complex (multi-query) variant of this assumption that applies to
both uniform and non-uniform adversaries (and which suffices for the transformation in
Appendix B.1). For simplicity of exposition, we opt to give the stronger, but simpler-to-
describe non-uniform notion here.

Definition 32 (Single-server authenticated PIR privacy). Let (Digest, Query, Answer,
Reconstruct) be a single-server authenticated-PIR scheme. For a security parameter λ ∈ N,
a database x ∈ {0, 1}N , an index i ∈ [N ], and an adversary A = (A0,A1), define the
distribution

REALA,x,i,λ :=


β̂ :

d← Digest(1λ, x)
(st, q)← Query(d, i)
(stA, a∗)← A0(d, x, q)
x′

i ← Reconstruct(st, a∗)
b← 1{x′

i ̸= ⊥}
β̂ ← A1(stA, b)


.

Similarly, for a simulator S = (S0,S1), define the distribution

IDEALA,S,x,λ :=


β :

d← Digest(1λ, x)
(stS , q)← S0(d, x)
(stA, a∗)← A0(d, x, q)
b← S1(stS , a∗)
β ← A1(stA, b)


.

An authenticated PIR scheme (Digest, Query, Answer, Reconstruct) has privacy if for every
adversary A = (A0,A1) there exists a simulator S = (S0,S1) such that for every database
length N = N(λ), database x ∈ {0, 1}N , index i ∈ [N ], the following holds:

|Pr[realA,x,i,λ = 1]− Pr[idealA,S,x,λ = 1]| ≤ negl(λ).

Remark 33 (Adaptive notions of privacy). We could also consider stronger versions
of privacy (Definition 32) where the adversary chooses the query adaptively after seeing
the digest. In both of our single-server authenticated-PIR constructions (Constructions 3
and 4), the digest is a deterministic function of the database, and hence, choosing the
query adaptively does not help the adversary. For this reason, we opt to give the (simpler)
privacy definition.
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Malformed digest. Our schemes guarantee integrity for single-server authenticated PIR
only when the client uses an honestly-generated digest. In all applications of single-server
PIR that we envision, this security guarantee is sufficient—the client’s goal is to check
that a (possibly malicious) PIR server’s answer is consistent with the (correct) digest that
the client has obtained out-of-band from the data owner. Stronger notions of security are
possible, however. We could require that even if the digest is generated adversarially, the
client is guaranteed to recover output that is consistent with some n-bit database. This
stronger notion is related to that of simulatable adaptive oblivious transfer [CNS07] and
extends to other cryptographic primitives [FS09, JL09].

3.3.3 Integrity amplification

The lattice-based single-server authenticated-PIR schemes that we construct in Section 3.5
have noticeable integrity error ϵ = 1/poly(λ) for some parameter settings. Here we show
how to combine an authenticated-PIR scheme that provides privacy and has integrity
error ϵ with any error-correcting code to reduce the integrity error to a negligible quantity,
in both the multi- and single-server settings. In particular, we prove the following theorem:

Theorem 34 (Integrity amplification, informal). If Π is an authenticated-PIR scheme
with privacy and with integrity error ϵ then, for every t ∈ N, there is an authenticated-PIR
scheme Π′ with privacy and with integrity error ϵt+1, where Π′ invokes Π at most 2t + 1
times.

The integrity-amplification construction works as follows:

• The server first encodes each database record with an error-correcting code. Suppose
each encoded record is n bits and that the error-correcting code can correct t errors.
The server constructs n databases where the jth database contains the jth bit of
the codeword for each record.

• To retrieve a record i, the client makes n authenticated PIR queries to obtain the
n bits of the codeword encoding record i. Let y1, . . . , yn be the responses. If yj = ⊥
for any j ∈ [n], the client rejects with output ⊥. Otherwise, the client decodes
y = y1 · · · yn to obtain the record.

If the error-correcting code supports decoding codewords with up to t errors and the
authenticated-PIR scheme has integrity error ϵ, then the integrity error of this construction
is at most ϵt+1. Specifically, to compromise integrity, the server must corrupt at least t + 1
bits yj . Integrity of the underlying scheme ensures that the probability the adversary
succeeds in corrupting yj is at most ϵ. Each query is independent, so the server’s success
probability is now ϵt+1.
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A basic instantiation of this paradigm is to instantiate using the simple repetition code,
where the encoding of a bit b ∈ {0, 1} simply consists of 2t + 1 copies of b. This basic
repetition code corrects up to t errors. The client uses the base authenticated PIR scheme
Π 2t + 1 times to fetch each of the 2t + 1 bits of the codeword corresponding to its desired
database record. If any of these 2t + 1 runs output ⊥, the client outputs ⊥. If none of
the 2t + 1 runs output ⊥, then either: (a) the client recovers at least t + 1 correct bits of
the codeword, in which case the client correctly recovers its desired output bit, or (b)
the client recovers an incorrect bit on more than t of the protocol runs, which happens
with probability at most ϵt+1, by the ϵ-integrity of the underlying PIR scheme. Setting
t = λ/ϵ then yields a construction with negligible integrity error.

When the database records are longer (e.g., field elements instead of bits), we can use
better error-correcting codes with higher rate compared to the basic repetition code.
This allows amplifying integrity with fewer repetitions. In Appendix B.1, we formally
describe a single-server construction that uses an error-correcting code that supports
multi-bit records over any field to amplify the integrity of a single-server authenticated
PIR scheme.

3.4 Multi-server authenticated PIR

We give two constructions of multi-server authenticated PIR.

3.4.1 Point queries via Merkle trees

We first present a multi-server authenticated-PIR scheme for point queries. This scheme
enables a client with a secret index i ∈ [N ] to retrieve the ith record from a database of
N records.

A natural way to construct an authenticated-PIR scheme is to combine a standard (unau-
thenticated) multi-server PIR scheme with a standard integrity-protection mechanism,
such as Merkle trees [Mer87]. While this composition is in general insecure under our
definition, we show that it can be secure with a careful choice of the underlying primitives.

Preliminaries: Merkle tree and classic multi-server PIR

We formally define Merkle tree and classic multi-server PIR schemes together with their
security properties.

Definition 35. A Merkle-tree scheme M = (Digest, ProveIncludes, VerifyIncludes), which
is parametrized by a digest length ℓdig ∈ N and a inclusion proof length ℓπ ∈ N, for a
database x ∈ {0, 1}N , N ∈ N, consists of two possibly randomized algorithms and one
deterministic algorithm:
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• Digest(1λ, x)→ d. Given a security parameter λ, expressed in unary, and a database
x ∈ {0, 1}N , returns a database digest d ∈ {0, 1}ℓdig .

• ProveIncludes(1λ, x, i, xi)→ {πi,⊥}. This deterministic algorithm, on input a secu-
rity parameter λ expressed in unary, a database x ∈ {0, 1}N , a index i ∈ [N ] and a
database record xi ∈ {0, 1}, outputs a unique proof πi ∈ {0, 1}ℓπ if xi ∈ x and ⊥
otherwise.

• VerifyIncludes(d, i, xi, πi)→ {0, 1}. Given a digest d ∈ {0, 1}ℓdig , a index i ∈ [N ], a
database entry xi ∈ {0, 1} and a proof πi ∈ {0, 1}ℓπ , outputs 1 if πi proves that
the database represented by the digest d contains the record xi at position i and 0
otherwise.

A Merkle-tree scheme defined in Definition 35 is required to satisfy the following properties.

Definition 36 (Merkle tree correctness). Let M = (Digest, ProveIncludes, VerifyIncludes)
be a Merkle-tree scheme as defined in Definition 35, parametrized by a digest length
ℓdig ∈ N and a inclusion proof length ℓπ ∈ N, for a database x ∈ {0, 1}N , N ∈ N. We say
that M satisfies correctness if, for all i ∈ [N ], the following holds:

Pr

b = 1 :
d← Digest(x)
π ← ProveIncludes(x, i, xi)
b← VerifyIncludes(d, i, xi, π)

 = 1.

Definition 37 (Merkle tree uniqueness). Let M = (Digest, ProveIncludes, VerifyIncludes)
be a Merkle-tree scheme as defined in Definition 35, parametrized by a digest length
ℓdig ∈ N and a inclusion proof length ℓπ ∈ N, for a database x ∈ {0, 1}N , N ∈ N. Let A
be an efficient adversary. M ensures uniqueness if the following holds:

Pr


b = b′ = 1 :

(x, i, xi, πi, π′
i)← A(1λ, N)

if πi = π′
i then abort

d← Digest(x)
b← VerifyIncludes(d, i, xi, πi)
b′ ← VerifyIncludes(d, i, xi, π′

i)


≤ negl(λ).

Definition 38 (Merkle tree soundness). Let M = (Digest, ProveIncludes, VerifyIncludes)
be a Merkle-tree scheme as defined in Definition 35, parametrized by a digest length
ℓdig ∈ N and a inclusion proof length ℓπ ∈ N, for a database x ∈ {0, 1}N , N ∈ N. Let A
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be an efficient adversary. M satisfies soundness if the following holds:

Pr

b = 1 :

(x, i, x∗
i , πi)← A(1λ, N)

if xi = x∗
i then abort

d← Digest(x)
b← VerifyIncludes(d, i, x∗

i , πi)

 ≤ negl(λ).

We now define standard k-server unauthenticated-PIR schemes, for k ≥ 2.

Definition 39 (k-server PIR for point queries). A k-server unauthenticated-PIR scheme
for point queries parametrized by a database length N ∈ N, consists of three efficient,
and possibly randomized, algorithms:

• Query(1λ, i) → (st, q1, . . . , qk). Given a security parameter λ, expressed in unary,
and an index i ∈ [N ], return client state st and queries q1, . . . , qk.

• Answer(x, q)→ a. Apply query q to database x ∈ {0, 1}N and return answer a.

• Reconstruct(st, a1, . . . , ak)→ xi. Take as input client state st and answers a1, . . . , ak

and return the ith record of the database xi.

A k-server unauthenticated-PIR scheme is required to satisfy the following properties.

Definition 40 (PIR correctness). An unauthenticated-PIR scheme PIR = (PIR.Query,

PIR.Answer, PIR.Reconstruct), parametrized by a number of servers k ∈ N and a database
size N ∈ N satisfies correctness if for every x ∈ {0, 1}N , the following holds:

Pr

x′
i = xi :

(st, {qi}i∈[k])← PIR.Query(i)

aj ← PIR.Answer(x, qj) ∀j ∈ [k]
x′

i ← PIR.Reconstruct(st, a1, . . . , ak)

 = 1,

where the probability is computed over all the random coins used by the algorithms of
the scheme.

Definition 41 (PIR security). Let PIR = (PIR.Query, PIR.Answer, PIR.Reconstruct) be
an unauthenticated-PIR scheme for point queries parametrized by a number of servers
k ∈ N and a database size N ∈ N. Let S be any subset of k − 1 elements from [k]. For
i ∈ [N ] let the distribution

REALi =

 ⋃
j∈S

qj : (st, q1, . . . , qk)← PIR.Query(i)

 .

Similarly, for a simulator S, let the distribution

IDEALS =
{
{qj}j∈S ← S

}
.
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A classic unauthenticated-PIR scheme PIR = (PIR.Query, PIR.Answer, PIR.Reconstruct)
parametrized by a database length N ∈ N and a number of servers k ∈ N is secure if for
every i ∈ [N ], the following holds:

REALi ≈c IDEALS .

In this work, we consider only linear classic PIR schemes. Many standard PIR schemes
are linear [CGKS95, GI14, BGI16, CK20].

Definition 42 (Linear PIR). Let PIR = (PIR.Query, PIR.Answer, PIR.Reconstruct) be a
classic PIR scheme for point queries parametrized by a number of servers k ∈ N and a
database size N ∈ N. We say that PIR is a linear PIR scheme if the Reconstruct algorithm
is the sum of the individual severs’ answers.

We sketch the construction here and formally present it in Construction 1. This con-
struction uses a standard multi-server PIR scheme in which (a) the client sends a single
message to each server and receives a single message in return and (b) client reconstructs
its output by summing up (or XORing) the answers from the servers. Many standard
PIR schemes have this form [CGKS95, GI14, BGI16, CK20] (see Definition 42).

In these schemes, if any of the servers deviate from the prescribed protocol, the worst
they can do is to cause the client to recover the correct output shifted by a constant of the
adversarial servers’ choosing. Therefore, instead of recovering the message m ∈ {0, 1}ℓ,
the client recovers m⊕∆, for some non-zero value ∆ ∈ {0, 1}ℓ.

Our approach then is to have the servers compute a Merkle tree over the N database
entries along with their indices: {(1, x1), . . . , (N, xN )}. Call the root of the tree R. Then
for each entry, each server constructs a Merkle proof πi of inclusion in the tree rooted at
R and attaches this proof to each database record. The asymptotic complexity of this
preprocessing phase is O(N); we discuss concrete costs in Section 3.7. Finally, the client
and servers run the PIR protocol over the database {(1, x1, π1), . . . , (N, xN , πN )}. Each
of the servers also sends the Merkle root R to the client.

The client first checks that it received the same Merkle root R from all of the servers.
Since at least one of the servers is honest, this ensures the client receives the honestly-
generated root. If all the roots match, the client reconstructs the record and verifies the
Merkle inclusion proof with respect to R. If a server misbehaves, the client will recover
(i′, x′

i, π′
i) = (i, xi, πi)⊕∆ for some non-zero offset ∆. Whenever ∆ ̸= 0, security of the

Merkle proof ensures that π′
i will be an invalid proof of (i, xi) with respect to R.

We now present the security proofs for Construction 1, beginning with an overview of
the proof strategy, followed by the detailed proofs.
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Construction 1 (k-server authenticated PIR for point queries tolerating k − 1
malicious servers). The construction is parametrized by a number of servers k ∈ N,
a number of database rows N ∈ N, a row length ℓ ∈ N, a security parameter
λ ∈ N, a Merkle-tree scheme M (Definition 35), and a linear PIR scheme PIR
(Definition 42). Weights are ignored in this scheme. We represent the database as
N binary strings of length ℓ each: x1, . . . , xN ∈ {0, 1}ℓ. The Query algorithm inputs
the security parameter 1λ and an index i ∈ [N ]; Reconstruct outputs either a vector
xi ∈ {0, 1}ℓ or the rejection symbol ⊥ (see Example 25 to recover this functionality
from Definition 20). The servers execute the first three steps of the Answer procedure
only when the database changes; we show the entire procedure for completeness.

Query(1λ, i ∈ [N ])→ (st, q1, . . . , qk)

1. (stPIR, q1, . . . , qk)← PIR.Query(i).
2. Set the state st← (i, stPIR).
3. Output (st, q1, . . . , qk).

Answer(X = x1, . . . , xN ∈ {0, 1}ℓ, q)→ a

1. Compute the digest root← M.Digest (X).
2. For j ∈ [n], compute πi ← M.ProveIncludes(X, j, xj).
3. Enlarge the database with the proofs for all the records as

X′ ← ((x1, π1), . . . , (xN , πN )).
4. Output (root, PIR.Answer(X′, q)).

Reconstruct (st, a1, . . . , ak)→
{
{0, 1}ℓ,⊥

}
1. Parse the state st as (i, stPIR).
2. For j ∈ [k], parse ak as (rootk, a′

k).
3. If the k roots {rootj}j∈[k] are not all equal, return ⊥.
4. Run the classic PIR reconstruction algorithm and parse ri ←

PIR.Reconstruct(stPIR, a′
1, . . . , a′

k) as (xi, πi).
5. If M.VerifyIncludes(root1, i, xi, πi) = ⊥, then output ⊥. Otherwise output xi.
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Overview of the proof strategy

In this section e give a overview of the strategy that we use to prove integrity and
privacy for Construction 1. We describe the construction with k = 2 servers, but the same
intuition generalizes to k > 2 servers. This overview is inspired by a private discussion
with Brett Falk, Pratyush Mishra, and Matan Shtepel [SMF24], which pointed out a flaw
in the proof of Theorem 45.

Construction 1 uses a linear classic PIR scheme (Definition 42), i.e., the PIR.Reconstruct
algorithm is the sum of the individual servers’ answers. In other words, by denoting the
sum operation with ⊕, we can rewrite the reconstruction algorithm as

PIR.Reconstruct(stPIR, a′
1, . . . , a′

k)→ a′
1 ⊕ · · · ⊕ a′

k.

Construction 1 uses PIR.Reconstruct in line 4 of the Reconstruct procedure.

For the sake of this overview, we consider that the servers hold a copy of a two-record
database X = (x1, x2) ∈ ({0, 1}ℓ)2, for row length ℓ ∈ N. Suppose that server 1 is
malicious and that server 2 is honest, and suppose that server 1 mounts a selective-failure
attack by replacing the record x2 with a bogus record x∗

2 ∈ {0, 1}ℓ, i.e., server 1 uses
the bogus database X∗ = (x1, x∗

2) ∈ ({0, 1}ℓ)2. After the first three steps of the Answer
procedure in Construction 1, the malicious server 1 has the following bogus enlarged
database:

X′
1 ← ((x1, π1), (x∗

2, π∗
2));

the honest server 2 has the correct enlarged database:

X′
2 ← ((x1, π1), (x2, π2)).

Assume that server 1 sets a honest Merkle root, i.e., server 1 computes root← M.Digest(X);
otherwise the client immediately rejects (line 3 of the Reconstruct procedure).

Given an index i ∈ {1, 2}, the client computes queries q1, q2 using the Query procedure.
The two servers compute the answers as follows:

a1 ← (root, PIR.Answer(X′
1, q1))

a2 ← (root, PIR.Answer(X′
2, q2))

Since the roots are equal, the client runs the classic PIR reconstruction procedure an
gets ri ← PIR.Reconstruct(stPIR, a′

1, a′
2). By the linearity of the classic PIR scheme and
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by setting ∆← PIR.Answer(X′
1, q1)⊕ PIR.Answer(X′

2, q1), we have

ri = a′
1 ⊕ a′

2 = PIR.Answer(X′
1, q1)⊕ PIR.Answer(X′

2, q2)
= PIR.Answer(X′

2, q1)⊕∆⊕ PIR.Answer(X′
2, q2)

= (xi, πi)⊕∆,

as X′
2 is the honest enlarged database. By assumption the malicious server 1 feeds

PIR.Answer with a bogus database, which implies that ∆ = PIR.Answer(X′
1, q1) ⊕

PIR.Answer(X′
2, q1) ̸= 0 and therefore that (xi, πi) ̸= (xi, πi) ⊕ ∆. This in turn im-

plies, by soundness and/or uniqueness of the Merkle-tree scheme (Definition 38 and
Definition 37) that the client rejects the answers in step 5 of the Reconstruct procedure
of Construction 1.

The crux is that the argument holds regardless of whether the client queried for index
i = 1 or i = 2: we do not assume a specific index in the argument that leads to client’s
rejection. In other words, the client rejects, except with negligible probability, whenever
one of the servers replies with respect to a bogus database independently from the index
that the client inputs to the Query procedure.

Security proofs

We prove security for the case of k = 2 servers. All the arguments generalize naturally to
the k-server setting with k > 2.

Correctness of the scheme introduced in Construction 1 can be verified by inspection.
To prove both integrity and security, we find it useful to first prove Lemma 43, which
informally states that if a malicious server deviates from the prescribed protocol, the
Reconstruct algorithm rejects with high probability.

Lemma 43. Consider the authenticated-PIR scheme in Construction 1, on record size
ℓ ∈ N and with k = 2 servers for the sake of the proof. Recall that Construction 1
uses a linear PIR scheme (Definition 42). Then, for every λ ∈ N, every non-zero ∆ ∈
{0, 1}ℓdig+ℓ+ℓπ , where ℓdig is the length of the digest and ℓπ is the length of a Merkle
inclusion proof as per Definition 35, every database X = x1, . . . , xN ∈ {0, 1}ℓ, and every
index i ∈ [N ], the following holds:

Pr

y ̸= ⊥ :

(st, q1, q2)← Query(1λ, i)
a1 ← Answer(X, q1)
a2 ← Answer(X, q2)
y ← Reconstruct(st, a1 ⊕∆, a2)

 ≤ negl(λ),

where the probability is computed over all the random coins used by the algorithms of
the scheme. The statement holds also when the roles of honest and malicious server are
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inverted.

Proof. We parse ∆ as (∆root, ∆x, ∆π) where ∆root ∈ {0, 1}ℓdig , ∆x ∈ {0, 1}ℓ, and ∆π ∈
{0, 1}ℓπ . If ∆root ̸= 0ℓdig then parsing a1 + ∆ and a2 yields two different roots and the
client immediately rejects (line 3 of Reconstruct in Construction 1). Hence, assume the
client gets identical roots from the servers, i.e., ∆root = 0ℓdig . The client therefore receives
two honest digests of the database X = x1, . . . , xN ∈ {0, 1}ℓ.

Assume by contradiction that there is an index i ∈ [N ] and ∆ = (∆root, ∆x, ∆π) where
∆root = 0ℓdig , ∆x ∈ {0, 1}ℓ, ∆π ∈ {0, 1}ℓπ , and a database X = x1, . . . , xN ∈ {0, 1}ℓ such
that

Pr

y ̸= ⊥ :

(st, q1, q2)← Query(1λ, i)
a1 ← Answer(X, q1)
a2 ← Answer(X, q2)
y ← Reconstruct(st, a1 ⊕∆, a2)

 ≥ ν,

where ν is non-negligible in the security parameter λ. By the assumption that the client
gets identical roots from the servers, we can rewrite the above probability as

Pr



y ̸= ⊥ :

(st, q1, q2)← Query(1λ, i)
(i, stPIR)← st

a1 = (root1, a′
1)← Answer(X, q1)

a2 = (root2, a′
2)← Answer(X, q2)
ri ← PIR.Reconstruct

(
stPIR, a′

1 ⊕ (∆x∥∆π), a′
2
)

(xi, πi)← ri

y ←

⊥ M.VerifyIncludes(root1, i, xi, πi) = ⊥
xi otherwise



≥ ν.

By the linearity of the classic PIR scheme that Construction 1 uses, we can rewrite the
above probability as

Pr


y ̸= ⊥ :

(st, q1, q2)← Query(1λ, i)
a1 = (root1, a′

1)← Answer(X, q1)
a2 = (root2, a′

2)← Answer(X, q2)
ri ← a′

1 ⊕∆x∥∆π ⊕ a′
2

(xi, πi)← ri

y ←

⊥ M.VerifyIncludes(root1, i, xi, πi) = ⊥
xi otherwise


≥ ν.

We now show that if ∆x ̸= 0ℓ, then the malicious servers breaks soundness of the Merkle-
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tree scheme (Definition 38). Alternatively, if ∆x = 0ℓ, but ∆π ̸= 0ℓπ , then the malicious
server breaks uniqueness of the Merkle-tree scheme (Definition 37).

We analyze the first case, that is, we assume that ∆x ≠ 0ℓ. Let A be an adversary in the
definition of soundness for a Merkle-tree scheme (Definition 38). We show how A can use
∆ = (∆root, ∆x, ∆π) with ∆root = 0ℓdig , ∆x ̸= 0ℓ, ∆π ∈ {0, 1}ℓπ to break the soundness
property of the Merkle-tree scheme with a non-negligible probability. Given i, ∆, X, the
adversary A proceeds as follows:

1. Construct a query (st, q1, q2)← Query(1λ, i).

2. For k ∈ [2], compute ak = (rootk, a′
k)← Answer(X, qk).

3. Compute ri ← a′
1 ⊕ a′

2 and

4. Parses the reconstructed value as ri = (xi, πi).

Algorithm A outputs (X, i, xi ⊕∆x, πi ⊕∆π) in the soundness game of Definition 38. By
assumption, the digest is correct and computed over X. Since ∆x ̸= 0ℓ, we know that

(xi ⊕∆x)∥(πi ⊕∆π) ̸= xi∥πi.

Moreover, the probability stated in Definition 38 is equal to the probability stated in
this lemma (i.e., to ν). Since by assumption ν is non-negligible in the security parameter
λ, algorithm A successfully breaks the soundness property of the Merkle-tree scheme.

We analyze now the second case, that is, we assume that ∆x = 0ℓ and ∆π ̸= 0ℓπ . Let A′

be an adversary in the definition of uniqueness for a Merkle-tree scheme (Definition 37).
We show how A′ can use ∆ = (∆root, ∆x, ∆π) with ∆root = 0ℓdig , ∆x = 0ℓ, ∆π ≠ 0ℓπ to
break the uniqueness property of the Merkle-tree scheme with a non-negligible probability.
Given i, ∆, X, the adversary A′ proceeds exactly as algorithm A:

1. Construct a query (st, q1, q2)← Query(1λ, i).

2. For k ∈ [2], compute ak = (rootk, a′
k)← Answer(X, qk).

3. Compute ri ← a′
1 ⊕ a′

2 and

4. Parses the reconstructed value as ri = (xi, πi).

Algorithm A′ outputs (X, i, xi, πi, πi ⊕∆π) in the uniqueness game of Definition 37. Since
∆π ̸= 0ℓπ , we know that πi ̸= πi ⊕∆π. Moreover, the probability stated in Definition 37
is equal to the probability stated in this lemma (i.e., to ν). Since by assumption ν is
non-negligible in the security parameter λ, A′ successfully breaks the uniqueness property
of the Merkle-tree scheme.
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We now use Lemma 43 to show that the scheme presented in Construction 1 ensures
integrity and security, and is hence secure.

Theorem 44 (Integrity of Construction 1). The authenticated PIR scheme of Construc-
tion 1 provides integrity.

Proof. This follows directly from Lemma 43.

Theorem 45 (Privacy of Construction 1). The authenticated PIR scheme of Construc-
tion 1 provides privacy.

Proof. Recall that Construction 1 is an authenticated PIR scheme for point queries:
the Query algorithm inputs an index i ∈ [N ] and Reconstruct outputs either a vector
xi ∈ {0, 1}ℓ or the rejection symbol ⊥. Example 25 shows how to recover this functionality
from Definition 20.

Let A = (A0,A1) be the adversary of Definition 23. We syntactically change the distribu-
tion modeling the real world by introducing an additional variable ∆← a1 ⊕ aA, which
gives the following distribution:

REAL’A,i,λ,X =



β̂ :

(st, q1, q2)← Query(1λ, i)
aj ← Answer(X, qj) ∀j ∈ [2]
stA, aA ← A0(X, q1)
∆← a1 ⊕ aA

y ← Reconstruct(st, a1 ⊕∆, a2)
b← 1{y ̸= ⊥}
β̂ ← A1(stA, b)



,

where ∆ ∈ {0, 1}ℓdig+ℓ+ℓπ , and ℓdig and ℓπ are parameters of the Merkle-tree scheme
(Definition 35) that Construction 1 uses. Without loss of generality we assume that server
1 is adversarial, i.e., we assign q1 to the adversary. The proof holds also if we swap the
queries.

We additionally adapt the distribution modeling the ideal world to the notation that
we use in this proof (by renaming Q to q1, A to aA and ignoring weights w ∈ FN as
Construction 1 does):

IDEAL’A,S,F ,λ,X =


β :

(stS , q1)← S0(1λ,F , X)
(stA, aA)← A0(X, q1)
b← S1(stS , aA)
β ← A1(stA, b)


.
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For any adversary A = (A0,A1) let a simulator S = (S0,S1) such that for every λ ∈ N,
X = (xi, . . . , xN ) ∈ ({0, 1}ℓ)N the simulator proceeds as follows, where SPIR is the
simulator induced by the classic PIR scheme that Construction 1 uses (see Definition 41):

Simulator S0(1λ,F , X)

1 : q1 ← SPIR

2 : stS ← (X, q1)
3 : return (stS , q1)

Simulator S1(stS , aA)

1 : (X, q1)← stS

2 : ∆← Answer(X, q1)⊕ aA

3 : b← 1{∆ = 0}
4 : return b

We now prove that the real and ideal distributions are computationally indistinguishable
and hence the scheme presented in Construction 1 provides privacy. To this end, we
define five hybrid distributions H0, H1, H2, H3, H4:

• H0: This is the distribution REAL’A,i,λ,X, where we define ∆ ← a1 ⊕ aA =
Answer(X, q1)⊕ aA and the bit b← 1{y ̸= ⊥} given as input to the adversary A0
is determined using the output from the Reconstruct algorithm.

• H1: Same as H0 except the hybrid uses Reconstruct′ instead of the Reconstruct
procedure of Construction 1. Reconstruct′ is the same as Reconstruct, except that
it computes ri ← a′

1 ⊕ a′
2 instead of ri ← PIR.Reconstruct(a′

1, a′
2) in line 4. The

difference between H0 and H1 is boxed in the definition below:

H1 =



β̂ :

(st, q1, q2)← Query(1λ, i)
aj ← Answer(X, qj) ∀j ∈ [2]
stA, aA ← A0(X, q1)
∆← a1 ⊕ aA

y ← Reconstruct′(st, a1 ⊕∆, a2)

b← 1{y ̸= ⊥}
β̂ ← A1(stA, b)



,

• H2: Same as H1 except the hybrid computes the acceptance bit b by checking
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whether ∆ = 0. The difference between H1 and H2 is boxed in the definition below:

H2 =



β̂ :

(st, q1, q2)← Query(1λ, i)
aj ← Answer(X, qj) ∀j ∈ [2]
stA, aA ← A0(X, q1)
∆← a1 ⊕ aA

y ← Reconstruct′(st, a1 ⊕∆, a2)

b← 1{∆ = 0}

β̂ ← A1(stA, b)



,

• H3: Same as H3 except the adversary gets a query produced by the simulator SPIR
induced by the unauthenticated PIR scheme. The difference between H2 and H3 is
boxed in the definition below:

H3 =



β̂ :

(st, _, q2)← Query(1λ, i)

q1 ← SPIR

aj ← Answer(X, qj) ∀j ∈ [2]
stA, aA ← A0(X, q1)
∆← a1 ⊕ aA

y ← Reconstruct′(st, a1 ⊕∆, a2)
b← 1{∆ = 0}
β̂ ← A1(stA, b)



,

• H4: This is the distribution IDEAL’A,S,F ,λ,X.

We now argue that each pair of adjacent hybrids is indistinguishable. For j ∈ {0, 1, 2, 3, 4},
let Wb the event that the output of the hybrid experiment Hb is “1.”

• Hybrid H1 is the same as hybrid H0 except H1 uses Reconstruct′ instead of
Reconstruct. As Construction 1 uses a linear classic PIR scheme, these hybrids are
equal, i.e.,

|Pr[W0]− Pr[W1]| = 0.

• Hybrid H2 is the same as hybrid H1 except H2 computes the acceptance but b by
checking whether ∆ = 0. If ∆ = 0ℓdig+ℓ+ℓπ (i.e, a binary string of ℓdig + ℓ + ℓπ zeros)
the simulator S1 sets b = 1; if ∆ ̸= 0ℓdig+ℓ+ℓπ , then S1 sets b = 0. By Lemma 43 we
know that

|Pr[b← 1{y ̸= ⊥}]− Pr[b← 1{∆ = 0}]| ≤ negl(λ),

where the first probability refers to the assignment of bit b in H1, while the second
refers to the assignment of bit b in H2. As the only difference between the two
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hybrids is how they set bit b, we can rewrite the above probability as

|Pr[W1]− Pr[W2]| ≤ negl(λ).

• The only difference between hybrids H2 and H3 is how the query q1 is sampled,
i.e., how the query that the adversary gets is sampled. By security of the classic
unauthenticated PIR scheme (Definition 41), we have

|Pr[W2]− Pr[W3]| ≤ negl(λ).

• H4 is a rewriting of H3. In H3, A0 inputs q1 ← SPIR, where SPIR if the simulator
induced by the classic PIR scheme; the same happens in H4. In H3, A1 inputs
b← 1{∆ = 0} and the same happens in H4. We show the bridging from H3 to H4
below, where we rewrite ∆← a1 ⊕ aA as ∆← Answer(X, q1) and grey lines can be
removed from H′

3 to get H4:

H′
3 =



β̂ :

(st, _, q2)← Query(1λ, i)
q1 ← SPIR

aj ← Answer(X, qj) ∀j ∈ [2]
stA, aA ← A0(X, q1)
∆← Answer(X, q1)⊕ aA

y ← Reconstruct′(st, a1 ⊕∆, a2)
b← 1{∆ = 0}
β̂ ← A1(stA, b)



.

Since the hybrids are equal we have

|Pr[W3]− Pr[W4]| = 0.

By a standard hybrid argument we conclude that REAL’A,i,λ,X ≈c IDEAL’A,S,F ,λ,X
and therefore

REALA,i,λ,X ≈c IDEALA,S,F ,λ,X.

3.4.2 Predicate queries via function sharing

Recent work on function secret sharing [BGI15, BGI16] in the multi-server PIR setting
enables a client to compute a non-trivial function f over the database contents, without
revealing this function f to the servers. For example, a client can count the number of
database records that match a certain predicate, without revealing this predicate to the
servers.

We design an authenticated-PIR protocol for predicate queries by extending classic PIR
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schemes based on function secret sharing [BGI15, BGI16]. At a high level, the client makes
two correlated PIR queries. The reconstructed answer to the first query should contain
the value v that the client wants. The reconstructed answer to the second query should
contain v′ = αv, where α is a random scalar known only to the client. To authenticate
the servers’ answers, the client checks that αv = v′ and rejects if not. As we will show,
if any server misbehaves, the client will be checking that α(v + ∆) = v′ + ∆′, for some
non-zero ∆ and ∆′. Sampling α from a sufficiently large space of values ensures that the
client catches a cheating server almost certainly.

This idea of using secret-shared random values for data authentication follows a long
line of work on information-theoretic message authentication codes and malicious-secure
multiparty computation [DPSZ12, CDF+08, BCG+21, dCP22].

We begin by presenting some preliminaries, followed by a detailed description of our
construction.

Preliminary: function secret sharing

We recall the definition of function secret sharing [BGI15, BGI16]. A k-party function
secret-sharing scheme is defined with respect to a function class F . Each function f ∈ F
maps elements in some input space to a finite group or field F.

Definition 46 (Function secret sharing). A k party function secret sharing scheme for a
function class F defined over a field F consists of the following two efficient algorithms:

• Gen(1λ, f)→ (f1, . . . , fk). Given a function f ∈ F , output k function-secret-shares
f1, . . . , fk.

• Eval(fi, x)→ fi(x) ∈ F. Given a secret-share fi and a function input x, output the
evaluation of fi on x.

A function secret-sharing (FSS) scheme must satisfy the following properties, which we
state formally and informally.

Correctness. Given shares (f1, . . . , fk) of a function f ∈ F , for all x in the domain of f ,
it holds that

∑
i∈[k] Eval(fi, x) = f(x) ∈ F.

Definition 47 (FSS correctness). A k-party function secret-sharing scheme FSS =
(Gen, Eval) for a function class F defined over a field F satisfies correctness if for every x

in the domain of f , the following holds:

Pr

 ∑
i∈[k]

Eval(fi, x) = f(x) ∈ F : (f1, . . . , fk)← Gen(1λ, f)

 = 1.
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Security. Given shares (f1, . . . , fk) of a function f ∈ F , a computationally-bounded
adversary that learns k − 1 of the shares learns nothing about the shared function f ,
beyond the fact that f ∈ F .

Definition 48 (FSS security). Let FSS = (Gen, Eval) be a k-party function secret-sharing
scheme for a function class F . Let S be any subset of k − 1 elements from [k]. For a
security parameter λ ∈ N and a function f ∈ F let the distribution

REALλ,f =
{ ⋃

i∈S

fi : (f1, . . . , fk)← Gen(1λ, f)
}

.

Similarly, for a simulator S let the distribution

IDEALS,λ,F =
{
{fi}i∈S ← S(1λ,F)

}
A k-party function secret-sharing scheme FSS = (Gen, Eval) for a function class F is
secure if there exists a simulator S such that for every security parameter λ ∈ N and
every function f ∈ F , the following holds:

REALλ,f ≈c IDEALS,λ,F .

For the construction, we need the following additional definition:

Definition 49 (Function class closed under scalar multiplication). Let F be a class of
functions whose codomain is a finite field F. Then we say that the function class F is
closed under scalar multiplication if, for all functions f ∈ F and for all scalars α ∈ F, it
holds that the function α · f ∈ F.

Construction

Our scheme, presented in Construction 2, is defined with respect to a finite field F, a record
length ℓ ∈ N, a database size N ∈ N, a function class F ⊆ Funs[[N ]× {0, 1}ℓ,F] closed
under scalar multiplication, and weights w ∈ FN . The k ≥ 2 servers each hold a copy of
a database of N ℓ-bit records. We write the n database records as x1, . . . , xN ∈ {0, 1}ℓ.
Given a predicate function f ∈ F , the client samples a random non-zero field element α ∈ F
and secret-shares f together with a new function g defined as g(i, xi) = α ·f(i, xi) ∈ F into
k shares, i.e., fj and gj for j ∈ [k]. (Alternatively, if the underlying function-secret-sharing
scheme supports it, the client can also secret share the single function (f(i, xi), g(i, xi))
whose image is in F2.)

Upon receiving the shares, each server j ∈ [k] sets each element of its answer tuple to
the sum of the function shares’ evaluations on all the database records multiplied by
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Construction 2 (k-server authenticated PIR for predicate queries tolerating k − 1
malicious servers). The construction is parametrized by a number of servers k ∈ N,
a number of database rows N ∈ N, a row length ℓ ∈ N, a finite field F, a security
parameter λ, a function class F ⊆ Funs[[N ]× {0, 1}ℓ,F] that is closed under scalar
multiplication, and a function-secret-sharing scheme (FSS.Gen, FSS.Eval) for the
function class F , parametrized by λ. We represent the database as N binary strings,
each of length ℓ: x1, . . . , xN ∈ {0, 1}ℓ.

Query
(
1λ, f

)
→ (st, q1, . . . , qk)

1. Sample a random field element α←R F \ {0}.
2. Set the state st← α.
3. Let g ← α · f . Such a g must exist since the function class F is closed under

scalar multiplication, as in Definition 49.
4. Compute q1, . . . , qk ← FSS.Gen(1λ, f) together with

q′
1, . . . , q′

k ← FSS.Gen(1λ, g).
5. Output (st, (q1, q′

1), . . . , (qk, q′
k)).

Answer
(
x1, . . . , xN ∈ {0, 1}ℓ, w ∈ FN , q

)
→ a ∈ F2

1. Parse q as (qf , qg).
2. Compute answer as af ←

∑
j∈[N ] wj · FSS.Eval(qf , xj) and

ag ←
∑

j∈[N ] wj · FSS.Eval(qg, xj).
3. Return a← (af , ag) ∈ F2.

Reconstruct
(
st, a1, . . . , ak ∈ F2)

→ F ∪ {⊥}

1. Parse the state st as α ∈ F.
2. Compute a← a1 + · · ·+ ak ∈ F2.
3. Parse a as (m, τ) ∈ F2.
4. Compute τ ′ ← m · α ∈ F.
5. If τ = τ ′, output m ∈ F. Otherwise, output ⊥.
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the corresponding weights: i.e., aj ←
(∑

i∈[N ] wi · f(i, xi),
∑

i∈[N ] wi · g(i, xi)
)
∈ F2. The

servers directly evaluate the function shares on the database records. The client adds the
answer vectors and reconstructs an intermediate value a←

∑
j∈[k] aj ∈ F2.

If all the servers are honest, the client-reconstructed value a equals a = (a1, a2) =(∑
i∈[N ] wi · f(i, xi), α ·

∑
i∈[N ] wi · f(i, xi)

)
. The client then verifies that α · a1 = a2. As

α is randomly generated and secret-shared among the servers, only the client knows its
value. If α · a1 ̸= a2, then the client rejects. Otherwise, the client accepts and outputs a1.

Proof sketch. To explain how this approach protects integrity, we argue by con-
tradiction. Say that server j ∈ [k] should have returned an answer aj ∈ F2 to the
client. Suppose server j is malicious and returns an answer âj = aj + ∆ ∈ F2 for
some non-zero value ∆ = (∆m, ∆τ ) ∈ F2. The client will reconstruct the answer as
a + ∆ =

(∑
i∈[N ] wi · f(i, xi) + ∆m, α ·

∑
i∈[N ] wi · f(i, xi) + ∆τ

)
∈ F2. As server j has

no information about α—due to the privacy guarantees of the function-secret-sharing
scheme—the malicious server’s choice of ∆ is (computationally) independent of α. For the
verification to pass, it must be that α ·∆m = ∆τ . If ∆ ≠ 0 and α is sampled independent
of ∆, this happens with probability at most 1/(|F| − 1) over the randomness of α. Next,
the privacy of the client’s queries is ensured by the underlying function secret-sharing
scheme. In Appendix B.2.1, we formally prove that this construction is secure.

Theorem 50. Suppose there exists a k-party function-secret-sharing scheme for a function
class F ⊆ Funs[[N ]× {0, 1}ℓ,F] that is closed under scalar multiplication (Definition 49),
for database size N ∈ N, which, on security parameter λ ∈ N, outputs secret shares of
length L(λ). Then, there is a k-server authenticated-PIR scheme for function class F
with query complexity 2L(λ)k bits and answer complexity 2kλ bits.

By applying the two-party function-secret-sharing scheme proposed by Boyle, Gilboa,
and Ishai [BGI16], we get:

Corollary 51. Given a length-doubling pseudorandom generator with seed length λ,
there is a two-server authenticated PIR scheme for point functions and interval functions
with communication complexity O(λ log N), on security parameter λ and database size N .

Handling functions with larger output. In some PIR applications, a client might
want to evaluate a function whose output is larger than a single field element, e.g.,
geographical coordinates for route planners [WYG+17]. We hence extend our scheme to
support multi-element authenticated output.

Here, we authenticate each output element of a function f with a separate function gj ,
for j ∈ [b], where b is the output length of f using an algebraic manipulation detection
code [CDF+08]. In the query algorithm, the client generates a secret random scalar α

as before but then computes (g1(i, xi), g2(i, xi), . . . , gb(i, xi)) = (α, α2, . . . , αb)⊙ f(i, xi),
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where ⊙ represents the element-wise product, and sends secret-shared f and g1, . . . , gb

to the servers. The servers then compute their answer as a← (af , ag1 , . . . , agb
) ∈ F2b.

This already enables the client to validate integrity of the full output after the reconstruc-
tion by comparing it with ag1 , . . . , agb

. We further reduce the protocol’s communication
cost by setting the servers’ answer to (af , ag =

∑
i∈[b] agi) ∈ Fb+1. The client re-computes

this linear combination from the answer and compares it with the received value.

We show the full construction in Appendix B.2.2.

3.5 Single-server authenticated PIR

We now present two single-server authenticated-PIR schemes.

As depicted in Figure 3.1, in this setting a data owner outsources the data to a single PIR
server (e.g., an Amazon EC2 instance) and produces a database digest. This public digest
serves as a commitment to the database contents. The client can fetch the digest from a
distributed authority, or using a CONIKS-like gossip protocol [MBB+15], or out-of-band
from the data owner.

It is possible in principle to construct single-server authenticated-PIR schemes by augment-
ing a standard single-server PIR scheme [HHCG+23, DPC23, MCR21, ACLS18, MW22]
with a succinct proof of correct server execution [PHGR13], but this would be orders of
magnitude more costly in computation than our schemes are.

Preliminary: rebalancing to get
√

N communication

The single-server authenticated-PIR schemes natively have a digest of size poly(λ) bits,
upload N · poly(λ) bits, and download poly(λ) bits. To reduce total communication to√

N · poly(λ) bits, we use a standard rebalancing trick [CGKS95]. We summarize that
technique before detailing our schemes.

The server first splits the database into
√

N chunks, each of size
√

N . The digest then
consists of the hash (with any collision-resistant hash function, e.g., SHA-256) of the√

N database digests. To query the database for the ith row of the jth chunk, the client
issues a single query for row i. The server responds with the

√
N chunk digests, and the

answer computed against each chunk. The client checks that (1) the hash of the
√

N

chunk digests match the database digest and (2) all
√

N chunk queries accept. If these
checks pass, the client outputs the value of the jth response as its answer.
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3.5.1 From learning with errors

Our first single-server authenticated-PIR scheme builds on lattices and relies on the
learning-with-errors assumption (LWE) [Reg05].

Preliminaries: lattices and the learning-with-errors assumption

The LWE assumption with parameters n, q, m, s ∈ N, states that the two distributions
(A, sTA + eT) and (A, uT) are computationally indistinguishable, where A ←R Zn×m

q ,
s ←R Zn

q , e ← Dm
Z,s ∈ Zm

q , and u ←R Zn
q , and where DZ,s is the discrete-Gaussian

distribution with width parameter s. We introduce these concepts formally in what
follows.

For a real value s > 0, we write ρs : R→ R+ to denote the Gaussian function ρs(x) :=
exp(−πx2/σ2). The discrete Gaussian distribution DZ,s with width parameter s is a
discrete distribution over the integers with probability mass function

Pr[X = x : X ← DZ,s] = ρs(x)∑
y∈Z ρs(y) .

We say that a distribution D (over R) is subgaussian with parameter s if for every t ≥ 0,

Pr[|x| > t : x← D] ≤ 2 exp(−πt2/s2). (3.1)

The discrete Gaussian distribution DZ,s is subgaussian with parameter s. In particular,
this means that if we sample e ← DZ,s, then |e| ≤

√
λs with probability 1 − negl(λ).

Moreover, if x1, x2 are independent subgaussian random variables with parameters s1, s2,
then x = αx1 + βx2 is subgaussian with parameter

√
α2s2

1 + β2s2
2 for any α, β ∈ R.

In the following description, unless otherwise noted, all operations are performed over Zq.
For a value x ∈ Zq, we write |x| to denote the absolute value of its canonical representative
in the interval Z ∩ [−q/2, q/2].

We now recall the learning with errors assumption [Reg05]:

Definition 52 (Learning with Errors [Reg05]). Let λ be a security parameter. Let
n = n(λ) be the lattice dimension, m = m(λ) be the number of samples, q = q(λ) be a
modulus, and s = s(λ) be a Gaussian width parameter. Then, the learning with errors
(LWE) assumption LWEn,m,q,s states that the following distributions are computationally
indistinguishable:

(A, sTA + eT) ≈c (A, uT),

where A←R Zn×m
q , s←R Zn

q , e← Dm
Z,s, and u←R Zn

q .

The security of our construction will rely on the “extended LWE” assumption [BLP+13],
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which essentially says that LWE holds even if the distinguisher learns a linear combination
of the LWE errors. We state the assumption below:

Definition 53 (Extended LWE [BLP+13]). Let λ be a security parameter and let
n = n(λ), m = m(λ), q = q(λ), and s = s(λ) be lattice parameters (as in Definition 52).
Then, the extended learning with errors (extLWE) assumption extLWEn,m,q,s states that
for every x ∈ {0, 1}m, the following distributions are computationally indistinguishable:

(A, sTA + eT, eTx) ≈c (A, uT, eTx),

where A←R Zn×m
q , s←R Zn

q , e← Dm
Z,s, and u←R Zn

q . More precisely, for an adversary A, we
write Adv(n,m,q,s)

extLWE [A] to denote the distinguishing advantage of A for the aforementioned
distributions.

Previously, Brakerski et al. [BLP+13, Lemmas 4.3, 4.7] showed that hardness of the
extended LWE assumption extLWEn,m,q,s can be based on the hardness of the vanilla
LWE assumption LWEn,m,q,s′ for s′ = O(s).

Construction

Construction 3 describes our scheme, which is a twist on Regev’s LWE-based encryption
scheme [Reg05] and is an authenticated analogue of the SimplePIR LWE-based PIR
scheme [HHCG+23]. (We compare against SimplePIR in Section 3.7.) Regev’s scheme
encrypts a vector v ∈ {0, 1}N ⊆ ZN

q by the pair (A, sTA + eT + t · vT), where A ∈ Zn×N
q

is the LWE matrix, s←R Zn
q is the LWE secret, e← DN

Z,s is the error vector, and t ∈ Zq

is some scaling factor (commonly set to q/2). Regev’s scheme is linearly homomorphic:
for any vector x ∈ {0, 1}N ⊆ ZN

q , the ciphertext (Ax, (sTA + eT + t · vT) · x) decrypts to
vTx (provided the accumulated error eTx is small compared to t).

In our scheme, the first portion of this ciphertext (A · x, on database x ∈ {0, 1}N ⊆ ZN
q )

becomes the digest. Finding two distinct databases that map to the same digest is as
hard as solving the short integer solutions problem [Ajt96].

To query for database record i ∈ [N ], the client prepares the Regev encryption qT of the
ith basis vector ηi ∈ ZN

q (i.e., ηi is the vector that is 0 everywhere and 1 at index i). The
scaling factor t ∈ Zq is sampled randomly (from an appropriate range), which is critical
for the security analysis. To answer the query, the server homomorphically computes the
encryption of the inner product of the client’s query with the database: qTx ∈ Zq. The
client checks that the decrypted value is either 0 (indicating a database bit of zero) or
close to t (indicating a database bit of one). Otherwise, the client outputs ⊥.

Finally, by rebalancing Construction 3, we have:

Theorem 54. Under the LWE assumption, Construction 3 is a secure single-server
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authenticated-PIR scheme when instantiated with database size N , lattice parameters
(n, q, s), random matrix A←R Zn×N

q , and bound B = O(
√

λNs). The digest size consists
of n
√

N elements of Zq and the per-query communication cost is 2
√

N elements of Zq.
The scheme has integrity error ϵ < 2B/(q − 4B).

Proof. The theorem follows from the three theorems that we prove in Appendix B.3.
Theorem 71 establishes that Construction 3 is correct. Theorem 73 states that Con-
struction 3 has integrity error ϵ < 2B/(q − 4B) for bound B = O(

√
λNs) and lattice

parameters (n, q, s). Theorem 74 demonstrates that Construction 3 provides privacy.
Therefore, Construction 3 is secure.

The most important difference between SimplePIR [HHCG+23] and Construction 3 is in
the choice of LWE parameters. Since the integrity error is roughly

√
N/q, on database

size N and modulus q, we must take the modulus q to be at least 128 bits to achieve
negligible integrity error. (Alternatively, we can use a smaller modulus and run the
protocol many times to amplify integrity as per Section 3.3.3.) In contrast, SimplePIR
uses a 32-bit modulus with no repetition.

3.5.2 From decisional Diffie-Hellman

This second construction uses the decisional Diffie-Hellman assumption.

Preliminary: the decisional Diffie-Hellman assumption (DDH)

The DDH assumption holds in a group G of prime order p generated by g ∈ G, if for
x, y, z ←R Zp, the two distributions (g, gx, gy, gxy) and (g, gx, gy, gz) are computationally
indistinguishable.

Definition 55 (Decisional Diffie-Hellman). Let λ be a security parameter and let G be
a group of prime order p where 1/p = negl(λ). Let g be a generator of G. We say that
the decisional Diffie-Hellman assumption (DDH) holds in G if the following distributions
are computationally indistinguishable:

(g, h, gx, hx) ≈c (g, h, gx, z),

where h, z ←R G and x←R Zp.

By a random self-reduction [Sta96, NR97], one can show that if the DDH assumption
holds in G, then for all polynomials N = N(λ), the following distributions are also
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Construction 3 (Single-server authenticated PIR from LWE). The construction
is parametrized by a database length N ∈ N, a lattice dimension n ∈ N, a modulus
q ∈ N, a Gaussian width parameter s ∈ N, a bound B ∈ N, and a matrix A ∈ Zn×N

q .
The database is a vector x ∈ {0, 1}N .

Digest(x ∈ {0, 1}N )→ d ∈ Zn
q

1. Output d← Ax ∈ Zn
q .

Query
(
d ∈ ZN

q , i ∈ [N ]
)
→ (st, q)

1. Sample s ←R Zn
q , e ← DN

Z,s ∈ Zm
q , and t ←R

[
2B, q − 2B

]
. (Here DZ,s denotes

the discrete Gaussian distribution over Z with parameter s.)
2. Compute qT ← sTA + eT + t ·ηT

i ∈ Zm
q , where ηi ∈ ZN

q denotes the ith standard
basis vector (i.e., the vector that is 0 everywhere except 1 in index i).

3. Set st← (d, s, t) and output (st, q).

Answer
(
d ∈ Zn

q , x ∈ {0, 1}N ⊆ ZN
q , q ∈ ZN

q

)
→ a ∈ Zq

1. Output a← qTx ∈ Zq

Reconstruct (st, a)→ {0, 1,⊥}

1. Parse the state st as (d, s, t).
2. If there exists k ∈ {0, 1} such that |a−sTd−kt| < B, then output k. Otherwise,

output ⊥.

computationally indistinguishable:

(g, h1, hr
1, . . . , hN , hr

N ) ≈c (g, h1, z1, . . . , hN , zN ), (3.2)

where h1, . . . , hN , z1, . . . , zN ←R G and r ←R Zp.

Construction

Construction 4 details our scheme, which uses a group G of large prime order p. The
database is a vector of N bits x = (x1, . . . , xN ) ∈ {0, 1}N . The public parameters of the
scheme include group elements h1, . . . , hN ∈ G. The digest is the product d←

∏N
j=1 h

xj

j ∈
G. Finding two distinct databases that map to the same digest is as hard as solving the
discrete-log problem in G [Ped91].

The protocol operates as follows. The client samples two random values r, t←R Zp. The
client then prepares a vector of N group elements. Say the client wants to fetch the ith
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Construction 4 (Single-server authenticated PIR from DDH). The construction
is parametrized by a database length N ∈ N, a group G of prime order p, and group
elements h1, . . . , hN ∈ G. The database is a vector x ∈ {0, 1}ℓ ⊆ ZN

p .

Digest(x ∈ {0, 1}N )→ d ∈ G

1. Output d←
∏

j∈[N ] h
xj

j ∈ G.

Query (d ∈ G, i ∈ [N ])→ (st, q)

1. Sample two random values r, t←R Zp.
2. For j ∈ [N ]\{i}, compute qj ← hr

j ∈ G.
3. Compute qi ← hr+t

i ∈ G.
4. Set st← (i, d, r, t).
5. Set q← (q1, . . . , qN ) ∈ GN .
6. Output (st, q).

Answer
(
d ∈ G, x ∈ {0, 1}N ⊆ ZN

p , q
)
→ a ∈ G

1. Parse the query q as (q1, . . . , qN ) ∈ GN .
2. Output a←

∏
j∈[N ] q

xj

j ∈ G.

Reconstruct (st, a)→ {0, 1,⊥}

1. Parse the state st as (i, d, r, t).
2. Set m← d−r · a ∈ G.
3. If m = 1G, output “0.” If m = ht

i, output “1.”
Otherwise, output ⊥.

database bit. For j ∈ [N ], the jth component of this vector is qj ← hr+t
j if j = i and is

qj ← hr
j otherwise. Under DDH, the server cannot differentiate between qi and qj for

j ̸= i.

The client queries the server with the resulting blinded vector (q1, . . . , qN ). The server
exponentiates each vector element to the corresponding database bit and computes
the product a =

∏
j∈[N ] q

xj

j . If the server honestly executes the protocol, the client
receives back the product of the blinded digest dr and (a) either the group identity (when
the retrieved bit is zero) or (b) the blinding factor ht associated with the element of
interest (when the retrieved bit is one). If the server returns any answer apart from the
one prescribed by the protocol, the client detects this and rejects with overwhelming
probability.
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We then have, by rebalancing Construction 4:

Theorem 56. If the DDH assumption holds in group G, then Construction 4 is a secure
single-server authenticated-PIR scheme when instantiated with database size N and
group G. The digest size consists in

√
N elements of G and the per-query communication

cost is 2
√

N elements of G. The scheme has negligible integrity error.

Proof. Correctness can be verified by inspection. Then the theorem follows from two
theorems that we prove in Appendix B.4.1. Theorem 76 states that Construction 4 has a
negligible integrity error. Theorem 77 demonstrates that Construction 4 provides privacy.
Therefore, Construction 4 is secure.

The scheme could be extended to retrieve multi-bit database entries in two readily-
apparent ways. The first and simplest approach is to run Construction 4 in parallel for
each bit of the entry. The second approach requires the client to solve tractable discrete
logarithms, as we describe in Appendix B.4.2.

Incremental digest maintenance. We envision that the data owner would generate
the database digest and publish it on a client-accessible website or a tamper-resistant log.
If a database record changes, the data owner can update the digest in either construction
incrementally. For example, in the lattice based construction given an old digest d = Ax
and a new database x′, the new digest is d′ = d + A(x′ − x). Given the old digest,
the server can compute the new digest in time proportional to the cost of computing
A(x′−x). This matrix-vector product, in turn, takes time linear in the number of updates
to the database, i.e., the Hamming weight of the difference x′ − x. If the database itself
is public, any third party can verify that the new digest correctly incorporates these
updates. The DDH-based construction supports a similar style of incremental updates.
A frequently changing database, however, requires a client to obtain a fresh and correct
digest before making each PIR query. One possible solution to this is to use a public log
and a timestamping service [STV+16, TD17].

3.6 Implementation

We implemented all of our authenticated-PIR schemes in roughly 4k lines of Go and
45 lines of C. Our function-secret-sharing implementations are based on the Function
Secret Sharing (FSS) Library [Wan17]. Our Merkle-tree implementation is based on the
go-merkletree library [Tec19]. We implemented group operations in our single-server
scheme from the DDH assumption with the CIRCL library [FHK19]. The single-server
scheme built on the LWE assumption uses a plaintext modulus of 2128 and relies on the
uint128 library [Cha22].
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We also implemented multi-server unauthenticated-PIR schemes as baselines for compari-
son. The multi-server unauthenticated-PIR scheme, also used in the authenticated-PIR
scheme for point queries, is over the binary field and uses fastxor [Cha18]. We use the
original implementation of SimplePIR [HHCG+23] as our single-server PIR baseline.

Our implementation is available under open-source license at https://github.com/dedis
/apir-code.

3.6.1 Privacy-preserving key directory

To evaluate the practicality of authenticated PIR, we built Keyd, a PGP public-key
directory service that offers (1) classic key look-ups and (2) computation of statistics over
keys. A key-directory service maps human-memorable identifiers, such as email addresses,
to cryptographic identities (public keys). Examples of such directories are the MIT PGP
Public Key Server [mit], along with the public-key directories that secure-messaging
solutions, such as Signal, implicitly offer.

We implement Keyd in the two-server model, where the security properties hold as long
as at least one server is honest. The Keyd key service provides the following properties:

• Privacy: The client reveals no information to the servers about the content of its
query.

• Integrity: The client is guaranteed to recover the correct result for the issued
query, i.e., the output of the protocol is consistent with the honest server’s view.

Prior key-server designs ensure only one of these two properties. It is possible to add
privacy to a key server using conventional PIR and issue private complex queries using
Splinter [WYG+17], or to add integrity as in CONIKS [MBB+15]. Prior to authenticated
PIR, we are unaware of any approach that simultaneously solves both problems in the
presence of malicious servers, without resorting to trusted hardware [Mar17a].

Keyd lays out public keys in the database using a hash table that maps public keys into
fixed-size buckets. To retrieve a PGP public key, a client hashes the requested email to
determine the corresponding bucket number, queries the servers for the contents of the
bucket, reconstructs and validates the answers, and finally selects and outputs the key of
interest.

To evaluate a predicate query, the client sends the query to the servers, which apply
it to the appropriate PGP key metadata. For example, to evaluate a COUNT query on
the email addresses, the client sends SELECT COUNT(*) FROM email WHERE email = p,
where p represents the query parameter hidden through secret sharing. The AVG query is
implemented using a SUM and COUNT query. We use TLS to protect the communication
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between client and servers.

Our Keyd serves a snapshot of SKS PGP key directory [Tub21] from 24 January 2021.
We excluded public keys larger than 8 KiB, a limit that we found excluded only keys with
large attachments (e.g., JPEG images). We also removed revoked keys, keys in an invalid
format, and keys with no email address in their metadata. We kept only the primary
key of each public key. If multiple keys were linked to the same email address, we kept
only the most recent key. If a key included multiple emails, we indexed this key using
the primary email. As a result, our Keyd serves a total of 3,557,164 unique PGP keys
(≈3 GiB in total), which is more than half of the keys in the original dump.

3.7 Experimental evaluation

We experimentally evaluate all of our authenticated-PIR schemes and the Keyd public-key
directory service.

Parameters. We instantiate our multi-server authenticated-PIR scheme for predicate
queries using F4

p with p = 232−1, yielding a security parameter of approximately 124 bits.
This approach is faster than using a full 128-bit field element, because of better-optimized
libraries and CPU instructions for operating on 32-bit values. The Merkle-based scheme
for point queries uses BLAKE3 as the hash function. The DDH-based single-server scheme
(Section 3.5.2) uses the P256 elliptic curve as the group. We select the parameters for
the LWE-based schemes (Section 3.5.1) to ensure 128-bit of privacy according to current
estimate of concrete security against known attacks [APS15]. We present one scheme with
integrity error 2−128, and another one that uses integrity amplification (Section 3.3.3 and
Construction 5), with integrity error 2−64. The scheme with integrity error 2−128 uses
modulus q = 2128 and lattice dimension n = 4800; the scheme with integrity error 2−64

works with q = 232 and n = 1100. For both implementations, the error distribution is the
discrete Gaussian distribution with standard deviation σ = 6.4. As the base authenticated
PIR scheme for integrity amplification (denoted PIR0 in Construction 5) we use the LWE-
based scheme (Construction 3) with modulus q = 232 and lattice dimension n = 1100,
which has integrity error ϵ = (2B − 1)/(q − 4B + 1) (Theorem 73). The correctness of
Construction 3 (Theorem 71) states that B ≤

√
λNs. By Theorem 63 we know that if we

use a simple repetition code (which corrects up to t errors by expanding each database bit
into 2t+1 codeword bits) and PIR0 has integrity error ϵ, then Construction 5 has integrity
error ϵt+1. Table 3.2 shows the choice of t to achieve integrity error ϵΠ in Construction 5
for different database sizes N , where N indicates the number of single bit records in the
database.

Experimental methodology. We perform all the experiments on machines equipped
with two Intel Xeon E5-2680 v3 (Haswell) CPUs, each with 12 cores, 24 threads, and
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Database size N [bits]: 213 223 233

Integrity error ϵΠ = 2−64 3 4 7
Integrity error ϵΠ = 2−128 6 9 15

Table 3.2: Selection of the error correcting code parameter t for different database sizes
and integrity errors.

operating at 2.5 GHz. Each machine has 256 GB of RAM, and runs Ubuntu 20.04 and
Go 1.17.5. Machines are connected with 10 Gigabit Ethernet. In the experiments for
the multi-server schemes and Keyd (Sections 3.7.1, 3.7.2 and 3.7.4), the client and the
servers run on separate machines. For single-server schemes we use a single machine
that runs both client and server, as the single-server schemes are inherently sequential.
We always report the time elapsed from query computation to record reconstruction as
user time and the cumulative bandwidth from and to the server(s) as bandwidth. We
execute all experiments 30 times and report the median result across executions. We
run all the experiments using a single core for each physical machine. For consistency
across experiments, we always download the same public-key when evaluating Keyd.
We have published our experimental code and results in our source-code repository (see
Section 3.6).

3.7.1 Multi-server point queries

Figure 3.2 presents user time and bandwidth overhead for our authenticated-PIR scheme
for point queries, compared to classic unauthenticated PIR. Both user time and the
bandwidth overheads increase with database size, as each database record includes and
additional Merkle proof of size O(λ log N), which the client must fetch and verify. We
measure a maximum overhead of 3× for user time and of 1.6× for bandwidth.

Figure 3.3 illustrates how the number of servers affects user time and bandwidth. As all
servers answer in parallel, the user time increase is almost negligible. For authenticated
PIR, the increase stems from the verification of Merkle proofs. Bandwidth increases
linearly for both schemes, since each server receives a query and sends an answer. The
absolute bandwidth reported in Figure 3.3 is significantly higher than that in Figure 3.2,
as the latter uses a state-of-the-art PIR scheme based on distributed point functions [GI14,
BGI15, BGI16] as both unauthenticated scheme and the underlying PIR scheme for
the authenticated version. Additionally, the servers represent the database differently:
Figure 3.2 uses a vector representation (one data block per database row), while Figure 3.3
uses a matrix representation (multiple blocks per row), balancing download complexity
with query complexity.
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Figure 3.2: The cost of retrieving a 1 KiB record using classic ("Unauthenticated") and
authenticated PIR for point queries (§3.4.1) from two servers. For this experiment we use
a classic PIR scheme based on distributed point functions [GI14, BGI15, BGI16]. The
Merkle proof attached to each record imposes the bandwidth and user time overheads.

In our scheme for point queries, the servers must compute a Merkle tree over the
N database entries along with their indexes. The computational complexity of the
preprocessing phase is dominated by the number N of database records. Figure 3.4 shows
the CPU time that a single server takes to compute a Merkle tree for different database
sizes. The current implementation is not parallelized, but in practice, the Merkle-tree
computation can be efficiently divided into multiple cores.

3.7.2 Multi-server complex queries

When comparing our multi-server authenticated-PIR scheme for complex queries with
classic PIR (Figure 3.5), we find that both the user time and bandwidth overheads of the
authenticated scheme are less than 1.1×. The former comes from the longer output of the
function-secret-sharing evaluation function—one F231−1 element versus five elements—
and from the verification of the servers’ answers, absent in the unauthenticated scheme.
For bandwidth, the only difference is the so-called correction word in the function-secret-
sharing key [BGI15, BGI16], which is composed of a single field element in classic PIR and
of five elements in authenticated PIR: one for the predicate evaluation’s result and four
for authentication. The servers’ answers have the same ratio: a single field element in the
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Figure 3.3: The cost of retrieving a 1 KiB record using unauthenticated and authenticated
PIR for point queries (§3.4.1) from a variable number of servers holding a database of
1 GiB. For this experiment we use a classic PIR scheme based on classic secret-sharing
over the binary field, as schemes based on distributed point functions impose a query
bandwidth exponential in the number of servers and database length [BGI15].

unauthenticated scheme and five elements in the authenticated scheme. The bandwidth
overhead is thus of a constant factor. Evaluation with k ≥ 3 servers is infeasible as the
length of the keys is O

(
λ2k/22ℓ/2

)
, where ℓ is the input size in bits [BGI15].

3.7.3 Single-server point queries

To evaluate our single-server authenticated-PIR schemes, we compare their performance
against SimplePIR [HHCG+23], the fastest classic single-server PIR scheme for small
records to-date. We measure the costs of retrieving one data bit from the database.2

We evaluate SimplePIR with its default configuration of 2048-bit database records. The
client downloads a corresponding record and selects a desired bit from it. The offline
bandwidth indicates the digest for authenticated schemes, and the hint for SimplePIR,
as this scheme is a PIR-with-preprocessing scheme [BIM04]. We show the results in
Figure 3.6.

2Other recent PIR schemes (e.g., [MCR21, MW22]) are competitive only in the large-record setting
(where records are tens of kilobytes long).
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Figure 3.4: The CPU time that a single server takes to process the database for the
authenticated PIR scheme for point queries (Section 3.4.1). The Merkle-tree computation
is not parallelized.

The authenticated-PIR schemes from the decisional Diffie-Hellman assumption (DDH)
and from the learning-with-errors assumption (LWE) have integrity error 2−128. The DDH
construction has a smaller digest, hence lower offline bandwidth, but has twice the online
bandwidth of the LWE construction: both have the same asymptotic complexity, but LWE
uses elements from Z2128 and DDH from the elliptic curve P256, which encodes elements
in 256 bits. The LWE construction is also faster (3-79×): arithmetic computations in
Z2128 are faster than elliptic-curve operations in P256.

The scheme with integrity amplification (LWE+) has integrity error 2−64 and the same
classic-PIR privacy as SimplePIR, except that SimplePIR does not provide privacy under
selective-failure attacks. LWE+ is faster than LWE for the 1 KiB and 1 MiB databases,
but slower (1.4×) for the 1 GiB database: the repetition code requires repeating the
protocol 15 times (t = 7). An error correcting code with higher rate, or parallel execution
of the repetition code, could improve LWE+. SimplePIR is 30-100× faster than LWE+

due to its preprocessing for reducing online computation and exploiting a faster database
representation through packing [HHCG+23]. The asymptotic online and offline bandwidth
overhead of SimplePIR and authenticated-PIR schemes from the LWE assumption are the
same, but integrity amplification increases online bandwidth by 2t + 1× (Section 3.3.3),
whereas the client must download the digest only once. Concrete offline bandwidth is
lower in SimplePIR due to database packing.
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Figure 3.5: The user time and bandwidth ratios between unauthenticated and authenti-
cated PIR (Section 3.4.2) for complex queries when querying two serves for the query
SELECT COUNT(*) FROM keys WHERE email LIKE "%s" from a database composed of
100,000 random records. The median authentication overhead is less than 1.1× for both
user time and bandwidth; the grey area shows the variance.

The current schemes are computationally costly, but we expect that future optimizations,
such as multi-bit queries, as outlined in Appendix B.4.2, could reduce this cost.

3.7.4 Application: privacy-preserving key server

In this section, we evaluate our multi-server authenticated-PIR schemes in the context of
the Keyd public-key server.

For classic key look-ups, which are point queries, we measure the wall-clock time needed
to retrieve a PGP public-key with authenticated PIR (Section 3.4.1), classic PIR without
authentication, and by direct download without privacy protection. To measure the
latency of direct download, we download a PGP public-key from the OpenPGP key
server using wget. Both PIR measurements include a manually-added RTT of 0.4 ms
(the ping time to the nearest PGP key server). We perform all the measurements over
the entire processed dataset of PGP keys (see Section 3.6). We measure 1.11 seconds for
authenticated PIR, 1.10 seconds for unauthenticated PIR and 0.22 seconds for non-private
direct look-up.
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Figure 3.6: The cost of retrieving one data bit using our single-server authenticated PIR
schemes and state-of-the-art classic single-server PIR scheme SimplePIR [HHCG+23].
DDH indicates Construction 4 with 2−128-integrity; LWE indicates Construction 3
(q = 2128) with 2−128-integrity; LWE+ indicates Construction 5 (the base scheme is
Construction 3 with q = 232) with 2−64-integrity (see Section 3.3.3). DDH takes over an
hour to retrieve a data bit from a 1 GiB database and we omit it from the figure.

The authenticated scheme for point queries shows performance comparable to classic
PIR without authentication. The Merkle-proof overhead in this case is smaller than in
Figure 3.2 due to a larger block size and hence less authentication data per data bit in
Keyd. The OpenPGP key server maintainers informed us that their service typically
handles around 3–10 public-key lookups per second, or less than 1 million requests per
day [Bre21]. A careful multithreaded implementation of our multi-server authenticated-
PIR schemes for point queries can handle this load with 12 cores, just one more than the
number of cores estimated for classic unauthenticated PIR (11 cores).

To analyze Keyd’s performance in computing private statistics over keys, we measure user-
perceived time and bandwidth of different predicate queries. Table 3.3 shows the results.
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Query description User time [s] Bandwidth [KiB]

Unauth. Auth. Unauth. Auth.

COUNT(*) WHERE
email LIKE ’%.edu’ 25.77 25.97 1.01× 1.8 1.9 1.06×
type = ’ElGamal’ 7.52 7.66 1.02× 0.9 1.0 1.11×
YEAR(created) = 2019
AND email LIKE ’%.edu’ 48.28 48.32 1.00× 3.0 3.1 1.03×

AVG(lifetime) WHERE
email LIKE ’%.edu’ 25.74 26.59 1.03× 1.8 1.9 1.05×

Table 3.3: Performance of different predicate queries on Keyd for unauthenticated and
authenticated PIR (the two-server schemes for predicate queries). The median authenti-
cation overhead is 1.01× for user time and 1.05× for bandwidth.

For all the predicates, the overhead of authenticated PIR—in both user-perceived time and
bandwidth—is upper bounded by a factor of 1.05×. This result matches the benchmark
presented in Figure 3.5 and is due to the latency being dominated by the function-secret-
sharing evaluation, which is essentially equal for authenticated and unauthenticated PIR.
For bandwidth overhead, the same reasoning as in Section 3.7.2 applies.

3.8 Related work

Authenticated PIR builds on diverse work on private information retrieval. Starting with
the original proposal [CGKS95], improvements have reduced the communication cost
of multi-server PIR with information-theoretic [BI01, BIKR02, WY05, Yek07, DG16]
or computational security [CG97, BGI16]. Kushilevitz and Ostrovsky [KO97] presented
the first single-server PIR construction, and subsequent work reduced communication
costs [CMS99, Lip05, GR05, OS07, DGI+19]. Recent advances introduced PIR for more
complex (e.g., SQL-like) queries [OG10, RPG07, WYG+17].

Kushilevitz and Ostrovsky [KO97] first noted that, in the single-server setting, the server
could violate a client’s privacy by manipulating database records and observing whether
the client accepted the response as valid. Such attacks have come to be known as
selective-failure attacks [KS06, LP11, HKE13]. To our knowledge, we are the first to
address selective-failure attacks in the multi-server setting.

In schemes that resist faulty servers (summarized in Table 3.1), a client can either
reconstruct the correct database entry, or can detect and abort, when servers misbehave.
Multiparty computation literature refers to the former approach as “full security” and
the latter as “security with abort” [GMW87].

Beimel and Stahl [BS02, BS07] first consider malicious or crashing servers in the multi-
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server setting. Their approach focuses on ensuring data reconstruction, not detection of
server misbehaviour, and it is further developed by concurrent and follow-up work [YXB02,
Gol07, DGH12, Kur19, EKN22]. Unlike authenticated PIR, these approaches require an
honest majority in the presence of malicious servers, with specific thresholds shown in
Table 3.1.

Verifiable PIR in the multi-server setting [ZS14] offers security properties similar to
authenticated PIR, but requires expensive public-key cryptography. In the single-server
setting [WZ18, ZWH21], verifiable PIR is not resistant to selective-failure attacks and
offers a weaker property: it ensures that the server answer a query with respect to some
database, but not necessarily the one intended. Our approach ensures that queries are
answered with respect to a specific database, as determined by the honest server in the
multi-server setting, or by the database digest in the single-server case. In concurrent
work, Ben-David et al. [BDKP22] introduce another notion of verifiable PIR in the
single-server setting, whose goal is to verify arbitrary properties on databases, but they
do not consider selective-failure attacks.

Our multi-server scheme for point queries (Section 3.4.1) extends a Merkle-tree approach
by Kushilevitz and Ostrovsky [KO97]. Our multi-server scheme for predicate queries
builds on function secret-sharing [BGI15, BGI16, dCP22, BCG+21], information-theoretic
message authentication codes [CDF+08], and malicious-secure multiparty computation
protocols [BDOZ11, DPSZ12].

Prior systems address integrity in private information retrieval [DFL+20, MOT+11], but
do not protect against selective manipulation in the single-server setting, and require
additional assumptions in the multi-server setting.

Prior work has also considered privacy-preserving and integrity-assuring key directo-
ries [MBB+15, MPC+18, CDGM19, TFBT21, CDG+22]. In particular, Melara et al.’s
CONIKS [MBB+15] and its improved version SEEMless [CDGM19], ensure consistency
for the bindings thanks to ideas adapted from transparency log systems [Lau14, Rya14],
but do not address privacy of the client’s queries.

3.9 Conclusion

Authenticated PIR enhances the strong privacy properties of classic PIR with strong data-
authentication guarantees. We have introduced formal definitions both in the dishonest-
majority setting—where the security properties hold as long as at least one of the server is
honest—and in the single-server setting. We implemented and evaluated all the schemes
that we introduced, demonstrating the practicality of multi-server authenticated PIR
through Keyd, a privacy-preserving PGP key directory that ensures both the privacy
and integrity of retrieved public keys.
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4 Real-world deniability in messaging

In this chapter we explore real-world deniability in messaging. We propose a formal model
that considers the entire messaging system to analyze deniability in practice. Applying
this model to the Signal application and DKIM-protected email, we demonstrate that
these systems do not offer practical deniability guarantees. Additionally, we analyze 140
court cases in Switzerland that use conversations on messaging applications as evidence
and find that none consider deniability, providing evidence that this property does not
have an impact in the legal setting. Based on these technical and legal findings, we
assess whether deniability is a desirable property and the challenges and shortcomings
of designing a system that is deniable in practice. We posit that systems should either
offer real-world deniability or refrain from claiming to achieve it. We discuss how to
choose an appropriate threat model for deniability in a given context and how to design
communication systems that are deni- able in practice. For Signal, we propose and discuss
a simple yet effective solution: the application should enable direct modification of locally
stored messages in the user interface.

A preliminary version of this work was presented at RWC 2023. An extended abstract
will appear at PETS 2025 [CCHD25], and the full version is available on the Cryptology
ePrint Archive [CCHD23]. This chapter’s contributions result from a collaboration with
Daniel Collins and Loïs Huguenin-Dumittan. The author of this thesis significantly
contributed to the design of the model for real-world deniability, the technical analysis
of DKIM-protected email and KeyForge [SPG21], the study of legal cases, and the final
discussion.
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4.1 Introduction

Deniability, according to www.dictionary.com, is “the ability to deny something, as
knowledge of or connection with an illegal activity”. Despite the negative connotation,
this definition captures the coarse notion agreed upon by researchers and practitioners:
deniability enables a user to plausibly deny their involvement in executing some scheme
or protocol. The Signal protocol [MP16, PM16], which is the de-facto standard for secure
messaging, claims to offer deniability. Moxie Marlinspike, one of the designers of Signal,
discusses deniability in the context of Off-the-Record (OTR) [BGB04] as follows [Mar13]:

“If someone receives an OTR message from you, they can be absolutely sure
you sent it (rather than having been forged by some third party), but can’t
prove to anyone else that it was a message you wrote.”

In the cryptographic literature, deniability is typically formalised as a game played
between abstract entities. A protocol is deniable if a judge cannot differentiate between
a real execution of the protocol and a simulated one. This means that any genuine
execution of the protocol could have been faked, thereby not implicating a given party
who is possibly being framed. For secure messaging, a judge might need to distinguish
between actual cryptographic conversations (a sequence of ciphertexts) and simulated
transcripts [RGK06, BFG+22b, RG05]. The judge might actively collude with one or more
participants before the entire real transcript has been generated [DKSW09, UG18] and/or
have access to the cryptographic secrets of one or more parties [BFG+22b, CHMR23].

However, it is crucial to question whether these models (1) are accurate, and (2) are
applicable in the real world, such as in a court of law [Gre14a]. In Section 4.2, we argue
that neither of these conditions hold true in the context of secure messaging. For (1),
existing models fail to consider the higher-level context in which parties execute the
cryptographic protocol (e.g., a client that keeps messages in the device’s memory and
authenticates to a server), thereby rendering their deniability claims vacuous. For (2),
the notions of cryptographic deniability do not align with how a human judge would
interpret evidence in practice. While we do not question the technical value of prior work
on the cryptographic nature of deniability, we highlight their limitations when considering
practical deniability in real-world scenarios. In essence, cryptographic deniability is
theoretically sound, but its practical implications are weakened by real-world contexts
and human factors that these models do not address.

Motivated by these shortcomings, we propose in Section 4.3 a new model for deniability
in secure messaging. Our model captures the fact that, in practice, messages are routed
between users via a server that usually authenticates users. Consider two parties, Alice
and Bob, where Bob incriminates Alice. In our model, the judge receives Bob’s state (e.g.,
their entire phone or screenshots of the conversation) after allegedly communicating with
Alice. The judge also has data from the server and any other relevant information available.
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The system is deniable if there exists a practical simulator who, under application-specific
constraints, can interact with the server and produce a state that is indistinguishable from
Bob’s. This approach extends the classical notions, which only consider the cryptographic
transcript, by providing the judge with Bob’s state, which can include his entire phone, a
portion of the server’s state and arbitrary auxiliary data [RGK06]. Our model broadens
the purely cryptographic approach incorporating real-world evidence and higher-level
components that can undermine deniability. By doing so, we aim to provide a more
comprehensive model that better captures practical aspects of deniability in messaging
systems. We note that, depending on what information the judge is afforded, conflicting
conclusions can be drawn, and therefore care must be taken when modelling and assessing
deniability.

In Section 4.4 we discuss how Signal is not deniable in practice by distinguishing two
cases: normal authentication and authentication with sealed sender—a feature that hides
a message’s sender from the relaying server [Lun18]. The first approach is not deniable
as the Signal server authenticates the sender, whereas the sealed-sender feature fails
to provide deniability because every message includes a sender-specific certificate. We
also examine related work proposing solutions for the deniability of email with DKIM
protection [CHK11, SPG21]. In this context, the role of email domain servers—another
form of relying server—also poses challenges to practical deniability. For both Signal and
email with DKIM protection, we show how they can be captured in our model and how
it identifies the limitations of deniability’s applicability.

In Section 4.5 we analyze 140 legal cases in Switzerland that uses WhatsApp conversa-
tions as evidence. Since WhatsApp uses the same core protocol as Signal for two-party
messaging, these conversations are cryptographically deniable. We find that (1) in only
two cases the legitimacy of such evidence is questioned, (2) judges always accept this
evidence, even if disputed, and (3) no case mentions or considers deniability. Although
our findings cannot be generalized to other countries, our analysis, along with a similar
one in the United States [YGS23] shows that cryptographic deniability does not hold up
in a legal setting. We also highlight additional results that show how the very idea of
deniability is largely unknown in the legal world.

Both technical and legal analysis show that cryptographic deniability is ineffective in the
real world. In Section 4.6 we discuss whether deniability should be a goal of messaging
solutions by analyzing the issues and shortcomings that practical deniability brings. Given
our model to analyze deniability and the analysis of technical and legal limitations, we
claim that deniability should either not be a goal of messaging solutions or these must
aim for practical real-world deniability. We argue that for deniability to be practical, it
must be easily accessible to all users. Under our notion, Signal would achieve deniability if
the application allowed users to modify, insert or delete messages stored on their devices,
enabling all users to simulate conversations in practice. This approach provides concrete
guarantees since, as our legal analysis shows, screenshots or compromised phones are
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generally considered authentic [RMA+23, YGS23], and are likely more tangible to a judge
than an abstract simulator. If deniability is a goal, we advocate to implement message
modification on the local device, in Signal and other secure messaging applications. We
also discuss the risks that such editing capabilities entail.

This chapter contains several opinionated claims about deniability. Our goal is to discuss
deniability in the real world and to stimulate further discussion on this subject within
the privacy-enhancing technologies community and beyond. We acknowledge the efforts
made by Signal to provide a highly secure and private messaging solution, for example by
not storing any user information metadata [Sig21a, Sig21b], aiding deniability in practice.
Our aim is to push these boundaries even further. Similarly, we recognize the work that
both researchers and practitioners have done to improve the security of messaging systems
and their deniability.

4.1.1 Summary

To summarise, we make the following contributions:

• We propose (Section 4.3) a model to analyze real-world deniability in messaging.

• In Section 4.4.1 we analyze the Signal application and show that it does not provide
adequate deniability in practice.

• In Section 4.4.2 we examine solutions [SPG21] for deniability of email with DKIM
protection and show that they fail to provide deniability in some scenarios.

• We analyze in Section 4.5 140 Swiss court cases that use WhatsApp chats as
evidence, finding no case that considers deniability.

• We argue that either deniability should be set aside as a security property or made
practical. For Signal we propose a drastic solution: users should be able to modify
all messages stored on their device (Section 4.6).

4.2 Background

This section introduces deniability in messaging and discusses previous research on what
we call meta-deniability, which explores to what extent and how deniability is a desirable
property.

4.2.1 Deniability in messaging

We assume two parties that use a secure messaging protocol supported by a public key
infrastructure and a logical server that routes messages. Messaging solutions typically
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consist of two main components: an initial key exchange and the actual messaging protocol.
Signal implements this initial key exchange using X3DH [MP16] or its post-quantum
variant PQXDH [KS23]1, and messaging with the Double Ratchet algorithm [PM16]. The
latter regularly updates keys to protect communication in the case of state exposure.

In messaging, deniability usually refers to the ability of a party to deny interaction with
another party. The conceptual simplicity of deniability conceals multiple nuances, leading
to a plethora of definitions (cf. [DNS98, RGK06, BFG+22b, CF11, DFG+13, HW21,
HLLC11, VGIK20, RG05, FJ24] for a non-exhaustive list and the work of Brendel et al.
for a survey [BFG+22b, Appendix A]).

The usefulness of deniability has been debated before, for example in the context of OTR
in 2014 [Hea14]. We discuss this matter in Section 4.6. While some issues and arguments
that we mention have been raised before, we aim to provide a more structured, up-to-date
and thorough perspective. Below we broadly survey the literature on secure messaging
and argue that existing approaches to achieve deniability are not practical.

Two main flavours of deniability appear in the literature: online deniability [DKSW09,
UG15, UG18] and offline deniability. Online deniability refers to settings where the judge
can interact with parties during the execution of the protocol. In contrast, offline denia-
bility applies when the judge receives information only after all relevant communication
has ceased. Unger and Goldberg conjecture the incompatibility of online deniability with
asynchronous key exchange protocols like X3DH [UG15]. Moreover, it is questionably
applicable to many practical scenarios. For instance, in court, evidence pertains to past
events. The scenario where a judge actively colludes with a party to frame another seems
unreasonable if the judge is honest and futile otherwise, as the judge can anyway rule
against the victim. Additionally, if the judge considers current events and can mount a
(remote) shoulder surfing attack, human factors invalidate online deniability. The judge
can instruct the incriminating party to frame the victim, e.g., by asking a question that
only the victim can answer. This suggests an analogy between online deniability and the
Turing test [Tur50], but we leave this parallelism for future exploration. We therefore
consider offline deniability in our model: the data pertaining to an interaction between
parties is presented to the judge after the interaction has concluded.

Fischlin [FM15] considers and formalizes relaxed cryptographic notions of deniability
such as content deniability (denying that a given message was sent, but not necessarily
that an interaction took place) and time deniability, and is thus able to reason about the
deniability of messaging systems like OTR [BGB04].

Vatandas et al. [VGIK20] analyze the deniability of the X3DH protocol. They prove that
the protocol is offline deniable using knowledge of exponent-style assumptions [BP04]

1The latest versions of Signal use PQXDH for new chats initiated after both clients use an appropriate
version [Kre23]. Since chats may last for years, we take into account both algorithms.
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which seems inherent in their model. Fiedler and Janson [FJ24] show that PQXDH’s
deniability can be proven secure under the same kinds of assumptions. Both simulators
are “non-constructive”, i.e., the simulator exists but it is impossible to show how it works,
making their practicality unclear.

Despite these impractical assumptions, the works of Vatandas et al. and Fiedler and
Janson are the only ones we are aware of, in the context of X3DH and PQXDH, to consider
all cryptographic information produced by the protocol that can frame a party to the
execution of the protocol itself. Their definitions of deniability consider signed key bundles
as auxiliary input given to the adversary in both the real and ideal cases. These signatures
seem to have been abstracted away in previous work on deniability [HKKP22, BFG+22b],
limiting the guarantees of these deniability notions, as signatures frame parties to protocol
executions (as discussed in Section 4.4.2 for DKIM-protected email) and preclude strong
forms of deniability [HKKP22, BFG+22b].

Although interesting from a cryptographic perspective, these approaches effectively
restrict the transcript to the cryptographic material that parties exchange during the
protocol execution. This limitation affects the practicality of deniability, since it ignores a
plethora of additional cryptographic and non-cryptographic information that can frame
a party to a protocol execution. Even in definitions where auxiliary input is given to the
judge, this data is either ignored in the analysis or only instantiated with protocol-level
cryptographic material (as for X3DH/PQXDH above), and no framework is provided
to reason about the system as a whole. Modern messaging solutions such as Signal
rely on a complex ecosystem of communication protocols, cryptographic solutions, and
asynchronous multi-device management. This stack provides a modern and user-friendly
messaging experience, but comes at the cost of deniability.

4.2.2 Meta-deniability for messaging

This section discusses related work on deniability in messaging from a user perspective.
Assuming that most current messaging solutions achieve some sort of cryptographic
deniability, these works focus on how deniability is perceived in the real world and the
missing steps to achieve practical deniability, or human, deniability.

Reitinger et al.’s survey study [RMA+23]. In a recent work Reitinger et al. conducted
a user study involving US-based participants to investigate the requirements for achieving
practical deniability given a messaging protocol featuring cryptographic deniability.
Participants acted as a jury in a (role-played) courtroom and were shown a screenshot of
a Signal conversation suggesting a politician took a bribe. They had to decide whether
the defendant was guilty or not in different scenarios:
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Figure 4.1: Interactive forging tool that Reitinger et al. use for their study of deniability
in secure messaging [RMA+23].

1. No defense: The defense claims that the screenshot is fake.

2. Expert: Renowned cryptographers explain to the jury that the protocol is deniable
and therefore there is no proof that the message, and thus the screenshot, is
legitimate. The study’s authors apply this scenario using two approaches, namely,
with jargon or friendly parlance. In the former, the experts argue using technical
terms, while in the latter they use less technical and more understandable language
for non-experts.

3. Tool: Any user of the messaging application can edit anything in the chat, e.g., insert
or modify messages or modify delivery times. The authors define three sub-scenarios:
(3.1) the tool exists and the participant is given a fake screenshot; (3.2) anyone can
use the tool and the participant gets the same fake screenshot; (3.3) the tool is
available to the participant, who can actively modify the screenshot (Figure 4.1
shows the tool that the participant can use).

The study shows that while 71% of the participants would decide guilty in the no
defense scenario (1), this number drops to at most 26% in the expert (2) or tool (3)
cases. Additionally, the study reveals that the active forgery tool is the most convincing
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scenario, i.e., participants who can use the tool are significantly more likely to believe
that screenshots can be forged. These results show that cryptographic deniability is
effectively not accepted or understood. While cryptographers might assume that without
cryptographic evidence all accusations must be deniable, this study suggests otherwise:
denying authorship of a screenshot does not convince people that it is fake, even in the
absence of cryptographic or other evidence. People’s perception of deniability does not
necessarily align with the formal cryptographic perspective. On the other hand, the study
shows that the presence of a practical forging tool increases the likelihood of achieving
plausible deniability.

Yadav et al.’s survey study [YGS23]. Yadav et al. conducted a study on deniability
by analyzing three components: support of deniability in the messaging application, social
acceptance of deniability and legal recognition of deniability. Like the study of Reitinger
et al. all the participants of this study were based in the United States.

Their analysis of social acceptance of deniability reveals that participants tended to
trust conversations from a messaging application more than oral claims made by a
participant in a conversation. This implies that deniability is not socially accepted: if it
were, participants would place the same amount of trust in both oral and digital claims.
The lack of social acceptance is likely influenced by lack of knowledge about this property.
The study shows that only 0.6% of participants accurately interpreted OTR’s deniability
definition, while 64.8% believed they understood it actually did not. Additionally, 32%
of participants found the deniability definition self-contradictory, highlighting confusion
and misinterpretation.

The survey indicates that most users prefer non-repudiation, i.e., non-deniable digital
communications. Approximately 60% of users desire only non-repudiation, whereas 12.7%
and 4.5% prefer deniability or anonymity, respectively. The remaining 22.6% seek some
combination of these properties. Participants cited instances where non-repudiation was
a requirement (98%) and emphasized its importance (82%), while deniability was less
frequently needed (60.94%) or deemed highly important (23.18%).

This study provides evidence that cryptographic deniability has not been considered in
US court cases involving WhatsApp chats as evidence. Out of 228 cases analyzed, none
presented an argument for cryptographic deniability. Instead, judges demanded concrete
evidence rather than accepting claims of message forgery. There is a need for court cases
that present valid technical arguments for deniability in real-world scenarios to determine
whether deniability will gain legal acceptance.
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4.2.3 Additional related work

Celi and Symeonidis [CS20] presented a talk on deniability at HotPETs 2020, with
a particular focus on messaging. The authors discussed a number of open questions
regarding deniability in messaging, most of which remain unanswered today. To the best
of our knowledge, no extended version of this work has been published.

Different works propose methods to balance non-repudiation and deniability in various
settings, such as message franking [GLR17, TGL+19, IAV22, BE24] and the recently
introduced concept of retroactive avowal [WCWB24].

This work draws inspiration from other research that model legal and real-world scenarios
using cryptography. Cohen and Nissim [CN20] formalize aspects of the European privacy
law. Garg et al. [GGV20] formalize the right to be forgotten. Frankle et al. [FPS+18] pro-
pose using zero-knowledge proofs to enable public audits of warrants issued confidentially
by intelligence courts. Scheffler and Varia [SV21] study the guarantees of cryptographic
protocols against compelled disclosure through self-incrimination.

4.3 Our model

(skA, pkA) ⊆ stA

st′
A stS

(skB , pkB) ⊆ stB

st′
B

pkA

O

stB

s̃tB s̃tS

Real Ideal

(pkA, skB , f(stS), st′
B) (pkA, skB , f(s̃tS), s̃tB)

Figure 4.2: Our model for real world deniability in a two-parties protocol. The simulator is
depicted by the virtual reality device. The application-specific oracle O models the ability
of the simulator to modify Bob’s state. The judge, aided by some auxiliary material aux,
must distinguish between the output of the real and the ideal worlds (see Definition 57).

This section introduces our deniability model, which captures deniability in practice.
We depict our model in Figure 4.2, and adopt the real/ideal paradigm: the judge must
differentiate between the ideal and real worlds. Our model captures the interaction
between two parties, Alice and Bob, and aims for offline deniability. In this scenario, Bob,
the incriminating party, hands over his state to the judge after the protocol execution
to frame the victim, Alice. We assume that both parties execute the protocol honestly,
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meaning that Bob does not deviate from the protocol to incriminate Alice. This does
not mean that Alice and Bob have to send everything through their own actions: e.g.,
Bob can induce Alice to send a ciphertext over the wire if the protocol implements read
receipts [Wha24a, MKA+21].

In the real world (Figure 4.2, left), Alice and Bob execute the protocol using an external
server. The server is a logical entity that can represent several physical machines in a
centralized or distributed setting. Both parties input an initial state (stA and stB) that
contains, for example, their long-term private key and the counterpart’s public key. We
do not force a type for a party’s state: it can be anything, e.g., the entire phone. The
real world returns Alice’s public key pkA, Bob’s secret key skB (which is possibly blank,
i.e., ⊥), a function of the server’s internal state f(stS), and Bob’s final state st′

B. The
function f models different types of leakage from the server. For example, a subpoena
might force the maintainers to reveal some of the server’s data, in which case f outputs
only a partial view of the server’s data. Alternatively, if the server is completely breached,
f is the identity function.

The ideal world (Figure 4.2, right) encompasses three actors: an oracle, a simulator
(represented by the person with the virtual reality headset in Figure 4.2) and a server.
The server is an exact replica of the one in the real world. The simulator inputs the
victim’s public key, i.e., Alice’s pkA, and interacts with the oracle to produce a simulation
of Bob’s final state. The goal of the simulator, in collaboration with the oracle, is to
demonstrate that Bob can reach a simulated final state s̃tB starting from an initial state
stB without interacting with Alice (i.e., without knowing stA). The simulated state s̃tB

must be indistinguishable (Definition 57) from the real final state st′
B, which Bob returns

in the real world. To this end, the oracle inputs Bob’s initial state stB, interacts with the
simulator and the server and, outputs s̃tB at the end of the experiment. The simulator does
not directly output the simulated state: state evolution is mediated through the oracle,
which complies with the simulator’s instructions while considering practical constraints.

The ideal world outputs Alice’s public key pkA, Bob’s secret key skB, some leakage of
the server f(s̃tS) for some function f , and Bob’s simulated state s̃tB. As Definition 57
states, the judge J , with the help of some auxiliary information—that is, any prior or
contextual information the judge might have—must distinguish between the outputs of
the two worlds.

Definition 57. We say that a system using a server S, coerced to reveal information
that the function f represents, is deniable if, for any victim A and any incriminating
party B, there exists a simulator with access to an oracle O, such that for any judge J

with auxiliary information aux, the following holds:∣∣Pr
[
J(aux, pkA, skB, f(stS), st′

B)⇒ 1
]
− Pr

[
J(aux, pkA, skB, f(s̃tS), s̃tB)⇒ 1

]∣∣ ≤ ν,
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Oracle NO-AUTH(op, payload)
1 : if op = get then
2 : send s̃tB to simulator
3 : elseif op = set then
4 : s̃tB ← payload
5 : elseif op = forward then
6 : send payload to server
7 : send server’s answer to simulator
8 : elseif op = finish then return s̃tB

9 : else return ⊥

Oracle AUTH(op, payload)
1 : if op = get then return ⊥
2 : elseif op = set ∧ Vf(s̃tB , payload) then
3 : s̃tB ← update s̃tB according to payload
4 : elseif op = forward then
5 : authenticate to server using s̃tB

6 : send payload to server
7 : send server’s answer to simulator
8 : elseif op = finish then return s̃tB

9 : else return ⊥

Figure 4.3: Two oracles for our deniability model. The NO-AUTH oracle models a system
without authentication, AUTH models signature-based authentication.

where ν is a value that models the in dubio pro reo principle: if the judge is unsure, to
some degree of uncertainty, then they rule in favour of the victim A. The exact value of
ν depends on the context in which our definition is used.

Remark 58. Our definition captures honest protocol executions between Alice and Bob.
Achieving deniability in the malicious setting is very difficult if not impossible: Bob
can circumvent deniability such as with remote algorithm substitution attacks [AQ22]
or remote attestation [GPA19]. Remote attestation leverages hardware-based trusted
execution environments, which are widely available in today’s mobile phones, to produce
a publicly verifiable and non-deniable transcript from the execution of a deniable protocol;
the victim does not even detect the loss of deniability, as she runs the original deniable
protocol.

Remark 59. Unlike many cryptographic models that formally define variable types, our
model requires these variables to be defined before analyzing practical deniability. In
many cases, the accuser (Bob) can determine his state, e.g., by surrendering his entire
phone to the judge. Similarly, Bob and/or the judge often control the function f that
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models leakage from the server, e.g., the judge can subpoena the server or the service
can disclose useful metadata to the judge. The variables of the model must therefore be
defined before applying it to a specific system, taking into account the worst case that
the threat model encompasses.

4.3.1 Model parameters

Our model provides a large degree of flexibility and can capture many different scenarios.
To this end, we discuss below how different parameters of Definition 57 may be chosen
before describing and assigning variables in two example scenarios. In some cases, there
may be some overlap between variables, e.g. Bob’s state may contain his secret key.

Alice’s public key (pkA). This should typically correspond to Alice’s long-term public
key that she registers with some public key infrastructure, for example the Signal server.

Bob’s secret key (skB). This typically corresponds to Bob’s long-term secret key, but
if Bob chooses to not disclose this to the judge, it may be empty (⊥).

Server state leakage (f(stS)). As we consider offline deniability, stS corresponds to
the state of the server after the relevant interactions between Alice and Bob have taken
place. The leakage function f depends on the what the server is willing or compelled to
disclose and what the judge has access to. In a legal setting, for example, WhatsApp
discloses significantly more information than Signal [EGS21, Wha24b]. In some settings,
this could capture information that has been leaked from the server to, e.g., the general
public through whistleblowing or compromise. In some cases, the judge may not have
access to any pertinent information from the server. Although our definition is tailored
for the case where Alice and Bob are communicating via a server, direct communication
could be captured by considering the ’trivial’ server that leaks nothing.

Bob’s final state (st′
B). As with Bob’s secret key, this can depend on Bob’s level

of cooperation with the judge (or indeed what they are compelled to disclose), and
depends on context. For example, this could comprise of Bob’s message database, their
cryptographic state, the entire contents of their phone or something in between.

Auxiliary data (aux). This corresponds to any additional information that the judge
may have access to, e.g., testimonies, or more generally information about Alice (e.g.
their public profile), Bob and their conversation.

The judge (J). The judge corresponds to any entity that wishes to evaluate the
deniability of a given execution. In a courtroom, the most classic setting, More broadly,
this can capture entities like the general public (or particular individuals) who are
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determining whether some interaction was real or not (cf. Example 61). In principle, the
judge could be anyone.

The oracle (O). The oracle models the simulator’s practical effectiveness in simulating
Bob’s state and communicating with the server: the initial state might be encrypted
with some unknown secret key and the server might require the client to authenticate
with it. The simulator instructs the oracle to communicate with the server and to modify
the initial state; the oracles comply with the instructions by taking into account the
practical constraints. In other words, the simulator captures the level of control Bob has
over his client. For example, at one extreme, if Bob has rooted his phone, he can extract
all secrets and messages contained within, making the oracle very permissive. At the
other extreme, if Bob knows nothing about technology and is limited to using the client
to try to forge messages, the oracle is much more restrictive.

Figure 4.3 shows two instantiations of the oracle O which capture many realistic settings:
at the top without authentication and at the bottom with authentication. Both oracles
input an operation op ∈ {get, set, forward, finish} and a corresponding payload that the
simulator wishes to send to the server or to set as Bob’s simulated state. The oracle that
mimics authentication checks the payload’s legitimacy using the verification function Vf
before updating the state. The payload, for example, can be a message encrypted with
TLS, which is decrypted and stored in the state only if it comes from the correct server.
The simulator interacts with the oracle to simulate Bob’s state and communicates with
the server while enforcing the authentication mechanism.

The AUTH oracle captures the interaction of the vast majority of users who use a given
messaging application as intended and execute the protocol honestly. The NO-AUTH
oracle, on the other hand, captures a technically-savvy or resourceful user who is able to
modify their state directly. The behaviour of the oracle also may vary over time, e.g. in
the case of KeyForge for DKIM (cf. Section 4.4.2).

Real-world examples

We provide two examples to highlight how the modelling process can occur. They
also highlight how the judge’s role can change depending on where and against whom
deniability must hold; we expand further on this aspect in Section 4.6.2.

Example 60. Suppose Bob accuses Alice of sending a particular message in a classic
courtroom setting with a single judge. Alice and Bob communicate using Signal and they
do not know each other, i.e., they have never had any contact before. In this case the
variables in the model are defined as follows:

• pkA: Alice’s public key in Signal.
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• skB: Bob’s secret key in Signal.

• f(stS): Alice and Bob’s last connection data to Signal and the data of the creation
of Alice and Bob’s contacts, all in Unix timestamp.

• st′
B: Bob’s phone, since he decides to surrender it to the judge when accusing Alice.

• aux: since Alice and Bob do not know each other, we can assume that aux ← ε,
where ε represents the empty string.

The judge J is the judge of the courtroom in which Bob accuses Alice. The justification
behind these choices of variables is mostly self-evident, except for the choice of f , which
we chose as these timestamps comprise the only information that Signal claims to and
has previously disclosed in subpoena requests.2

Example 61. Suppose Bob takes a screenshot of what he claims to be his conversation
with Alice and posts the image on a public bulletin board. The conversation is on Signal
and contains some insults that Alice uttered towards Bob. Shortly after, Carol posts a
comment to the image where she says that she once received the same insults from Alice.
In this case the variables in the model can be defined as follows:

• pkA: Alice’s public key in Signal.

• skB: ⊥, since Bob’s secret key is most likely not given to the judge (see below).

• f(stS): In this case f(stS)← ∅ since no one sent a subpoena to Signal.

• st′
B: The screenshot that Bob publishes on the bulletin board.

• aux: The auxiliary information contains at least the comments that Carol posts
on the bulletin board after Bob’s screenshot. Additional information might exist,
depending on the people acting as judges.

The judge J is in this case the group of people that consult the public board, thereby
seeing Bob’s screenshot and Carol’s comment.

4.3.2 Limitations and pitfalls

Although our model is able to capture many scenarios, it nonetheless has drawbacks.
Firstly, the model only directly captures two-party communication, so cannot be readily
used for group messaging or in multi-party settings. In addition, it only captures offline
deniability and honest executions (which we nonetheless argue above is reasonable).

2See https://signal.org/bigbrother/.
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Our model leaves many parameters and variables undefined. Whilst this allows it to
capture a variety of settings, care must be taken when it is used. In particular the model
requires domain knowledge and fine-tuning to be used effectively, but we see this as
inherent in assessing deniability in the real world. Whilst the model is not fully formal,
it nonetheless provides a framework for thinking and reasoning about deniability in the
real world.

Moreover, care must be taken when drawing conclusions from the model. Suppose that
Alice and Bob are messaging, and Bob is able to modify his received messages without
leaving any trace of tampering from the perspective of the judge (e.g., by modifying the
set of stored messages on another device and then syncing). Then, Bob has successfully
framed Alice, and so the conclusions drawn from the model in the real world would be
incorrect (even if they are logically consistent). Thus, when using the model, one must
ensure that the variables given to the judge are as numerous as possible. In this example,
additional auxiliary data or server leakage could catch Bob’s tampering, or alternatively
ensuring that Bob’s state is comprehensive (as here he excluded critical information).
If, due to contextual constraints, that some information cannot be feasibly given to
the judge, then it is important to be cautious and determine what kind of additional
information could exist, and what impact that would have on deniability. For this reason,
we advocate for the in dubio pro reo principle to be applied when interpreting deniability
in our model, as it is usually done in the legal setting.

Finally, our model focuses on the cryptographic transcripts and network traces that
the interaction between Alice and Bob generates. The oracles that we introduce in
Figure 4.3 model the simulator’s practical effectiveness in terms of authentication, but
do not consider side channels or residual data that might remain on a device after a
conversation has taken place. Such residual traces might include deleted data lingering
in system I/O buffer, temporary storage or system logs that the operating system or
applications maintain. Addressing this limitation requires defining new oracles that
explicitly consider side channels and local device artifacts. Looking forward, it is crucial
to account for this limitation when evaluating our proposed solution for achieving real-
world deniability—namely, local message database modification (Sections 4.4 and 4.6).
We leave as an open problem to define such oracles and determine how to ensure that
database modifications do not leave exploitable traces that could enable a judge to frame
Alice by distinguishing between the real and ideal worlds. Future research could build
on related work that examines side channels in encrypted databases and searchable
encryption [CGPR15, GSB+17, GRS17]. We further discuss these directions for future
work in Chapter 5.
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4.4 Technical case studies

This section analyzes two real-world communication solutions and their deniability
properties: the Signal application and KeyForge, the latter being system that achieves
a form of deniability for email communication while maintaining the protections that
DKIM provides [SPG21]. We describe both systems and we apply our deniability model
(Section 4.3) to them. In departing from messaging to discuss another communication
medium, we show that practical deniability remains hard to achieve even with practical
countermeasures against non-repudiation.

4.4.1 The Signal application

We focus on Signal because it offers the best security and privacy guarantees among de-
ployed secure messaging solutions. Moreover, the cryptographic algorithms underlying Sig-
nal are deniable under some notions of cryptographic deniability [VGIK20, MP16, PM16]
and much of the code is open source. We distinguish two cases: normal authentication
and authentication with the sealed sender feature [Lun18]. To conduct this analysis we
analyze the Signal server source code [Sig22].

Normal authentication

To send a message, the sender’s client issues a POST request to the server’s endpoint
/v1/messages/{receiver} with a payload that contains the encrypted message and the
receiver’s identifier. The server authenticates the sender using Dropwizard [Dro24] basic
authentication, which authenticates the sender’s identity and a password (a secret shared
with the Signal server). After authentication, the server performs a few extra checks
(e.g., rate limiting) and creates an “envelope” that contains the authenticated sender’s
identity, the encrypted message and a timestamp. The server forwards this envelope to
the receiver or stores it until the receiver is online.

Deniability in practice. The description above implies that a message delivered by
a legitimate and honest Signal client originates from the claimed sender, if the Signal
server operates honestly. Thus if someone inspects the receiver’s device, they can be
confident that the message indeed comes from the sender. If the server is honest and not
compromised, the only deniability argument for the sender is to argue that the receiver
tampered with the stored messages, i.e., the receiver edited the received messages in the
local database. Depending on the device, modifying the database can be challenging (e.g.,
it requires basic technical knowledge on the desktop client as the database encryption key
is stored in clear3, while advanced knowledge is required for mobile applications). Alice’s

3Joshua Lund from Signal comments on this on the SignalCommunity forum: “The database key
was never intended to be a secret. At-rest encryption is not something that Signal Desktop is currently
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deniability claim depends therefore only on Bob’s technical knowledge. Depending on
the situation, Bob can deny having the ability to tamper with the local Signal database
and, in general, this argument is not equally available to every potential victim.

Model variables. To capture Signal, variables in our model can be set as follows.

• pkA: Alice’s long-term public key in Signal.

• skB: Bob’s long-term secret key or ⊥, depending on the power of the judge.

• f(stS): ∅ or two timestamps (depending on whether a subpoena was sent to Signal
or not, cf. Example 60). This assumes that the Signal server behaves honestly.

• st′
B, aux and the judge: These are highly context-dependent, depending on how

much Bob cooperates, how much information the judge has access to, and who or
what exactly the judge is, respectively.

• Oracle O: Depending on Bob’s (technical) ability to modify his state, either
NO-AUTH (if he can do so) or AUTH (if he cannot). In particular, AUTH cap-
tures the fact that Signal uses authentication as described above.

This also applies when considering sealed sender in the text below.

In our model

If there is authentication (AUTH oracle in Figure 2.2), Signal is not deniable as Bob’s
state (comprising the received messages) is updated only upon receiving a message
from the Signal server that certifies Alice sent it. As described above, this occurs
only if the server authenticates Alice before she sends a message, which the simulator
cannot do as it does not know Alice’s credentials. In particular, in the AUTH oracle
in Figure 2.2, the verification function on line 2 fails because payload does not
contain the necessary credentials, i.e., Alice’s, to update Bob’s simulated state s̃tB.
This results in two different states st′

B and s̃tB, giving the judge a distinguishing
advantage of probability one in Definition 57. Note the judge requires no auxiliary
information for this attack to succeed.
We formalize Bob’s modification of the local database using the same AUTH oracle.
The payload that the simulator provides to the oracle includes the database encryption
key and the verification function Vf returns true, enabling the oracle to modify Bob’s
simulated state, i.e, the messages’ database.
If the oracle NO-AUTH is used, the simulator can modify Bob’s state to make it

trying to provide or has ever claimed to provide. Full-disk encryption can be enabled at the OS level
on most desktop platforms” (https://community.signalusers.org/t/vulnerabilities/4548/7). On
Linux, the database encryption key is stored in ~/config/Signal/config.json and the database in
~/config/Signal/sql/db.sqlite.
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consistent with some messages received from Alice. Hence the deniability claim
relies solely on the receiver’s ability to tamper with the local database (barring any
incriminating evidence otherwise available to the judge).

A malicious client can prove that they indeed received the message from a Signal server
by using DECO [ZMM+20], which enables clients to prove that data received via TLS
originated from a particular server. For this and other reasons, which we present in
Section 4.3, we exclude malicious clients from our analysis and deem as impossible
deniability in this setting.

Authentication with sealed sender

Authentication with sealed sender conceals the identity of the sender from everyone
except the receiver, including the Signal server. This protects the sender’s identity at
the application level, but does not hide other sensitive information, such as IP addresses.
By default, this option is only enabled between mutual contacts and works as follows.
Periodically, clients retrieve a certificate signed by Signal that contains (1) the client’s
identity, (2) the client’s phone number and (3) an expiration date. In addition, each
party derives a delivery token from their profile key and registers it with Signal. To
send a message, the sender’s client encrypts the certificate, the message and the sender’s
identity. The client forwards the resulting ciphertext, the receiver’s identity, and the
receiver’s delivery token to the server using the same endpoint as in normal authentication.
The server checks that the token corresponds to the intended recipient, and forwards
the ciphertext when the receiver is online; the server does not authenticate the sender.
Finally, the receiver decrypts the ciphertext and verifies that the certificate is valid and
corresponds to the claimed sender’s identity.

Deniability in practice. This setting offers brighter prospects for deniability than
normal authentication. As the server never authenticates the sender, receiving a message
from Alice that was correctly forwarded by the server does not mean she actually sent
it. However, the fact that the message includes the sender’s certificate hinders their
capability to deny. Let’s say the victim Alice claims that Bob (1) forged a message coming
from her, then (2) made the Signal server forward that message to himself and finally (3)
his client successfully delivered it. It means that Bob managed to recover one of Alice’s
certificates that is valid for that specific time frame. In turn, that implies that he (or an
accomplice) recently received a message from Alice and extracted the certificate to forge
a valid message. Therefore, in practice, one can be very confident that Alice exchanged
messages with Bob recently, which weakens plausible deniability. Alice can still deny that
she sent a particular message, but the claim relies solely on the fact that Bob had the
technical knowledge to extract the certificate and forge a valid message or, as in normal
authentication, the capacity of tampering with the messages stored on his client.
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In our model

Transposing this argument in our model, we see that Signal with sealed sender is not
deniable in the authenticated setting (O = AUTH) as Bob’s state will accept Alice’s
message only if a legitimate certificate was provided. However, the simulator cannot
obtain Alice’s certificate from the server as it authenticate as Alice: the verification
function Vf returns false and Bob’s state is not updated. In the setting where Bob
can freely modify the set of received messages (O = NO-AUTH), Signal with sealed
sender is deniable.

Summary and discussion

The above discussion shows that plausible deniability is practically non-existent in Signal
unless the receiver has good technical capabilities. To summarise:

• Using normal authentication, if the client delivers a message from Alice, then it
surely came from Alice because the server authenticated with her.

• Using sealed-sender-based authentication, if Bob’s client delivers a message from
Alice, then with good probability Bob received a message from Alice recently. Bob
could forge a message coming from Alice by asking for Alice’s certificate from one
of Alice’s contacts, but we deem this to be relatively impractical.

• In both modes of authentication, deniability is plausible only if the receiver has
good technical knowledge to modify the local database of received messages, i.e., to
modify the state of the incriminating party (s̃tB in our model). If the incriminating
party lacks technical knowledge, the judge will hardly believe the victim’s denial of
participation.

We conclude that, in most cases, the Signal application does not provide plausible
deniability.

It is worth noting that the deniability claim becomes stronger as the system becomes
easier to breach, and vice versa. For instance, in a perfectly “secure” system (e.g.,
impenetrable clients and interactions only through authenticated clients as in our model
with O = AUTH), Signal is not deniable. This creates an undesirable situation: certain
aspects of security clash with deniability. We propose that the best way to address this
problem is to either give up on deniability or to incorporate “cracking” as a controlled
and desirable feature. With cracking we refer to the usually illicit act of circumventing
or overcoming security measures, such as accessing the protected Signal’s database and
modify its content, or compromising Signal’s server to send a message under a spoofed
identity. For example, Signal could include an edit/add button that allows the user
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to modify received messages or add new ones. The user interface could look like the
interactive forging tool that Reitinger et al. used for their study (Figure 4.1). While
this could lead to other problems as discussed in Section 4.6, we claim that if we want
deniability in Signal and other messaging application, then we should aim for human and
practical deniability instead of just cryptographic deniability, which, as we show, does
not translate into real-world deniability. Overall, this form of deniability can only be
guaranteed if a practical, user-friendly simulator exists, which is currently not available.
We continue the discussion about how to achieve practical deniability and possible
shortcomings in Section 4.6.

4.4.2 DKIM and KeyForge

Another interesting case study for deniability is email-based communication. Here, we
assume that emails are not authenticated with PGP or S/MIME: in such cases the email
is cryptographically signed by the author and thus the fact that it was sent is publicly
verifiable and undeniable.

We focus on email protected with DomainKeys Identified Mail (DKIM) [CHK11], which
authenticates the source of an email by verifying the domain name from which it orig-
inated. If an email is sent from first.com to second.com, the server of first.com
cryptographically signs the email (including message and headers) and adds the signa-
ture to the email’s headers. When the email reaches second.com, the server verifies the
signature using first.com’s public key and delivers the email only if the verification
is successful. If the DKIM signing keys are kept private, the signature proves that the
message was not altered during transit and that it was sent by an authorized sender,
thereby preventing malicious activities such as spoofing, phishing and spam.

As the leak of Hillary Clinton’s emails [Wik16b] shows (see Section 4.6 for further discus-
sion), DKIM protection devastatingly impacts email deniability. The digital signature
provides a cryptographic assurance that the sender is who they claim to be, unless email
accounts are breached or secret keys are leaked, which we deem unlikely4. Using our
model (Section 4.3), DKIM-protected email is not deniable since we need an oracle like
AUTH to model this setting: the only way to update Bob’s state is to have control over
the signing keys of all domains between the sender and the recipient, unless another
breach occurs.

To remedy this situation, Specter et al. propose KeyForge [SPG21], which enforces that
DKIM signing keys are released after a predefined delay, which the authors recommend to
set at 15 minutes. To this end, Specter et al. formalize and instantiate a new cryptographic

4One might think that DKIM protection increases email deniability, since anyone with access to the
email server—such as an employee—can forge signatures. In reality, DKIM signing keys are kept private
by email providers, as losing these keys would enable internal or external adversaries to mount email-based
attacks such as phishing.
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primitive called forward forgeable signatures. One instantiation of such signatures is
KeyForge, which builds on a so-called hierarchical signature scheme. This approach
preserves the protection of DKIM during the delay, but enables anyone to forge DKIM
signatures after the delay, thereby achieving a form of deniability. However, after the delay,
unless Alice’s account is compromised, Bob cannot spoof Alice’s identity to authenticate
to the server, precluding deniability.

To address this, the authors of KeyForge propose KeyForge+ [SPG21], which includes
an additional protocol called forge-on-request. This protocol enables parties like Bob to
request forged emails from any domain, such as Alice’s domain, under the only condition
that the recipient of the forged email is the requester, i.e., Bob in this case. In other
words, Bob can request to forge an email from Alice only if the recipient is Bob himself.
For group emails, Bob can request a forged email from any domain. This forge-on-request
protocol enables the simulator to spoof Alice’s identity and authenticate to the server.

Model variables. To capture plain DKIM [CHK11], KeyForge and KeyForge+ [SPG21],
we can choose model variables as follows:

• pkA: This corresponds to Alice’s domain’s public key.

• skB: Bob’s domain’s secret key or ⊥, depending on the power of the judge, albeit it
should not affect its decision.

• f(stS): This depends on context - see the discussion below for how server leakage
can prevent deniability.

• st′
B, aux and the judge: These are context-dependent as before. In the case of the

Clinton e-mail leaks, the judge was the general public and the press (note the
similarity between this scenario and Example 61).

• Oracle O: For plain DKIM, the oracle behaves like AUTH, given that the signing
key is never leaked. For KeyForge for a given DKIM signing key, the oracle behaves
as in AUTH until the signing key is released, after which it behaves like NO-AUTH.
For KeyForge+, when the signing key is not released, it behaves like NO-AUTH if a
request is made with forge-on-request (note we assume parties honestly execute
the protocol, so such a request should succeed), and otherwise as in KeyForge.

In our model

Forging DKIM signatures is not enough to achieve practical deniability. For Alice,
the victim, to defend herself against Bob, the accuser, Bob must be able to send
an email on Alice’s behalf, which is not immediately possible in KeyForge, even
if Alice’s email is registered on a different domain. This limitation is also visible
in the AUTH oracle: on line 5, the oracle uses Bob’s simulated state (s̃tB). This is
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resolved in KeyForge+ as described above. That is, until the signing key is public,
the oracle cannot forge a DKIM signature and therefore Bob’s state is not updated
(the Vf function on line 2 of AUTH in Figure 2.2 returns false). When the signing
key becomes publicly available, anyone can forge DKIM signatures: the Vf function
returns true and the oracle can update Bob’s state.
The combination of KeyForge and KeyForge+ shifts the oracle from AUTH to
NO-AUTH after a predefined delay, thereby increasing the deniability properties of
DKIM-protected email. However, our model demonstrates that the server plays a
crucial role in real-world deniability. The judge inputs a function of the real and
simulated server states (the former in the real world, the latter in the ideal one),
where the function f models different leakages from the server. The work of Specter
et al. does not account for this leakage: the server could log Bob’s request of a forgery
of Alice’s messages differently than how it logs a real sending procedure from Alice,
which would help the judge to distinguish the real and ideal worlds. Additionally, the
server could use two different databases to store forgeries and legitimate emails. The
judge can subpoena these databases to differentiate between the two worlds [Cas20].
This highlights the significant role that the service’s server (formally represented by
the function f) plays in our model.

Summary and discussion

In the above discussion we saw that plausible deniability for DKIM-protected email
is non-existent and how KeyForge and KeyForge+ partially solve this problem. At a
high level, the procedure is similar to what we propose for Signal: use “cracking” as a
controlled and desirable feature. In this case this involves releasing the private signing
keys after a predefined amount of time, which breaks the authentication that DKIM
provides. However, as with Signal, email servers must play the game: if they log too
much information about the exchanged messages and the judge obtains this information,
deniability is lost.

Unlike our proposed approach for Signal, i.e., giving the ability to edit messages on the
user interface level to all users, KeyForge+ requires important changes to the current
email infrastructure in order to be deployed, as acknowledged by the authors. This
forge-on-request protocol must also be easy to use and available to everyone to avoid the
unequal access to deniability that arises when forging is accessible only to tech-savvy
users. Additional research is thus necessary to assess the usability of KeyForge and
KeyForge+.
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4.5 Legal case studies

This section considers deniability in the legal context by presenting our analysis of court
cases that mention messaging applications in Switzerland. To the best of our knowledge,
this is the first such analysis capturing the civil law paradigm (the studies that we cite
in Section 4.2.2 considered participants or cases in the United States) and therefore fills
a gap that Yadav et al. highlighted [YGS23].

Yadav et al. conducted an analysis of 228 court cases in which WhatsApp conversations
were proposed as evidence. They found that WhatsApp chats where never rejected as
evidence because of their cryptographic deniability properties, even when the defendants
claim that conversations can be forged. One illuminating example from their analysis is
the United States v. Ojimbda case:

Defendant’s objection that the text messages, in this case, are unreliable
is made without any persuasive evidence and is thus overruled. . . The court
explained that Mr. Ojimba could attack the reliability of the messages at
trial, but that reliability was ultimately a matter for the jury.

We conducted a similar analysis in Switzerland. We start by introducing our methodology
and focus later on the results.

4.5.1 Methodology

Our legal analysis aims at answering three research questions. We settled for WhatsApp
(which is more widely used) in our research as none of the decisions we surveyed mentioned
Signal. Even if WhatsApp is less deniable than Signal because it is less private, i.e.,
additional metadata may be available to an adversary, we believe that a court’s opinion
would be similar or the same for Signal or other messaging applications. This is especially
true if the court does not subpoena the relevant service provider for metadata, which is
true for the Swiss cases we considered. The three research questions are as follows:

1. Do judges in Swiss courts use WhatsApp messages as evidence?

2. When WhatsApp messages are used as evidence, is their usage contested by any of
the parties involved?

3. What are the specific reasons cited for disputing the legal validity of WhatsApp
messages, and how do judges respond to these disputes?

Our hypothesis was twofold: Firstly, judges in Swiss courts use WhatsApp messages
as evidence in penal cases. Secondly, the validity of these messages is generally not
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disputed by the parties involved, despite the cryptographic deniability properties inherent
in WhatsApp’s algorithm, i.e., the same as Signal.

"query": { "bool": {
"must": [

{ "match": {
" attachment . content ": " WhatsApp "

}
}

],
" should ": [

{ " match_phrase ": {
" attachment . content ": "droit pénal"

}
},
{ " match_phrase ": {

" attachment . content ": " chambre pénale"
}

},
{ " match_phrase ": {

" attachment . content ": " diritto penale "
}

}
],
" minimum_should_match ": 1

}}

Figure 4.4: Elasticsearch query for the legal analysis.

To design our study, we consulted with four Swiss lawyers. We used the website https:
//entscheidsuche.ch, a private initiative that publishes decisions from all instances of
Swiss courts. We queried the website with an Elastic search query (Figure 4.4) to select
the initial cases, i.e., penal cases in French or Italian that contain the word “WhatsApp”.
We opted for cases in French and Italian because we speak these languages and did not
use any translation tool. We focused on penal cases to analyze those with a significant
coercive impact on the defendants. As of February 22, 2024, our query returned an initial
set of 419 decisions from all instances. From this initial set we removed all the decisions
from federal courts by removing the corresponding URLs from the query results (e.g.,
CH_BGer for supreme court). We opted for this additional pruning for two reasons:

1. The federal criminal court treats cases originating from the office of the attorney
general of Switzerland, involving major investigations where conversations play a
minimal role, if any.

2. The federal supreme court, the highest court in Switzerland, has jurisdiction over
different violations, including penal cases. However, this court does not accept the

130

https://entscheidsuche.ch
https://entscheidsuche.ch


4.5 Legal case studies

addition or removal of evidence: the set of available evidence is fixed at the first
two levels of the Swiss legal system.

We thus focused on the first two level of Swiss courts with jurisdiction over penal cases,
leaving us with a set of 341 decisions. We performed an additional verification of decisions
from the supreme court, as it is the court most likely to rule against accepting messaging
conversations as evidence if such a decision is appealed. We found no such ruling, and
the lawyers confirmed that it does not exist.

We manually analyzed the 341 cases and divided them into four categories. When in
doubt, we consulted with the four lawyers who helped us design the analysis. The four
categories are as follows.

• N/A: The decision mentions the word “WhatsApp” for purposes other than evidence,
such as to summarize police investigations or to mention that two parties can or
cannot contact each other via WhatsApp. We also put outliers in this category
(e.g., administrative cases that the website wrongly returns as penal ones or federal
courts cases that we missed during the initial pruning).

• Evidence: WhatsApp chat is used as an evidence in the final decision.

• Contested: One of the parties contests the validity of WhatsApp conversation as
legal evidence.

• Rejected: The judges decide to reject WhatsApp chat as evidence after a party
contested its validity.

In the full version of the extended abstract corresponding to the work in this chapter we
provide the URLs for the 341 cases (from the website https://entscheidsuche.ch) [CCHD23,
Appendix B.2]

4.5.2 Results

Total Cases N/A Evidence Contested Rejected

341 201 (59%) 140 (41%) 2 0

Table 4.1: Summary of legal case analysis results.

Table 4.1 summarizes the results of our analysis. We find that 59% of the cases that
mention the word “WhatsApp” do not report the use of conversations as evidence.
Conversely, for 41% of the decisions that we analyze, WhatsApp conversations are used
as evidence. In all except one case that we discuss below, the authenticity of messages,
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or their legal validity, is never questioned by any of the parties involved. In particular,
deniability is never invoked (successfully or otherwise) in all the 140 cases in which
electronic messages are used as evidence. We find two cases in which a party in an appeal
denies being the author of messages appearing on a screenshot. In the first decision (Arrêt
en ligne de la Chambre pénale du Tribunal cantonal du canton de Fribourg 502 2020 76
du 11 août 2020) we can read (text translated by the authors):

On the other hand, she disputes having written or sent the WhatsApp messages
contained in the Justice of the Peace’s file, even though they were produced
by C.________ on November 21, 2017. She asserts that the documents
could have been altered or that there might have been manipulation on the
WhatsApp application regarding the name of the sender of the messages.5

Despite the dispute, the judges decided not to reject the evidence or pursue the matter
further (for example by ordering a forensic analysis of the appellant’s phone). The judges
deem the appellant’s argumentation not credible and they posit that their invalidation
would not change the original ruling:

Her argument is far from convincing. Under these circumstances, there is no
reason to order an analysis of the parties’ mobile phones. Moreover, even if
such an analysis were ordered and it demonstrated that the messages did not
originate from the appellant, this would still not constitute sufficient suspicion
that the respondent has committed one or more criminal offenses [. . . ].6

In the second decision (Arrêt en ligne de la Chambre pénale d’appel et de révision de la
Cour pénale de la Cour de justice du canton de Genève AARP/54/2018 du 22 février
2018), an appellant claims that “he was not the author of the messages that B______
had received [. . . ]”7. This claim builds on the idea that someone sent messages to the
potential victim posing as the plaintiff, using a new phone number. As in the first
case, the judges considered the arguments not credible. In particular, the content of the
conversation and the “Machiavellian sense” to mount such an attack convinced the judges
that the author of the messages can only be the appellant.

5Original text: “D’autre part, elle conteste avoir écrit ou envoyé les messages WhatsApp contenus
dans le dossier de la Justice de paix, quand bien même ceux-ci ont été produits par C.________ le
21 novembre 2017. Elle soutient qu’il pourrait s’agir soit de documents qui ont été modifiés, soit d’une
manipulation effectuée sur l’application WhatsApp quant au nom de l’expéditeur des messages.”

6Original text: “Son argumentation ne convainc ainsi pas, loin s’en faut. Dans ces circonstances,
il n’y pas lieu d’ordonner une analyse des téléphones portables des parties. Par ailleurs, même dans
l’hypothèse où une telle analyse était ordonnée et qu’elle démontrait que les messages n’émanaient pas de
la recourante, cela ne constituerait pas encore un soupçon suffisant que l’intimé s’est rendu coupable
d’une ou plusieurs infractions pénales [. . . ]”.

7Original text: “Il n’était pas l’auteur des messages que B_____ avait reçus [. . . ]”.
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Additional results

Our analysis enabled us to find other interesting results besides the primary focus that
our research questions set; here we present some of them.

WhatsApp as an investigative tool. From one of the cases that we analyze (Arrêt en
ligne de la Chambre pénale du Tribunal cantonal du canton de Fribourg 502 2022 8 du 24
janvier 2022), we evince that an undercover policeman used WhatsApp to communicate
with a potential pedophile.

[. . . ] From March 10 to 29, 2021, he maintained a virtual exchange via e-mails
and then WhatsApp messages with a young boy [. . . ] who had indicated that
he was 14 years old. On March 29, 2021, the appellant invited the child to a
hotel [. . . ] pretending to be his nephew, in order to have intimate relations
[. . . ]. In reality, he was conversing with a police officer.8

Disappearing messages as additional evidence. The “disappearing messages” fea-
ture, available in most modern messaging systems, enables users to send messages that
automatically delete after a set period. We found some decisions in which the use of
this feature is highlighted by the judges. In one case in particular (Arrêt en ligne de
la Chambre pénale d’appel et de révision de la Cour pénale de la Cour de justice du
canton de Genève AARP/309/2022 du 10 octobre 2022), disappearing messages represent
additional incriminating evidence:

Finally, the fact that I______ and the appellant were initially represented
by the same lawyer, on the one hand, and that their WhatsApp exchanges
have disappeared from the appellant’s phone, on the other hand, are additional
incriminating indicators.9

Screenshots as evidence. In most of the cases that we analyze, the decision does
not specify how parties present messages to the court. In some of them, the judges
specify that parties present evidence through screenshots, without discussing or analyzing
their truthfulness or chain of custody. Our analysis does not evidence any discussion of
potential tampering or forging of these screenshots, for WhatsApp conversations or other
evidence.

8Original text: “[. . . ] Du 10 au 29 mars 2021, il a entretenu un échange virtuel via courriers électroniques
puis par messages WhatsApp avec un jeune garçon [. . . ] qui lui avait indiqué avoir 14 ans. Le recourant a
invité l’enfant à se rendre le 29 mars 2021 dans un hôtel [. . . ] en se faisant passer pour son neveu pour y
entretenir des relations intimes [. . . ]. En réalité, il conversait avec un policier.”

9Original text: “Enfin, le fait que I______ et l’appelant étaient initialement représentés par la même
avocate, d’une part, et que leurs échanges Whatsapp ont disparu du téléphone de l’appelant, d’autre
part, sont des indices de plus à charge.”
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4.5.3 Analysis

The results we present in the previous section confirm our first hypothesis: judges use
chats as evidence in penal cases. The validity of these messages is generally not disputed
by the parties involved despite cryptographic deniability properties. Our study, along
with Yadav et al.’s findings [YGS23] show that deniability seems irrelevant in court cases
in Switzerland and the United States. Although the results cannot be generalised to other
countries, they provide evidence that cryptographic deniability does not translate into
real-world deniability and that a purely cryptographic approach does not impact the legal
setting. When one party claims a forgery, judges consistently reject these claims. In what
follows, we analyze possible reasons for this failure discuss potential countermeasures.

Lawyers, judges, and authorities are generally unaware of cryptographic deniability and
its workings. The use of WhatsApp by the police as an investigative tool highlights this
lack of knowledge. This results from society’s lack of acceptance of deniability. Therefore,
if deniability is a desired feature, it must be socially accepted, simple and practical for
everyone. Simplicity could also limit the imbalance in access to justice when deniability
could be a factor. Malicious parties could exploit deniability to forge messages that are
considered real by courts, while wealthy defendants could hire experts to testify about
deniability properties, an option not available to most people dealing with low-profile
cases.

The two cases that we present in Section 4.5.2 highlight the importance of contextual
information for deniability, in court or other settings. Communication transcripts are
(1) one type of evidence among others with varying degree of importance (as in the
first case discussed), and (2) can be authenticated given other contextual information
(as in the second case). The first aspect is important: even with complete real-world
deniability, judges would have the ability to convict perpetrators of particularly heinous
crimes, several examples of which we encountered in our analysis.

In our model

We represent contextual information with auxiliary data in our model. Auxiliary
data enables the judge to input different types of evidence with varying degree of
importance. We assume the judge inputs all evidence through auxiliary data and
then decides their weight in the specific case. The value ν, which models the in dubio
pro reo principle, captures the discretion that judges are afforded in evaluating each
case.

In several cases, screenshots are accepted as evidence. This finding has several implications.
Despite the prevalence of graphics editors, synthetic media such as deepfakes, and
misinformation [CN21], people tend to believe that a simple screenshot can be accepted
as evidence—as confirmed by the two survey studies detailed in Section 4.2. This implies
once again a risk of unbalanced access to the deniability property: a malicious individual
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could use deniability to produce fake evidence against a victim and judges would likely
consider this evidence as acceptable given our findings.

Finally, during our analysis we observed that judges believe that the law protects against
forgeries, as false testimony is a criminal offense. This means any transcript, even a
forgeable one like a screenshot, can be considered in court. This highlights the need for
a discussion about deniability in various settings, as partially addressed by Yadav et
al. [YGS23]. We expand on this in the discussion below.

4.6 Discussion

In the previous sections we show how (cryptographic) deniability fails in practice from
both a technical perspective—through the lens of our model defined in Section 4.3—as well
as a legal perspective. This section elaborates on these findings on practical deniability
and their consequences.

4.6.1 Either practical deniability or no deniability

Cryptographic deniability does not translate in the real world and appears to not be used
in practice, which we have justified in the previous sections. The first question is therefore
whether deniability is a necessary or desirable feature. Obtaining real deniability in
practice implies non-trivial challenges that can impact users (e.g., spamming), performance
(e.g., the cost of adding deniability in the protocol, attacks on sealed-sender-based
authentication [TLMR22]), the service (e.g., respectability) or security (e.g., authenticity
is somewhat lost if Bob can easily forge messages from Alice). Indeed, Apple has decided
not to target deniability in PQ3, their new messaging protocol for iMessage [Ste24].

Besides the technical challenges, it is important to consider whether deniability is a
beneficial property. Practical deniability could facilitate the spread of “fake news” by
enabling everyone to forge messages. Also, in the jurisprudence we reviewed, messages on
victims’ phones are used to convict criminals: practical deniability could invalidate this
kind of evidence. Deniability would for example prevent a victim that receives abusive
messages from proving the culpability of their author. However, as our legal analysis shows,
conversations are usually one piece of evidence among others and do not represent the
decisions’ cornerstone. We also recall that the study of Yadav et al. [YGS23] found that
60.2% of users surveyed desire only non-repudiation (i.e., they do not desire deniability),
while only 12.7% desire deniability.

The very nature of deniability makes it hard to settle for either real-world deniability or no
deniability at all. Differently from other security properties (e.g., encryption), users cannot
control the deniability of their communication: deniability is effective only if receivers
can plausibly forge messages. This however should not serve as an excuse to not consider

135



Chapter 4. Real-world deniability in messaging

vulnerable populations and to generalize survey results to different contexts [YGS23,
Section 8]. Unfortunately our field lacks research on practical defensive technologies that
vulnerable groups use. One important exception is the work by Daffalla et al. [DSKB21]
on the technological defense strategies that political activists used during the Sudanese
revolution, which indicates that deniability is useful in this setting. Some participants
used strategies to increase plausible deniability in case of arrest, such as adding decoy
messages on their messaging application. Having complete deniability, such as ability to
edit the user interface of Signal as shown in Figure 4.1, would therefore help in cases
where there is a need for a way to communicate freely without being held accountable,
as the interviews of Daffalla et al. confirm.

If we opt for deniability, this should be practical and accessible to everyone. As we
highlight in previous sections, impractical and unusable deniability is dangerous as only a
few people can benefit from it. This was also pointed out by Jeff Burdges10: if deniability
is not practical and widespread, the risk is that only rich and powerful people would
have the resources to argue deniability in a court of law (or against the public opinion).

This discussion is reminiscent of the debate on end-to-end encryption, but the im-
pact of deniability is less clear. Encryption solves, among other things, the problem of
mass surveillance: an attacker has no access to messages in transit. Encryption is a
mathematically-based property that has an immediate and global effect. By contrast,
deniability is a more subtle, subjective property, which involves human and societal
factors that can vary from case to case, e.g., which auxiliary information the judge has
or which contextual information can help to frame the victim. Additionally, deniability
holds if the receiver of a message satisfies some requirements: the author of a message
cannot completely control which kind of deniability a message gets, whereas the sender,
i.e., the author, has complete control over the message’s encryption. Since deniability
is not used in practice, it is difficult to argue about its impact and a community-wide
discussion is necessary.

Finally, one might wonder if the strong deniability property that we seek is actually
anonymity. By making it difficult for the judge to identify, profile and obtain data about
the sender, or to link an account to them, we might avoid the deniability question in many
cases. Achieving real-world plausible deniability in public messaging applications like
WhatsApp and Signal, which link accounts to identities (e.g., phone numbers) seems very
challenging. While allowing users to edit or add messages to a conversation would be a
step towards this goal, it is unclear whether society would accept this as true deniability.

10https://mailarchive.ietf.org/arch/msg/mls/Kk6qai3kEza8B-L-_5R-qsEjtK0/
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4.6.2 Deniability in front of whom

If real-world deniability is a goal for a given system, one must devise an appropriate
threat model. The design must precisely define the judge in Definition 57. Who are we
defending against? Which capacity and auxiliary information does the judge have? What
about the incriminating adversary (Bob in our model)?

The leak of Hillary Clinton’s email database [Wik16b] is often cited as an example
where deniability would have had an impact. Wikileaks published DKIM-protected emails
and some of the authors claimed that they were tampered with. However, the DKIM
signatures mathematically proved that the leaks were legitimate [Wik16a]: the emails
were not deniable. Moreover, the legitimacy of the emails is verifiable by the general
public: it is sufficient to have the verification keys of the domain servers, publicly available
by definition, to prove that no one tampered with the emails’ content. Here the general
public acts as the judge, rather than an official judge in a courtroom as usually envisioned.
Our model captures this setting by reflecting real-life scenarios where Bob’s data, such
as keys and transcripts, are stolen published online, and Alice wants to deny sending the
published messages to Bob. We model this by providing the judge with Bob’s state st′

B

after the interaction with Alice took place and the simulated state s̃tB in the ideal world.
This example highlights the importance of (1) properly defining the role of the judge and
(2) applying our model to ensure that the judge’s distinguishing probability is bounded
by an acceptable probability.

As already discussed, if the threat model assumes a global adversary that actively colludes
with Bob to frame a user, then deniability is impossible to achieve also because a lot
of messaging applications register the users’ identity (e.g., phone number). In this case,
other properties and services such as anonymous communication over Tor should be used:
the best way to avoid having to consider deniability in the first place is to guarantee
anonymity.

4.6.3 How to make a deniable system

Privacy-focused messaging services like Signal (and others using the Signal protocol) use
protocols that achieve a form of cryptographic deniability, like X3DH [MP16] and the
recent PQXDH [KS23, FJ24]. These services market deniability as a feature, giving users
the impression it is a practical aspect of the system. As we show in Section 4.4.1 the
situation is not so simple: Signal in general does not achieve practical deniability, either
technically or legally.

To achieve practical deniability, applications must be designed with deniability incor-
porated by design, similar to privacy. As we hinted before, the system must provide
practical deniability against the kind of adversaries that the threat model considers. In
particular, deniability must be plausible for all and accessible to everyone, regardless of
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the (technical) knowledge of the receiver, i.e., the potential accuser Bob in our model.
The simulator in our model must also be practical: it should be feasible to “plausibly”
run it to modify Bob’s state (e.g., the phone).

One way to achieve this is to enable cracking as a controlled feature, allowing users to
inject false messages authored by someone else into their conversation. This can be done
by offering a feature that enables users to edit their conversation. This modification
must be easily accessible in the application’s user interface and must also alter messages
that the application stores in the local database. The application must not record when
and where the modifications take place. This solution mimics the real world: someone
may report the content of a conversation, but the veracity of what is reported depends
solely on the person reporting it, and other participant can challenge what is claimed. In
practice, the modifications to Signal’s user interface can mimic the tool used by Reitinger
et al. [RMA+23] in their study (Figure 4.1): incoming and outgoing messages can be
edited and new messages can be inserted. If the application is offline, editing must not
contradict the last access timestamp that the Signal server stores; in case of inconsistency,
the application should warn the user. Reitinger et al.’s findings (Section 4.2.2) support
this simple solution. In particular, the study suggests than an edit/create message feature
significantly impacts people’s opinion on someone’s guilt, i.e., on plausibility of deniability
claims.

Auxiliary data poses a significant threat to deniability. To enhance practical deniability,
the system must minimize data retention, keeping only essential information and deleting
surplus data once its purpose is fulfilled. This aligns privacy by design principles, which
generally increase the plausibility of deniability.

4.7 Conclusion

This work discusses real-world deniability in messaging, highlighting how cryptographic
deniability does not translate in the real world, both technically and legally. We analyze
the technical side of deniability by applying our model on Signal and email with DKIM
protection. In the legal setting, we examine court cases in Switzerland and find no
successful claims of deniability in 140 cases where conversations were used as evidence.

We then propose a general discussion about deniability, considering whether it is a
property messaging solutions should aim for. If the answer is affirmative, we discuss
different settings for real world deniability—in particular who we want to defend against—
and how we should design real-world deniable systems. We conclude with some remarks
on the technical costs of real world deniability.

Messaging applications, and communication solutions in general, should either provide
practical real-world deniability or stop claiming to do so. For messaging applications,
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particularly Signal, we propose a simple yet powerful solution: users must be able to
modify sent and received messages stored on the device through the user interface. This
mirrors the real world, where conversation can be truthfully or falsely reported, and
others can challenge those reports. We believe Signal should adopt this approach to offer
truly deniable communication, especially given its strong privacy focus.
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5 Conclusion

At this point, I think we would do well
to put ourselves in the mindset of a
real adversary, not a notional one: the
well-funded intelligence agency, the
profit-obsessed multinational, the drug
cartel. You have an enormous budget.
You control lots of infrastructure. You
have teams of attorneys more than
willing to interpret the law creatively.
You have a huge portfolio of zero-days.
You have a mountain of self-righteous
conviction. Your aim is to Collect it
All, Exploit it All, Know it All.

Phillip Rogaway, The Moral Character
of Cryptographic Work [Rog15, Part 4]

This thesis addresses three practical challenges for secure messaging: active attack detec-
tion (Chapter 2), private and secure public key retrieval in (Chapter 3) and deniability
(Chapter 4). These topics reflect critical aspects of secure messaging, and communication,
systems, from ensuring resilience against active adversarial attacks to safeguarding meta-
data privacy and providing plausible real-world deniability for users. In this concluding
chapter, we summarize the key contributions of the thesis and explore potential directions
for future research. This includes a high-level discussion of how the three contributions
integrate to enhance the overall security and privacy of messaging systems, as well as
specific avenues for improving the individual solutions presented in each chapter.
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5.1 Summary

In Chapter 2, we propose cryptographic protocols to detect active attacks in messaging
schemes that support immediate decryption. We present protocols that use the in-band
channel (i.e., the same channel that parties use to send messages) and protocols that
rely on an always authentic out-of-band channel. For both settings we introduce two
uncomparable notions: r-RID and s-RID for the in-band setting, and r-UNF and s-UNF for
the out-of-band setting. Together, these security notions ensures RID and UNF respectively.
We propose schemes that are secure under these notions, making only black-box use of
a classic ratcheted communication scheme. The chapter concludes with a discussion on
the practicality of these notions, and optimizations and security/performance trade-offs,
paving the way for practical active attack detection in messaging schemes with immediate
decryption, such as Signal’s Double Ratchet [PM16].

In Chapter 3, we shift to a higher level of abstraction and address metadata leakage in
messaging systems. We introduce authenticated PIR, a new cryptographic primitive that
guarantees both privacy and integrity of the retrieved data. We define authenticated
PIR in both multi-server and single-server settings and propose schemes for each. The
multi-server scheme for point queries (i.e., privately fetching a record from the database)
combines a classic PIR scheme with a Merkle tree. The multi-server scheme for predicate
queries (i.e., privately evaluating a function on the database records) uses correlated
queries with function secret sharing to achieve both privacy and integrity. All schemes are
secure against selective-failure attacks. We evaluate all schemes and use the multi-server
ones to design our motivating application Keyd, a privacy-preserving PGP key directory
server.

Chapter 4 examines how cryptographic deniability interacts with real-world conditions.
We move to an even higher level of abstraction, analyzing how cryptographic solutions,
applications, and the devices on which they run ensure (or fail to ensure) the properties
expected from modern secure messaging systems. To this end, we propose a new model
for real-world deniability and apply it to both the Signal application and DKIM-protected
email. We demonstrate that these systems do not offer practical deniability guarantees.
Additionally, we analyze 140 court cases in Switzerland that use messaging conversations
as evidence, finding no claims of deniability, which suggests that this property has no
practical impact in legal contexts. Based on this analysis, we discuss whether deniability
is a desirable property and, if so, how to design systems that are deniable in practice.
For Signal, we propose a straightforward yet effective solution: the application should
allow users to directly modify locally stored messages via the user interface.
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5.2 Future work

In this section we discuss some possible venues for future work. We start by a general
discussion on the future work that can build in the entirety of this thesis and then we
present some specific venues for each of the three chapters that compose this manuscript.

Real adversaries. We began this thesis with a quote from Philip Rogaway’s essay The
Moral Character of Cryptographic Work [Rog15] and we conclude with another quote
from the same essay that urges the cryptographic community to consider real adversaries.
Throughout this thesis, we have followed Rogaway’s advice by addressing malicious
adversaries across various levels of the secure messaging stack. In Chapter 2, we consider
an adversary that can impersonate parties, either temporarily or indefinitely, expose
secret keys and states, and manipulate the randomness used by cryptographic algorithms.
Chapter 3 addresses a potentially malicious messaging operator, we address a potentially
malicious messaging operator that can tamper with public encryption keys during the
key distribution process, posing a security threat, while also collecting sensitive metadata
about communication patterns, presenting a privacy risk. Moreover, we consider selective-
failure attacks that such malicious PKI operators can mount. Finally, in Chapter 4, we
take this a step further by considering adversaries with access to user’s devices and
other components of the messaging system, such as the server responsible for client
authentication and message forwarding. Future work, particularly in secure messaging
and more broadly in information security research, must continue to account for these
powerful, real-world adversaries in the design and analysis of privacy and security solutions.
Concretely, we propose two directions for future research, although one has already been
explored by Dietz and Tessaro, who at CRYPTO 2024 [DT24] introduced a single-server
authenticated PIR scheme based on the decisional Diffie-Hellman assumption, tolerating
a fully malicious server that provides a potentially incorrect digest of the database. As
Dietz and Tessaro point out, designing such a system under the LWE assumption remains
an open problem. Another direction pertains to real-world deniability: future work could
examine potential adversaries attempting to detect modifications to the local message
database to compromise deniability. This includes considering side channels and residual
data, such as deleted data lingering in system I/O buffers or temporary storage, which
might persist on a device after a conversation.

Group messaging. Chapter 2 and Chapter 4 focus on the two-party setting in messaging,
where our protocols and analysis assume a conversation between Alice and Bob only.
An interesting direction for future work would be to extend these concepts to the group
setting, where more than two parties are involved in the conversation. For instance,
a promising direction for future work is to define RID and UNF security notions and
corresponding constructions for group messaging. Similarly, it would be valuable to
extend our model for real-world deniability and corresponding analysis to the group
setting, exploring cases where, for example, judge corroborates with—or a party tries to
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frame—multiple group members.

Concrete performance. Concrete performance is crucial to enable adoption of solutions
that strength the security and privacy of messaging solutions. In this thesis we thoroughly
evaluate our authenticated PIR schemes and apply the multi-server ones to Keyd, a
privacy-preserving PGP key directory server. However, our single-server schemes are
30-100× more costly than state-of-the-art unauthenticated single-server schemes, even if
they achieve incomparably stronger integrity properties. One interesting venue for future
work is to construct single-server authenticated-PIR schemes whose performance matches
that of the best unauthenticated schemes. Also the work on active attack detection that
we present in Chapter 2 would strongly benefit of an implementation and evaluation of
the schemes that we present, with the goal of analyzing the practical overhead of in-band
and out-of-band authentication.

User studies and multidisciplinarity. Information security in general, is not solely
the result of mathematical and computer science solutions but is shaped by a complex
relationship with the real world. It is essential to design and evaluate secure messaging
solutions by considering who uses them, who the real adversaries are, how the political
and societal context influences security and privacy, and how the legal framework may
(or may not) account for these properties. To this end, engaging with the end-users and
collaborating with other disciplines is crucial for understanding the real-world impact
of our solutions. Concretely, more user studies on practical deniability are needed. The
studies [RMA+23, YGS23] that we discuss in Chapter 4 do not involve real messaging
applications, so it would be valuable to observe how users react when conversations can
be modified within the interface. While writing this thesis, Rajendran et al. [RYAJ+24]
published a paper that presents a study in which users interact with the transcript-editing
feature that we propose for Signal. The authors highlight that this hands-on experience
offers a novel approach to evaluating the usability of the solution we propose for real-world
deniability in Signal. Additionally, future research could explore whether deniability is
desirable in different contexts, especially for vulnerable groups such as political dissidents,
whistleblowers, or harassment victims.
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This section presents supplementary material for Chapter 2, On active attack detection
in messaging with immediate decryption.

A.1 Proof for Theorem 10

We present the proof for s-RID security of the construction introduced in Figure 2.7.

Proof. The proof strategy is identical to the one done for the proof of Theorem 9. For
any adversary Ã playing the s-RID game, we construct an adversary A∗ playing the CR
game with comparable complexity. We first describe the adversary A∗ in terms of Ã and
proceed by proving that A∗ wins at least as often as Ã.

As with the proof of Theorem 9 we define an event E that occurs only when s-RIDÃ(1λ)⇒
1, and we prove that Pr[CRA∗(1λ)⇒ 1|E] = 1.

The event s-RIDÃ(1λ)⇒ 1, means there exists P, num, ad, ct, num′, ad′, ct′, x, y such that
both x < y, (num, pt, ct) is a forged message received by P at time x, (num′, ad′, ct′) is an
honest message sent by P at time y and received by P. As (num′, ad′, ct′) was received,
P’s call to RRC.checks returned false.

Let us define hf = H.Eval(hk, (num, ad, ct)). When receiving the forged message, i.e., at
time x, P adds (num, hf ) to stP .R. As y > x at time y, (num, hf ) is still in stP .R. Hence
num ∈ nums′ for the honest message (num′, ad′, ct′). Now as (num′, ad′, ct′) was accepted,
we have, due to line 3 of checks, that

H.Eval(hk′, R∗) = H.Eval(hk′, stP .R).

If R∗ ̸= stP .R we have already found a collision. So let us assume R∗ = stP .R. Now as
(num, hf ) ∈ stP .R, we also have that (num, hf ) ∈ R∗ ⊂ stP .S.
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Receiver P Sender P

epoch = tf

...

epoch = th − 3 epoch = th−3

epoch = th − 2

epoch = th − 2

epoch = th − 1 epoch = th − 1

epoch = th

epoch = th

Figure A.1: Visualising the proof sketch of Theorem 15. Dotted lines represent forged
messages, while solid lines represent honest messages. Intuitively, we argue that if the last
message did not contradict the first, then the fourth message would have contradicted
the third, thereby violating s-RID in the other direction.

This would mean that there exists an honest message (num, adh, cth) such that

H.Eval(hk, (num, adh, cth)) = hf .

But note that as (num, adh, cth) is an honest message, (“send”,P, num, adh, cth) ∈ log
but (“send”,P, num, ad, ct) /∈ log as the message was forged, hence (num, adh, cth) ̸=
(num, ad, ct), which again yields a collision pair.

Now the CR adversary A∗ does the following: they run the s-RID adversary Ã as a subrou-
tine with the hk given by the CR game. They later find P, num, ad, ct , num′, ad′, ct′, x, y

satisfying the condition, in case they exist. Now by exposing the states of the parties at
time y they can find the collision pairs described above. Hence we have,

Pr[CRA∗(1λ)⇒ 1] ≥ Pr[CRA∗(1λ)⇒ 1|E] · Pr[E] = Pr[s-RIDÃ(1λ)⇒ 1]

Moreover the run-time of A∗ is roughly the run-time of Ã.

A.2 Proof sketch of Theorem 15

We present the proof sketch for s-RID security of the construction introduced in Figure 2.13.
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Proof sketch. Let [(ctf , ·, tf ), (cth, ·, th)], be the closest pair of sent-received messages
contradicting the s-RID condition. Meaning (ctf , ·, tf ) is a forgery received by P before
they sent the honest message (cth, ·, th) which was received by P. We consider the time
when (cth, ·, th) was sent by P. As mandated by the construction (cth, ·, th) contained
num values and accumulated hash of all messages P has received at epochs th and th − 2.
Following the same argument as the proof of Theorem 10 one can show that no forgeries,
including (ctf , ·, tf ), were received by P while epochP ∈ {th, th − 2}.

The two messages that changes epochP from th − 4 to th − 2 and from th − 2 to th, were
honest messages by P . Let us call them (ctth−3, ·, th−3) and (ctth−1, ·, th−1) respectively.
Note that, both these messages were received after (ctf , ·, tf ) was received and before
(ctf , ·, tf ) was sent, as otherwise (cth, ·, th) would contradict (ctf , ·, tf ). Note that between
sending the messages (ctth−3, ·, th−3) and (ctth−1, ·, th−1), epochP was changed meaning
P received a message with epoch = th − 2 that caused the change of epochP . Let us call
this message (ctth−2, ·, th − 2). We argue this message should have been forged.

Let us assume by contradiction that this message was honest. Note that (ctth−2, ·, th − 2)
was sent after (ctth−3, ·, th − 3) was received, hence after (ctf , ·, tf ) was received. Now if
(ctth−2, ·, th−2) is honest it forms a pair with (ctf , ·, tf ) which violates the s-RID condition
and has less distance from the original pair which is a contradiction. So (ctth−2, ·, th − 2)
must have been forged. Figure A.1 provides a visualization of this scenario.

One other observation is that (ctth−2, ·, th − 2) was received before (ctth−1, ·, th − 1)
was sent, hence, before (cth, ·, th) was received. This shows that the pair [(ctth−2, ·, th −
2), (ctth−1, ·, th − 1)] also violates the s-RID (for P and not P) and has less distance than
the original pair.
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This section presents supplementary material for Chapter 3, Authenticated private
information retrieval.

B.1 Amplifying integrity in single-server authenticated PIR

In this section, we formally describe how to amplify integrity in single-server authenticated
PIR (Section 3.3.3). We begin by defining error-correcting codes, followed by presenting
a formal single-server construction for amplifying integrity (Construction 5) along with
the corresponding security proofs.

Definition 62 (Error-correcting code). A (k, n)-error-correcting code over a finite field
F that can correct up to t errors consists of two efficient and deterministic algorithms:

• Encode(x) → y: The encoding algorithm takes a message x ∈ Fk and outputs a
codeword y ∈ Fn.

• Decode(y) → x: The decoding algorithm takes a codeword Fn and outputs a
message x ∈ Fn.

Moreover, for all x ∈ Fk, y← Encode(x), and all y′ ∈ Fn such that yi = y′
i for all but at

most t indices i ∈ [n], Decode(y′) = x.

Construction 5 shows how to use an error-correcting code to amplify the integrity of
an authenticated single-server PIR scheme, which can have a non-negligible integrity
error. Correctness of Construction 5 follows by construction. Thus, we focus on analyzing
integrity and privacy.
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Construction 5 (Amplifying integrity of single-server authenticated PIR). Let
ECC = (Encode, Decode) be a (k, n)-error-correcting code over a finite field F that
can correct up to t errors. Let PIR0 = (Digest0, Query0, Answer0, Reconstruct0) be a
secure single-server authenticated PIR scheme for records in F and which provides
ϵ-integrity. We construct a new single-server authenticated PIR scheme from PIR0
with records in Fk.

Digest(1λ, x ∈ (Fk)N )→ d

1. Parse x = (x1, . . . , xN ) where x1, . . . , xN ∈ Fk.
2. For each i ∈ [N ], let yi ← Encode(xi) ∈ Fn. Write yi = (yi,1, . . . , yi,n).
3. For each j ∈ [n], let zj = (y1,j , . . . , yn,j) ∈ FN .
4. For each j ∈ [n], compute dj ← Digest0(1λ, zj) and output d = (d1, . . . , dn).

Query (d, i ∈ [N ])→ (st, q)

1. For each j ∈ [n], sample (stj , qj)← Query0(dj , i).
2. Output st = (st1, . . . , stn), q = (q1, . . . , qn).

Answer
(
d, x ∈ (Fk)N

, q
)
→ a

1. Parse d = (d1, . . . , dn) and q = (q1, . . . , qn).
2. For each j ∈ [n], compute zj ∈ FN from x using the same procedure as Digest.
3. For each j ∈ [n], compute aj ← Answer0(dj , zj , qj) and output a = (a1, . . . , an).

Reconstruct (st, a)→ Fk ∪ {⊥}

1. Parse the state st = (st1, . . . , stn) and the responses a = (a1, . . . , an).
2. For each j ∈ [n], compute yj ← Reconstruct0(stj , aj).
3. If there exists j ∈ [n] such that yj = ⊥, output ⊥.
4. Otherwise, let y = (y1, . . . , yn) and output Decode(y).
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Theorem 63 (Integrity of Construction 5). If PIR0 is secure and provides ϵ-integrity
and ECC is an error-correcting code that can correct up to t errors, then Construction 5
(instantiated with PIR0 and ECC) provides ϵt+1-integrity.

Proof. Take any database x ∈ (Fk)N , an index i ∈ [N ], and any efficient adversary A.
Write x = (x1, . . . , xN ) and let yi ← Encode(xi) for each i ∈ [n]. Let zj ← (y1,j , . . . , yn,j)
and let d← Digest(1λ, x). Then d = (d1, . . . , dn) where dj ← Digest0(1λ, zj). Let (st, q)←
Query(d, i) where st = (st1, . . . , stn), q = (q1, . . . , qn), and (stj , qj) ← Query0(dj , i). Let
a∗ = (a∗

1, . . . , a∗
n) be the adversary’s response in the integrity experiment. Let y′

j ←
Reconstruct0(stj , a∗

j ). Consider now the output of x′ ← Reconstruct(st, a∗):

• Suppose there exists j ∈ [t] such that y′
j = ⊥. Then x′ = ⊥.

• Suppose y′
j = yi,j for all but at most t indices j ∈ [n]. Since ECC can correct up to

t errors, x′ = Decode((y′
1, . . . , y′

j)) = xi.

• Suppose there are at least t + 1 indices j ∈ [n] where y′
j /∈ {yi,j ,⊥}. By integrity of

PIR0, for each j ∈ [n],

Pr
[
y′

j /∈ {yi,j ,⊥}
]
≤ ϵ(λ) + negl(λ).

Moreover, this probability is taken only over the choice of the query randomness qj .
Since the queries q1, . . . , qn are sampled independently, the probability that there
exists t + 1 indices j where y′

j /∈ {yi,j ,⊥} is at most ϵt+1 + negl(λ).

By the above analysis, we conclude that

Pr[x′ /∈ {xi,⊥}] ≤ ϵt+1 + negl(λ),

and the claim holds.

Theorem 64 (Privacy of Construction 5). If PIR0 provides privacy, then Construction 5
(instantiated with PIR0) provides privacy.

Proof. Take any database x ∈ (Fk)N , an index i ∈ [N ], and any efficient adversary
A = (A0,A1). Let S ′ = (S ′

0,S ′
1) be the simulator for PIR0. We use (S ′

0,S ′
1) to construct

a simulator S = (S0,S1) for the transformed scheme:
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Simulator S0(1λ, d, x)

1 : parse d as (d1, . . . , dn)
2 : parse x as (x1, . . . , xn)
3 : yi ← Encode(xi) ∀i ∈ [N ]
4 : for all j ∈ [n]:
5 : zj ← (y1,j , . . . , yn,j)
6 : (stj , qj)← S ′

0(1λ, dj , zj)
7 : stS ← (st1, . . . , stn)
8 : q ← (q1, . . . , qn)
9 : return (stS , q)

Simulator S1(stS , a∗)

1 : parse stS as (q1, . . . , qn)
2 : parse a∗ as (a∗

1, . . . , a∗
n)

3 : bj ← S ′
1(stj , a∗

j ) ∀j ∈ [n]
4 : b← 1{∀j ∈ [n] : bj = 1}
5 : return b

We show that the real distribution realA,x,i,λ and ideal distribution idealA,S,x,λ are
computationally indistinguishable. We define a sequence of hybrid experiments:

• H0: This is the real distribution realA,x,i,λ:

– The challenger starts by parsing x = (x1, . . . , xn) and computes yi ←
Encode(xi) for each i ∈ [N ]. Then it forms zj = (y1,j , . . . , yn,j) for each
j ∈ [n]. It computes dj ← Digest0(1λ, zj) and sets dj = (d1, . . . , dn).

– The challenger then samples (stj , qj) ← Query0(dj , zj). It define q =
(q1, . . . , qn) and gives (d, x, q) to A.

– The adversary responds with a∗ = (a∗
1, . . . , a∗

n). For each j ∈ [n], the challenger
computes yj ← Reconstruct0(stj , a∗

j ).

– Then it computes b← 1{∀j ∈ [n] : yj ̸= ⊥} and gives b to A.

– The output of the experiment is A’s output.

• H1: Same as H0 except after the challenger computes y1, . . . , yn from a∗, the
challenger computes bj ← 1{yj ̸= ⊥}. Then, it sets b← 1{∀j ∈ [n] : bj = 1}.

• H2: Same as H1 except the challenger computes (stj , qj)← S ′
0(1λ, dj , zj) for each

j ∈ [N ]. After the adversary responds with a∗ = (a∗
1, . . . , a∗

n), the challenger
computes bj as bj ← S ′

1(stj , a∗
j ). This is the ideal distribution idealA,S,x,λ.

The difference between H0 and H1 is syntactic and their outputs are identically distributed.
Hybrid H1 and H2 are computationally indistinguishable by security of PIR0; formally,
this follows by a sequence of n hybrid experiments where in experiment j, we switch to
using the PIR0 simulator S ′ to simulate the query qj and the response bit bj .
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B.2 Multi-server authenticated PIR for predicate queries

In this section we analyze our multi-server authenticated-PIR scheme for predicate
queries.

B.2.1 Security proofs

We prove security only for the case of k = 2 servers. All the arguments generalize naturally
to the k-server setting with k > 2. Correctness of the multi-server authenticated PIR
scheme for predicate queries introduced in Construction 2 can be verified by inspection.
To prove integrity and security, we find it useful to first prove Lemma 65, which states
that if an adversary deviates from the prescribed protocol, the Reconstruct algorithm
rejects with high probability.

Lemma 65. Let the authenticated PIR scheme introduced in Construction 2, where
k = 2 for this lemma. Then, for every database size N ∈ N, for every non-zero offset
∆ = (∆m, ∆τ ) ∈ F2, every database X = x1, . . . , xN ∈ {0, 1}ℓ, every vector of weights
w ∈ FN , and function f ∈ F , we have

Pr

y ̸= ⊥ :

(st, q1, q2)← Query(1λ, f)
a1 ← Answer(X, w, q1)
a2 ← Answer(X, w, q2)
y ← Reconstruct(st, a1 + ∆, a2)

 ≤
1

|F| − 1 ,

where the probability is computed over all the random coins used by the algorithms of
the experiment. The statement holds also when the Reconstruct algorithm instead takes
as input (st, a1, a2 + ∆).

Proof. Let α←$ F \ {0}. By construction, we can rewrite the probability stated in the
lemma as

ν = Pr

α ·

 ∑
i∈[N ]

wi · f(i, xi) + ∆m

 = α ·
∑

i∈[N ]
wi · f(i, xi) + ∆τ


= Pr [−∆τ + α ·∆m = 0]

The last quantity is the evaluation of a non-zero degree-1 polynomial with coefficients
∆τ and ∆m at a random point α←$ F \ {0}. Since a non-zero linear polynomial has at
most one root over F \ {0}, we conclude that ν ≤ 1

|F|−1 . By interchanging the roles of a1
and a2, the statement holds also when the Reconstruct algorithm instead takes as input
(st, a1, a2 + ∆).

We now use Lemma 65 to show that the scheme presented in Construction 2 ensures
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integrity and security, and hence it is secure.

Theorem 66 (Integrity of Construction 2). The authenticated PIR scheme of Con-
struction 2 provides integrity.

Proof. This theorem follows directly from Lemma 65.

Theorem 67 (Privacy of Construction 2). The authenticated PIR scheme of Construc-
tion 2 provides privacy.

Proof. The proofs proceeds exactly as the proof for Theorem 45, with the difference that
we use the simulator induced by the secure function-secret-sharing scheme instead of the
simulator induced by the classic PIR scheme, and we appeal to Lemma 65 instead of
Lemma 43 to conclude the proof.

B.2.2 Handling functions with larger output

In this section we discuss how to handle functions with larger output in authenticated
PIR for predicate queries.

Scheme

The scheme is described in Construction 6.

Security analysis

Lemma 68. Let the authenticated PIR scheme introduced in Construction 6, where
k = 2 for this lemma. Then, for every database size N ∈ N, for every non-zero vector
(∆0, . . . , ∆b) ∈ Fb+1, every database X = x1, . . . , xN ∈ {0, 1}ℓ, every vector of weights
w ∈ FN , and every function f ∈ F , the following holds:

Pr

y ̸= ⊥ :

(st, q1, q2)← Query(λ, f)
a1 ← Answer(X, w, q1)
a2 ← Answer(X, w, q2)
y ← Reconstruct(st, a1 + ∆, a2)

 ≤
b

|F| − 1 ,

where the probability is computed over all the random coins used by the algorithms of
the scheme. Without loss of generality, the statement holds also when the roles of honest
and malicious server are inverted.
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Construction 6 (k-server authenticated PIR for predicate queries for functions
whose output is larger than a single field element tolerating k − 1 malicious servers).
The construction is parametrized by a number of servers k ∈ N, a number of database
rows N ∈ N, a row length ℓ ∈ N, a finite field F, a security parameter λ, a output
length b ∈ N, a function class F ⊆ Funs[[N ] × {0, 1}ℓ,Fb] that is closed under
scalar multiplication, and a function-secret-sharing scheme (FSS.Gen, FSS.Eval) for
the function class F , parametrized bx the security parameter λ. We represent the
database as N binary strings of length ℓ each: X = x1, . . . , xN ∈ {0, 1}ℓ.

Query
(
1λ, f

)
→ (st, q1, . . . , qk)

1. Sample a random field element α←R F \ {0}.
2. Set the state st← α.
3. For j ∈ [b], let gj ← αj · f . These functions gj must exist since the function

class F is closed under scalar multiplication, as in Definition 49.
4. Compute q1, . . . , qk ← FSS.Gen(1λ, f) together with q

(i)
1 , . . . , q

(i)
k ←

FSS.Gen(1λ, gi), for i ∈ [b].

5. Output
(
st, (q1, q

(1)
1 , . . . , q

(b)
1 ), . . . , (qk, q

(1)
k , . . . , q

(b)
k )

)
.

Answer
(
x1, . . . , xN ∈ {0, 1}ℓ, w ∈ FN , q

)
→ a ∈ Fb+1

1. Parse q as (qf , q
(1)
g , . . . , q

(b)
g ).

2. Compute answer as af ←
∑

i∈[N ] wi · FSS.Eval (qf , xi) and ag ←∑
j∈[b]

(∑
i∈[N ] wi · FSS.Eval

(
q

(j)
g , xi

))
.

3. Return a← (af , ag).

Reconstruct
(
st, a1, . . . , ak ∈ Fb+1

)
→ Fb ∪ {⊥}

1. Parse the state st as α ∈ F.
2. Compute a← a1 + · · ·+ ak ∈ Fb+1.
3. Parse a as (m1, . . . , mb, τ) ∈ Fb+1.
4. Compute τ ′ ← m1α + m2α2 + · · ·+ mbα

b ∈ F.
5. If τ = τ ′, output (m1, . . . , mb) ∈ Fb. Otherwise, output ⊥.
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Proof. Let α←$ F \ {0}. Let

y = (m1, . . . , mb)←
∑

i∈[N ]
wi · f(i, xi) ∈ Fb.

Then the probability stated in the lemma is

ν = Pr

 ∑
j∈[b]

(mj + ∆j)αj = ∆0 +
∑
j∈[b]

mjαj


= Pr

−∆0 +
∑
j∈[b]

∆jαj = 0

 .

This last quantity is the evaluation of a non-zero polynomial (whose coefficients are the
∆ values) at a random point α←R F \ {0}. Since such a non-zero polynomial of degree
at most b can have at most b roots over F, we have that ν ≤ b

|F|−1 . By interchanging
the roles of a0 and a1, the statement holds also when the Reconstruct algorithm instead
takes as input (st, a1, a2 + ∆).

Theorem 69 (Integrity of Construction 6). The authenticated PIR scheme of Construc-
tion 6 provides integrity.

Proof. The theorem follows directly from Lemma 68.

Theorem 70 (Security of Construction 6). The authenticated PIR scheme of Construc-
tion 6 provides privacy.

Proof. The strategy is as in the proof of Theorem 67, except that we appeal to Lemma 68
to complete the argument.

B.3 Security proofs for single-server authenticated PIR
from LWE

In this section we provide the security proofs for Construction 3.

Theorem 71 (Correctness of Construction 3). If B ≥
√

λNs, then Construction 3 is
correct.

Proof. Take any database x ∈ {0, 1}N and index i ∈ [N ]. Let d = Ax be the digest,
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qT = sTA + eT + t · ηT
i be the query, and a← qTx be the response. Then, we have

a− sTd− xit = qTx− sTd− xit

= sTAx + eTx + t · ηT
i x− sTAx− xit

= eTx. (B.1)

Since the components of e are independent discrete Gaussian random variables with
parameter s, eTx is subgaussian with parameter ∥x∥ · s ≤

√
Ns since x ∈ {0, 1}N . By

Eq. (3.1),

Pr[|eTx| < B : e← DN
Z,s] ≥ Pr[|eTx| ≤

√
λNs : e← DN

Z,s]
= 1− negl(λ). (B.2)

To complete the proof, we show that |a− sTd− (1− xi)t| ≥ B. By Eq. (B.1),

|a− sTd− (1− xi)t| = |eTx + (1− 2xi)t|.

By Eq. (3.1), |eTx| < B with overwhelming probability. Since 1 − 2xi ∈ {−1, 1} and
t ∈ [2B, q − 2B], with overwhelming probability over the choice of e, we have eTx + (1−
2xi)t ∈ [B, q −B], or equivalently, |eTx + (1− 2xi)t| ≥ B.

Before proving security and privacy, we first prove the following lemma, similar to the
approach used for multi-server schemes.

Lemma 72. Let λ be a security parameter, x ∈ {0, 1}N be a database, i ∈ [N ] be an
index, and A be an adversary. Consider Construction 3 and define distributions D

(0)
A,x,i,λ,

D
(1)
A,x,i,λ:

Distribution D
(0)
A,x,i,λ

1 : d← Digest(1λ, x)
2 : (st, q)← Query(d, i)
3 : (stA, a∗)← A(d, x, q)
4 : x′

i ← Reconstruct(st, a∗)
5 : return x′

i

Distribution D
(1)
A,x,i,λ

1 : d← Digest(1λ, x)
2 : q←R ZN

q , e← DN
Z,s

3 : (stA, a∗)← A(d, x, q)
4 : t←R [2B, q − 2B]
5 : uT ← qT − t · ηT

i

6 : â∗ ← a∗ − uTx + eTx
7 : if |â∗| < B then
8 : x′

i ← 0
9 : elseif |â∗ − t| < B then

10 : x′
i ← 1

11 : else x′
i ← ⊥

12 : return x′
i
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Suppose the extLWEn,N,q,s assumption holds and H is modeled as a random oracle. Then,
for every database length N = N(λ), database x ∈ {0, 1}N , index i ∈ [N ], and every
adversary A running in time t = t(λ), there exists an adversary B running in time poly(t)
such that

|Pr[D(0)
A,x,i,λ = 1]− Pr[D(1)

A,x,i,λ = 1]| ≤ Adv(n,N,q,s)
extLWE [B].

Proof. Fix a database x ∈ {0, 1}N , an index i ∈ [N ], and any efficient adversary A. In
the following analysis, we write ai ∈ Zn

q to denote H(i) and we model H as a random
oracle (which the reduction algorithm is allowed to program [BR93]). We now define a
sequence of hybrid experiments:

• H0: This is the distribution D
(0)
A,x,i,λ. In this distribution, the output x′

i is computed
via x′

i ← Reconstruct(st, a∗).

• H1: Same as H0 except the challenger changes how x′
i is computed. Instead of

computing x′
i ← Reconstruct(st, a∗), the challenger sets x′

i as follows:

– If |a∗ − (sTA + eT)x + eTx− kt| < B for k ∈ {0, 1}, then x′
i ← k.

– Otherwise, the challenger sets x′
i ← ⊥.

• H2: Same as H1 except the challenger replaces sTA + eT with a uniform random
vector uT ←R ZN

q . Specifically, the challenger computes qT ← uT + t · ηT
i and x′

i as
follows:

– If |a∗ − uTx + eTx− kt| < B for k ∈ {0, 1}, then x′
i ← k.

– Otherwise, the challenger sets x′
i ← ⊥.

• H3: Same as H2 except the challenger samples q←R ZN
q . Then, after the adversary

outputs the response a∗, it samples t←R [2B, q− 2B] and sets uT ← qT− t ·ηT
i . The

response a′
i is computed exactly as in H2. This is the distribution D

(1)
A,x,i,λ.

To complete the proof, we now show that each adjacent pair of distributions is indistin-
guishable.

• Hybrids H0 and H1 are identical distributions. In both experiments, d = Ax,
qT = sTA + eT + t · ηT

i and st = (d, s, t). Let a∗ be the adversary’s response in H0
and consider the value of x′

i ← Reconstruct(st, a∗). Let z = a∗ − sTd. Then,

z = a∗ − sTd = a∗ − sTAx
= a∗ − (sTA + eT)x + eTx
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In H0, the challenger outputs k ∈ {0, 1} if |a∗ − sTd − kt| = |z − kt| < B and ⊥
otherwise. By the above calculation, this precisely coincides with the procedure in
H1.

• Hybrids H1 and H2 are computationally indistinguishable under the extLWEn,N,q,s

assumption and modeling H as a random oracle. To see this, suppose there exists
an efficient adversary A that is able to distinguish hybrids H1 and H2 with non-
negligible advantage. We useA to construct an adversary B that breaks the extended
LWE assumption:

1. At the beginning of the game, algorithm B receives an extended LWE challenge
(A, zT, y) where A ∈ Zn×N

q , z ∈ ZN
q , and y ∈ Zq.

2. Let a1, . . . , aN ∈ Zn
q be the columns of A. Algorithm B programs the random

oracle H(i) 7→ ai for each i ∈ [N ]. If A ever queries H on an input k /∈ N ,
algorithm B samples a random rk ←R Zn

q and defines the mapping H(k) 7→ rk.
3. Algorithm B now constructs the digest d← Ax as in H1 and H2. To construct

the query, algorithm B samples t←R [2B, q − 2B] and sets qT ← zT + t · ηT
i . It

gives the digest d, the database x, and the query q to A.
4. Algorithm A outputs a response a∗. Algorithm B computes x′

i as follows:
– If |a∗ − zTx + y − kt| < B for k ∈ {0, 1}, then x′

i ← k.
– Otherwise, x′

i ← ⊥.
5. Algorithm B replies to A with x′

i and outputs whatever A outputs.

Since A ←R Zn×N
q , the outputs of the random oracle are correctly simulated.

Corresponding, algorithm B perfectly simulates the distribution of the digest d for
A. We now consider the two possible challenge distributions:

– Suppose zT = sTA + eT and y = eTx. Then the query q and the response x′
i

are distributed exactly as in H1.
– Suppose zT ←R ZN

q and y = eTx. Then, the query q and the response x′
i are

distributed exactly as in H2.

We conclude that algorithm B breaks the extended LWE assumption with the same
distinguishing advantage as A and the claim follows. More precisely, we can write
Hi(A) to denote the output of a distinguisher A on input a sample from Hi. Then
our reduction shows that for all adversaries A running in time t, there exists an
adversary B running in time poly(t) such that

Advn,N,q,s
extLWE[B] ≥ |Pr[H1[A] = 1]− Pr[H2[A] = 1]|.

• Hybrids H2 and H3 are identically distributed. In H2, q = u + t ·ηi where u←R ZN
q

and u is sampled independently of all other quantities. Thus, the distribution of q in
H2 is uniform over ZN

q , which matches the distribution in H3. In both experiments,
u = q − t · ηi, where t←R [2B, q − 2B].

159



Appendix B. Supplementary material for Chapter 3

Theorem 73 (Integrity of Construction 3). Suppose the extLWEn,N,q,s assumption holds
and H is modeled as a random oracle. Then, Construction 3 (instantiated with parameters
n, N, q, s, B and hash function H) has integrity error at most ϵ = (2B − 1)/(q − 4B + 1).

Proof. Fix a database x ∈ {0, 1}N , an index i ∈ [N ], and any efficient adversary A. We
now define a sequence of hybrid experiments:

• H0: This is the real integrity game.

• H1: Same as H0 except the challenger samples q←R ZN
q and e← DN

Z,s. Then, after
the adversary outputs the response a∗, the challenger samples t ←R [2B, q − 2B]
and sets uT ← qT − t · ηT

i . If |a∗ − uTx + eTx− kt| < B for some k ∈ {0, 1}, then
the challenger sets x′

i ← k. Otherwise, the challenger sets x′
i ← ⊥.

• H2: Same as H1 except the challenger changes how it computes x′
i:

– If |a∗ − uTx + eTx− xit| < B, then x′
i ← xi.

– Otherwise, the challenger sets x′
i ← ⊥.

Specifically, in H2, it is guaranteed that x′
i ∈ {xi,⊥}.

We now show that the outputs of each adjacent pair of hybrid distributions are computa-
tionally indistinguishable:

• Hybrids H0 and H1 are computationally indistinguishable by Lemma 72.

• The statistical distance between H1 and H2 is at most (2B + 1)/(q − 4B + 1). By
construction, the two experiments are identical unless

|a∗ − uTx + eTx− (1− xi)t| < B. (B.3)

Now, u = q − t · ηi, so

a∗ − uTx + eTx− (1− xi)t = a∗ − qTx + eTx− (1− 2xi)t.

Since 1−2xi ∈ {−1, 1}, there are at most 2B−1 values of t ∈ Zq for which Eq. (B.3)
holds. Since t is sampled uniformly at random from a set of size q − 4B + 1 and
independently of a∗, u, x, and e, the probability that t lands in the interval of size
2B − 1 is at most (2B − 1)/(q − 4B + 1). Correspondingly, the statistical distance
between H1 and H2 is (2B − 1)/(q − 4B + 1).

By construction, the output x′
i in H2 is guaranteed to be either xi or ⊥. By a hybrid

argument, in the real integrity game H0, it must be the case that

Pr[x′
i ∈ {xi,⊥}] ≤

2B − 1
q − 4B + 1 + negl(λ),
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which proves the claim.

Theorem 74 (Privacy of Construction 3). Suppose the extLWEn,N,q,s assumption holds
and H is modeled as a random oracle. Then, Construction 3 (instantiated with parameters
n, N, q, s, B and hash function H) provides privacy. More precisely, for every adversary
running in time t = t(λ), there exists an adversary B running in time poly(t) such that

|Pr[realA,x,i,λ = 1]− Pr[idealA,S,x,λ = 1]| ≤ Advn,N,q,s
extLWE[B],

where realA,x,i,λ and idealA,S,x,λ are the distributions defined in Definition 32.

Proof. Fix a database x ∈ {0, 1}N , an index i ∈ [N ], and any efficient adversary A =
(A0,A1). We construct an efficient simulator S = (S0,S1) as follows:

Simulator S0(1λ, d, x)

1 : q←R ZN
q , e← DN

Z,s

2 : stS ← qTx− eTx
3 : return (stS , q)

Simulator S1(stS , a∗)

1 : if |a∗ − stS | < B then b← 1
2 : else
3 : t←R [2B, q − 2B]
4 : b← 1{|a∗ − stS − t| < B}
5 : return b

We show that the real distribution realA,x,i,λ and ideal distribution idealA,S,x,λ are
computationally indistinguishable. We define a sequence of hybrid experiments:

• H0: This is the real distribution realA,x,i,λ. In this distribution, the response x′
i is

computed via x′
i ← Reconstruct(st, a∗).

• H1: Same as H0 except the challenger samples q←R ZN
q and e← DN

Z,s. Then, after
the adversary outputs the response a∗, the challenger samples t ←R [2B, q − 2B]
and sets uT ← qT − t · ηT

i . If |a∗ − uTx + eTx− kt| < B for some k ∈ {0, 1}, then
the challenger sets x′

i ← k. Otherwise, the challenger sets x′
i ← ⊥.

• H2: Same as H1, except instead of computing x′
i, the challenger sets b = 1 if

|a∗ − qTx + eTx| < B. Otherwise, it samples t ←R [2B, q − 2B] and sets b ←
1{|a∗ − qTx + eTx− t| < B} This is the ideal distribution idealA,S,x,λ.

To complete the proof, we now show that each adjacent pair of distributions is indistin-
guishable. First, hybrids H0 and H1 are computationally indistinguishable by Lemma 72.
To complete the proof, we show that H1 and H2 are identically distributed:
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• Hybrids H1 and H2 are identically distributed. Let a∗ ∈ Zq be the adversary’s
response in the two experiments. Define the quantity z = a∗ − qTx + eTx. We
consider two possibilities:

– Suppose |z| < B. In H2, the challenger always sets b = 1. We claim this is
also the case in H1. By construction, we can first write

uTx = qTx− t · ηT
i x = qTx− xit. (B.4)

This means

|z| = |a∗ − qTx + eTx| = |a∗ − uTx + eTx− xit|. (B.5)

Since xi ∈ {0, 1}, we have x′
i = xi and b = 1 in H1.

– Suppose |z| ≥ B. In this case, the challenger in H2 samples t←R [2B, q − 2B]
and sets b = 1 if |z − t| < B and b = 0 otherwise. Consider the challenger’s
behavior in H1. By Eq. (B.5), we have that b = 1 only if

|a∗ − uTx + eTx− (1− xi)t| < B.

By Eq. (B.4), this is equivalent to |z − (1− 2xi)t| < B. Like in H2, the
challenger in H1 samples t←R [2B, q − 2B] after the adversary outputs a∗. We
consider two possibilities:

∗ If xi = 0, then 1 − 2xi = 1, and the challenger in H1 sets b ←
1{|z − t| < B}. This is identical to the behavior in H2.

∗ If xi = 1, then 1 − 2xi = −1, and the challenger in H1 sets b ←
1{|z + t| < B}. Since t←R [2B, q − 2B] the distributions of t mod q and
−t mod q are identical (the interval is symmetric about 0 over Zq). Since
t and z are independent, the distribution of 1{|z + t| < B} is identically
distributed as that of 1{|z − t| < B}. Once again, the distribution of b in
H1 is distributed identically to that in H2.

We conclude that the distribution of b is identical in H1 and H2 in this case.

B.4 Single-server authenticated PIR from DDH

In this section we provide supplementary material on the single-server authenticated PIR
scheme from the decisional Diffie-Hellman assumption (Construction 4).

B.4.1 Security proofs

Correctness of Construction 4 can be verified by inspection.
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To analyze the security and integrity of Construction 4, we start by proving the following
lemma, which will feature in both the security and the integrity analysis.

Lemma 75. Let λ be a security parameter, x ∈ {0, 1}N be a database, i ∈ [N ] be an
index, and A be an adversary. Consider Construction 4 and define distributions D

(0)
A,x,i,λ

and D
(1)
A,x,i,λ:

Distribution D
(0)
A,x,i,λ

1 : d← Digest(1λ, x)
2 : (st, q)← Query(d, i)
3 : (stA, a∗)← A(d, x, q)
4 : x′

i ← Reconstruct(st, a∗)
5 : return x′

i

Distribution D
(1)
A,x,i,λ

1 : d← Digest(1λ, x)
2 : q ←R GN

3 : (stA, a∗)← A(d, x, q)

4 : if a∗ =
∏

j∈[N ]

q
xj

j then x′
i ← xi

5 : else x′
i ← ⊥

6 : return x′
i

Suppose the DDH assumption holds in G and H is modeled as a random oracle. Then,
for every database length N = N(λ), database x ∈ {0, 1}N , index i ∈ [N ], and efficient
adversary A, ∣∣∣Pr[D(0)

A,x,i,λ = 1]− Pr[D(1)
A,x,i,λ = 1]

∣∣∣ ≤ negl(λ).

Proof. Take any database length N = N(λ), database x ∈ {0, 1}N and an index i ∈ [N ].
We show that the distributions D

(0)
A,x,i,λ and D

(1)
A,x,i,λ are computationally indistinguishable.

In the following analysis, we write hi ∈ G to denotes H(i), and we model H as a random
oracle (which the reduction algorithm is allowed to program) [BR93]. We now define a
sequence of hybrid experiments:

• H0: This is the distribution D
(0)
A,x,i,λ. In this distribution, the response x′

i ∈ {0, 1,⊥}
is computed via x′

i ← Reconstruct(st, a∗).

• H1: Same as H0, except the challenger changes how x′
i is computed. Instead of

computing x′
i ← Reconstruct(st, a∗), the challenger sets x′

i as follows:

– If a∗ = hyt
i (hr

i )xi
∏

j ̸=i(hr
j)xj for y ∈ {0, 1}, then x′

i ← y.
– Otherwise, the challenger sets x′

i ← ⊥.

• H2: Same as H1, except the challenger replaces the tuple of group elements
(g, h1, hr

1, . . . , hN , hr
N ) with (g, h1, z1, . . . , hN , zN ) where z1, . . . , zN ←R G and r ←R

Zp. Specifically, the challenger constructs the query q = (q1, . . . , qN ) by setting
qj ← zj for j ̸= i and qi ← zih

t
i. When computing x′

i, the challenger proceeds as
follows:
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– If a∗ = hyt
i zxi

i

∏
j ̸=i z

xj

j for y ∈ {0, 1}, then x′
i ← y.

– Otherwise, the challenger sets x′
i ← ⊥.

• H3: Same as H2 except the challenger samples q ←R GN . Then, after the adversary
outputs the response a∗, it sets zj = qj for all j ̸= i and zi ← qi/ht

i where t←R Zp.
The response a′

i is computed exactly as in H2.

• H4: Same as H2 except the challenger again changes how it computes x′
i:

– If a∗ = hxit
i zxi

i

∏
j ̸=i z

xj

j , then x′
i ← xi.

– Otherwise, the challenger sets x′
i ← ⊥.

• H5: Same as H4, except the challenger sets x′
i ← xi if a∗ =

∏
j∈[N ] q

xj

j and x′
i ← ⊥

otherwise. This is the distribution D
(1)
A,x,i,λ.

To complete the proof, we now show that each adjacent pair of distributions are indistin-
guishable:

• Hybrids H0 and H1 are identical distributions. In both experiments, d =
∏

j∈[N ] h
xj

j ,
q = (q1, . . . , qN ), and st = (i, d, r, t), where qj = hr

j for j ̸= i and qi = hr+t
i for

some r, t ∈ Zp. Let a∗ be the adversary’s response in H0, and consider the value of
x′

i ← Reconstruct(st, a∗) in H0:

– If a∗ = dr, then x′
i = 0. If a∗ = drht

i, then x′
i = 1. This is equivalent to setting

x′
i = y ∈ {0, 1} if a∗ = drhyt

i . Substituting in the above relations, this means
that in H0, x′

i = y ∈ {0, 1} if

a∗ = drhyt
i =

 ∏
j∈[N ]

h
xj

j

r

hyt
i = hyt

i (hr
i )xi

∏
j ̸=i

(hr
j)xi .

– Otherwise x′
i = ⊥.

This is precisely the distribution of x′
i in H1.

• Hybrids H1 and H2 are computationally indistinguishable under the DDH as-
sumption and modeling H as a random oracle. To see this, suppose there exists
an efficient adversary A that is able to distinguish hybrids H1 and H2 with non-
negligible probability. We use A to construct an adversary B that distinguishes the
distributions in Eq. (3.2):

1. At the beginning of the game, algorithm B receives a challenge vector
(g, h1, T1, . . . , hN , TN ).

2. Algorithm B programs the random oracle H(i) 7→ hi for each i ∈ [N ]. If A
ever queries H on an input k /∈ [N ], algorithm B samples a random rk ←R G
and defines the mapping H(k) 7→ rk.
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3. Algorithm B now constructs the digest d←
∏

j∈[N ] h
xj

j as in H1 and H2. To
construct the query, algorithm B sets qj ← Tj for j ̸= i and qi ← Tih

t
i where

t←R Zp. It gives the digest d, the database x, and the query q to A.

4. Algorithm A outputs a response a∗. Algorithm B computes x′
i as follows:

– If a∗ = hyt
i T xi

i

∏
j ̸=i T

xj

j , then x′
i ← xi.

– Otherwise, x′
i ← ⊥.

5. Algorithm B replies to A with x′
i and outputs whatever A outputs.

Since h1, . . . , hN ←R G, the outputs of the random oracle are correctly simulated.
Correspondingly, algorithm B perfectly simulates the distribution of the digest d

for A. We now consider the two possible challenge distributions:

– Suppose Ti = hr
i for all i ∈ [N ] and where r ←R Zp. In this case, qj = hr

j

for all j ̸= i and qj = hr+t
i where t ←R Zp. Similarly, x′

i = y ∈ {0, 1} if
a∗ = hyt

i (hr
i )xi

∏
j ̸=i(hr

j)xj , which exactly matches the distribution in H1.

– Suppose Ti = zi ←R G for all i ∈ [N ]. In this case, qj = zj for all j ̸= i and qj =
zih

t
i where t←R Zp. This is the query distribution in H2. Similarly, to compute

the response x′
i, algorithm B sets x′

i = y ∈ {0, 1} if a∗ = hyt
i zxi

i

∏
j ̸=i z

xj

j , which
matches the distribution in H2.

We conclude that algorithm B distinguishes between the distributions in Eq. (3.2)
with the same distinguishing advantage as A, and the claim follows.

• Hybrids H2 and H3 are identically distributed. In H2, the zj ’s are sampled uni-
formly and independently from G (and also independent of h1, . . . , hN , t). Thus,
the distribution of q = (q1, . . . , qN ) in H2 is identical to that in H3. Finally, in H2,
qi = zih

t
i, where t←R Zp. This is the distribution in H3.

• The statistical distance between H3 and H4 is 1/p = negl(λ). By construction,
the two experiments are identical unless the adversary outputs a∗ where a∗ =
h

(1−xi)t
i zxi

i

∏
j ̸=i z

xj

j . Using the relation zi = qi/ht
i, this becomes

a∗ = h
(1−xi)t
i

qxi
i

hxit
i

∏
j ̸=i

z
xj

j = (ht
i)1−2xiqxi

i

∏
j ̸=i

z
xj

j ,

or equivalently, if
(ht

i)1−2xi = a∗

qxi
i

∏
j ̸=i z

xj

j

. (B.6)

Now, in H3 and H4, the challenger samples t←R Zp after the adversary outputs a∗.
Moreover, since xi ∈ {0, 1}, it follows that 1 − 2xi ∈ {−1, 1}. Since t is sampled
independently of a∗, qi and zj for all j ∈ [N ], and hi is a generator of G (with
overwhelming probability), Eq. (B.6) holds with probability at most 1/p = negl(λ)
over the randomness of t.
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• Hybrids H4 and H5 are identical experiments. In H4, the challenger sets x′
i = xi if

and only if
a∗ = hxit

i zxi
i

∏
j ̸=i

z
xj

j = (zih
t
i)xi

∏
j ̸=i

z
xj

j =
∏

j∈[N ]
q

xj

j ,

since qj = zj for all j ̸= i and qi = zih
t
i. This is the distribution in H5.

Theorem 76 (Integrity of Construction 4). Suppose the DDH assumption holds in G
and H is modeled as a random oracle. Then, Construction 4 (instantiated with group G
and hash function H) provides integrity.

Proof. Fix a database x ∈ {0, 1}N and an index i ∈ [N ], and take any efficient adversary
A for the integrity game. We define the following hybrid experiments:

• H0: This is the real integrity game.

• H1: Same as H0, except the challenger samples q ←R GN and sets x′
i ← xi if

a∗ =
∏

j∈[N ] q
xj

j and x′
i ← ⊥ otherwise.

The outputs of H0 and H1 are computationally indistinguishable by Lemma 75. Next, in
H1, Pr[x′

i /∈ {xi,⊥}] = 0 by construction. The claim now follows by a hybrid argument.

Theorem 77 (Privacy of Construction 4). Suppose the DDH assumption holds in G
and H is modeled as a random oracle. Then, Construction 4 (instantiated with group G
and hash function H) provides privacy.

Proof. Fix a database x ∈ {0, 1}N and an index i ∈ [N ]. Take any efficient adversary
A = (A0,A1). We construct an efficient simulator S = (S0,S1) as follows:

Simulator S0(1λ, d, x)

1 : q = (q1, . . . , qN )←R GN

2 : stS ←
∏

j∈[N ]
q

xj

j

3 : return (stS , q)

Simulator S1(stS , a∗)

1 : b← 1{a∗ = stS}
2 : return b

We show that the real distribution realA,x,i,λ and ideal distribution idealA,S,x,λ are
computationally indistinguishable. We define a sequence of hybrid experiments:

• H0: This is the real distribution realA,x,i,λ.

• H1: Same as H0, except the challenger samples q ←R GN and sets x′
i ← xi if

a∗ =
∏

j∈[N ] q
xj

j and x′
i ← ⊥ otherwise.
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• H2: This is the ideal distribution idealA,S,x,λ.

We now argue that adjacent pair of hybrid experiments are indistinguishable:

• H0 and H1 are computationally indistinguishable by Lemma 75.

• H1 and H2 are identical experiments. Namely, in H2, the challenger sets b = 1 if
and only if a∗ =

∏
j∈[N ] q

xj

j , which coincides with the behavior in H1.

B.4.2 Handling larger database rows

Our DDH-based construction (Construction 4) directly supports (small) multi-bit
database records with no communication overhead. The cost is the client’s computational
cost increases by a factor of 2ℓ/2, where ℓ is the bit-length of the record.

The idea is simple. Suppose the database consists of N ℓ-bit records x1, . . . , xℓ ∈ {0, 1}ℓ.
The digest, query, and answer algorithms are unchanged (the only difference is that instead
of each record xi ∈ {0, 1} being a single bit, we now treat each record xi ∈ {0, 1}ℓ as an
integer between 0 and 2ℓ− 1). The only difference is during reconstruction, the client now
learns the value hxit

i . Since the client knows the blinding factor t, it can exponentiate with
t−1 mod p to obtain hxi

i . Namely, the client is able to obtain an encoding of the database
record in the exponent. Recovering the value of xi now requires computing a discrete
logarithm (base hi). This can be computed in time O(

√
2ℓ) using Pollard’s kangaroo

method [Pol00], or alternatively, if ℓ is very small, then the client can precompute a
lookup table of possible values for hxi

i . Thus, this approach is suitable for small values of
ℓ (e.g., ℓ ≤ 32).

While there are applications for a small-row single-server authenticated PIR scheme, we
still hope that it is possible to construct a more bandwidth- and computation-efficient
scheme in the future. We unsuccessfully attempted to combine an unauthenticated classic
single-server PIR scheme with some sort of algebraic integrity-protection mechanism, but
it seems non-trivial to provide our integrity properties while making only black-box use
of the underlying single-server PIR scheme. Further investigation along these lines would
be an interesting task for future work.

Supporting multi-bit records in the lattice-based setting. We note that a similar
approach as above can be applied to the lattice-based construction (Construction 3)
to support multi-bit records. While correctness holds, the security analysis is more
challenging. Namely, both integrity and privacy of Construction 3 (Theorems 73 and 74)
rely on the extended LWE assumption where we require that LWE holds even if the
distinguisher is given a linear combination eTx of the LWE error. When the database
entries are binary-valued (i.e., x ∈ {0, 1}N ), we can appeal to [BLP+13, Lemma 4.3,
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Claim 4.6, Lemma 4.7] to base hardness on standard LWE. It seems plausible that a
similar (possibly less tight) reduction applies when the database x ∈ ({0, 1}ℓ)N consists
of ℓ-bit integers, and this is an interesting question for further exploration.
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