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Abstract
Distributed systems designers typically strive to improve performance and preserve availability

despite failures or attacks; but, when strong consistency is also needed, they encounter

fundamental limitations. The bottleneck is in replica coordination, which is impacted by

partitions and slowdowns that can occur anywhere. We believe the present ecosystem fails

to recognize that not all failures and partitions are supposed to be equal — at least from a

user-centric performance and availability standpoint. Failures distant from a user should

intuitively be less likely to affect that user. Today’s ecosystem fails this test, however, despite

high-availability best practices. For example, correlated and cascading failures, caused by

misconfiguration, bugs, and network partitions, often invalidate the cloud’s assumptions of

failure independence. Likewise, large-scale or accurately targeted routing or denial of service

attacks can slow or halt a distributed ledger or compromise its security.

We believe that distributed systems designers and practitioners can and should build reliable,

responsive systems by making Lamport exposure and asynchrony central design considera-

tions. We propose that distributed services need not and should not expose local activities

to distant failures or partitions, no matter how severe. Limix is the first exposure-limiting

metadata configuration service that addresses this problem. Limix insulates global strongly-

consistent data-plane services and objects from remote failures and partitions by ensuring that

the definitive, strongly-consistent metadata for every object is always confined to the same

zone as the object itself. Nyle is a trust-but-verify distributed ledger architecture that limits

transaction exposure. While employing similar design principles as Limix, Nyle additionally

supports an environment with Byzantine nodes and potentially compromised regions with an

elevated presence of attackers, and enables asymmetric user trust preferences. Both Limix

and Nyle outperform related work in terms of availability, at a manageable overhead. We also

demonstrate, through the design of QSC, that consensus protocols can deal with network

asynchrony without relying on common coins, having the potential to make consensus more

responsive and more practical.

Keywords. Resilience, failures, partitions, strong consistency, Lamport exposure, responsive-

ness, metadata configuration service, blockchain, crash-fault tolerant asynchronous consen-

sus
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Résumé
Les concepteurs de systèmes distribués cherchent généralement à améliorer les performances

des systèmes et à préserver leur disponibilité malgré les défaillances ou les attaques ; mais lors-

qu’une cohérence forte est également nécessaire, cette démarche se heurte à des limites fonda-

mentales. Le problème se situe au niveau de la coordination de la réplication des données, qui

est affectée par les ralentissements et les partitions du réseau qui peuvent survenir n’importe

où. Nous pensons que l’écosystème actuel ne reconnaît pas que toutes les défaillances et

partitions ne sont pas censées être égales – du moins du point de vue des performances et de

la disponibilité perçues par l’utilisateur. Les défaillances éloignées d’un utilisateur devraient

intuitivement être moins susceptibles d’affecter cet utilisateur. L’écosystème actuel n’atteint

toutefois pas cet objectif, malgré l’application des bonnes pratiques de haute disponibilité.

Par exemple, les défaillances corrélées ou en cascade, causées par une mauvaise configura-

tion, des bugs ou des partitions de réseau, invalident souvent les hypothèses d’indépendance

des défaillances du cloud. De même, des attaques sur le routage ou de déni de service – de

grande ampleur ou minutieusement ciblées – peuvent ralentir ou arrêter une blockchain ou

compromettre sa sécurité.

Nous pensons que les concepteurs et experts en systèmes distribués peuvent et doivent

construire des systèmes fiables et réactifs en considérant, dès la phase de conception, l’exposi-

tion de Lamport et l’asynchronie comme des éléments essentiels de tels systèmes. En ce sens,

nous pensons que les services distribués n’ont pas besoin, et ne doivent pas, exposer leurs acti-

vités locales à des défaillances ou à des partitions de réseau distantes, quelles que soient leurs

gravités. Limix est le premier service de configuration de métadonnées qui traite ce problème

et limite l’exposition des systèmes distribués. Limix isole les services et les données globales

de systèmes à cohérence forte des défaillances et partitions distantes en garantissant que les

métadonnées définitives et fortement cohérentes de chaque objet sont toujours confinées

dans la même zone que l’objet lui-même. Nyle est une architecture de blockchain de type "fais

confiance, mais vérifie" qui limite l’exposition des transactions. Tout en utilisant des principes

de conception similaires à ceux de Limix, Nyle prend en compte un environnement avec

des nœuds Byzantins et des régions potentiellement compromises par une présence élevée

d’attaquants, et permet aux utilisateurs d’exprimer des préférences de confiance asymétriques.

Limix et Nyle surpassent les systèmes similaires en termes de disponibilité et leur déploiement

n’entraîne qu’un modeste surcoût. Nous démontrons également, par la conception de QSC,

que les protocoles de consensus peuvent traiter l’asynchronie du réseau sans s’appuyer sur

des common coins, ce qui a le potentiel de rendre le consensus plus réactif et plus pratique.
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1 Introduction

A distributed system is one in which the

failure of a computer you didn’t even

know existed can render your own

computer unusable.

Leslie Lamport

This chapter introduces the problem that this thesis addresses: the availability and perfor-

mance of strongly consistent distributed systems. It establishes the context for geo-replicated

cloud services, distributed ledgers and asynchronous consensus, and identifies opportunities

for achieving immunity from remote failures, partitions and slowdowns. Finally, it highlights

the contributions of the thesis and presents the thesis structure.

1.1 The Problem

When building distributed systems, we usually aspire to maximize performance and maintain

availability despite failures or attacks. In many cases, we would also prefer strong consis-

tency, which makes it even more challenging to maintain performance. Strong consistency

requires coordination among replicas in systems using standard availability techniques, such

as replication. Replica coordination may impair performance. Especially when systems span

a wide area, coordination increases response latency and unavailability, because partitions

and slowdowns occurring anywhere disturb coordination. The harsh compromise presents

itself as the CAP theorem [57, 58], which in theory, restricts our guarantees to a choice of only

two properties among consistency, availability, and partition-tolerance.

Several systems - such as cloud services and distributed ledgers - attempt to simplify the

CAP choice. Cloud platforms strive to reduce network partitions to “rare events”: assuming

partitions are sufficiently unlikely, we can achieve strong consistency with high availability. In

practice, however, individually-rare but correlated or cascading failures frequently puncture

1



Chapter 1. Introduction

the cloud’s illusion of having “solved” the CAP tradeoff. Leslie Lamport’s quote above, while

dating from the 80s, pointedly describes today’s state of affairs. Reality abounds with unavail-

ability and slowdowns, caused by misconfiguration [2, 68], cascading failures due to partially

functional equipment [81], gray failures [66], and partitions due to software bugs [22, 61],

despite best-practice geo-replication. A single Fastly [50] customer recently triggered a bug

causing a global outage [65]. Failures such as these result in widespread downtime and loss of

revenue [13].

Likewise, distributed ledgers attempt to eliminate the concern of partitions. Some ledgers

prioritize availability and simply assume for consistency that partitions are unlikely to last

“too long” [49, 92, 128]. More recent designs prioritize consistency and assume that a sufficient

number of validators are alive and reachable [75, 76] or select validators through uptime

measurements to increase the network’s reliability [19]. Yet, reality does not conform to these

assumptions. Large-scale or carefully targeted routing attacks can partition the network

by redirecting traffic through an attacker-controlled autonomous systems (AS) that drops

it [14], denial-of-service attacks can cut communication by exploiting network sharing ef-

fects [109, 111]. Securing Internet routing can counter some of these attacks [46, 132], but

progress is slow and these are not deployed in practice because they require agreement among

stakeholders [112].

We ask a simple question: is it truly acceptable that “the failure of a computer you didn’t even

know existed” – located anywhere in the world and run by one of many companies you also

probably didn’t even know existed – “can render your own computer unusable”? Is it fair or

responsible that we expose users continually to a vast multitude of accidental or malicious

failures and slowdown risks that are both non-transparent (infrastructure and operators “you

didn’t know existed”) and unbounded (potentially located anywhere) – no matter how simple

or localized a user’s actual computing needs might be? And what would the implications be

for distributed service designs if we were to decide that the answer to this question is no?

Immunity to remote failures and partitions. Suppose Alice is collaborating with Bob, another

user located in the same city or corporate campus, using a team messaging and collaboration

application such as Slack [106]. Or Alice may purchase a coffee from Bob, a merchant, using

tokens stored on a blockchain. We conceptually define the Lamport exposure of Alice’s activity

as the set of infrastructure elements anywhere that could contribute to halting her work. That

is, Alice’s Lamport exposure is the complete set of infrastructure failure risks – including cloud

services, network, power, etc. – that her particular activities depends on, directly or indirectly,

and whose individual or joint failure could ultimately grind her work to a halt.

We believe distributed systems should be designed to make Lamport exposure transparent

to users, under the control of users, and ideally limited to the smallest set of failure risks

feasible for a given application. As a purely-illustrative example, simple packet forwarding,

in an idealized network run by a shortest-path routing algorithm, has a natural Lamport

exposure-limiting property. If Alice is communicating with Bob at a network distance of ∆,

2



1.1 The Problem

then no combination of node or link failures beyond a distance of ∆ from Alice can halt Alice’s

activity – because nodes and links beyond this radius cannot be on the shortest path. Alice’s

chat with Bob is thus “immune” to failures farther than ∆ from her, hence her chat’s Lamport

exposure is limited to a radius of ∆.

The real Internet fails to guarantee such exposure limiting even for basic TCP/IP communica-

tion, due to congestion or complex off-path failures such as BGP hijacking, for example. And

almost no complex applications or services higher up the stack – especially those requiring

strong consistency – currently guarantee any readily-definable exposure limits. If Alice’s activ-

ity A depends on strongly-consistent state replicated globally, then A’s Lamport exposure is

generally a large, global set of devices that Alice probably “didn’t even know existed” – so A is

vulnerable to correlated failures and partitions arising anywhere even if they are uncommon.

But the most critical needs for access are often localized: Alice cares most that her data and

services are accessible from where she usually accesses them. Trust is also localized: people

tend to trust local businesses [4] and governments [6] more and may similarly be more willing

to trust digital service providers if they can show that critical services depend only on local

resources. And payments have a strong locality property with respect to geography: in 2020,

in certain regions, there were at least twice as many intra-border payments than cross-border

payments [41]. Thus, limiting a service’s Lamport exposure, if achievable, could translate into

availability guarantees more meaningful to users.

Resilience to slowdowns. Achieving immunity from remote failures and partitions, e.g., by

limiting a service’s Lamport exposure, is a first necessary step to resilient systems. However,

an available service does not imply and is not sufficient for a responsive service. Even with

consensus groups within localities, services can still be exposed to intra-locality failures

and network hiccups, i.e., network asynchrony, caused by partially functional equipment or

(temporary) misconfiguration, or even with malicious intent by an adversary that applies

selective censorship on network links. Such asynchrony may cause unnecessary delays in

consensus protocols usually used for coordination that rely on timing assumptions. We

loosely borrow the responsiveness definition of Yin et al [131] as the property of an algorithm

to drive consensus “at the speed of the actual (vs maximum) network delay”. Synchronous

and partially/weakly synchronous deterministic consensus protocols are not responsive when

the network is asynchronous [89] - in fact, they cannot guarantee progress [51]. Asynchronous

protocols can probabilistically guarantee progress, but are rarely, if ever, deployed in practice.

We believe practitioners would prefer to deploy asynchronous consensus protocols, because

they operate as robustly as possible, in terms of both availability and performance, in the face

of arbitrarily adverse network conditions, and not just in “normal-case” conditions – granted

that asynchronous consensus was practical. Towards this goal, we are interested in reducing

the constraints behind asynchronous protocols, because they may hinder applicability. In

particular, existing asynchronous consensus require a trusted setup in the form of a common

coin [9, 73, 83, 89, 114]. The assumption is more problematic in Byzantine environments,

3
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because corrupting a trusted dealer breaks the entire protocol, whereas in crash-only environ-

ments a trusted setup is mostly seen as an administrative burden, which, however, still needs

to be protected. We are interested to explore whether a common coin is actually necessary

for asynchronous consensus. For crash-stop environments, we develop a protocol that does

not require common coins and is responsive, which hopefully can inspire approaches for a

Byzantine fault tolerant asynchronous consensus that does not require expensive distributed

key generation protocols, but only cheaper verifiable random functions. Besides not needing

common coins, our protocol is responsive and arguably elegant, which we hope will boost the

applicability of asynchronous consensus in practice.

Contributions. Failures far away from a user should intuitively be less likely to affect that user,

but the current ecosystem completely fails to fulfill this intuition. Can we build services that are

usually available from anywhere, but which can offer transparency about their dependencies,

and guarantee accessibility from where they are typically used or most needed – even in the

face of more distant failures or partitions? Coordination protocols should ideally be responsive

to changing network conditions, however the current ecosystem only infrequently employs

asynchronous protocols, which are capable of managing such situations. Can we eliminate

some of the assumptions that hamper the adoption of asynchronous consensus protocols,

thereby making them more applicable? This thesis argues that distributed systems designers

and practitioners can and should build reliable, responsive systems by making Lamport

exposure and asynchrony a core consideration in their design.

1.2 Context

We review the current context in terms of architectures for distributed systems deployments.

With example applications, we explain that typical deployments may create implicit but

unnecessary dependencies, leading to a suboptimal Lamport exposure. Finally, for each

example, we give some insights of how to design and deploy systems with a low exposure.

1.2.1 Geo-replicated cloud services

It is customary to deploy cloud services on a region level and manage cross-region deploy-

ments manually. This trend matched the restricted offering of cloud providers that started with

a few disjoint, coarse-grained regions, roughly matching (sub)continents. Several providers

now lower their latency to users by offering more than 25 geographic regions and 80 availability

zones (AZs), with further expansion plans [12, 59, 88]. Despite this surge, the deployment of

cross-region and cross-AZ services remains largely the burden of the programmer, and perhaps

for a good reason. Providers merely ensure infrastructure-level independence between AZs,

leaving customers to handle application-specific dependencies. The Sky [107], a new cloud

architecture spanning multiple cloud providers, enables applications to optimize performance

vs cost tradeoffs by choosing the right cloud for the required functionality. We believe that
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the Sky enhances the urgency of not only multi-region, but cross-provider deployments with

meaningful Lamport exposure guarantees.

Geo-replication is not enough. Best-practice geo-replication across regions cannot alone

limit Lamport exposure. Consider a collaborative document-editing application where users

in different regions edit the document. Storing the document in one fixed region penalizes

far-away users with higher exposure to latency and availability risks. Geo-replicating the

document across regions requires coordination for consistency among replicas. Such an

application typically masks independent replica failures or partitions via consensus [79, 94],

which increases exposure in two ways: (1) Data-plane: Even if the requested document has

a nearby replica, the user may be unable to access the item without synchronizing with a

quorum of replicas or with the leader, which may be slow or unreachable. (2) Control-plane:

Even if enough document replicas are in the user’s zone, merely locating the document often

depends on global state that may be located anywhere. Location metadata cannot usually

migrate along with the data, because the system requires a fixed, known entry point for lookup.

Akkio, a recent geo-replicated KV store [13], migrates data but not the location database, for

example.

Opportunity. We propose Limix, an exposure-limiting architecture that addresses this chal-

lenge by removing false or implicit but unnecessary dependencies. In Limix’s control plane, a

set of potentially-overlapping protection areas or zones each runs an independent distributed

discovery service. Each zone’s discovery service ensures that all users within the zone can

locate and access any data-plane object or item in the same zone without availability or per-

formance dependencies outside that zone. If the (most recent version of the) document is not

in that zone, Limix’s lookup automatically proceeds to the next-larger overlapping exposure

zone. A data-plane item may still be geo-replicated across multiple state-storage sites (e.g.,

data centers); but we consider an item to be within a zone only if all of its replica sites are

in that zone. For example, if a data item is replicated across sites in Germany, France, and

Italy, with one replica each, then the item is “in” the EU-West but not “in” Germany. EU-West

users are guaranteed to contact a consensus quorum and make progress by only relying on

infrastructure and logic in the EU-West region. Lamport exposure metrics could be geographic

distance or latency, leveraging the clouds’ rare partitions and stable inter-region latencies.

Developing Limix is the main focus of Chapter 2, where we show that Limix enables a globally

managed key-value store while protecting local accesses from distant failures. The takeaway

message of Chapter 2 is that that systematically limiting Lamport exposure significantly

improves availability by as much as 30% on synthetic but realistic workloads.

1.2.2 Distributed ledgers

Unlike clouds, which have private interconnects, decentralized peer-to-peer applications such

as distributed ledgers (or blockchains) must handle unpredictable wide-area network delays.
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Figure 1.1: CDF of the propagating effect of link failures in Jan.’20 over various exposure
localities.

These delays might be due to attacks, e.g., denial of service (DoS) or BGP prefix hijacking, but

may also have benign causes, such as autonomous system (AS) misconfiguration or network

sharing effects. Such events arise because the Internet is a collaboration between ASes with

mutual trust. The BGP routing algorithm continues to operate largely on a trust basis, though

more secure proposals such as BGPSec [46] are advancing. Likewise, unrelated traffic shares

the Internet links on a best-effort basis, which is why these links are susceptible to DoS

attacks [109, 111]. Absent attacks and misconfiguration, Internet routing algorithms have,

in principle, the Lamport exposure property we aim for. Specifically, these algorithms limit

exposure defined through AS routing policies. However, this property gets lost in the upper

software layers, as we explain below.

Distributed ledgers over public networks. Consider a public distributed ledger using Byzan-

tine fault tolerant consensus [34] handling token transfers over the Internet. Strong consistency

is a must in order to avoid double spending, i.e., the action of spending the same token in

multiple transactions. Consider a transaction between a sender Alice in France and a receiver

Bob in Germany. Bob needs to wait for a Byzantine quorum of validators to agree on the trans-

action. In a global blockchain, this quorum likely involves participants outside the borders of

France and Germany, increasing the Lamport exposure with all the components and networks

necessary for remote communication.

To get a rough, numerical estimate of exposure-limiting opportunity, we make a simplistic

computation of the failure exposure of an imaginary exposure-limiting system deployed over

the Internet. This illustrative example has many limitations: for example, we would like the

experiment to use all types of failures across the software stack, not just presumed link-level

failures. We used CAIDA data for the AS graph from January ’20, which contains several daily

snapshots. We denote as “stable graph” the graph with edges appearing in at least half of these

snapshots, and we consider as failures those edges that appear in the stable graph but are

missing from a daily snapshot. We run 1000 trials, where each trial builds localities with a
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random AS center and hop-count radiuses 1 to 7. For each trial, we select a random day’s

snapshot and count the number of failed links in the locality compared to the total number

of link failures in the snapshot. Figure 1.1 depicts the CDF of the results. Smaller localities

are exposed to fewer failures, e.g., users connecting to ISP services within a locality with hop

radius 2, in 95% of the cases, are immune to 90% of the failures. Our goal is to have the same

level of guarantee for the upper levels of the software stack.

Opportunity. Blockchains may reduce Lamport exposure with a “trust-but-verify” architec-

ture. Such architectures have been proposed in the past, but rely on selecting an unbiased

sample of validators [76]. If the selected sample is far away from Alice and Bob, e.g., containing

nodes in China, then Lamport exposure remains large. One approach is to define Lamport

exposure along legal jurisdictions. The transaction between Alice and Bob might require

only enough validators in their two countries to agree. Bob is likely to trust local validators

because they are in a common legal framework, and consequences are more readily enforce-

able. The transaction still propagates globally along increasing exposure boundaries, which

independently check the transaction and enable Bob to enforce retroactive verification.

Chapter 3 describes Nyle, a trust-but-verify blockchain architecture that limits transaction

exposure. Nyle demonstrates that it is feasible to limit exposure despite attacks, including

double-spend attempts by attackers and compromised localities with an increased adversary

presence that may equivocate. 60% of transactions have 70% less exposure in Nyle, at the

expense of 10x increase in load.

1.2.3 Asynchronous consensus protocols

Asynchronous consensus protocols need to reach a decision despite messages potentially

taking an arbitrarily long time to reach their destination. Consensus is a fundamental problem

in distributed computing. The theory on asynchronous consensus algorithms dates back to

the 1980s, but the field has seen a surge of interest due to consensus applications in wide area

networks and distributed ledgers. A consensus algorithm ensures that all replicas of an object

make the same decision, which they can use to coordinate on an operation involving that

object, for example what is the latest value written for a key in a distributed key-value store,

or whether a ledger transaction is valid. Typically, algorithms progress in rounds, with each

node making a proposal per round, receiving some proposals, and deciding if possible. In an

asynchronous network, a well-known impossibility result states that it is impossible to devise

a deterministic algorithm [51]. Thus, to avoid infinitely repeating rounds where no decision is

possible, nodes randomize their proposal choice for the next round, in the hope that the new

set of proposals would trigger a decision condition.

Common coins are not always practical. For randomization, the majority of protocols rely on

an abstraction called (almost) perfect common coin, which can be impractical to implement.

Generally speaking, a perfect common coin guarantees that every caller process obtains the
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same random output if it gives the same set as input. However, perfect common coins require

a trusted dealer for the setup. Entrusting a dealer with the setup in the crash-stop model,

where nodes can fail but are not malicious, is generally seen as acceptable, if not mostly an

operational burden. For example, the dealer distributes a seed that nodes use to initialize

a random number generator, i.e., the coin. Of course, the seed should not leak at any point

during the algorithm, otherwise an attacker can easily launch a network attack that subverts

randomness. In the Byzantine model, however, because nodes can arbitrarily deviate from

the protocol, the trusted dealer that deals cryptographic keys becomes the weak link of the

entire protocol. Recent protocols can create a common coin without a trusted dealer, however

they are more expensive than consensus itself.

Opportunity. Most recent research has focused on optimizing common coins, as noted above.

It is natural to ask, however, whether common coins are necessary for consensus. We design a

consensus protocol for the crash fault model that relies only on node-private randomness. The

design could pave the way to Byzantine protocols that do not need common coins, and perhaps

to more practical consensus. As noted in the introduction, DoS attacks and misconfiguration

can create asynchrony, and designs that withstand it would be preferable to those that do

not. Asynchronous consensus, when practical, could become the de-facto implementation for

coordination protocols.

The focus of Chapter 4 is on QSC, our asynchronous consensus protocol without common

coins in a crash fault setting. We demonstrate that it is possible to eliminate the common

coins assumption and achieve a practical algorithm, i.e., one that decides within O(1) running

time in expectation, which is optimal, and O(n3) total communication complexity in bits,

but only O(n2) total message complexity. Using our new primitive threshold synchronous

broadcast (TSB), we also show that such algorithms may be responsive, e.g., QSC advances at

the actual speed of the network. Additionally, TSB helps QSC in reducing design complexity

via modularity.

1.3 Contributions and Outline

This section describes the thesis contributions and the thesis scope, summarizes them in the

thesis statement, and gives the thesis outline.

1.3.1 Contributions

This thesis makes the following contributions:

1. Defining and measuring Lamport exposure. To protect users from distant failures, we

must precisely define what “distant” means. We define Lamport exposure and provide

several metrics that may be meaningful for different applications: administrative or
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legal boundaries, geographic straight-line distance, round-trip time.

2. Meaningful exposure-limiting zones. Given an exposure metric, we need to control

and limit it systematically, which we achieve through exposure-limiting zones. We base

the structure and granularity of zones on the guiding idea of maintaining the locality of

interactions. One essential property of zones is being able to meet simultaneous con-

straints, such as when data protection and sovereignty concerns demand that e.g., data

remains local in Germany when accessed locally, and stays in Europe when accessed by

European users. A further crucial aspect is providing strong exposure guarantees during

object migration, which is useful for systems in which the locations from which objects

are accessed change dynamically.

3. Autozoning. Even absent explicit contractual or regulatory constraints, ordinary users

dislike it when their local activities are brought to a halt by distant outages across the

globe. Addressing this common-case challenge, we propose an autozoning scheme that

builds on compact graph summarization theory. In brief, a user accessing any data at a

distance ∆ away is protected from all failures occurring beyond a small multiple of ∆.

4. Limix: an exposure-limiting metadata service. We design Limix, the first distributed

metadata coordination service that enables global management while protecting local

accesses from distant failures. We provide a prototype implementation of Limix on

top of the key-value store functionality of CockroachDB. Limix routinely outperforms

Physalia [22] by as much as 30% better availability, on synthetic but realistic workloads,

as shown by our experiments on AWS.

5. Nyle: an exposure-limiting distributed ledger. Nyle is a trust-but-verify distributed

ledger architecture. While Nyle follows the same general idea as Limix, the Nyle archi-

tecture must tackle two new major challenges: Byzantine nodes, which might deviate

arbitrarily from the protocol by e.g., double-spending or by lying about exposure metrics,

and potentially compromised zones. Thus, the emphasis is on the security properties,

motivating the need for a trust-but-verify architecture, where clients may pick which

local zones to trust and afterwards verify that no double spending occurred. Our simula-

tion shows that Nyle significantly reduces exposure compared to Omniledger [76], with

60% of transactions witnessing 70% less exposure in Nyle, at a cost of 10x increase in

load.

6. Asynchronous consensus without common coins. We design QSC, the first practical

asynchronous consensus protocol that does not rely on common coins. QSC assumes

crash-silent faults. It builds on our novel group communication primitive, threshold

synchronous broadcast (TSB), which provides step-synchronous message delivery atop

an asynchronous network, and identifies a threshold of messages delivered at a threshold

of nodes. TSB helps QSC be responsive and reduces design complexity via modularity.

Thanks to TSB and to private randomness piggybacked on messages, we show that QSC
nodes decide within O(1) running time in expectation, which is optimal, and O(n3) total

communication complexity in bits, but only O(n2) total message complexity.
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Thesis scope. The scope of this thesis is as follows. First, the thesis addresses Lamport

exposure at the application layer, namely the data and metadata dependencies of a key-value

store and a blockchain architecture. We recognize that there may be complex cross-layer

dependencies, such as higher up in the stack for web applications and lower down at the

networking layer. We defer cross-layer dependencies to future work. Second, the thesis

explores asynchronous consensus in the crash-fault model without common coins. We leave

adapting QSC to the Byzantine model to future work.

Thesis statement. The following thesis statement encompasses the contributions:

This thesis argues that it is possible to systematically immunize systems to remote failures and

partitions by limiting their Lamport exposure. Our key insight is to preserve the locality of

interactions, not exposing them to distant failures, partitions or risks, no matter how severe. We

substantiate our claim through our architecture of an exposure-limiting key-value store and a

distributed ledger, and through simulations and experiments. We also show that consensus pro-

tocols can handle network asynchrony without relying on common coins, having the potential

to make consensus more responsive and more practical. Our findings enable us to build systems

resilient to failures, partitions, and slowdowns.

1.3.2 Thesis organization

This thesis is organized as follows. Chapter 2 presents the design and evaluation of Limix,

our distributed metadata coordination service, that limits exposure to remote failures and

partitions. The chapter also presents Lamport exposure metrics, the autozoning algorithm and

its load scaling implications, how we maintain strong consistency. Next, Chapter 3 presents

Nyle, our exposure-limiting trust-but-verify distributed ledger architecture. The chapter

shows how Nyle’s design empowers users to choose the zones they trust, but later verify their

transaction and detect compromised zones. We also present an analysis of Nyle’s security

and a comparative simulation. Then, Chapter 4 presents QSC, our asynchronous consensus

algorithm based on private randomness and TSB. The section includes the design of QSC, of

TSB and safety and liveness proofs. Finally, in Chapter 5 we provide concluding remarks and

future work directions.
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2 A Globally-Managed Coordination
Service Limiting Lamport Exposure

All problems in computer science can be

solved by another level of indirection,

except for the problem of too many

layers of indirection.

David Wheeler

Globalized computing infrastructures offer the convenience and elasticity of globally managed

objects and services, but lack the resilience to distant failures that localized infrastructures

like private clouds provide. This chapter starts by explaining that configuration services

face a fundamental challenge in providing both global management and resilience to distant

failures. We then present the design of Limix, the first metadata configuration service to

address this problem. Limix insulates global strongly-consistent data-plane services and

objects from remote gray failures, network partitions, and slowdowns by ensuring that the

definitive, strongly-consistent metadata for every object is always confined to the same region

as the object itself. We continue with Limix’s architecture and a detailed protocol for object

lookup, which addresses consistency and migratory objects. Next we describe an autozoning-

based control plane for Limix that provides availability bounds: any user can continue to

access any strongly consistent object that matters to the user located at distance ∆ away, while

being insulated from failures outside a small multiple of ∆. We built a Limix metadata service

based on based on the key-value interface of CockroachDB. Our experiments on Internet-like

networks and on AWS, using realistic trace-driven workloads, demonstrate that Limix enables

global management and commonly improves availability by at least 30% compared to the

state-of-the-art.

2.1 Introduction

Organizations today face a choice between localized and globalized computing infrastructure,

each alternative carrying important tradeoffs. Localized infrastructure hosted at the organi-
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Figure 2.1: Lamport exposure in traditional (a) local or (b) global infrastructure, and (c) global
infrastructure with Limix.

zation’s own site(s), such as private clouds, carry higher internal management burdens but

offer greater local autonomy, resilience to distant failures beyond the organization’s control,

and can be necessary to satisfy data privacy or digital sovereignty concerns. Globalized in-

frastructure such as public clouds, in contrast, offer many global management benefits: e.g.,

the convenience of instantiating objects or services on demand without worrying about their

location, maximum elasticity in provisioning and adapting to changes in load, and the ability

to migrate existing data and services without having to interrupt access or change their names.

Is it possible to achieve the local autonomy, failure resilience, and digital sovereignty benefits

of localized infrastructure, together with the global management benefits of today’s public

clouds? Achieving such a “best of both worlds” appears fundamentally hard, in part because

this choice boils down to a basic indirection conundrum. For clients to find and access

localized infrastructure such as private cloud services, we can simply embed a locally-scoped

or already “resolved” location directly into the identifiers of objects and services being accessed.

Accesses by local clients to local objects can be simple, robust, and insulated from remote

failures or network partitions outside the relevant domain, as illustrated in Fig. 2.1(a). But

these objects are then “fixed” and cannot be migrated or managed globally without changing

their names.

Global management, in contrast, requires “another level of indirection”: typically a distributed

coordination or metadata service, allowing clients located anywhere to discover the location

and status of any object or service of interest. These services, however, expose clients to gray

global failures such as network partitions [11, 61, 65], misconfigurations [2, 68], or cascading

failures [11, 22, 65, 81], far beyond of the organization’s geographic locality or domain of

control – i.e., exposure to “the failure of a computer you didn’t even know existed.” This

global failure exposure usually applies even when both the client and the target data or

service are localized to the same network or region and have connectivity in the underlying
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network [11, 22]. Even if the target data might be weakly consistent [44, 60, 80], metadata is

usually strongly consistent for many reasons [13, 77] such as correct liveness determination,

access control, and accounting. Dependence on globally geo-replicated metadata, however,

can prevent even local clients from accessing local data if a majority of metadata replicas fail

or become unreachable, as illustrated in Fig. 2.1(b).

To address this conundrum we introduce Limix, the first distributed coordination architec-

ture that enables global management while also guaranteeing that localized accesses within

a region of interest are insulated from global failures beyond that region, as illustrated in

Fig. 2.1(c). Limix ensures that the definitive, strongly-consistent metadata for any data-plane

object or service is always collocated in the same region as the object itself. Metadata in Limix

thus enjoys a fate-sharing relationship [39] with both the target object and with any local

clients accessing the object from within the same region – such as within an organization’s

own internal network, or within a relevant geopolitical domain such as a country. Metadata

remains strongly-consistent and geo-replicated, but Limix confines the definitive replicas of

an object’s strongly-consistent metadata to the same region as the object itself.

Cell-based configuration services like Physalia [22] improve failure resilience for users within

the same cell. These provider-managed cells, however, do not offer users direct transparency

into or control over each user’s Lamport exposure – the set of infrastructure components whose

failure could affect the user – as discussed later in Section 2.2.1. Further, Physalia offers no

guarantees for user activity that crosses cell boundaries.

Challenges and Contributions. Limix’s design decisions for practical global manageability

and resilience become apparent when we target applications where the locations from which

data-plane items are accessed change dynamically. Data stores and locality management

services with dynamic data access locality already migrate strongly-consistent data close to

users [13, 77]. Limix ensures that users can continue accessing such nearby items under

remote failures even during migration, while preserving strongly-consistent access.

Constraining the placement of strongly-consistent metadata in localities creates the further

efficiency and scalability challenge of enabling any clients outside an object’s current region

to find the object without incurring the costs of either replicating all location information

proactively across all regions, or potentially having to search all regions during any metadata

query. Limix builds on techniques from compact graph summarization theory [115, 116] to

limit the bandwidth and processing costs of these global searches to a small multiple of the

baseline cost of querying a single global metadata service. The metadata-access costs of Limix’s

failure insulation is thus only about 2× in the common case of an object administratively

localized to a single region. Since metadata query costs usually represent only a small fraction

of the total “end-to-end” costs of accessing most data-plane services, a 2× metadata query

cost increase is insignificant overall to most applications, and is much lower than the N×
metadata cost increase that cell-based architectures with N distributed discovery services

(or the proactive replication of location hints across all N regions) would otherwise incur.
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Further, Limix ensures by design that not only availability but also metadata access latencies

observed by local clients are insulated from global outages or slowdowns, and that they closely

reflect the best local communication latencies available on the underlying network.

To evaluate Limix’s applicability and performance, we prototyped a Limix configuration

service for an exposure-limiting key/value store. For metadata/configuration storage, our

prototypes use CockroachDB [77], a widely-used, strongly-consistent distributed data store.

Our experiments running realistic workloads based on metropolitan traffic traces on AWS, and

on a testbed simulating realistic scenarios, show that Limix outperforms Physalia’s availability

during reconfigurations while providing strong availability guarantees. Our experiments

further explore the tradeoffs between Limix’s overheads and availability guarantees: at scale,

the dynamic load overhead is logarithmic in the number of nodes and network width.

In summary, the contributions of this chapter are as follows. Contributions two, three and

four may be of independent interest for other systems that aim to define and limit exposure.

1. The design of Limix, the first distributed metadata coordination service that enables

global management while protecting local accesses from distant failures.

2. A definition of Lamport exposure, along with several metrics to quantify it.

3. The construction of exposure-limiting zones, which provide the structure and granular-

ity for systematic exposure control.

4. An autozoning scheme ensuring by design that a user accessing any data at an exposure-

distance ∆ away is protected from all failures occurring beyond a small multiple of

∆.

5. A prototype implementation of Limix and Physalia on top of CockroachDB with a

comparative evaluation.

This chapter is based on joint work with Georgia Fragkouli, Enis Ceyhun Alp, Michael F. Nowlan,

Jose M. Faleiro, Gaylor Bosson, Kelong Cong, Pierluca Borsò-Tan, Vero Estrada-Galiñanes,

Bryan Ford, published in Băsescu et al. [23, 24].

2.2 Context

This section gives the necessary background for a strongly-consistent configuration service like

Limix. We first explain that the CAP theorem imposes restrictions on the available Limix can

achieve, and that Limix does not conflict with the CAP theorem when prioritizing availability

of local accesses. Second, we focus on Limix choice to prioritize user-perceived availability,

for the data-plane objects that matter to users. Reducing the Lamport exposure, which is the

user-centric viewpoint of Limix, contrasts to Physalia’s provider-centric viewpoint, i.e., blast

radius. Our discussions with risk-sensitive customers share Limix’s viewpoint. Finally, we

argue that access locality is prevalent in globalized applications, and thus, Limix’s focus on

shielding local user activity leads to a sizeable increase in user-perceived availability.
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Figure 2.2: Illustration of Lamport exposure and blast radius.

2.2.1 Lamport exposure and blast radius

Taking inspiration from Leslie Lamport’s quote in Chapter 1, we informally define the Lamport

exposure of any given user U as the set of computing infrastructure – i.e., every “computer U

didn’t even know existed” – that “can render U ’s own computer unusable”. Lamport exposure

is thus meaningful only with respect to the activities of some user U .

Limix seeks to place a strong bound or “shield” on the Lamport exposure of any user U

whenever U accesses data or services that are local, i.e., close to U by any suitable distance

metric. We may define locality based on administrative boundaries such as those of an

organization or a country, or via metrics such as round-trip time (RTT). The availability of U ’s

local accesses should be unaffected by remote failures and partitions beyond Limix’s Lamport

exposure shield: not just by individual server failures but also by network partitions and gray

failures, or partial failures that can cascade into correlated failures and partial partitions. Gray

failures have a multitude of causes including malfunctioning switches and software bugs

that partially drop traffic or prevent simplex communication [11, 61, 65, 81]. Figure 2.2(a)

illustrates a Lamport exposure bound shielding a user’s accesses to an object at distance ∆

from failures beyond a distance ε∆, for some small factor ε ≥ 1 (ideally 1, but this may be

unachievable).

Locality matters. By limiting Lamport exposure, Limix seeks to offer availability guarantees to

users for the data and services that matter most to them, which are often local. It is already

common for data stores to migrate data close to users to improve performance [13, 77], even

without guaranteeing availability. Privacy and sovereignty considerations often motivate

organizations or governments to require a user’s “data at rest” to remain within the user’s

country, or a region such as the EU – even if these policies cannot currently ensure that this data

will remain accessible despite outages beyond the relevant borders. Similar considerations

motivate many organizations to confine their most-critical data and applications to local

infrastructure such as private clouds, giving up the benefits of global management. In general,

people more willingly trust organizations and services perceived to be more local [4, 6]. We

hope that Limix might enable providers to offer services to more locality- and sovereignty-
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conscious users who might currently avoid globally-managed infrastructure entirely.

In contrast to Limix, Physalia [22] is a cell-based architecture that aims for higher availability

by limiting the blast radius of a failure. Blast radius represents the system components and

objects that could be affected by the propagation of a failure or partition (Fig. 2.2(b)). Blast

radius is thus a complementary concept focused (or “centered”) on the location of a failure,

rather than on the location of a user potentially affected by it. From an infrastructure provider’s

perspective, reducing blast radius can reduce the number of users affected by any single failure.

Being focused on the locations of failures and heavily dependent on internal details of the

provider’s infrastructure, however, blast radius does not offer obvious guarantees that appear

directly meaningful to users.

2.2.2 Coordination and the CAP theorem

Strongly-consistent coordination systems (Zookeeper [67], etcd [3]) are an essential building

block for large scale distributed applications. Distributed applications replicate their state in

order to enhance resiliency to failures, and to decrease latency through proximity to clients.

But an unsought side-effect is the need to coordinate these replicas. Hence the need for

coordination services: These provide a basic set of operations – such as liveness determina-

tion, correct identification of the replicas storing a data item, lease holders, access control,

accounting, etc. Because these functions need to be correct, coordination services implement

consensus among the configuration replicas, ensuring strong consistency of the configuration.

Coordination systems often are not critical to application availability until failures occur. Appli-

cations routinely bypass the coordination system for configuration reads using leases [25, 77].

During partitions or failures, however, the data plane cannot bypass the configuration system,

because it needs to reconfigure its data replicas. This is when the configuration system be-

comes critical to application availability and performance. Reconfiguration requires strongly-

consistent configuration writes to agree on the new configuration. Until reconfiguration

completes, the data-plane may be partially (e.g., operate in read-only mode only) or fully

unavailable.

The requirements of configuration systems to be strongly consistent and available seem to

conflict with the CAP theorem [58]: under partitions, a strongly-consistent (configuration)

system cannot remain available (on both sides of a partition). However, Limix does not conflict

with the CAP theorem when prioritizing availability of local accesses. Remote users may not

be able to access remote data during partitions, but local users can, without breaking strong

consistency, and in many cases as described above, local data is what interests users. For this

reason, Limix collocates metadata with its data.

To decrease the risk of being affected by remote gray failures, Brooker et al. [22] suggest many

smaller configuration service deployments instead of a network-wide “monolith”. Deploying

several configuration services instead of a single globalized deployment is one of the princi-
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ples that Limix also applies. However, as opposed to deploying disjoint cells, Limix creates

overlapping, redundant configuration service deployments, organized to provide availability

guarantees for any user accessing any object or service.

2.2.3 Perceptions of risk-sensitive customers

To obtain early feedback on the motivation for this work, we held informal discussions with

two representatives from a large non-profit organization and a global company, respectively,

who are familiar with their organizations’ current use of – and appetite for the use of – cloud

computing technologies. Our goal was to learn from them how the availability of cloud

services affects their organizations and perceived needs, particularly across jurisdictions. An

important goal of the discussions was to expose the representatives to the basic of Limix’s

design, but only later on in the discussion, after learning their unbiased opinion. Though not

comprising a formal study of any kind, the feedback we received uniformly suggested that

service sovereignty is a desirable feature for their critical operations — one representative

even called it the “holy grail”.

Both representatives confirmed that their companies are increasingly migrating applications

to globalized infrastructures such as public clouds, to take advantage of elasticity and lower

management effort. Each discussed applications that span multiple jurisdictions, but with

the requirement to manage data and data services differently in different states, countries, or

regions. They also confirmed that in some cases where data security is critical, data sovereignty

and regulatory requirements prevent them from using cloud services at all.

We discovered that for cloud-based services, a service-level agreement (SLA) is usually in-

sufficient to align client expectations with their service providers. Some organizations that

are not “big enough” believe they have little influence over SLA specification. Whereas some

companies that may afford to pay more for a custom tailored SLA that covers their critical

services are concerned about whether and how these SLAs are enforceable. Furthermore, they

are concerned about becoming “locked in” to a specific cloud provider. The fear of being

“locked in”, different legal requirements across jurisdictions, privacy and reputation concerns,

and the perception that outages are still uncomfortably high are some of the reasons why the

representatives were reluctant to trust and fully embrace cloud infrastructures.

Companies want cloud portability. One representative would prefer to treat clouds as bare-

metal infrastructure, and if a service fails on one cloud, it should be possible to move it to

another. The representatives proposed that by replicating data, services, and applications,

service sovereignty may enable portability.

Both representatives see the need for a localized implementation growing in tandem with the

trend toward a more distributed workforce. They see this not only for large global corporations,

but also for more local small and medium-sized businesses, for whom a service that limits

Lamport exposure makes a lot of sense given the relative locality of their typical business, for
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Figure 2.3: Prevalence of access locality. Top 100 websites in 5 countries and their traffic
percentage from other countries (individual websites and CDF).

which they do not want global exposure. Both the representatives would consider leveraging a

service that limits Lamport exposure for their critical services: they indicated they would be

interested in the service, despite expecting a higher price than today’s services. The reason is

that, for them, Lamport exposure guarantees are easier to understand and more meaningful

compared to limiting the “blast radius” of a failure.

In conclusion, while these informal discussions do not purport to be a systematic study, they

do appear to indicate that locality — particularly the ability to guarantee maximum availability

within a relevant locality — does matter to many customers and potential customers of cloud

computing services.

2.2.4 Estimating prevalence of access locality

We observe that many applications and services exhibit bimodal access locality. A high pro-

portion of accesses are by users mostly in a given country or other region representing the

application’s primary customer base or target audience. Other users of these same appli-

cations and services, however, tend to be globally distributed, accessing the service from

anywhere (e.g., roaming employees or expats). Thus, applications must efficiently support

global accessibility for global users, while prioritizing maximum availability and performance

for local users representing the most critical target customers.

To test this bimodal-access hypothesis, we use the top 100 websites of five OECD countries

(namely United States (US), Switzerland (CH), Spain (ES), Japan (JP) and Australia (AU)) as

rough proxies for applications, and examine the access distributions they exhibit. We obtained

the data from Similarweb [105], a company specializing in web traffic and performance. Since

these are the most visited websites in their respective countries, we conjecture that they have a

strong local presence. In Figure 2.3, we show that these websites also have a global presence, as

17–56% (JP–AU) of the websites receive at least 50% of their traffic from outside of that country.

The results of our simple study does not make any assumptions about the consistency models

used by the websites, but it suggests that locally-prevalent applications are indeed globally
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relevant as well.

2.3 Setting and Goals

In this section we discuss the main system components, our assumptions and our goals.

Limix involves the following concepts:

Items. Limix is a configuration service for existing data-planes, such as a key-value store as in

our prototype (Section 2.7). We refer to the data as items, defined at the granularity at which

the data-plane client may access the data, e.g., key-value pairs. Limix facilitates the lookup

of items by managing the configuration information that stores each item’s location. Limix

keeps the metadata up-to-date by interfacing with the existing data store to react to item

creation/migration/reconfiguration by creating/migrating/altering the configuration.

Sites. Sites are the nodes that deploy Limix, which we assume to be connected through a

network. For example, sites may be data centers, which is the setup we explore in our prototype

and evaluation. Limix can seamlessly run on sites managed by multiple service providers.

Clients requests. Clients interact with Limix by making item lookup queries to a site. Once

the client request reaches a site, Limix limits the query’s exposure. Limix does not improve

last mile availability, such as when a client cannot reach any site. We make no assumption

on the site a client chooses. Clients can send lookup queries to any site they wish, e.g., when

the client’s location changes or for other reasons, and the lookup results are always correct.

Limix gives the client exposure-limiting guarantees w.r.t. the location of the client-selected site.

Therefore, it would be prudent for clients to choose nearby sites for their queries as measured

by the Lamport exposure metric.

Zones, authoritative zone, definitive replicas. Limix provides exposure-limiting guarantees

at the granularity of zones. A zone covers the set of sites that a client may depend on when

looking up items in that zone. Because the data plane is zone-agnostic, Limix tracks the

item location w.r.t. zoning and always collocates the item configuration with the item. The

location of an item, which we call the item’s authoritative zone, is the smallest zone holding a

quorum of the item’s data plane replicas. Then, inside the same zone, Limix stores the most

the most recent configuration (metadata) for the item, called the definitive metadata replicas.

In contrast, non-authoritative zones may have only eventually-consistent metadata replicas

for that item.

Goals. Limix has the following objectives:

• Availability guarantees. Provide strong availability guarantees that might be legally or

contractually mandated to hold at all times, even during item migration.

• Simultaneous constraints. Satisfy simultaneous sovereignty and locality constraints. For

example, a Germany constraint is more restrictive in placement, while an EU constraint
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protects a larger set of users.

• Load balancing. Spread workload for item lookup e.g., avoid overloading small zones

with global accesses. A user imposes load only on the zones the user’s site is in.

• Dynamic data plane. Enable dynamic data planes to migrate data routinely, without

restricting them with e.g., static partitions of data across regions.

• Strong consistency. Enforce that item lookup returns strongly-consistent items, or be

unavailable for that item if the latest item version is not reachable.

• Autozoning. Provide an automatic zoning capability, which enforces locality constraints

for all users, the vast majority of whom just “want things to work.” We desire reasonable

but fully-automatic risk-limiting policies requiring no specific understanding of the

workload or administrative effort.

2.4 Design

This section outlines Limix’s design in a step-by-step fashion for clarity. We first list Limix’s

challenges, then introduce Limix’s per-zone configuration service, and explain how it lim-

its maintenance loads on local zones. We then address the problem of satisfying multiple

simultaneous exposure-limiting constraints on one item, ensuring that lookup replies follow

data-plane consistency, and handling item migration.

2.4.1 Challenges

The goal of local availability under global management, coupled with the requirement strong

consistency for metadata, imposes key challenges on Limix’s design.

Consistency. Because data and services must still be movable and accessible from anywhere

under normal conditions, Limix must enable clients anywhere to locate a data item’s current

definitive state globally, while insulating local clients from global failures. This requirement

implies replicating location information simultaneously across global and local deployment

zones, which in turn exacerbates consistency challenges (Sections 2.4.2 and 2.4.3).

Load balancing. We must ensure that control-plane queries about globally-popular data

do not overload a small, lightly-provisioned zone it may be located in. Limix addresses

this challenge by systematically ensuring that each zone, local or global, serves only clients

querying the service from within the same zone, and can therefore spread the access workload

without risking overload from external queries (Section 2.4.4).

Simultaneous item constraints. Data plane items may have to satisfy more than one locality or

sovereignty constraint – such as that local clients in Germany be insulated from failures outside

Germany, and that all clients in the EU be insulated from failures outside the EU. This goal

requires that Limix allows state replication across multiple overlapping zones (Section 2.4.5).

Item migration. Limix must maintain both strong consistency and local availability even
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during object migration: ensuring, for example, that data migrating from Germany to France

remains immune to failures outside the EU even during the transition. To address this chal-

lenge, Limix uses a multi-phase process to migrate the data’s definitive state while maintaining

eventually-consistent location hints in larger zones beyond the data’s origin and destination

(Section 2.5.3).

2.4.2 Item lookup overview

For zones to act collectively as a unified system, Limix needs to enable clients to find data

that can be located anywhere, regardless of the client’s zone. However, robust and efficient

item lookup is challenging. Fig. 2.4a illustrates a straightforward but inadequate approach,

relying on a central service to store the configuration for item lookup. This service increases

the client’s exposure beyond the perimeter of the client’s and data’s common zone. The single

zone may also become overloaded with requests from all zones.

Of course, this strawman could be easily made scalable by distributing the configuration

service across many/all zones, using standard techniques such as consistent hashing of keys.

However, consistent hashing still increases a node’s Lamport exposure beyond the zone

boundaries. Consider a client requesting data without having the data location cached. To

resolve the location, the client might need to query configuration service nodes in zones

different from the zone holding the requested data. Partitions might prevent the client from

reading the data location, even though they might not isolate the client from reaching the

data itself. The problem with this approach is that data and corresponding metadata are not

collocated in the same zone, and hence lack fate sharing [39].

Limix thus needs to ensure that a client in a given zone can always find an item within the

same zone using only resources within that zone. Efficiently collocating data and metadata in

the same zone so that they have the same Lamport exposure represents the first challenge for

Limix, which we address by having a distributed configuration service per zone.

2.4.3 Configuration service consistency

As a next strawman approach addressing the challenge above, we could replicate all lookup

pointers in all zones, as depicted in Fig. 2.4b. However, this strawman introduces a consistency

challenge: Because all zones’ configuration services store pointers to all items, when an item

is deleted or migrated, regardless of the zone where the item resided, all configuration services

in all zones should be updated with the new pointer. If we required strongly consistent state

for all zones’ configuration services, we would increase an item’s exposure to all zones, which

is undesirable.

Limix addresses this exposure challenge as follows. Each zone’s configuration service stores

strongly consistent pointers only for the items inside the zone. If an item’s configuration

changes, for example, only the configuration service in the item’s zone needs to update the
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Figure 2.4: Strawmen for the configuration service and their management of pointers to data
items.

item’s definitive configuration (i.e., location metadata) (see Section 2.3) immediately, on

the critical path. Other zones’ configuration services may update their metadata lazily with

eventual consistency, outside the critical path of the item reconfiguration.

With this approach, each zone has its own configuration service that stores “location hints” for

where an item was last known to be located. But this strawman invites a second challenge: How

do clients locate items given that configuration services might (temporarily) store outdated

pointers? We distinguish two causes of outdated pointers. The first reason is item migration,

when Limix updates pointers outside the critical path. Could a client be unable to find an oth-

erwise reachable item when the item migrates? Limix addresses the challenge by temporarily

storing a Permanently moved to marker at the item’s old location. On encountering this marker,

a client follows it to the new location. Limix prevents long indirection paths by eventually

updating all pointers, after which it deletes the marker. The client stops following pointers

when it reaches the item’s authoritative zone (see Section 2.3); Limix coordination ensures

there is a single authoritative zone per item. Section 2.5.3 provides a detailed description.

22



2.4 Design

The second reason for items to be outdated is during partitions. If Limix cannot reach some

zones’ configuration services, pointers will be stale. The main challenge is to ensure that clients

do not return stale items because of stale pointers, which would break strong consistency.

Limix clients rely on authoritative zone indicators, as explained above, to decide whether the

pointers point to the most recent item version. However, there is one remaining issue when

partitions heal and several migrations are in place: Pointer updates might arrive out-of-order,

causing an old update to overwrite a newer one. We use versioning for pointers to avoid this

situation. Every pointer update increases the pointer version and a pointer update occurs

only if the update has a higher version than the existing pointer. The update makes use of

the compare-and-swap primitive offered in the API of most strongly-consistent KV stores.

Section 2.5.3 provides a detailed description.

2.4.4 Lookup load on (small, local) zones

The above strawman invites the question: What is the load on each zone’s configuration

service? Consider updating the configuration service after an item insertion or migration.

Either the destination zone could push the new item location to all zones, or the client’s zone

could pull the item location on demand. Both approaches incur O(n) load and communication

overhead per client request for n zones.

Limix instead spreads the lookup loads and limits query burden on small zones by organizing

a default overlapping global zone. In our next strawman illustrated in Fig. 2.4c, local zones

store the location only for their local items and serve lookup requests only from local sites.

In contrast, the global zone serves as the backup reference point, whose globally-distributed

configuration service knows any item’s location. Every zone propagates location updates to

the global zone.

A client queries only its own local configuration service and the global one, without over-

loading other small zones. Thus, instead of O(n), overhead per update becomes O(1). The

global configuration service must service load from all O(n) zones, but it has server capacity

distributed across all O(n) zones among which to share that load. Location updates propagate

only eventually, off the critical path, to limit the source zone’s exposure to failures beyond its

borders.

2.4.5 Item placement and zone overlap

Aside from the global zone, we assumed so far that local zones are disjoint. This assumption

has a significant limitation, however: it cannot support simultaneous exposure-limiting poli-

cies, which may apply by law or contractual obligation. An item located in Germany may need

to be accessible by clients in Germany with Lamport exposure limited to sites within Germany,

and ensure that any client in the EU can access the same item with exposure limited to the EU.

With the above strawman configuration service, unfortunately, EU clients outside Germany
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Figure 2.5: Limix’s architecture on a simplified example with four sites and two zones.

must query the global configuration service, yielding global (not EU) Lamport exposure.

We address this problem by allowing local zones to overlap. All zones have a configuration

service, and every zone propagates location updates to larger overlapping zones, up to the

global zone. The global zone still acts as a master reference, holding pointers to all items.

Update overhead increases slightly compared to the single global zone, from O(1) to O(v),

where v is the maximum overlap depth. However, this approach limits Lamport exposure to

smallest zone containing both the item and the client accessing it. Location updates propagate

only eventually, outside the critical path, to limit the source zone’s exposure to failures outside

its borders. Fig. 2.4d illustrates the final configuration service architecture.

2.5 Limix Architecture and Lookup Protocol

This section presents Limix’s architecture and protocol for item lookup and metadata manage-

ment. We first present the architecture, showing the Limix components that run on each site,

how these components interact with each other, and how a Limix client issues lookup queries.

Then we present item lookup in a simplified scenario where items do not change location.

Afterwards, we enhance the configuration service with consistency guarantees, such that item

lookup locates the latest version of an item even during migration.

2.5.1 Architecture

Fig. 2.5 depicts the Limix architecture on a simplified example with four sites and two zones.

Each Limix site runs a Limix coordinator (Algorithm 1), which interposes between the client

requests and the Limix configuration services (CS). The coordinator exposes the itemLookup
API to the client. Through upcalls from the data store, the coordinator associates the item

location with zones.

Limix runs a CS per zone, thus all sites part of the zone collectively run that zone’s CS. For
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Algorithm 1: Limix main structures.

// Every site has a Limix coordinator, exposing the following API

1 struct SiteCoord
2 ZonePtr,PointerVersion itemLookup (K ) // Locates the authoritative zone and its

configuration version for item K.

3 UpdatePointersOnMigration (K ,SrcZone,DestZone) // Upcall from data store to update

configuration when item K migrates from SrcZone to DestZone.
4 ConfigSvcs GetAllConfigSvc()

// A Limix zone stores the configuration and offers the typical API of a strongly consistent

KVStore for pointer reads and writes

5 struct ConfigService extends KVStore
6 ZonePtr,PointerVersionRead(K) // Reads the configuration for item K.

7 WritePointerCAS (K ,NewConfigValue,Comparator) // Atomically swaps using CAS (compare and

swap) key K’s prior value with NewConfigValue if Comparator evaluates True on the prior

value

example, SiteCoord1 is part of two zones ZoneA and ZoneB, and correspondingly runs two

configuration services: CSA and CSB for ZoneB. Whereas SiteCoord3, part of ZoneB, runs just

CSB. Each CS is a KVStore that stores metadata about items (Algorithm 1).

The modular structure and interactions between components are fundamental for limiting

exposure. First, there is no cross-configuration service communication. A CS process of a

zone running on a site interacts solely with other CS processes for the same zone (running on

other sites). This implies that, when a zone’s CS answers a query, it relies only on zone-internal

sites. Thus, there is no exposure to sites outside the zone. Second, the coordinator of a site

issues on behalf of the client independent lookup requests to different CS. If a request fails

because a zone is partitioned, other requests are not affected if they run on unpartitioned

zones. This design decision also supports load balancing: the coordinator, only issues requests

to CS running on the site, not other CS services. This means, the coordinator of a site does not

put load on zones that the site is not part of.

2.5.2 Item lookup protocol

We now describe item lookup in a simplified scenario where items are immutable and do

not change location, and the pointers of the CS in each zone are up-to-date. In this scenario,

because items are immutable, we do not need to worry about pointer or item consistency.

The next section (Section 2.5.3) addresses pointer update when items migrate, and pointer

consistency when items are updated.

Algorithm 2 describes item lookup. A client calls the lookup function itemLookup on a site’s

coordinator, passing the item key k as a parameter. The coordinator sends parallel lookup

queries to all CS running on the site, in search for the authoritative zone of k. Each CS reads

the pointer for item k, which indicates a zone that the CS knows to have the item. In general,

these pointers might be outdated due to item migration, and the search can follow multiple

pointer indirections. However, by our assumptions for now, all pointers are up-to-date, thus
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Algorithm 2: itemLookup(SiteCoordclient,k) implements the lookup of item k sub-
mitted by the client at SiteCoordclient.

Input : SiteCoordclient, the site contacted by the client
k, the key of the item the client looks up

Output : AuthZone, the authoritative zone of item k
ItemVersion, the latest version of the item at lookup time

1 AuthZone, ItemVersion←⊥,−1
2 for CSi ∈SiteCoordclient.GetAllConfigSvc() do // Iterate (in parallel or serially for lower load)

through all CSi running on SiteCoordclient
3 while CSi.IsAuthoritative(k) =False do // Stop when we find the authoritative zone

4 PointerToZone,_ ←CSi.Read(k) // Recursively follow location pointers

5 if PointerToZone 6= nil then
6 CSi ←PointerToZone.GetConfigSvc() // Obtain the CS of the zone the pointer indicates

7 else
8 break // Stop when CS does not have the location of item k

9 if CSi.IsAuthoritative(k) = True then
10 AuthZone, ItemVersion←CSi.Read(k) // Update AuthZone and ItemVersion if we found the

authoritative zone

11 return AuthZone,ItemVersion // AuthZone can be nil when the authoritative zone is not available

when a CS indicates a non-nil zone for item k, it will be the AuthZone for the item

A CS could have a nil pointer for item k, even when all pointers are up-to-date. This is because,

by design, not every zone’s CS needs to know about all items. However, the guarantee is that,

as long as the network does not partition the item away from the client, there is at least one CS

that the coordinator queries and that knows the item’s location.

Why does item search not degrade the exposure guarantees? Each of the parallel lookup

queries accesses the zone-private CS, having dependencies only inside the zone. Other

parallel searches might hang in case of partitions or slow performance. However, because

each search executes and completes independently, parallel searches do not affect each other.

Of these zones, the ones that reply first with a pointer chain leading to the authoritative zone

determine the client’s exposure for that item. If at least one such set of zones is partition-free,

the client is guaranteed to find the item. Thus, the coordinator bounds a client’s exposure to

the smallest zone of the client that contains the item.

Optimization. It appears possible to reduce load by “pacing out” lookup requests to zones,

a likely desirable optimization in practice. A client can send the same lookup request to

one-zone-at-a-time, starting with the closest zone, only contacting other zones if the client

fails to receive a reply within a given timeout. Limix still needs to run all configuration service

to be able to continue functioning when failures and partitions do happen. But this technique

may significantly reduce the runtime load on these zones. Pacing out requests likely incurs

minimal overhead not only in “normal-conditions” when failures and partitions do not disrupt

zones, but also for data predominantly accessed in a few close localities. This optimization

makes a tradeoff between overheads and how fast the replies are, but maintains the same

availability guarantees.
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Algorithm 3: UpdatePointersOnMigration is an upcall from the data store to the
Limix coordinator. It implements the pointer update for item k when it migrates from
SrcZone to DestZone.

Input : k, the key of the item that migrates
SrcZone, the zone the item migrates from, which is by definition the authoritative zone
DestZone, the zone the item migrates to

1 SrcCS←SrcZone.GetConfigSvc() // The CS of the authoritative zone SrcZone
2 _,OldPointerVersion←SrcCS.Read(k) // SrcCS has the most recent pointer version for item k

3 PointerVersion←OldPointerVersion+1
4 SrcCS.CASWrite(k,DestZone,PointerVersion) // Pointer marker for item k in SrcCS pointing to

DestZone; avoids out of order writes

5 DestCS←DestZone.GetConfigSvc() // The CS of DestZone
6 DestCS.CASWrite(k,True,PointerVersion) // By updating the pointer for item k in DestCS,

DestZone becomes the authoritative zone DestZone; avoids out of order writes

7 in parallel do // Do in background pointer updates for outer zones, which cuts latency by

eliminating chains of pointer indirections, but is not needed for consistency

8 UpdatePointersOuterZones(k,SrcZone,False,PointerVersion,<) // Update pointer for outer

zones of SrcZone
9 UpdatePointersOuterZones(k,DestZone,DestZone,PointerVersion,≤) // Update pointer for

outer zones of DestZone
10 SrcCS.CASWrite(k,nil,PointerVersion) // Background garbage collection of the marker in SrcCS

after all pointers were updated

Algorithm 4: CASWrite implements CAS-based write based on version numbers.
Input : CS, the coordination service that applies the write

k, the item for which the CSu pdates the configuration
v , the new configuration value
ConfigVersion, the version of v
Comparator, a comparator function that compares two versions

1 NewConfigValue← v ||ConfigVersion // NewConfigValue contains both v and ConfigVersion
2 CS.WritePointerCAS(k,NewConfigValue,Comparator(CrtConfigVersion,ConfigVersion)) // Update

the configuration for item k with NewConfigValue only if Comparator returns True

2.5.3 Lookup during item migration

The placement of items may need to change, for example due to client-perceived performance

and load-balancing algorithms. Or this could be caused by a policy change, e.g., a new

constraint on which existing zone(s) a particular item is allowed to be placed in or migrated to.

Because items involve strongly-consistent state, a challenge is that Limix must maintain strong

consistency for configuration during item’s migration. Three questions arise at this point: (a)

How can we ensure that the coordinator locates the latest version of an item, even during

migration or partitions? (b) Given that clients could update data plane items anywhere in the

system, how do we ensure another distant client, located in a different zone, finds a specific

item? (c) How do we ensure item search does not degrade the exposure-limiting guarantees?

Algorithm 3 depicts item migration from the item’s authoritative zone SrcZone to DestZone.

When Limix receives an upcall from the data store that an item is being migrated, it does

the following: (0) Record the most recent pointer version, taken from the item’s authoritative
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Algorithm 5: UpdatePointersOuterZones implements CAS-based configuration up-
date in all zones containing the reference zone z.

Input : z, reference zone k, the item for which the CSu pdates the configuration
v , the new configuration value
ConfigVersion, the version of v
Comparator, a comparator function that compares two versions

1 for OuterZonei ∈ z.getOuterZones do // Iterate through outer zones of z

2 CSi ←OuterZonei.GetConfigSvc() // The CS of OuterZonei
3 CSi.CASWrite(k, v,ConfigVersion,Comparator) // Use CASWrite for the configuration update

zone, i.e., SrcZone, and increment it (lines 2-3). We use pointer versioning and compare-and-

swap for the pointer updates below to avoid old pointers overwriting newer ones (CASWrite
in Algorithm 4). (1) Update the pointer in the old zone with a forwarding reference, indicating

the item is being migrated to the new zone and the old zone should no longer be considered

authoritative (line 4); (2) After item migration, update the pointer in the new zone indicating

migration is complete and the new zone is now authoritative, meaning that item is now usable

at its new site (line 6); (3) In parallel and outside the critical item lookup path, update discovery

service information in all zones for the item’s old and new location (lines 7-9); and (4) Garbage

collection: The item’s configuration may finally be deleted in the old zone (line 10).

The algorithm above guarantees that any client can locate an item, even during/after migration.

After step 1, all clients following existing pointers for that item (using Algorithm 2) that lead

(directly or indirectly) to the former authoritative zone learn that the item is being migrated

to the new zone. After step 2, when the item finishes migrating, all clients following existing

pointers locate the new authoritative zone.

Up to now, clients can find the item, but through a potentially longer chain. For example,

if the item moved from Germany to France, clients in the US might first find the pointer

to Germany and then follow it to France. However, eventually, when all pointers in step 3

finish updating, all clients in the system can locate the item by following a single pointer. The

exposure during migration is proportional to the RTT between the client and the two zone

locations of the object. Specifically, if the item migrates Zi tem → Znew then a client’s exposure

for accessing the item during migration is Zcl i ent ∪ Zi tem ∪ Znew , and Zcl i ent ∪ Znew after

the migration. Importantly, because pointer updates happen independently and in parallel,

partitions cannot disrupt a client to locate the item, as long as both the client and the item

share a non-partitioned zone, which is guaranteed to exist within a small RTT from the client

and the item (Section 2.6.3).

2.6 Control Plane Zoning

This section provides Limix’s control plane that builds zones to insulates users accessing items

from distant failures and partitions. We begin by precisely specifying what “distant” means.

In that sense, we define several exposure metrics that may be appropriate, depending on
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the situation. Some metrics provide by nature an explicit zoning, for example jurisdictions,

e.g., Germany, the EU, the World, which are useful when items are constrained by regulatory

bounds. However, for other metrics zoning may not be explicit. For these, we present an

autozoning protocol that can use any continuous exposure metric, such as network latency in

our design, and provides formal availability guarantees. We argue that, for any user accessing

an item of interest from a distance ∆, autozoning limits the access’s exposure – availability and

performance – to a perimeter of at most O(log N )×∆ around the item.

2.6.1 Metrics for Lamport exposure

As the discussion in the previous sections suggests, one possible exposure leverages adminis-

trative or legal boundaries, such as countries or economic areas. This metrics provides explicit

zoning, which enables complying with predetermined requirements, like regulations. For

data or services in Germany, for example, regulatory considerations might demand a metric

that treats all sites outside the EU as more distant than other sites in the EU, independent of

geography.

Other metrics provide a continuum for measuring exposure, without any predefined zoning.

An obvious metric is geographic straight-line distance. Because users within geographical

proximity tend to interact more [102], this metric improves the resilience of common-case

interactions. The first two metrics could use public geo-location databases to define zones,

yielding static zones incurring low administrative overhead. A third distance metric is round-

trip time (RTT), particularly relevant for time-sensitive use cases such as gaming and voice

calls. A fourth metric might be network hop count, on the grounds that network paths with

fewer hops are likely to have fewer hidden dependencies and thus be more resilient.

Limix using RTT as exposure metric. Limix uses round-trip time (RTT) as the exposure

metric, and uses it to define zones. A zone’s RTT diameter defines the zone’s exposure: a lower

RTT diameter means a lower exposure to remote failures, thus higher availability. During

bootstrapping, we build an inter-site RTT map: the sites measure their pair-wise RTTs, and

then each pair of sites averages their link’s RTT value so that the final RTT map is consistent

across sites. Under a fully connected network, this inter-state RTT map is stable [62], with

prior work [120] showing less than 6% month-to-month difference in median latency on Azure.

Through this initial RTT map, sites compute the automated zones’ membership, at which

point bootstrapping concludes, and Limix starts operating without any further assumptions

about the timing or location of partitions.

2.6.2 Autozoning strawman

We first describe a strawman that bounds the exposure from a particular site to any item. We

then extend this strawman into a scalable approach to bound the exposure access to any item

via any site.
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(a) Strawman: bounding exposure
w.r.t. a single site.
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(b) Autozoning: bounding exposure for accesses to any
item via any site.

Figure 2.6: Autozoning strawman and final design. The strawman bounds exposure w.r.t. a
single site at an overhead logarithmic in network width, but does not scale when applied to
all sites. The final design employs compact graph approximations for scalable zoning and
bounds exposure for all accesses.

To bound the exposure of accesses from a particular site to any object, we could simply

build overlapping zones centered on that site. A naïve, non-scalable approach would be to

build many concentric zones of slowly increasing radius. A more scalable design is to choose

exponentially increasing zone radiuses, as depicted in Fig. 2.6a. Exponentially increasing

radiuses prioritize geographically close accesses, which likely have a small RTT [5]. As RTTs

increase, localities and exposure guarantees are less tight. We justify this tradeoff through the

scalability of the approach, which builds a number of zones logarithmic in the network width.

This simple strawman, however, only bounds exposure for clients accessing the system through

the particular site at the center of the zones. In fact, if a client chooses another site, in line

with Limix’s goals of supporting dynamic access, then the client does not have any exposure

guarantee. We show next how to build zones that bounds exposure for any client accessing

any object through any site.

2.6.3 Autozoning through compact-graph approximations

Autozoning builds on techniques from compact graph summarization theory [115, 116] to

guarantee exposure for all client and all objects, while optimizing the number of created

zones, hence optimizing the system overhead. Autozoning has two goals: (1) Bounding

the exposure of a user accessing an item. (2) Scaling to large deployments by incurring a

logarithmic load on sites. For the first goal, recall that the exposure of a client locating an item

is given by the smallest zone containing both the client and the item. Our insight is to use

compact graph techniques to formally guarantee an upper bound on the zone RTT diameter,

hence on the user’s exposure. Specifically, we want to ensure there exists a configuration

30



2.6 Control Plane Zoning

Algorithm 6: Autozoning algorithm at SiteCoordu.
Input : SiteCoordu, the site coordinator running autozoning

Sites, a set of all sites running the system
NrLevels, the number of levels for compact graph approximations
RTT, a matrix of RTT measurements between each pair of sites

Output : u.Zones, the zones that site u is part of

1 for v ∈Sites do
2 v.Witnesses←ComputeWitnesses(Sites,NrLevels,RTT)
3 if RTT[u][v] < v.Witnesses[u.Level+1] then
4 u.Cluster ← u.Cluster∪ v

5 for v ∈ u.Cluster do
6 for Radiusi ∈ i ∗2i do
7 if RTT[u][v] <Radiusi then
8 u.Zones[Radiusi] ← u.Zones[Radiusi]∪ v

9 return u.Zones

service that has pointers to any item which is “close enough” to any client. Compact graph

techniques approximate the distance between any two nodes – in our case, between a client’s

site and an item – to at most (2×k −1)×uv , where uv is the nodes’ exact distance and k is a

system parameter. They also provide the path between u and v matching this approximate

distance. Autozoning groups the sites on the path between the client’s site and the item

into a zone. Intuitively, building such zones for all user-item pairs ensures that any user u

looking up any item i is guaranteed to find a “small enough” common zone of diameter at

most (2×k −1)×RT T (u, i ).

The second goal of autozoning is to scale to large deployments. Limix relies on two techniques

for scaling. The first one comes from compact graph approximations: To (recursively) compute

the paths for the approximate distances between any possible client-site to item-site pair, each

site only needs to know about O(log N ) other sites, where N is the total number of sites. Even

so, if we built all zones incrementally spanning sites on each path – and imposed the zone

deployment load on the member sites – the cost becomes prohibitive because of the large

constants in c ∗O(log N ). Instead, we use exponentially increasing zone radiuses, as in the

strawman. As a result, each site participates in and runs a logarithmic number of zones.

Fig. 2.6b depicts the autozoning design, omitting the global zone for simplicity.

Zone construction. Alg. 6 depicts the zone construction. Compact-graph approximations use

the sites as landmarks for approximating distances. Higher-level sites act as global landmarks

to approximate large distances, whereas lower level sites act as local landmarks. Each site

obtains level i with probability N−i /k (k is the number of levels). To approximate distances,

each sites maintains a set of sites as contact points, called its bunch. A node u explores sites in

ascending distance from itself, and adds a site v in its bunch if v ’s level lv is no smaller than

that of any sites explored so far (including u). The sites v closest to u at every level form u’s

witnesses (line 2). The inverse concept of a bunch is a cluster. v ’s cluster is the set of sites

around v , which are “close enough” to know about v as a landmark (lines 3-4). Every site is a
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landmark and builds zones along its cluster, using exponentially increasing RTT diameters

(lines 5-8).

2.6.4 Exposure-limiting guarantees and scalability

Lamport exposure bounds. From the cluster construction, a node at level k −1 has all nodes

in its cluster and, thus, creates a Global zone. Because node w builds zones on its cluster, and

u and v are in its cluster (in other words, u and v have w in their recursive bunch), u and v

are guaranteed to be in a zone of diameter at most D = i ∗2i , where i is the smallest such that

i ∗2i ≥ (2×k −1)×RT T (u, v). By construction, any two sites u and v – alternatively, a user

contacting site u to look up an item stored on v – are guaranteed to find such a zone, providing

guaranteed bounds on the Lamport exposure.

Load. The size of a node’s bunch is a key property determining the number of zones that a

site is a member of. From the probability distribution of level assignment, we expect to accept

approximately B = 1
n−1/k nodes into u’s bunch at each level i . Thus, each node’s bunch has,

with high probability, size |Bunchu | ≈ B ×k = B × logB (N ), which upper bounds the number

of zones u participates in. Factoring in the exponential zone diameter increase, u participates

on expectation in a polylogarithmic number of zones, or O(log N ).

2.7 Implementation

We implemented a Limix prototype of a configuration service interfacing an existing data

store. Limix stores its configuration in a per-zone strongly-consistent KV store. To store the

configuration, each zone uses CockroachDB [77], a widely-used strongly-consistent data store.

Although CockroachDB has rich functionality, Limix only uses its basic KV store API read and

compare-and-swap. A Limix coordinator runs on every site, providing an API to query items.

Our implementation is written in Go, with bash scripts for test infrastructure.

Startup. Each site in Limix runs a startup script, which takes as input a list of participating sites

and either jurisdictions or autozoning with the number of levels. In the case of jurisdictions,

the zone membership is given. For autozoning, each script measures its RTT to all other sites,

obtains each site’s level, and runs locally the Alg. 6 to establish the zone membership. Then

the scripts communicate in order to start a configuration store, i.e., CockroachDB instance,

per zone.

Processing lookup requests. Each site runs a Limix coordinator that provides a client API

itemLookup(key) : (zone, logicalTimestamp) to look up strongly-consistent data-plane items.

To answer queries, each site’s coordinator queries the configuration stores running on that site,

through site-local configuration store connections using the Go pq driver [7] (a PostgreSQL-

compatible driver). The configuration stores on each site communicate with other configu-

ration stores within the zone, according to CockroachDB-internal implementation. A Limix
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coordinator running on a site part of zone Z receives callbacks from the existing external

data store when the data store creates, updates, deletes or migrates an item in that zone. For

simplicity, we assume an existing external CockroachDB instance for data items. Through

callbacks, the Limix coordinator updates pointers and authoritative zone information through

site-local configuration store queries.

2.8 Evaluation

We evaluated Limix’s resilience to network partitions and overheads. Our first experimental

setup considers jurisdictions, and evaluates Limix’s overhead. Our second experimental setup

focuses on Limix autozoning and its resilience, and compares Limix with Physalia.

We used two testbeds for our experiments, both orchestrated using Kubernetes.

Cluster testbed. The cluster testbed runs 40 Kubernetes site in a local cluster with a simulated

network, which allows for more expeerimental flexibility. Each site requests 15GiB memory

and one hyperthread of an Intel Xeon Gold 6240 CPU @ 2.60GHz. The delays between sites

represent real-world delays of a globally distributed topology, as follows. Using CAIDA’s

Archipelago (Ark) Measurement Infrastructure [5], we first selected 90 monitors of types

infrastructure, research or education (Africa 8, Asia 13, Europe 26, North America 31, Oceania

4, South America 8) and selected 40 random monitors for our site locations. To compute

the RTT between two monitors at geographical distance d , we averaged the two monitors’

median RTT for that distance as reported by CAIDA. The minimum RTT between two different

monitors is 0 and the maximum is 602.25 ms.

AWS testbed. The real-world testbed is deployed on Amazon Web Services (AWS) and spans

20 sites (US: East 4, West 4; Canada: central 2, Asia-Pacific: SouthEast 2, NorthEast 3, EU:

Central 1, West 2, South 2). The server at each site has 16 GiB of DDR4 SDRAM, up to 10 Gbps

bandwidth and 2vCPU on 3.1 GHz Intel Xeon processors. The minimum RTT we measured

between sites is 0.43 ms and the maximum is 250.31 ms.

Software setup. Limix autozoning experiments use two levels for building zones through

compact graph approximations, and zone diameters of 2(i − 2)
p

2
i
, where i ≥ 3. For our

Physalia implementation, we use cells of up to 50 ms maximum RTT, based on the 99th

percentile write latency reported in the published paper. Limix zones and Physalia cells all

run Core CockroachDB ver.20.1.

Workloads. We evaluate Limix using configuration writes (W), because they are the critical op-

erations during gray failures (Section 2.2). Specifically, we use pairs of write (W-W) operations

between pairs of sites. Each W-W pair concerns the same item. The operation pair emulates a

reconfiguration for that item, for example after an item migration. The reconfiguration write

issued by the second node has a strong consistency dependency on the first. We use the term
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Figure 2.7: CDF of reconfiguration RTTs.

“reconfiguration RTT” to refer to the RTT between the two writers. The goal is to understand

the dependencies of the reconfiguration operation to succeed, given a known prior location of

the configuration. In our experiments, we run the workload as Poisson arrivals, at a rate of 20

pairs per second.

We use real-world distributions for the reconfiguration RTTs based on metropolitan traffic

traces. We chose metropolitan traffic traces as they capture more local traffic, as opposed

to backbone links that might miss local traffic. Chen et al. [38] provide an RTT distribution

over a 10Gbps metropolitan link – henceforth called trace 1. We compared this trace to

four traces of the Waikato dataset [87], whose RTT distribution we extracted using a similar

methodology as [38]: we matched data packets with the respective ACKs. These traces rely on

public datasets and the extraction methodology avoids raising ethical issues. Figure 2.7 shows

the cumulative distribution function (CDF) for the reconfiguration RTT. Given the similarity of

the distributions, and the fact that trace 1 is more recent, we used trace 1 for generating the

reconfiguration RTTs.

2.8.1 Jurisdictions: availability and costs

Our first experiment focuses on a simple Limix deployment in which each item exists in only

one local zone, in addition to the default global zone. In this scenario we consider each of the

disjoint local zones to represent an administratively-defined jurisdiction, such as a country.

The experiment answers the question: “What are the availability benefits and cost per Limix

zone in this scenario?”

Methodology. We ran the experiment on the cluster testbed. We focus on one particular

jurisdiction centered around a CAIDA monitor in Europe West, and choose an RTT radius of 50

ms around the center, which roughly corresponds to the EU-West jurisdiction. Prior work has

also shown that latencies of roughly 30ms correspond to country-wide RTTs in Europe [38].

We are interested in the overheads during no-partition conditions, and in the availability

during partitions. For this experiment, we run a synthetic workload with 2000 pairs of W-W
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Feature CockroachDB Limix
Geo-replication Private cloud

Availability Z1 reconfig. 0% 100% 100%
Global configuration mgmt. 3 5 3

Table 2.1: Jurisdictions: features, measured availability.
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Figure 2.8: Jurisdictions: compute, memory, and bandwidth overhead.

operations: 1000 W-W pairs are for reconfiguration in EU-West, and 1000 for global recon-

figuration. For the availability experiment, we run the same operations, but we disconnect

EU-West from Global. We denote EU-West by Z1 and Global \ EU-West by Z1. In Limix, nodes

in Z1 are part of two zones, whereas nodes in Z1 are part of one zone.

Availability. We compare Limix against two baselines: core CockroachDB with geo-replication

in the Global zone – henceforth called Geo, and core CockroachDB deployed as a private

cloud in EU-West only – henceforth called PCloud. Table 2.1 summarizes the features of

the three designs. Geo offers global configuration management, but reconfiguration in Z1

fails under partitions. The reason is that, under partition, Z1 cannot reach a majority of

configuration replicas. PCloud succeeds reconfigurations in Z1 under partition, but offers

no global configuration management, because all configuration is in Z1. The experiment

confirms that Limix offers both availability in Z1 and global configuration management.
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Overheads. For the same workload, we report the memory, CPU and bandwidth overheads

under no-partition conditions. Fig. 2.8 shows these overheads for nodes in Z1 and Z1. As

expected, PCloud nodes have the lowest overheads, but PCloud lacks global manageability.

PCloud nodes Z1 simply forward client requests to the closest node in Z1, hence use almost

no resources. The nodes in Z1 running PCloud have lower overheads than Geo nodes because

the PCloud deployment is smaller, and requires fewer resources for coordination between

nodes, for example. For its improved resilience guarantees, Limix sites in Z1 spend about 2x

the memory, CPU and bandwidth compared to Geo. The memory overhead stems from nodes

in Z1 running two instances of CockroachDB: one corresponding to the inner- and the other

to the outer-jurisdiction. To explain the CPU and bandwidth overheads, recall that, when a

Limix site in Z1 executes a write, it also writes to Z1. However, Limix sites in Z1, which do not

have an improved resilience guarantee compared to Geo, have overheads very similar to Geo.

We conclude that Limix is suitable for a highly configurable pay-as-you-go deployment, where

every extra resource spent provides an immediate increase in availability.

Optimization. Reducing load by “pacing out” lookup requests to zones, is a likely desirable

optimization in practice, as described in Section 2.5.2. A client can send the same lookup

request to one-zone-at-a-time, starting with the closest zone, only contacting other zones

if the client fails to receive a reply within a given timeout. Pacing out requests likely incurs

minimal overhead not only in “normal-conditions” when failures and partitions do not disrupt

zones, but also for data predominantly accessed in a few close localities. We defer to future

work the evaluation of this optimization.

2.8.2 Microbenchmark: availability guarantees

This experiment evaluates to what extent the configuration of localized data is exposed to

remote gray failures. This time, however, no jurisdictions are given: we use autozoning and test

Limix’s availability guarantees in comparison to Physalia. We ask the question: “If a random

site runs a reconfiguration for a random item, to what extend could remote failures cause the

reconfiguration to fail?”

Methodology. We generate pairs of writer clients; each pair performs a configuration write

at a site chosen uniformly at random. The pairs are chosen as follows. We select 30 random

sites, and in a random radius around each site of up to 150ms chosen uniformly at random,

we generate 1000 interacting pairs. We disconnect the network at a distance R12 = x ∗R1, x =
{1,2,3,4,5}, and run each experiment separately. We then depict the result of the interaction

(success or fail) relative to the RTT between the interacting nodes and the distance to the

failure. Each pair writes a different key from the other pairs to avoid dependencies across

pairs. As a result, the reconfiguration RTTs (i.e., the RTT between the two sites) are distributed

uniformly at random.

We are interested in what dependencies the second writer might have on other sites, and how

far in network distance these sites are: Dependencies on other sites could cause the second
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(a) Limix on cluster testbed
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(b) Physalia on cluster testbed

0 50 100 150 200 250
Reconfiguration RTT (ms)

0

100

200

300

400

500

600

Di
sta

nc
e 

to
 fa

ilu
re

 (m
s)

Limix

0 50 100 150 200 250
Reconfiguration RTT (ms)

0

100

200

300

400

500

600

Di
st

an
ce

 to
 fa

ilu
re

 (m
s)

Limix

(c) Limix on AWS
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Figure 2.9: Comparison of availability of Limix and Physalia for different failure scenarios and
testbeds.

writer’s configuration write to fail, e.g., by triggering a correlated failure. For this purpose, we

select an area of a random radius R around the second writer, and we partition the network

along the zone’s border. The two writers are never partitioned from each other, because by

design the second writer has a strong consistency dependency on the first, and then the

second write would fail. By running this experiment, we test whether the second writer has

dependencies outside the partitioned area.

Figure 2.9a, Fig. 2.9b depict the success or failure result for each writer-writer pair. The x

axis represents the reconfiguration RTT, and the y axis represents the network distance to the

partitions. Thanks to Limix’s exposure guarantees, reconfigurations in Limix succeed more

frequently than in Physalia. Both system register failures below Limix’s shield, showing that

they do have dependencies nearby. However, Physalia sites also fail when failures are relatively

far: Physalia records failures above Limix’s shield because it provides no guarantees for all

the pairs interacting across cells. Even if two sites are relatively far from failures, if they are in

different cells and their cells are partitioned, their interaction might and do fail. In contrast,

Limix autozoning provides a clear availability guarantee, applicable to all interacting pairs:

When failures are farther than the Lamport exposure bound of the two writers, depicted using

the black shield line, reconfiguration is guaranteed to succeed.
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Figure 2.10: Comparison of Limix to Physalia on AWS and realistic workloads.

2.8.3 Availability under real scenarios

This experiment, like the previous one, tests to what extent the configuration of localized data

is exposed to remote gray failures, but on a real network and using realistic trace-based data.

Because the AWS testbed has lower RTTs that are more clustered, Physalia cells are mostly

between 10-30ms RTT diameter, with a single cell up to 50ms. Our methodology is similar to

the experiment above, with the only exception that the workload of 1000 reconfiguration pairs

of each experiment has a distribution of reconfiguration RTTs matching the one in trace 1

(Section 2.8). The workload is global, thus some interacting pairs cross the partition boundary.

Figure 2.9c, Fig. 2.9d plot the results only for the non-partitioned interactions. Our results

generally mirror the ones we obtained on the cluster testbed, with Limix outperforming

Physalia in almost all tested cases, and for the same reasons. There are, however, two notable

differences from the previous experiment. First, Limix registers a few failures close to but

above the shield. These failures correspond to a some sites with a more unstable RTT than

the others, whereas we depict the RTT measured at bootstrap time. However, the difference

in RTT was minor, and for all the other sites we observed no violation. Second, we observe a

more pronounced clustering effect of the plotted points, matching roughly our more clustered

topology.

We also summarized the results for each tested workload as percentage of successes of the

maximum possible availability for the non-partitioned pairs. Fig. 2.10 shows that Limix’s

success rate is close to 100% in most cases, and significantly outperforms Physalia. We

conclude that Limix provides strong guarantees on a variety of testbeds and workloads.
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2.9 Related Work

CAP tradeoffs. Faced with partitions, some systems choose to relax consistency in favor of

availability. Gemini [80] distinguishes access types that require a strongly- or eventually-

consistent reply; this technique is known as segmentation [57]. Dynamo, a highly-available

data store, takes a similar approach [44]. Seredinschi et al. [60] provide the user with several

replies, increasing in consistency guarantees, enabling the client to perform speculative work.

In Limix, all accesses are strongly consistent.

Availability during failures. Several strongly consistent systems employ replication to survive

failures, however, they assume uncorrelated failures across sites [79, 94, 120, 123, 129]. But

failures might not be independent across a wide area, for several reasons. For example,

machines across sites run the same software and are vulnerable to the same bugs [22, 61];

nodes’ hard disks fill up at the same rate [22]; short-lived and, less frequently, long-lived

(partial) partitions separate sites from each other, causing a domino of failures and ultimately

unavailability [11].

Glacier [61] employs massive replication of data to minimize the probability of data loss during

large-scale “massive correlated failures”. As opposed to Limix, however, Glacier considers

data stores with immutable objects, whereas Limix targets strongly consistent data stores with

editable objects. Glacier optimizes storage and reconfiguration to survive Byzantine failures,

whereas Limix design a metadata service that is immune to remote failures and slowdowns.

Availability metrics. Unlike the availability metric that Hauer et al. [64] recently proposed,

windowed user-uptime, which reactively analyzes failures after they occur, Limix proactively

limits exposure in the first place. Limix’s Lamport exposure concept ensures worst-case

guarantees for a user, including rare events that might not significantly affect the median

availability, but still account for many hours of downtime. In contrast with the blast radius

notion proposed by Brooker et al. [22], which attempts to reduce the damage caused by a

partition, Limix focuses on users, aiming to insulate their accesses from any partitions or

slowdowns outside a relevant local zone.

Traffic engineering. Traffic engineering techniques are orthogonal to Limix’s application-

level exposure limitation, and could be used in conjunction with Limix. Techniques such as IP

Anycast [8] and geolocation [72] or GeoDNS [56], Oasis [55] and ClosestNode [127] connect

a client to the physically closest server. Donar [126] maps clients to replica server based on

client-to-replica latency and server load. Recent work in traffic engineering [103, 121, 130]

incorporates several application performance metrics into routing, not only for client-to-

replica mapping, but also between the replicas.
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Zoning. Limix’s autozoning protocol builds on landmark [119] and compact routing schemes [115,

116] that store less routing information in exchange for longer routes. Other zoning approaches

are possible, however. Awerbuch et al. [17] propose clustering techniques that preserve locality

in arbitrary networks that could be used for Limix zoning. In a more recent work, Trajanovski et

al. [117] consider the problem of correlated failures that manifest simultaneously in different

geographic regions of a provider’s network. They propose algorithms for finding a critical

region in the network – a planar geometric region that creates the highest network disruption

if the nodes in that region fail. The authors also propose a heuristic for building regions that

decrease the impact of a regional failure by ensuring that any two nodes can communicate

through two paths that do not cross the same region.

Scalable Overlay Networks. Scalable overlay networks, such as distributed hash tables (DHTs)

Chord [108], Pastry [101], Tapestry [133] efficiently locate items by implementing a lookup

operation. Although the goal to look up an item is similar to Limix, these schemes are different

in other provisions. A major difference is that DHTs do not aim to collocate metadata with

the data, which may lead to metadata being stored far away from users or in jurisdictions

that contradict regulation, for example. Some DHT schemes, such as Kademlia [85] and

Tapestry [133], include provisions attempting to improve locality. From a locality viewpoint,

SkipNet [63] is an overlay network that stands out, because it explicitly design for locality.

It takes organizational boundaries into account when placing contents, and ensures that

traffic between nodes in the same organization stays within the organization. DHT schemes,

however, do not have built-in support for item strong consistency, in the sense that changes

to an item create a new unrelated item. In contrast, Limix supports strongly consistent item

lookup in data stores with editable items.

2.10 Summary

We proposed Limix, the first distributed metadata coordination service that enables global

management while protecting local accesses from distant failures. Limix designs a control

plane that limits exposure by running a localized coordination service per zone so that, if

some larger zones become partitioned and unavailable, local zones can continue functioning.

Limix’s control plane supports existing strongly consistent key-value data planes with item

migration. Limix also defines several exposure boundaries, and an efficient and scalable

autozoning algorithm with tight exposure bounds and polylogarithmic load overhead. We

provide a prototype implementation of Limix on top of the key-value store functionality of

CockroachDB. Limix routinely outperforms Physalia by as much as 30% better availability, on

synthetic but realistic workloads, as shown by our wide-area experiments on AWS.
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Limiting Blockchain Architecture

Wide-area distributed ledger (or blockchain) deployments run wide-area consensus to agree

on a total ordering of transactions. By doing so, blockchains prevent double spending, because

only the first transaction that successfully spends a certain token or asset is valid. Later

transactions attempting to spend the same token are not valid.

However, wide-area consensus subjects transactions to a wide-area Lamport exposure (defined

in Section 2.6.1), possibly disrupting availability or safety. Ledger designs based on classical

Byzantine Fault Tolerant (BFT) consensus assume that a sufficient number of validators are

alive and reachable [75, 76, 131]. Ledgers based on proof of work assume that partitions are

unlikely to last “too long” [49, 92, 128]. Yet, reality may not conform to these assumptions.

Partitions and failures may prevent or delay a quorum of validators from communicating.

Because public blockchains use the Internet as the communication medium, denial-of-service

(DoS) attacks can cut communication by exploiting network sharing effects [109, 111]. An

attacker could even selectively censor packets through routing attacks that redirect traffic

via an attacker-controlled autonomous system (AS) [14]. Even absent such attacks, ASes

forwarding blockchain traffic can selectively discriminate traffic, perhaps for economic gain,

by adding delays [54]. Such partitions may prevent or delay a quorum of validators from

communicating, causing either a loss of availability (liveness) in classical BFT consensus, or

forks (loss of consistency) in proof-of-work blockchains.

Should transactions that transact a global asset in a localized setting incur the penalties of

wide-area consensus? Consider a scenario where Alice purchases daily coffee from the local

coffee shop; Bob the merchant may or may not require world-wide consensus to accept the

payment. We believe that Alice and Bob should be able to choose: If the merchant and the

buyer already know each other or have some other established trust relationship, then the

merchant might be willing and even prefer it to accept the transaction with a local consensus,

for example within Switzerland. Local consensus exposes the transaction to merely local

failures or slowdowns, which are a fraction of the global failures or slowdowns (Section 1.2.2-

Fig. 1.1). Notably, even in a total shutdown World War Three scenario where this locality

is disconnected from the network, but is connected enough locally, e.g., via opportunistic
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networks [124], local transactions can still be live in a classical BFT consensus blockchain. The

wide-area consensus on payment confirmation will arrive later, with a higher latency, and

would still expose any double-spending to the merchant.

We introduce Nyle, a blockchain architecture that limits transaction Lamport exposure. Our

system has three advantages: (1) Nyle survives disaster scenarios where the global network

is partitioned and cannot reach global consensus, thanks to its trust-but-verify architecture

that capitalizes on existing trust relationships between the transaction parties; (2) Provided a

"know your customer" (KYC) system in place, Nyle enables a blockchain framework based on

jurisdictions that may help enforce regulation; (3) Nyle systematically limits transaction expo-

sure and can improve transaction confirmation latency when using latency as the Lamport

exposure metric.

A locality-aware blockchain like Nyle that takes user trust preferences into account can have a

significant impact. First, payments have a strong locality property with respect to geography,

e.g., a recent McKinsey global payments report shows there are at least twice as many intra-

border payments than cross payments [41]. Second, other systems already explore flexible

quorums based on user trust [27, 82]. In contrast to these systems, however, Nyle not only

empowers users with quorum options, but it does so in a scalable, structured locality-aware

manner, avoiding Stellar’s unsafe configurations [82] and obtaining a significant impact.

Thanks to its support for various Lamport exposure metrics, Nyle offers a systematic method

for shielding transactions against a variety of risks. For example, in Swift, the global standard

for payment and securities trade transactions, there is no simple way to bypass specific corre-

sponding banks from certain international payments. Whereas in the current ecosystem, there

is no mechanism in place that offers users meaningful tools to reduce exposure (Section 3.8).

The same situation as in Swift may occur with layer 2 payment channels, where it may be

difficult to eliminate payment hubs between transacting parties. Asymmetric trust approaches

such as Stellar [82] enable choice of quorums but without much guidance, which can create

risky configurations. In contrast, Nyle’s zone definitions can account for such constraints,

guaranteeing that only validators within a zone are able to influence the liveness of intra-zone

transactions.

Another orthogonal benefit of exposure-limiting blockchains is the potential to enforce juris-

dictional legal frameworks for intra- and inter-jurisdiction transactions [118], such as the travel

rule [110]. Transactions in Switzerland, for example, could be subject to financial regulations

in use where the security changes hands, i.e., in Switzerland. These regulations hold both

for Swiss-sovereign tokens, e.g., Swiss francs, which are valid globally but issued by Switzer-

land, and for global non-Swiss issued tokens, such as US dollars. Assuming a KYC system is

already in place for blockchain users and validators [40, 97], Nyle can naturally implement

such jurisdictional legal frameworks.

This chapter describes Nyle and argues that it meets the aforementioned objectives. We begin

by providing the background for this work in terms of a typical distributed ledger design.
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We then proceed with the system model, assumptions, and objectives. Then, we provide an

overview of our approach and identify the challenges we must tackle. Next, we describe the

design of Nyle’s secure zoning algorithm and the trust-but-verify architecture that enables us

to reduce transaction Lamport exposure. We provide information on the intra- and inter-zone

transaction systems and their security arguments. Next we provide a simulation, showing

that Nyle significantly reduces exposure compared to Omniledger, with 60% of transactions

witnessing 70% less exposure in Nyle, at a cost of 10x increase in load. We end by discussing

related work and peripheral issues that fall outside the scope of this work.

3.1 Background

We present a brief review of distributed ledgers, their key participants, the conventional trust

assumptions, and the qualities ledgers typically strive to assure.

A blockchain is a peer-to-peer system run by nodes connected through a network such as the

Internet. When the nodes are run by different organizations or individuals, the blockchain

is said to be decentralized. These nodes build and maintain the blockchain, which is a data

structure containing a totally ordered collection of transaction blocks. Blockchains have two

important properties: (i) They are append-only, meaning that the blockchain length strictly

increases by having nodes add new blocks at the end of the blockchain; and (ii) They are

immutable, meaning that the contents of blocks cannot be changed: once added, blocks are

read-only.

Blockchain systems have two types of participants: nodes, as mentioned above (also called

validators), and clients that issue transactions. A client that issues a transaction, for example

an asset transfer, signs the transaction with his private key, and send the signed transaction

to one or more validators. Each node that receives a transaction validates it by checking the

signature with the issuer’s public key, and also checking that the issuer is in the possession of

the asset. The validation fails if the issuer client is not the asset’s owner, for example because

he already spent the asset in a previous transaction, or because he never owned the asset.

The node then runs consensus with the other nodes to agree on the transaction’s order in the

blockchain, then create a block and add the new transaction to the blockchain. Each block

also contains the hash of the previous block to enforce the block ordering. Finally, the nodes

store the new block.

Blockchain architectures use various consensus approaches, which impact their assumptions

and transaction guarantees. Broadly speaking, consensus protocols aim for safety and liveness.

Safety means that “nothing bad ever happens”. For blockchains, a safe consensus protocol

ensures that all live, honest nodes agree on the transaction ordering, a transaction’s outcome

and, once a transaction is agreed on, it cannot be altered or revoked – often referred to as the

transaction being final. Because no two honest nodes agree on different transactions for the

same blockchain index, safe blockchains prevent double-spending by design. Liveness means

that “something good eventually happens”, which in blockchain terms refer to the blockchain
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eventually accumulating transactions. For example, an always idle consensus would be safe,

but not live.

Byzantine nodes can by definition deviate arbitrarily from the protocol, for example by val-

idating double-spending, equivocating or being silent. Classical Byzantine fault tolerant

consensus algorithms [35] are safe as long as less than 1/3 of the nodes are Byzantine, but

ensure liveness only when the message propagation delay does now grow indefinitely. Other-

wise, the algorithm is safe but may block. For example, the algorithms block when there is not

a quorum of nodes that agree on the same value, either because Byzantine nodes equivocate,

or are silent, or because there are network partitions that prevent a quorum of nodes from

communicating.

Proof-of-work consensus algorithms are always live, because by construction they periodically

append new blocks. However, they are safe only if more than 1/2 of the computational

capacity is in the control of honest nodes. Because of network asynchrony, the network may

not propagate a block to all nodes before the next block creation time. Thus, honest nodes

that do not observe new blocks may fork the chain by creating their own new blocks. When

the network is synchronous again, the nodes need to decide which of the diverging chains

to adopt, and PoW protocols typically adopt the longest chain. All honest nodes adopt the

longest chain and, because they have more of the computational capacity, other forks can

never become longer and overtake the main chain.

Similarly to Limix (Section 2.6.1), we define the Lamport exposure of a transaction as the set

of validators and network links between validators that may cause the transaction to fail or

be slow. In particular, the set includes all validators that forward a transaction, and execute

consensus on a transaction.

3.2 Setting and Goals

This section describes the Nyle’s setting and goals. We first describe the system model, outlin-

ing the fact that Nyle works with existing blockchain systems, which it enhances with exposure

bounds. Next we describe the attacker model and complete the section with goals.

3.2.1 System model

Consensus. Nyle enhances existing blockchain architectures with exposure-limiting prop-

erties inspired from Limix. Nyle treats the blockchain consensus algorithm as an abstract

black box. For now, Nyle focuses on classical BFT consensus algorithms, such as PBFT [34],

HotStuff [131], Byzcoin [75], and defers other consensus algorithms such as proof-of-work or

proof-of-stake to future work.
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Validators. The literature defines validators as the nodes that run consensus to maintain the

blockchain, validate transactions, store blocks. Generally speaking, BFT assumes a closed,

known set of nodes that run consensus. However, ByzCoin showed it is possible to open up

the consensus group in PBFT through a proof-of-work membership algorithm ensuring that

an attacker with a percentage x of the computational power is not expected to register much

more than the same percent x of validators. The result is that, in any given time interval, there

is a closed, known set of validator nodes.

Network. We consider the set of validator nodes to be interconnected through a point-to-

point wide-area network. In contrast to the datacenter-oriented system model of Limix, Nyle

is intended to work with hundreds of nodes connected by a peer-to-peer network. Nodes

communicate by sending point-to-point messages.

Nyle adopts the network model of the underlying blockchain architecture. Several BFT-

consensus blockchains make timing assumptions. One of these is partial synchrony [45],

in which there exists a bound on message delivery delay ∆ guaranteed to hold after some

unknown time, called the global stabilization time. Another is weak synchrony [45], where ∆

varies, but it cannot grow faster than a polynomial function of time [34]. With this assumption,

BFT-based blockchains can bypass the FLP impossibility result [51] and guarantee liveness.

Nyle also supports asynchronous communication when the underlying blockchain supports

it. This means that messages sent are eventually received, but it may take arbitrarily long

until they are received. This asynchronous model has the advantage that it captures an

attacker that delays messages in the network, for example with the goal of launching a DDoS

attack. Deterministic consensus algorithms cannot achieve both safety and liveness in the

asynchronous communication model [51]; only randomized consensus algorithms can.

Transactions and validation (confirmation). Nyle assumes a simplified UTXO (unspent

transaction output) model [92] for blockchain transactions, because in this model it is simple

to reason about transaction dependencies, and thus parallelize independent transactions.

This model is ubiquitous in the literature, being first introduced by Bitcoin [92] and used by

many existing blockchains. The UTXO model resembles real-world money or coin transfers

where a UTXO is a coin, and a single transaction can take as input or spend multiple UTXOs.

However, unlike in the real-world, UTXOs can be spent only once: A transaction “fully spends”

the input UTXOs and creates new output UTXOs. Also, as opposed to real-world coins, UTXOs

can exist in any denomination.

Nyle’s simplifying assumption is that each UTXO has a designated receiver - identified by a

public key, as in Bitcoin. Nyle’s UTXO model does not support “pay to script” transactions,

which are out of scope for this work.

To validate a transaction, validators need to crawl the blockchain and assess whether all input

UTXOs for the transaction have not been spent in previous transactions. This means that a
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transaction depends only on the transactions that outputted the input UTXOs, and possibly

transactions that already spent those UTXOs. We call these causally related transactions.

Formally, transactions T and T ′ are causally related if there exists a predecessor/successor

relationship between T and T ′, perhaps transitively through other transactions. Transactions

that are not causally related are independent from each other. Throughout the paper, we use

the terms transaction validation and transaction confirmation interchangeably.

Each validator node stores the cryptographic material required to authenticate its result of

validating a transaction. BFT protocols deem a transaction valid if a quorum of nodes verifying

the transaction indicate a positive result. Each validator maintains a pair of public and

private keys needed to sign transactions. BFT protocols may employ multiple digital signature

algorithms. For example PBFT uses RSA digital signatures, HotStuff and ByzCoin employ

aggregated signature methods (Schnorr signatures or BLS) in which nodes issue so-called

partial signatures that may be aggregated to minimize message size. A threshold of aggregated

partial signatures constitutes a valid full signature. We assume that relevant cryptographic

assumptions hold, e.g., for the signature schemes used by the underlying consensus protocol.

Transaction Lamport exposure. Nyle operates at the granularity of zones, as Limix does, to

limit exposure. In Nyle, each zone consists of a validator set that maintains a zone blockchain.

Zones can be disjoint or overlap totally or partially in their validator sets.

A transaction validated by a zone that already has the input UTXO on its blockchain could only

be exposed to the failure of validators and network connectivity within that zone. Depending

on the consensus algorithm running in a zone, however, not all validators in the zone may

affect transaction validation equally. For example, in leaderless consensus algorithms, a

minority of slow, crashed or compromised nodes do not affect validation. Whereas, in leader-

based consensus algorithms, validation incurs a performance penalty when the leader is slow,

crashed or compromised. Regardless of the consensus algorithm, however, validators outside

a zone have no influence on transaction validations within the zone.

If the zone does not have the transaction’s input UTXO on its blockchain, the transaction

exposure also includes the exposure of fetching the UTXO, as we explain in Section 3.4.3.

3.2.2 Attacker model

In contrast to Limix, which assumes fail-stop node failures, Nyle works with a Byzantine

adversary. Any entity in Nyle can be compromised: transaction senders and receivers, validator

nodes and zones.

Nyle makes the classical BFT consensus assumption that globally at most 1/3 of the validators

in Nyle are compromised (Byzantine); otherwise consensus is impossible [51]. Byzantine

validators can deviate arbitrarily from the protocol, for example by validating double-spending,

equivocating, rewriting blockchain history or being silent. Also, Byzantine validators can be
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under the control of a single adversary that learns the nodes’ whole internal state, including

any cryptographic keys they might hold. The attacker also controls the network point-to-point

links of the compromised validators and can drop, delay, modify and insert packets on these

links.

Nyle supports an adaptive adversary that can dynamically compromise nodes at any time,

by adding them to the compromised node set, but he can never remove nodes, and remains

subject to the total limit assumption of 1/3. We do not make any assumption on the location

of the honest or Byzantine validators. In particular, the attacker could focus its power in just a

few zones, with the goal of controlling more than 1/3 of the nodes in each of those zones and

rewriting blockchain history in any way, including allowing double-spending, for example. We

call such zones compromised zones. The attacker might double-spend in compromised zones,

but also might just attack them via denial-of-service to grind them to a halt.

Prior work avoids attackers taking over zones by selecting zone validators at random from a

validator pool with a threshold f < 1/4 (Section 3.8). Nyle, however, cannot use the same

security through randomness techniques, because zone validators are selected based on their

location matching the zone. With known zone selection policies, an attacker can focus its

efforts within a certain zone and gain local control, despite globally not controlling more than

1/3 of the nodes.

To build zones securely, Nyle assume that (honest and compromised) nodes “know” their own

locations. In particular, an honest node makes accurate location claims. For example, if we

use geographic location as exposure metric, we assume that honest nodes cannot be under

GPS attack, otherwise Nyle considers them as “compromised” nodes, counting towards the

attacker’s maximum global threshold of 1/3. In addition, nodes need to provide a verifiable

proof for their location, for example by using VerLoc [74]. Proofs are only needed for leader-

based consensus algorithms, but not for leaderless ones, as we explain in Section 3.4.1.

3.2.3 Goals

Nyle has six main goals:

• Resilience to remote network partitions and slowdowns: intra-zone transactions commit

even if the zone is disconnected from the rest of the network.

• Joint sender and receiver control over which zones to trust for confirming their trans-

action. Nyle informs the sender’s and receiver’s choice by building zones with varying

exposures. Smaller zones have a smaller exposure, but may be under attacker control,

whereas larger zones up to the global zone are more secure, but also have a higher

exposure.

• Enforcement of jurisdictional legal frameworks for intra-jurisdiction transactions, as-

suming a system in place that performs KYC for validators joining zones.
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• No double spending through a trust-but-verify architecture. Eventually the safe Global

zone validates all transactions.

• Load scaling for validators across zones. When Nyle uses Limix’s zone construction

inspired by graph approximation techniques, Nyle obtains similar scalability properties.

• Multi-input multi-output transactions. A transaction can spend multiple inputs, pos-

sibly each owned by a different party, and produce multiple outputs, each under the

ownership of possibly different receivers.

3.3 Overview

This section gives an overview of Nyle, which is an exposure-limiting blockchain architec-

ture. We first describe two extremes of the design space that are either insecure or do not

limit Lamport exposure. Next, we introduce Nyle’s philosophy of minimizing the time when

transactions are under attack: Nyle combines the two design extremes in a trust-but-verify

approach. Finally, we outline the challenges that Nyle needs to address.

Nyle’s main goal is to limit the Lamport exposure of transactions. In the design space, one

extreme is a single, global zone, as depicted in Fig. 3.1a. This global zone runs the blockchain

and is secure, because the attacker cannot control more than 1/3 of the nodes. However,

this global zone fails to reach our goal: all transactions are exposed to global failures and

slowdowns, no matter how close the sender and receiver are from each other.

The other design extreme uses many non-overlapping local zones (by some locality metric), as

depicted in Fig. 3.1b, with each zone running an independent blockchain. The advantage is

that such local zones shield intra-zone transactions from failures and slowdowns outside the

zone. But, because our attacker is adaptive, this design is insecure: The attacker can focus its

power in one or a few zones of its choice, with the goal of compromising a zone by controlling

more than 1/3 of the nodes in a zone. As long as globally the attacker does not control more

than 1/3 of the nodes, the attack is valid under our attacker model. Transactions in such

compromised zones are never secure. Because the resulting blockchain is as secure as its

weakest link, this locality-based sharding design point is insecure.

Nyle combines the local and global zones from the design points above in a trust but verify

architecture, depicted in Fig. 3.2. Each zone’s validators run an independent blockchain,

just as before, and the zone’s validators verify transactions sent to that zone in parallel and

independently from other zones. In contrast to sharded blockchains, the novelty is that Nyle

zones can and do overlap, and Nyle verifies each transaction multiple times, by local and

increasingly more global zones. The sender and receiver receive multiple confirmations for

their transaction. Smaller, local zones, bound the Lamport exposure of intra-zone transactions

to intra-zone failures and slowdowns, and respond quickly. However, the local zone could be

compromised. The slower Global zone is always secure and verifies all transactions, alerting

interested clients of potential double-spending. Thus, local chains acts as opportunistic
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(a) Secure global blockchain, transactions are se-
cure but have global Lamport exposure.
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(b) Non-overlapping zones with zone-local
blockchains. Transactions involving compro-
mised zones are never securely finalized.

Figure 3.1: Design space extremes for Nyle.

finalizers that parties can choose to trust in certain scenarios, and the global chain always

verifies the transactions later and acts as a secure finalizer.

We assume that the global blockchain has the capacity (transaction throughput) to verify

all the transactions that ever occur throughout the system, even if it does not necessarily

verify them particularly quickly. For example, the global zone may use sharding as defined

in Omniledger [76] and is adequately provisioned for this purpose, although the details are

beyond the level of abstraction this work deals with and thus out of immediate scope. Or, Nyle

may incorporate some form of rollups [47] to reduce the amount of work the global zone has

to do, by allowing the global zone to verify only summaries of local-zone transaction histories

rather than entire local histories - but this is an area left for future work and again not in the

immediate scope of this work.

Nyle has the benefit of giving senders and receivers discretion over transaction exposure. The

transacting parties can move forward with only local validations and then cross-check these

validations against the Global zone validation, if they have sufficient mutual trust or have a

local zone that both parties trust. This trusted local zone has a lower exposure and may permit

faster progress when the Global zone validation stalls, such as when opportunistic networks

or attacks cut off the local zone from the outside world or when the Global zone is simply slow.

Fig. 3.2 depicts the validation process for Alice’s transaction when buying a coffee from Bob

the merchant. Alice submits the transaction to one or more nearby validators, which in

turn broadcast it to all validators. The transaction is verified independently by all zones that

cover Alice’s location, in this case by local Zone 1 and by the Global zone. Both Alice and

Bob eventually receive confirmations from Zone 1 and the Global zone. If the Global zone

confirmations are slow, because of temporary connectivity issues somewhere in the Global
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Figure 3.2: Final Nyle design using a trust-but-verify principle. Multiple zones independently
validate each transaction, and the sender/receiver can choose which validations to wait for.
Local zones limit Lamport exposure but might be malicious, whereas the Global zone always
acts as the possibly slow but secure transaction finalizer.

zone that slow down consensus, then Bob can choose to trust the quick transaction validation

from Zone 1 if Alice is a regular, trustworthy customer, and verify the transaction later using

the Global zone validation, which is always secure. Or, Bob can alternatively choose to wait for

the validation from the Global zone. Either way, the receiver has the choice to enable local

transactions to proceed even when the zone is disconnected from the rest of the world, and

verify these transactions later with the secure Global zone.

Challenge: secure zoning. There are several challenges that Nyle must overcome that are

not captured by the aforementioned scenario. The first group of challenges relates to secure

zoning and presents two problems. (1) The objective of Nyle is to isolate transactions from

distant failures and slowdowns. What location metrics are relevant for achieving this objective?

(2) Nyle insulates transactions at the zone level and constructs zones according to the locality

metrics described above. How can we safely compute zone memberships that implement

these metrics while validators may lie about their measurements?
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Challenge: overlapping zones. Depending on zone overlap, Nyle may validate each trans-

action many times. As a result, many zones in Nyle contain records of the same output

UTXO, resulting in three challenges. (1) How can Nyle ensure that honest zones, which run

independently, do not unintentionally approve the spending of the same UTXO in different

transactions, hence breaching consistency? (2) Some zoning algorithms may generate non-

strict zone hierarchies. Baarle, for instance, is a border town located in both Belgium and the

Netherlands, causing zones to partially overlap in a country-based zoning scheme. Limix’s

autozoning scheme can similarly generate non-strict hierarchies (Section 2.6.3). What effect

do these hierarchies have on which zones validate a particular transaction? (3) A sender may

wish to spend funds from many zones in a single transaction. How does Nyle guarantee the

atomicity of transactions across zones?

Challenge: guarantees during attacks The final set of challenges relates to the security of Nyle

transactions in compromised zones and with compromised users. There are three problems.

(1) Local zones in Nyle are susceptible to compromise. How does Nyle manage compromised

zones that violate safety, such as those that permit a malicious sender to double-spend,

rewrite blockchain history, or accept wrong transactions? (2) Compromised zones could break

liveness, e.g., refusing to confirm a sender’s transaction, effectively censoring that sender. How

does Nyle ensure that such a zone will not permanently freeze a user’s funds? (3) The sender

and/or the receiver of a transaction could also collude with a compromised zone, with the goal

of tricking honest zones and polluting them with fraudulent UTXOs. How does Nyle counter

such attacks?

We address these challenges in the following sections.

3.4 Architecture

This section describes the architecture of Nyle. To insulate transactions from remote failures

and slowdowns, Nyle creates multiple zones of different Lamport exposures, each maintaining

an independent blockchain. Any zone except for the Global zone could be compromised,

thus Nyle builds a trust-but-verify architecture that enables the sender and receiver to choose

which zones to trust for transaction confirmation. We focus on the two components of Nyle’s

architecture, addressing some of the challenges highlighted in the prior section: secure zone

construction and the basics of transaction verification via the trust-but-verify architecture.

3.4.1 Secure zone construction

Each Nyle zone, specifically the validators in that zone, maintain a blockchain by running

consensus to agree on transaction validity, and on transaction ordering within the zone. Each

zone runs some variant of BFT consensus ( Section 3.2.1), which relies on the agreement of

a quorum of the validators. To form quorums, the validators in each zone need to know the
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zone’s membership.

The zone membership in Nyle has to fulfill five conditions:

1. The Global zone is secure, in other words less than 1/3 of the validators are compro-

mised. Nyle ensures this condition by adopting an existing BFT blockchain membership

protocol for the Global zone ( Section 3.2.1).

2. The validators in any local zone are a subset of the Global zone validators. Nyle ensures

this condition by distributing into local zones only validators that are members of the

Global zone. Mathematically, Mi ∈ MG ,∀Mi , where Mi is the validator set of Zonei, and

G is the Global zone. We address this requirement in the secure zoning paragraph below.

3. Local zones can be compromised, however, the attacker remains subject to the global

1/3 limit on total number of validators compromised. In other words, the attacker can

distribute the compromised global validators in zones as it wishes.

4. A validator cannot be part of two zones’ validator sets unless the two zones overlap in

their boundaries: Mi ∩M j 6=φ iff Zonei and Zonej overlap. We address this requirement

in the secure zoning paragraph below.

5. The honest zones, where the attacker controls less than 1/3 of the zone validators,

guarantee their Lamport exposure bounds. We address this requirement in the secure

zoning paragraph below.

Membership attacks. If the membership protocol of the Global zone does not have support

for a notion of location for the validators, then an attacker may much easier compromise local

zones. Attack 1: First, the attacker could exploit the lack of locality information and attempt to

register the same compromised validator as a member of disjoint zones. Note that globally,

the validator still counts as one and the attacker does not break condition 3. But, the same

compromised validator would count as two validators in disjoint zones, breaking condition 4

above, and would illegitimately increase the attacker quota of compromised validators in local

zones.

Attack 2: Second, the attacker could attempt to craft the location information of honest nodes,

confusing the exposure-limiting zoning algorithm Section 2.6.3. The zoning algorithm may

then incorrectly assign honest validators to honest zones. For example, an honest validator

located in Germany is incorrectly assigned to the US zone. Such an attack effectively increases

the Lamport exposure of the honest US zone beyond the desired zone boundaries, breaking

condition 5 above.

Attack 3: The attacker could craft a compromised validator’s location so that the validator is

assigned to an honest zone other than where the validator belongs according to its actual

location. For example, a compromised node in Germany could be assigned to the US zone.
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Figure 3.3: Nyle secure zoning. Nodes join the Global zone membership and claim a provable
location. Based on these claims, anyone can obtain the local zones’ memberships by running
the zoning algorithm. The Global zone is secure, but local zones can be compromised.

This attack may increase zone exposure, especially in the case of leader-based consensus

algorithms, because the leader might be outside the zone, breaking condition 5.

However, in the case of leaderless consensus algorithms, we argue that this is an attack that

Nyle already accounts for. A minority of compromised nodes with a false location does

not increase the exposure, because such a minority is indistinguishable from a minority of

compromised nodes that are honest about their location, but arbitrarily delay their consensus

messages. The latter attack is already comprised in our attacker model.

Securing zoning. To counter the two membership attacks we identified above, Nyle enhances

the Global zone membership protocol as depicted in Fig. 3.3. There are two phases: Global

zone membership registration and local zones membership computation. First, each validator

can only register for the Global zone, and needs to declare at registration time its public

key PubKi and an authenticated (signed) location claim Authloci . The specific location claim

depends on the Lamport exposure metric. This section considers geographic location as the

exposure metric; we defer the possibility of using other metrics to the discussion Section 3.9.

Based on this information, the zoning algorithm places validators in local zones. Clearly, this

ensures that all local zones’ validators are a subset of the Global zone, ensuring condition 2.

The mechanism of making a location claim addresses the two membership attacks. Addressing

attack 1, the mechanism prevents the attacker from amplifying its power in several zones,

because each node, including compromised nodes, needs to commit to a single location.

Addressing attack 2, each honest node can obtain an accurate location, by our assumption.

Moreover, because each honest node independently declares and signs it with its private

key, the attacker cannot craft the location of compromised nodes. Addressing attack 3 for

geographical location claims, we use a system like VerLoc [74], which verifies the claimed
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geographical locations using RTTs. Thus adversaries cannot spoof their location without

detection.

For the second phase, we assume the Global zone blockchain stores a zoning policy given

during the bootstrap phase. A zoning policy may specify, for example, to group nodes in

zones by countries using the claimed coordinates, or to use autozoning with certain radiuses

when the location claims contains RTTs between nodes (Section 2.6.3). When the Global

registration ends, any node can traverse the global membership and apply the zoning policy as

in Limix. Because the Global validator set is immutable and public, and the zoning algorithm

is deterministic, each validator deterministically computes the same membership set per zone.

The validators in each zone can then run consensus and maintain the zone’s blockchain.

Nyle zoning vs sharding. Zoning might seem similar to the concept of Omniledger-style

sharding, because both approaches work with a subset of the validator nodes for each zone,

shard respectively. However, this is where the similarities stop. An important distinction is that

Omniledger partitions the state between shards with no overlaps: there is one single shard

that commits a given transaction. For this reason, it is crucial in Omniledger that no shard

is insecure. In contrast to Omniledger sharding, in Nyle there are usually several zones that

commit a given transaction to their blockchain. Local zones might be compromised, but the

crucial point in Nyle is that the Global zone is always secure.

Epochs. The zoning protocol needs to accommodate zone changes. The zone membership

can change when validators join or leave the system, or when validators fail indefinitely. Also,

the Global zone might terminate compromised zones which provably misbehave, e.g., by

signing an acceptance of double-spending. For these reasons, Nyle proceeds in epochs, just

like related work [75, 76]. Nyle allows for membership changes to take effect at the beginning

of the subsequent epoch.

3.4.2 Trust-but-verify transaction validation

The locality-based zoning above makes a major attack possible. At any time, an attacker might

concentrate its efforts on compromising a zone. Indeed, the attacker may localize all of its

validators in a single or a few zones, e.g., by physically deploying validators there, effectively

controlling more than one-third of the validators in that zone. Globally, the attacker still

controls fewer than one third of validators, but locally, he or she can surpass this threshold. As

a cost for its exposure-limiting properties, Nyle must face this attack and counter it to protect

transactions from remote failures, network partitions, and slowdowns.

To defend against this attack, Nyle designs a trust-but-verify architecture that offers the trans-

action sender and receiver a choice of exposures, one per zone. Individually, the sender and

receiver each choose from which zone to trust transaction validations. The sender transmits

its transaction for validation to all zones that overlap its location, including the sender’s own
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trusted zones. The receiver periodically polls its trusted zones to discover newly validated

transactions. The Global zone is the only zone that must be trusted by all participants; however,

participants may opt to trust other zones in order to reduce their exposure, proceed without

waiting for other validations, and afterwards verify whether the Global zone validates these

transactions as well.

Shortcomings: attacks and overheads. If we merely allow the sender to run the basic afore-

mentioned protocol, we may enable two attacks. The first attack concerns overheads, whereby

a compromised sender may choose to broadcast its transaction to all zones in an effort to

overload them computationally by executing validations and storage-wise by storing blocks.

A compromised receiver might poll any zone as frequently as it desires, in order to inflict

computational and network overload. Nyle must limit the overhead that zone participants

can impose.

The second attack concerns double spending. Double spending refers to the situation where

the same UTXO is spent multiple times in transactions that are deemed valid. In Nyle, multiple

zones validate the same transaction; thus, these zones contain records of the same output

UTXO. A compromised sender may attempt to simultaneously spend its token in such zones,

but in separate transactions, resulting in double-spending. Essentially, double spending breaks

the blockchain strong consistency property. Zones need to be able to identify a potential

double spending situation by determining the most recent state of the UTXO, and they need

to be able to prevent double spending by disallowing concurrent state changes of that UTXO.

3.4.3 Protocol sketch

We now sketch a protocol that addresses the two attacks previously mentioned in Section 3.4.2,

though it is not yet the full protocol. Fig. 3.4 depicts the process. We address the first attack

by having each participant commit to a location. Each participant registers on the Global

chain with its location and public key, just like validators do. The participant can also add to

its registration block a list of trusted zones that cover its location. If this field is missing, all

zones covering the participant’s location are considered by default trusted by the participant.

Possible location changes of the participant take place in the subsequent epoch. Only the

zones covering the sender location (SL) are candidates to validate the sender’s transactions,

though the sender can choose to trust and send the transaction to just a subset of these zones.

The Global zone always validates every transaction. The receiver can also poll only the zones

covering the receiver location (RL).

If a KYC system is in place [40, 97], then it already enforces that RL and SL correspond to the

real receiver and sender locations, potentially at a jurisdiction granularity. However, if this

constraint is not present, the sender and receiver could in principle claim any location. The

cost of them doing so is an increase in transaction exposure with the distance between their

real location and the claimed location. Zones that fear high overheads due to a crowding herd
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Figure 3.4: Nyle’s trust-but-verify architecture. Nyle settles transactions in the smallest jointly
trusted zone, called the SEZ. Participants can afterwards verify whether the Global zone also
accepts the transaction. Nyle bounds overheads by requiring each participant to only impose
loads on zones that overlap her location. Nyle avoids basic double spending with a CLZ per
UTXO, that stores the definitive UTXO state and synchronizes all zones spending that UTXO.
The transaction exposure is the combined exposure of the SEZ and CLZ.

of clients could increase transaction fees or implement any other rate-limiting mechanism.

The sender and receiver are ready to accept a transaction when a jointly trusted zone validates

the transaction. Based on the previous paragraph, a jointly trusted zone “covers” both the

sender’s and receiver’s locations SL and RL. There may be several such zones, for example in

the figure Zone4 and Zone5 are trusted by both the sender and the receiver. Of these zones, we

denote as the settlement zone (SEZ) the zone that validates the transaction first.

We address the second attack by having a designated zone per UTXO, called the clearance

zone (CLZ), which is authorized to spend the UTXO. The CLZ should cover the SL, otherwise,

per the protocol above, the sender cannot forward its transaction to the CLZ. All other zones

validating the same transaction first synchronize with the CLZ and only afterwards run their

independent validation of the transaction. The SEZ also needs to synchronize with the CLZ.

Thus, the transaction’s exposure is the combined exposure of the SEZ and the CLZ.

With this protocol sketch, we can already explain the basics of transactions. It would not be

particularly convenient if the output UTXO implicitly had the same CLZ as the input UTXO,

because the receiver may not trust the CLZ, yet would have his funds “locked” in that CLZ. It is

natural, however, to use the SEZ for this purpose. Being a zone that is trusted by the receiver

and that validates the transaction, the SEZ has the output UTXO, and becomes the output

UTXO’s CLZ. Moreover, anyone can compute the output UTXO’s CLZ: it is smallest exposure
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zone containing both RL and SL.

Although until now we described transactions with a single input UTXO and a single output

UTXO, it is not too difficult to extend the model to multi-input and multi-output. A sender

should first transfer all input UTXOs to the same CLZ (Section 3.6). Then, the sender prepares

and broadcasts the transaction just like before. If all outputs are for the same receiver, the

outputs’ new CLZ is the SEZ. However, if there are outputs for different receivers Ri , each of

them with its own set of trusted zones, we may naturally obtain several SEZi, one per receiver.

SEZi becomes the CLZ for output UTXOi, and corresponds to the smallest exposure zone

common to the sender location SL and the receiver location RLi. Because all inputs have the

same CLZ that approves the transaction at once, the transaction is atomic. The various SEZs

do not interfere with atomicity: they are simply relevant for the spending of each of the output

UTXOs.

There are, however, many challenges that this simple sketch protocol does not address. The

SEZ and CLZ could become compromised at any point, and validate double spending, or

become unresponsive. An unresponsive CLZ, in particular, might lock fund and censor the

sender from spending their UTXOs. The next section dives more deeply into these challenges

and the specifics of transactions. For simplicity, we present our protocols for single-input

single-output transactions, and describe particular points for multi-input multi-output trans-

actions when necessary.

3.5 Transaction confirmation protocol

This section describes the transaction protocol in Nyle, albeit with a simplification: For a

transaction spending token UTXOx, we assume that the sender and all zones already know

the CLZ of UTXOx. The next section Section 3.6 relaxes this assumption, by handling the

choice of CLZ and CLZ transfers.

3.5.1 Challenges

Consistency. In a strongly consistent protocol, such as Nyle, it is essential that the nodes/-

validators can identify the most recent state of an UTXO. Limix tracked the most recent state

using a token per key. Nyle, however, differs from Limix in two fundamental ways. First, only

one client can spend (“write”) an UTXO, i.e., the UTXO’s owner. Thus, there cannot be any

conflicting spending, i.e., double-spending, at least not when the sender is honest. When

the sender is compromised, however, it may attempt to double spend. Second, an UTXO can

only be spent (“written”) once, thus it has only three possible versions: non-existent, valid

(unspent), and spent, which is the terminal state. The job of validators is to determine the

definitive state of the UTXO.

This is where the CLZ becomes relevant, because the CLZ stores the definitive state of an
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UTXO. Consider the transaction Charlie In:UTXO0,Out:UTXO1,CLZ:Zone1−−−−−−−−−−−−−−−−−−−−−−−−−→Alice), with CLZ Zone1.

This means that Zone1 stores by definition the latest state of the input UTXO0. Nyle’s CLZ

protocol Section 3.6 ensures that the CLZ indeed holds the latest state of the input UTXO.

Compromised sender & zones. What makes it particularly challenging in Nyle to handle

double spending are compromised zones. Typically, blockchains that rely on BFT ensure

that shards are honest, which means shards guarantee the safety of consensus and disallow a

compromised sender to double spend. However, this is not the case in Nyle. A compromised

sender that colludes with a compromised (clearance) zone could succeed in double spending

its UTXOs.

Handling compromised local zones is Nyle’s price to pay for limiting transaction exposure.

Small local zones immunize transactions from partitions, failures and slowdowns outside

the zone, but they can be compromised by a powerful attacker. A compromised zone could

break transaction safety, e.g., by allowing a malicious sender to double spend, by rewriting

blockchain history, and liveness, e.g., by arbitrarily delaying replying to the receiver, the sender

and other zones.

There are two ways Nyle tackles safety. First, Nyle uses a trust-but-verify architecture, where

participants can always fall back on the safety of the Global zone. In principle this provision

is sufficient, however, Nyle would not be very useful if compromised senders could always

choose to double-spend by spending their funds through compromised zones. Thus, as a

second provision, Nyle uses a protocol for establishing an UTXO’s CLZ (Section 3.6), which the

receiver has some control on, but jointly with the sender. The receiver can still perform a CLZ

transfer to a compromised zone, however, this incurs additional costs and latency.

There are two ways in which Nyle tackles liveness. When we refer to the spending of an

UTXO, the CLZ and the SEZ are the relevant zones for livenes. Nyle handles CLZ liveness

issues through explicit CLZ revocation by the sender (Section 3.6), coupled with long liveness

checkpoints by which the CLZ is expected to contact the Global zone. In case of no contact,

the Global zone revokes the CLZ’s tokens (Section 3.6). A compromised SEZ affects primarily

the spending of output tokens, to which the same reasoning applies. The SEZ cannot prevent

parties from learning about a transaction validation, because ultimately they learn from the

Global zone, if not from one of the other common trusted zones of the sender and receiver.

3.5.2 The protocol

Sender. The sender in a transaction starts the process for getting the transaction confirmed,

depicted in Fig. 3.5. Assume that the CLZ for UTXO1 is Zone3. To send UTXO1 to the receiver

B (Bob) (step 1 in Fig. 3.5), the sender A (Alice) prepares the transaction in Eq. (3.1), signs

the transaction and sends it to a threshold of validators in Z one3 via efficient broadcast, for

example. The sender also appends its timestamp in the transaction, which protects the sender
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Figure 3.5: Transaction validation in Nyle. Alice sends UTXO1 to Bob. (1) Alice submits the txn
for validation to Zone3, which is the CLZ of UTXO1. (2) Alice submits the txn to other zones
that overlap her location. The CLZ Zone3 acts as a single point of synchronization for UTXO1,
assisting to prevent double-spending.

against framing attacks by malicious parties that replay the packet to incriminate the sender

of double spending. By default, all zones that have the SL in their membership validate the

transaction. However, only some of these zones may be trusted by both the sender and the

receiver, according to their inputs in the beginning of the epoch, and then only those zones

perform validation. The Global zone always validates all transactions.

TxnA→B = SigPrivKA (Sender : A ||Recv : B || In : UTXO1 ||Out : UTXO2 ||Time : tsA) (3.1)

Zones. An UTXO’s designated CLZ is the only zone that (1) Is guaranteed to have the latest

state of the UTXO, (2) Is guaranteed to store all causally related transactions that lead to

that UTXO’s creation, and (3) Is authorized by the UTXO owner to modify the UTXO’s state

by spending it. Any other zone first needs to synchronize with the CLZ before validating a
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transaction spending the UTXO. The CLZ is the first zone to run consensus on the transaction

validity, and to do so it accesses the latest UTXO state, guaranteed to be on its blockchain. The

other zones trusted by the receiver that validate the transaction initiate validation only after

they synchronize with the CLZ and learn of the authenticated validation of the CLZ.

The CLZ may be compromised, however, like any zone that is not global. This means not only

that the CLZ may approve double spending, but also that the CLZ may not be live. It would

be undesirable that larger zones or especially the Global zone to be held up forever waiting

to synchronize with the CLZ in order to do anything. Nyle handles CLZ liveness issues by

installing a long timeout - on the order of several hours or days - by which the CLZ is expected

to respond and make progress, and if it fails to do so, the Global zone can revoke the token

ownership of the CLZ and recover the tokens in the Global zone (Section 3.6). If the CLZ only

censors the sender, the sender can explicitly revoke the token ownership from the CLZ, which

is verified and carried out by the safe Global zone (Section 3.6).

As a transaction example, Fig. 3.5 depicts Zone3 being the CLZ for UTXO1. The CLZ Zone3
validators run consensus on the transaction validity. First, each validator checks that Zone3
is the rightful CLZ for UTXO1 by verifying the transaction that output UTXO1, i.e., Charlie’s

and Alice’s locations, and their common trusted zone with the smallest exposure. The CLZ

also checks that it stores all valid causally related transactions outputting UTXO1. Next, the

validator checks that UTXO1 was not already spent in the CLZ, i.e., Zone3’s blockchain does

not contain an earlier transaction with UTXO1 as input. Finally, the validator checks that

UTXO1 belongs to Alice and Alice’s signature is valid. Then the validator appends its decision

Accept/Reject to the transaction validation and signs it.

ValidationV = SigPrivKV (TxnA→B||Accept) (3.2)

When a threshold of validators sign the same decision for a transaction, all validators append

it to Zone3’s blockchain, in other words they publish the transaction and the validation.

ValidationZone3 = SigPrivKZone3
(TxnA→B||Accept) (3.3)

Once the CLZ publishes a validation, Alice can proceed to get her transaction validated by

all zones that it trusts and overlap the SL. In this example, these are Zone1 and the Global

zone, mentioned in the transaction Eq. (3.1). Specifically, both Alice and the CLZ forward the

CLZ validation to some validators in these other zones. Note that transaction forwarding by

both Alice and the CLZ is needed in case one of these parties is compromised and decides to

stall the protocol. Duplicate transactions are not an issue, because anyone can recognize and

ignore them. We discuss in detail in Section 3.5.3.

The steps below apply for each of the sender trusted zones: Zone1 and the Global zone. Each of

the validators in a sender trusted zones first verify that the validation signature ValidationZone3

is correct. Then, if the zone’s blockchain does not yet have a record of UTXO1, the zone
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contacts the CLZ to fetch those transactions that causally determine the issuance of UTXO1.

Then, the zone independently validates all these transactions on its blockchain. Finally,

each validator in such a zone runs the verification protocol above for TxnA→B and adds the

validation to the zone blockchain, together with the authenticated CLZ validation. The CLZ

validation is necessary to show that the CLZ knows about the transaction and validated it,

regardless of the decision. Note that the zone’s decision could be different from the CLZ’s

decision, for example if the CLZ is compromised. The transaction validation that both the

sender and receiver should follow is that of the SEZ, which by definition is guaranteed to be

one of the zones trusted by the sender. In case any party, including the sender or receiver,

believes the SEZ’s decision included in the transaction validation is wrong, then the party can

report the transaction and wait for the Global zone validation.

ValidationZoneX = SigPrivKZoneX
(TxnA→B||Accept||ValidationZone1 ) (3.4)

In the example in Fig. 3.5, Alice sends the Zone3 yellow validation to Zone1 and Global zone.

The Global zone can proceed right away to validate the transaction, because it has UTXOA
on its chain. However, Zone1 needs to first fetch TxnC→A from the CLZ Zone3 and validate it,

before validating TxnA→B.

Periodic synchronization. Periodically, bigger zones pull transactions from smaller overlap-

ping zones to ensure their states are not too out-of-sync. Generally speaking, smaller zones

can have a more up-to-date state because their validators communicate faster, thus final-

ize new transactions faster. Because validators broadcast transactions, bigger zones should

eventually receive these transactions and confirm them. However, attacks that we discuss

below or disconnects might stall broadcast. For this reason, validators in any zone periodically

check the zone’s blockchain against smaller overlapping zones’ blockchains, pull and run the

validation protocol on new transactions.

There are some situations (see Section 3.5.3 and Section 3.6.6) when the Global zone detects

that another zone is compromised and decides to suspend it. The Global zone immediately

pushes such zone or membership changes to all other zones, so that they neither contact nor

accept transactions from the compromised zones anymore.

Receiver. The receiver contacts some zones it trusts to learn about new validations. The

receiver can keep secret what zones it trusts for validations, because only the receiver waits

for validations from these zones. The receiver’s choice determines the other part of the

transaction’s Lamport exposure, depicted in Fig. 3.4.

Even though the Global zone is the only zone that is guaranteed to be trustworthy, the receiver

is not required to always wait for the always-safe global transaction validation. For instance,

the recipient may determine that a local, small zone validation is trustworthy enough for
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#

Participant honest(X) /
compromised(×) / unknown(∗)

Nyle property guarantee
yes(X) / no(×) / N/A [reason]

Sender Recv CLZ SEZ
Safety Liveness∗

Exposure
Sender Recv. Zones Sender Recv. Zones

1.
X * X

X
X

X
X X

X
X

SEZ
2. × X[S2] X[L1] Global
3.

X * ×
X

X[S1]
X

X X[L2]
X

X[L2]
SEZ

4. × X[S2] X[L1,L2] Global
5.

× * X
X

N/A
X

X N/A
X

X
SEZ

6. × X[S4] X[L1] Global
7.

× * ×
X

N/A
X[S3]

X[S3] N/A
X

X[L1,L3]
SEZ

8. × X[S3] X[L1] Global

Table 3.1: Nyle security properties. On the left side there are the parties involved in any
transaction: the sender, the receiver, the CLZ and the SEZ. On the right side of the table we
show the guarantees for a honest sender, honest receiver, and for any honest zones involved
in the transaction. Nyle offers guarantees only for uncompromised parties, otherwise the
guarantee is N/A. For more complex cases, we provide a brief reasoning, referenced by reason
ID in Table 3.2.

minor payments or transactions between trusted parties. Eventually, because of regular

synchronization, the Global zone verifies all transactions on its blockchain, making them

accessible to the world. Because zones may be malevolent, the receiver forwards transactions

meant for it to the Global zone so that it can later determine whether the Global zone accepts

them. Duplicate transactions are not a problem since they are identifiable and easily ignored.

Receivers may elect to continue waiting after getting validations from smaller zones and

afterwards determine that the Global zone has also confirmed the transactions.

The receiver checks all received validations ValidationZonei . First, it checks all the signatures,

to defend against packets crafted or tampered with by an attacker that attempts to spend

in the sender’s name or attempts to validate transactions impersonating a zone. Also, the

packet could be incorrectly signed by the SEZ, in an attempt to deprive the receiver of liveness.

Next, the receiver verifies that the zone sending the validation, i.e., the SEZ, and the CLZ, both

accepted the transaction. When either the signatures are incorrect, or the validations of the

SEZ and CLZ do not match, then one or more parties among the sender, the CLZ, the SEZ are

compromised, and the receiver follows the steps in Section 3.5.3 to decide which validation to

trust, and whether it should inform the Global zone of the behavior. In brief, the receiver can

always verify any validation with the Global zone, and can ultimately rely on the Global zone

for liveness.

3.5.3 Security argument

We analyze the guarantees Nyle provides to the participants during attacks, focusing on safety,

liveness, and exposure. Recall that any of the system participants can be compromised: sender,

receiver, and zones, by having more than 1/3 of validators compromised. Thus, our analysis
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Reason ID Description

S1 The sender can forward an already validated transaction to cancel CLZ history rewrite.
S2 The transaction should be accepted, the receiver detects the bogus reject of a compromised SEZ.
S3 Zones and receiver notified of double spending by the Global zone.
S4 The transaction must not be accepted, the receiver detects the bogus accept of a compromised SEZ.

L1 The Global zone eventually replies with an authentic validation.
L2 The sender replaces a censoring CLZ via a CLZ transfer (Section 3.6).
L3 The zones contact the Global zone to intervene if the CLZ is unresponsive.

Table 3.2: Brief explanation for the reasons behind some security guarantees. Referenced
from Table 3.1.

accounts for the fact that each participant can only rely on the actions it executed itself and on

the actions of the always secure Global zone to achieve the desired properties. Nyle provides

guarantees only to those participants that follow the protocol, such as honest participants or

(temporarily) well-behaving compromised participants.

Throughout the analysis we assume that all honest parties perform signature checks, which

defends against signatures forged and packets crafted or modified by an attacker. Thus, we do

not discuss these attacks further.

Table 3.1 summarizes the results of our security analysis. On the left side of the table we

enumerate the parties involved in any transaction: the sender, the receiver, the CLZ and the

SEZ. The receiver appears in the table as a party. However, whether the receiver is honest

or not is relevant solely for the receiver’s guarantee, but does not influence anyone else’s

guarantees. Thus, we do not differentiate between honest and compromised receivers. The

SEZ is by definition the zone trusted by both the sender and the receiver and which replies

first. On the right side of the table we show the guarantees for the sender, the receiver, and for

any honest zones involved in the transaction. We analyze the properties by case number.

At the end of this section, we also review framing attacks, where compromised parties attempt

to make other parties look compromised.

Honest sender. All the cases presented here have an honest sender that does not double

spend. Case #1 in Table 3.1 presents an honest sender, CLZ and SEZ. in this case, Nyle ensures

safety, liveness under weak synchrony, and a transaction Lamport exposure set by the SEZ.

Analyzing safety, for the honest zones the underlying BFT consensus protocol guarantees

safety, in particular also in the CLZ and SEZ zones, which are honest by case #1’s assumptions.

Any zone pulling transactions from another zone is guaranteed to pull safe transactions. The

sender is guaranteed safety, because, by case #1’s assumptions, neither the CLZ, nor the SEZ,

misbehave by deleting blockchain history, etc. Finally, in conjunction with an honest sender

that does not double spend, Nyle guarantees safety to the receiver.

Analyzing liveness, we only need to consider what happens when participants are faulty/unre-
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sponsive, because by our assumption they are already not compromised. When the sender

is unresponsive and does not send any transaction, then there is no property to guarantee.

However, if the sender looses liveness after sending its transaction, we need to consider which

parties learn about the transaction. Under a weakly synchronous network model, the CLZ

eventually learns about the sender’s transaction. Furthermore, with this communication

model, the CLZ is guaranteed to be live and pushes the sender’s transaction to any zone

requesting it, guaranteeing liveness to other zones. Finally, because the SEZ is live, the receiver

eventually receives a transaction validation, thereby ensuring liveness for the receiver.

Analyzing exposure, recall that the SEZ is by definition the first zone that validates the trans-

action trusted by both the sender and the receiver. Because the SEZ provides an answer

eventually and, by case #1’s assumption, it is not compromised, it trivially bounds the transac-

tion Lamport exposure.

Case #2 considers an honest sender and CLZ, but a compromised SEZ. The compromised SEZ

affects only the receiver’s guarantees, because no other party depends on replies from the

SEZ. Regarding safety, the transaction should be accepted because it is not a double spend,

however, the compromised SEZ that replies first might wrongly reject the transaction (reason

S2 in Table 3.2). Fortunately, the receiver can detect the bogus reject, because the SEZ cannot

craft a valid proof of double spend in the sender’s name. Regarding liveness, it might seem

that the receiver is guaranteed liveness because the SEZ replies by definition. However, the

SEZ might send a bogus validation, e.g., with an invalid signature, which the receiver ignores.

Nevertheless, the sender and the CLZ forward the transaction to other zones and, eventually,

some zone or in the worst case the Global zone replies with an authentic validation - reason

L1 in Table 3.2. This situation increases the Lamport exposure of the transaction to the first

SEZ that sends a correct reply.

Next, in case #3, we consider an honest sender and SEZ, but malicious CLZ. The CLZ interacts

with the sender and with other zones. Regarding safety, the CLZ could validate the sender’s

transaction but rewrite the blockchain history at any point, removing the sender’s transaction.

However, the sender can simply store its validated transaction locally and send it to other

zones - reason S1 in Table 3.2. Regarding liveness, the CLZ could refuse to reply or send invalid

replies to the sender and other zones, in which case the sender can transfer its CLZ (reason

L2 in Table 3.2), potentially requiring an intervention via the Global zone. We address CLZ

transfer in detail in the next section. In the worst case, the CLZ transfer might increase the

transaction exposure to Global exposure.

When the sender is honest but both the CLZ and the SEZ are compromised, as in case #4, we

need to additionally evaluate the receiver guarantees. The receiver safety argument is the

same as in case #2 above. Regarding liveness, the reasoning combines the cases #2 and #3

above, and relies on a potential CLZ transfer initiated by the sender (reason L1), after which

the receiver eventually obtains a validation from the Global zone (reason L2).
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Compromised sender. We now consider a compromised sender that may attempt to double

spend. Case #5 presents a compromised sender, but honest CLZ and SEZ. Safety is guaranteed

for all honest parties because the CLZ stops any double spending attempt, and neither CLZ

nor SEZ rewrite history. The malicious sender has no influence on liveness, so liveness is also

guaranteed.

Next, in case #6, the SEZ becomes compromised along the sender. As we have seen in cases

#2 and #4, a compromised SEZ affects the receiver guarantees. The compromised SEZ might

accept the double spending transaction in an attempt to break safety, however, the receiver

can find the CLZ in the transaction, observe that the CLZ rejected the transaction, and can

check the CLZ’s reasons, which reveal double spending transactions signed by the sender

(reason S4 in Table 3.2). The liveness and exposure reasoning are similar to case #2: the CLZ is

honest and forwards the transaction to other zones and, in the worst case, the Global zone

provides an authentic validation. In the worst case, the exposure is Global.

The final two cases, #7 and #8, both consider a compromised sender and CLZ that collude

with each other. If the sender follows the protocol, the sender obtains the same guarantees as

in case #4. However, the sender might double-spend and the CLZ might validate the double

spending. When zones ask the CLZ for transactions, the CLZ might equivocate and present

them with different blockchain forks, each containing just one of the sender’s transactions,

without any trace of double spending. Thus, the CLZ can trick some honest zones, such as

the SEZ, to accept and validate one of the sender double-spending transactions, whereas

other honest zones accept and validate the other double-spending transaction. The Global

zone eventually detects the double-spending (reason S3 in Table 3.2), thanks to the periodic

synchronization and the trust-but-verify principle. In case of double-spending, the Global

zone can issue a refund. Moreover, the Global zone could take further corrective actions

against the malicious validators that approved the double-spending. Describing these actions

is outside the scope of this thesis. The malicious user could also suffer punitive measures, e.g.,

by needing to increase its collateral or being banned from the system. Refund and punitive

measures are, however, outside the scope of this thesis.

The compromised CLZ also affects liveness. First, neither the sender nor the CLZ might

forward the transaction to other zones. However, this is not a liveness attack, because no other

party (other than the Global zone) actively waits on learning about this transaction. During

periodic synchronization, if the CLZ does not reply to the Global zone within ∆, the Global

zone could temporarily disable the CLZ for suspected compromise. The CLZ might forward

the transaction but might refuse to send or send rogue causally related transaction validations,

which prevents honest zones from validating the transaction. In this case, the honest zones

might request the Global zone intervention and retrieve the necessary transactions via the

Global zone. Due to this, the transaction exposure is, again, Global.

Finally, in case #8, the sender, CLZ and SEZ are all compromised. The SEZ affects just the

receiver guarantees. Just as in case #7, the receiver is guaranteed safety only by the Global
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zone (reason S3), but not because the SEZ was tricked, but because the SEZ is compromised.

For liveness, just as in cases #2 and #6, the receiver eventually received an authentic reply from

the Global zone (reason L1). The exposure is Global.

Framing attacks. Framing attacks refer to actions that compromise parties take in order to

make other parties look compromised. We first remark that nobody can impersonate the

sender, receiver, zone or validator, because they cannot fake signatures. Thus, the only tools

available are packet insert, drop, delay. An attacker could replay (packet insert) the sender

transaction in order to frame the sender of double spending. However, the sender adds a

timestamp in the transaction, so a replay is trivially detected as a duplicate. An attacker could

frame a zone by replying (e.g., to a receiver) faster than the zone, likely with an incorrectly

signed validation. However, the recipient simply ignores such incorrect validations. Finally,

no action initiated by the receiver is critical to the protocol, thus the protocol does not react

on receiver inactivity. Hence, framing the receiver is not possible.

3.6 CLZ Choice and Transfer Protocol

The section above rests on the assumption that there exists a single CLZ per UTXO, and this

CLZ is known to everyone. This section describes how Nyle chooses an UTXO’s CLZ to meet

the CLZ properties. Next it, describes the protocol for a CLZ transfer, which happens when

a sender wishes to spend its token in a different zone than its default CLZ. The section also

describes Nyle’s strategy for handling CLZs and zones that lose liveness. Finally, it analyzes the

security of the CLZ protocol.

3.6.1 CLZ properties

It is crucial that there exists a publicly known unique CLZ per UTXO. The CLZ of an UTXO

stores the latest state of the UTXO and acts as a synchronizer for other zones that need to pull

the latest state relevant for that UTXO. Nyle needs to ensure that an attacker cannot equivocate

about the CLZ of an UTXO or create the situation where different honest parties believe an

UTXO has different CLZs. If the attacker managed to create such a situation, the attacker could

trivially double-spend via honest CLZs.

The default CLZ of an UTXO should be a zone trusted by the owner of the UTXO. The rationale

is that the owner would most likely prefer to store and clear its UTXOs via CLZs it trusts.

Otherwise, the owner can change the CLZ, however, the change incurs a Global exposure and

further overheads, as we explain later in the section.

Finally, the CLZ should cover the owner’s location. Otherwise, as per the previous section

describing overheads, the owner would not be able to submit transactions for validation to

the CLZ, and again would need to first perform an expensive CLZ transfer. This causes a

potentially unnecessary increase for the exposure of the transaction spending the UTXO.
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Figure 3.6: Nyle’s choice of CLZ. The output UTXO2 is assigned as CLZ Zone1, which is the
common trusted zone of Alice and Bob with the smallest exposure. The CLZ is uniquely
determined by participant values provided in the beginning of each epoch.

3.6.2 Choosing the per-UTXO CLZ

Given the requirements above, Nyle designates the CLZ as follows. Assume that all participants

know the CLZ of a transaction’s input UTXO; at bootstrap all UTXOs have a known CLZ, which

is the Global zone, for example. The CLZ that Nyle assigns to the output UTXO is the zone

with the smallest exposure trusted by both the sender and the receiver. This CLZ might be the

same as the SEZ, but not always: It could be that the SEZ, which is the commonly trusted zone

that replies quickest, has a bigger exposure than the CLZ.

Fig. 3.6 the same transaction example as earlier, where Alice’s transaction to Bob takes as input

U T XO1, outputs UTXO2, and uses Zone3 as CLZ, which is the known CLZ for UTXO1. Then

the output UTXO2 is assigned as CLZ Zone1, which is the common trusted zone of Alice and

Bob with the smallest exposure.

We now argue that this CLZ choice fulfills the CLZ properties above. First, anyone can compute

the CLZ by knowing the zone placement and membership, sender and receiver location, which

are published on the Global blockchain at the beginning of the epoch. Second, the CLZ is

chosen as a zone trusted by the receiver, which is the UTXO owner. Finally, all zones trusted by

the receiver need to cover the RL, so by construction the CLZ covers the UXO owner’s location.

3.6.3 CLZ transfer protocol

The CLZ transfer protocol is useful when the sender changes location and wants to spend

at the new location its UTXOs created in other locations. Or it could happen when a zone

censors a sender from spending its UTXOs, thus the sender changes the clearance zone.

The CLZ transfer is in fact a special type of transaction. Intuitively, the UTXO is spent at the

old CLZ, and replaced by a new UTXO at the new CLZ. The advantages of representing CLZ

transfers as transactions are uniformity, and trivially answering preliminary questions about

incentives, i.e., client can easily “pay” for CLZ transfers.
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In this case, the sender first needs to follow the protocol for a CLZ transfer. Once the CLZ

transfer completes, all parties in question validate the transaction following the same protocol

as for an intra-zone transactions (Section 3.5).

Guaranteeing an unique CLZ per UTXO. The most challenging aspect of a CLZ transfer is to

preserve the safety property that only one CLZ is authorized to spend a certain UTXO. Imagine

a compromised sender colluding with a compromised CLZ to transfer the CLZ to not just one,

but many other honest zones. Then each of these honest zones believes it is the rightful CLZ,

leading to honest zones authorizing transactions for the same UTXO, effectively authorizing

double spending. Even though the Global zone eventually detects the fraudulent CLZ transfer,

the attack breaks Nyle’s safety guarantees: When the CLZ is honest, according to Section 3.5.3

and cases #1-2 and #5-6 in Table 3.1, then safety violations are immediately detected (reasons

S2 and S4 in Table 3.2), without needing to contact the Global zone.

The way Nyle prevents this attack is to have all CLZ transfers proceed via the Global zone.

The disadvantage is that the exposure of CLZ transfers is Global. By having all zone transfers

proceed via the Global zone, a colluding compromised sender and CLZ cannot trick honest

zones in believing they all are the new CLZ.

Consider the same transaction as before, Alice spending UTXO1 to Bob, who receives UTXO2
(Eq. (3.1)), with Zone1 being the CLZ of UTXO2. Assume that Bob changes his location and

wants to perform a CLZ transfer for UTXO2 from Zone1 to Zone2. Zone2 can compute the

CLZ for UTXO2 like any other party, by using the sender and receiver location, and the zoning

computed during the epoch bootstrap.

Bob executes the CLZ transfer. First, Bob asks the current CLZ Zone1 to validate the CLZ

transfer (Eq. (3.5)) - step 1 in Fig. 3.7, and provides this validation to the Global zone. Then,

the Global zone checks whether to accept the CLZ transfer by running consensus on the

authenticity of the Zone1 CLZ transfer validation, then checks via consensus whether it all

causally related transactions outputting UTXO2, which it has (otherwise the zone needs to

pull and validate them, like before), and stores the CLZ transfer validation on its chain (step

2 in Fig. 3.7 and Eq. (3.6)). Finally, Bob sends the Global zone validation to Zone2, which

performs the same checks as the Global zone (step 3 in Fig. 3.7). Zone2 misses some causally

related transactions, which it pulls from the Global zone in step 3’. Zone2 stores on the chain

its own validation Eq. (3.7).

When does the CLZ transfer take effect? Another critical point is ensuring there is a well-

defined moment when the transfer takes effect. If the former CLZ Zone1 is malicious, it might

block other zones in finding out about the CLZ transfer. Or it might ignore that the CLZ transfer

happened and rewrite history. If some parties might observe the transfer sooner than others, a

malicious sender can exploit this situation and double spend in “all legitimate” CLZs.

For this reason, CLZ transfers take effect once the Global zone validates Zone1’s commitment
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Figure 3.7: Bob transfers the CLZ for UTXO2 from Zone1 to Zone2. For safety, all CLZ transfers
proceed via the Global zone.

to relinquish the UTXO and the Global zone commits a record stating that it is now the owner

of the UTXO. Because the global zone is definitive, no party can challenge the CLZ transfer.

Even if Zone1 is compromised and tries to double-spend the UTXO in two different transfers,

given that the double-spend has to go through the Global zone, the Global zone detects it and

ignores any second-spending attempts by Zone1.

ReqTransferCLZZone1→Zone2 =SigPrivKZone1
(SigPrivKB (UTXO : UTXO2 ||

OldCLZ : Zone1 ||NewCLZ : Zone2 ||Time : tsB))
(3.5)

GReqTransferCLZZone1→Zone2 = SigPrivKGlobal (ReqTransferCLZZone1→Zone2 ) (3.6)

TransferCLZZone1→Zone2 = SigPrivKZone2
(GReqTransferCLZZone1→Zone2 ) (3.7)

3.6.4 Multi-input multi-output transactions

CLZ transfers are essential for transactions that spend multiple inputs. Multi-input multi-

output transactions proceed in two steps. First, unless the inputs have the same CLZ, the

sender(s) transfer all inputs to the same CLZ, via separate CLZ transfer transactions. These
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transfers are not guaranteed to take place simultaneously, in the sense that some may succeed

and some may experience liveness issues, e.g., due to the CLZ censoring a sender and may

take much longer to complete (Section 3.6.5). Second, the sender(s) spend the inputs in the

same transaction by producing the required signatures. The outputs can independently be

assigned to different CLZs, depending on the sender and receiver locations, as explained

in Section 3.4.3.

All inputs in the transaction share the same fate. If only one of the inputs is a double-spend,

then honest zones reject the transaction, regardless of whether some inputs are not double-

spends. However, it could happen that unwise clients that trust compromised zones accept

the transaction, and attempt to use their output UTXO. In fact, the case of unwise clients is

no different than a single UTXO transaction where the UTXO is a double-spend, and clients

mistakenly trust the transaction. Nonetheless, the Global zone rejects their attempt, as it does

with the multi-input transaction.

3.6.5 Censorship and liveness attacks by the CLZ

One of the reasons behind CLZ transfer is that the CLZ censors the sender by refusing to

clear her transactions. However, such a compromised CLZ Zone2 might also refuse to let Bob

change the CLZ, which means that Bob may be unable to provide a CLZ transfer validation

(Eq. (3.6)). In this case, Bob should simply provide the Global zone with the authenticated

request for CLZ transfer signed by Bob (Eq. (3.5)). The Global zone then contacts Zone1 to

validate and commit a record of CLZ transfer, as requested by the sender. The Global zone

then makes the same checks from the previous paragraph and validates the clearance zone

transfer.

There is the possibility, however, that Zone1 is unresponsive even to the Global zone’s request

of CLZ transfer. Of course, the zone might simply be just slow, or might be compromised and

disrupt liveness. Nyle handles such liveness issues by installing a long timeout - on the order

of several hours or days - by which the CLZ is expected to respond and make progress, and if

it fails to do so, the Global zone can revoke the token ownership of the CLZ and recover the

tokens in the Global zone.

An analogy would be to consider that UTXOs always “live” in the Global zone by default in the

long term, but the global zone can lease them for limited times to the smaller zones. Smaller

zones can renew their leases on the UTXOs they control (by being the CLZ) by making progress

and checking in with the Global zone regularly, but if a smaller zone loses liveness and stops

checking in, the lease eventually expires after a long timeout, and the Global zone effectively

revokes control of the small zone’s UTXOs back to itself.
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#

Actor CLZ transfer guarantee [reason]
honest(X) / yes(X) / no(×) / non-applicable(N/A)

compromised(×) Safety Liveness∗

Sender
Old New

Sender
Old New Honest

Sender
Old New Honest

CLZ CLZ CLZ CLZ Actor CLZ CLZ Actor

1.
X X

X X
X

X X X
X

X X
2. × X[S1] N/A X[S1] X[L1] N/A X[L2]
3.

X ×
X X[S2]

N/A
X X[S2]

X[L1] N/A
X

X[L2]
4. × X[S1,S2] N/A X[S1,S2] N/A
5.

× X
X

N/A X
X X

N/A X
X[L2] X[L2]

6. × N/A X[S1] N/A X[L2]
7.

× ×
X

N/A N/A
X[S3] X[S3]

N/A N/A
X[L2] X[L2]

8. × N/A X[S1-S4] N/A X[L2]

Table 3.3: Nyle security properties. The left side enumerates are the parties involved in CLZ
transfers: the sender, the old CLZ, and the new CLZ. The right side summarizes the guarantees
for the sender, the old CLZ, the new CLZ, and for any other honest actor (client or zone). More
complex cases provide a brief reasoning for the guarantee, referenced by reason ID in Table 3.2.

Reason ID Description

S1 The actor uses the Global zone validation to invalidate CLZ history rewrite.
S2 False claim of not being CLZ discovered if zone cannot show valid contrary claims.
S3 Double CLZ transfer prevented by the Global zone.
S4 Actor detects bogus CLZ transfer because transfer has invalid global signature.

L1 The sender eventually transfers CLZ away from the compromised CLZ via Global.
L2 Periodically, all zones and clients refresh their CLZ registry via Global.

Table 3.4: Brief explanation for the reasons behind some security guarantees. Referenced
from Table 3.3.

3.6.6 Security argument

We now analyze the security of the CLZ transfer protocol. Because the CLZ transfer takes place

between the sender, the old and new CLZ, we analyze what happens when these parties are

compromised. Specifically, we look at the safety and liveness guarantees for these parties, and

also for any other honest actor (participant or zone). Once the CLZ transfer completes and is

safe, the security guarantees from Section 3.5.3 apply for the transaction validation.

Table 3.3 summarizes the guarantees. The left side of the table presents the parties involved

in the CLZ transfer: the sender, the old and new CLZ, and considers cases where they are

compromised. The right side of the table presents the safety and liveness for each of these

parties, and for any other honest actor (participant or zone). Just as before, some guarantees

have brief explanations, referenced by the reason ID in 3.4.

An attacker can attempt a number of safety and liveness attacks. A compromised client could

attempt to transfer the CLZ to multiple zones, breaking the property that each UTXO has a

single CLZ at any moment. Compromised zones can also rewrite history, falsely pretend to be
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or not be the CLZ, allow double CLZ transfers. Compromised clients cannot affect liveness,

but zones can by refusing to process a client’s request of zone transfer, or refusing to serve

another zone’s request for missing transactions. Compromised parties can always collude

with the purpose to amplify their attack, or attempt to frame an honest party of misbehavior.

We present our analysis looking at all combinations of compromised parties, by case number

in Table 3.3. Our analysis accounts for the fact that each participant can only rely on the actions

it executed itself and on the actions of the always secure Global zone to achieve the desired

properties. Nyle provides guarantees only to those participants that follow the protocol, such

as honest participants or (temporarily) well-behaving compromised participants. Throughout

the analysis we assume that all honest parties perform signature checks, which defends against

signatures forged and packets crafted or modified by an attacker. Thus, we do not discuss

these attacks further.

We split the cases in two categories: those with an honest sender and those with a compro-

mised sender. As a general remark, when the sender is honest, the guarantees for the sender,

and the reasoning behind them, are the same as the guarantees for any other honest actor

(column 5 and 8, 9 and 12 in Table 3.3). Also, the two CLZs never communicate directly, but

via the safe Global zone. thus, the two CLZs cannot inflict damage on each other.

Honest sender. An honest sender does not attempt to perform a double transfer of an UTXO’s

CLZ. Because only the UTXO owner can legitimately transfer the CLZ, no other party can

initiate a CLZ transfer without being detected via signature check.

Case 1 represents the case when all parties are honest. Trivially, there is no attack in this case,

and safety and liveness holds for all honest participants.

In case 2 there is only one compromised party, namely the new CLZ. A compromised CLZ

could accept the new role and add the CLZ transfer on its ledger, but omit to pull all causally

related transactions that trace the UTXO’s provenance. This, however, only hurts the zone

itself, because, in order to validate transactions with this UTXO, a well-behaved zone needs to

pull causally related transactions.

The new CLZ could accept the CLZ transfer, but later rewrite history and pretend it is not the

CLZ. This affects the sender that attempts to spend its funds in the new ClZ, and any other

party being the receiver of such a transaction. However, because all legitimate CLZ transfers

are necessarily validated by the Global zone, and take effect when epochs change, these honest

parties already have ground truth validated by the Global zone (reason S1 Table 3.4). The latter

point also touches on liveness guarantees: How long can honest senders and receivers be

blocked by a misbehaving CLZ? The honest sender can simply transfer the CLZ again (reason

L1), which takes effect and all parties observe when the Global zone validates the transfer

(reason L2).

In case 3, the only compromised party is the old CLZ. The old CLZ could attempt to pretend
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to not be the CLZ as a safety attack, making the querier believe it is stuck in a past epoch.

However, anyone can detect the bogus claim if the CLZ cannot present contrary information

signed by the Global zone specifying a new CLZ in the current epoch (reason S2). Regarding

liveness, the old CLZ could refuse to execute the CLZ change. Then, the sender can escalate

the situation to the Global zone (reason L1), as presented in the protocol. When the sender

escalates the situation, the receiver (and all other honest parties) can eventually observe the

sender’s transaction via a different well-behaved CLZ; the CLZ transfer takes effect when the

Global zone validates the transfer (L2).

In case 4, both the old and the new CLZ are compromised. We are interested in the guarantees

for honest senders and honest actors. Crucially, the two CLZs cannot collude by skipping the

Global zone, because any honest party can detect that the Global zone has not signed the

transfer. Thus, the damage these two zones can inflict is simply the sum of the individual

damage they can each inflict. We presented these in cases 2 and 3.

Compromised sender. Case 5 considers the sender to be the only compromised party. As

a safety attack, a compromised sender can attempt a double CLZ transfer, however, the old

CLZ is honest and would not sign conflicting transfers. Also, the compromised sender could

pretend that the UTXO’s CLZ is a different one and launch a transfer from there, but an honest

zone would verify that it is not the CLZ and reject the transfer. A compromised zone might

collude with the attacker and allow the transfer, but the Global zone would not sign the

transaction.

As a liveness attack, the compromised sender could partially execute the transfer and then stop.

For example, it could just have the transfer transaction in the source CLZ, but not in the Global

zone or further. However, the Global zone periodically pulls transactions, so it eventually

validates the transfer. Or, the compromised sender could have the transfer validated by the

Global zone, but stop before informing the new CLZ. This would be a framing attack, because

an honest party following the CLZ transfer pointer could believe that the new CLZ is malicious.

However, the new CLZ eventually synchronizes with the Global zone after the long timeout,

and would be able to complete CLZ transfers even without the sender’s help (reason L2).

In case 6, both the sender and the new CLZ are compromised. They cannot, however, collude

without being detected, because they need to involve the old CLZ and the Global zone, which

are honest. Thus, the damage they can inflict is simply the sum of the individual damage the

sender and the old CLZ each can inflict. We presented these in cases 2 and 5.

Case 7 considers the situation when both the sender and the old CLZ are compromised. The

sender and the old CLZ could collude to allow double CLZ transfers: The old CLZ can sign one

transfer, delete the history to conceal traces, and then sign another transfer. However, all zone

transfers need to be verified by the Global zone, which would not approve this attack (reason

S3). If the sender does not get a zone transfer approved by the Global zone, then an honest

new CLZ does not accept the transfer.
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Another unsafe situation is when the sender makes a zone transfer, the Global zones approves

it, and then the old CLZ deletes the history to conceal the transfer. Those parties that contact

the old CLZ and do not observe the CLZ transfer believe the old CLZ is still the rightful CLZ,

whereas those that see the transfer believe the rightful CLZ is the new CLZ. The old CLZ could

also create this situation in cases 3 and 4. However, here the sender is also compromised, and

exploits the situation in order to double spend. This is especially problematic when the new

CLZ is honest, as in this case, because it unwantingly helps with the double spending. Nyle

detects this case because, after a CLZ transfer but before the new epoch, all transactions for

that UTXO are processed by the Global zone (reason S3).

A colluding sender and old CLZ cannot prevent the liveness of the new CLZ any more than the

sender and old CLZ can individually prevent liveness (cases 3 and 5). Also, these two colluding

parties cannot hide forever the CLZ transfer: Before the transfer is observed by the Global

zone, the transfer is in progress, and once the transfer is observed by the Global zone (which

happens at least during periodic synchronization), the transfer completes (reason L2).

In the eighth and final case, the sender, old CLZ and new CLZ are all compromised and possibly

colluding. We are interested in the guarantees for other honest parties. Regarding safety, all

attacks discussed above are possible, and the honest party can counter them as discussed

above (reasons S1, S2, S3). Additionally, the colluding parties could perform a CLZ transfer that

bypasses the Global zone from the old CLZ to the compromised new CLZ. Then, the colluding

source and old CLZ perform another transfer to an honest new CLZ, thereby attempting a

double CLZ transfer. However, any honest actor can trivially detect the misbehavior, because

the bogus transfer bypassing the Global zone does not have the Global zone signature (reason

S4).

There is no additional liveness attack that the colluding parties can launch apart from the

individual attacks in all cases above. Thus, an honest actor counters the liveness attacks like in

the previous cases.

3.7 Preliminary results

In order to estimate the benefits and overheads of Nyle, we run a simulation that compares

Nyle with Omniledger. The simulation has two components: the validator network and the

transaction workload. The validator network takes a maximum exposure as input - we use RTT

as the exposure metric - and generates coordinates for the nodes in a 2D coordinate space.

Using the inter-node cartesian distance as the pairwise node RTT, the simulation creates the

Nyle zones. Our network has 400 nodes with maximum RTT of 1 second.

For the Nyle zone radii, we use two settings. Nyle1 uses the same formula as Limix: Ri =
(i −2)∗p2

i
, which reduces exposure predominantly for smaller zones. Nyle2 uses the formula

Ri = (i − 2)∗ 2i , which is less aggressive in reducing exposure. Nyle uses the auto-zoning

algorithm with a varying number of levels K. For the Omniledger setup, we follow the setup
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Figure 3.8: Simulation depicting a CDF of the workload exposure as percentage of a Global

exposure. Nyle1 uses zone radii (i −2)∗p
2

i
, and Nyle2 uses (i −2)∗2i . K represents the

number of levels in Nyle auto-zoning. Omniledger uses micro-shards of 4 and 8 nodes.

used by the authors. We create shards of 80 nodes, and in each shard we create 20 micro-shards

- each micro-shard has thus 4 nodes. We also run simulations with 10 micro-shards.

We run a workload of approx. 10’000 transactions, where each transaction has a sender and

a receiver in the form of validators. The RTTs between the sender and the receiver follow

the same RTT distribution as in the Limix workloads. This workload is representative for

RTTs between Internet communication endpoints. Using real transaction histories, e.g.,

from Bitcoin or other cryptocurrencies, would be a potentially worthwhile area for further

experimentation.

Exposure. Our simulation results compare Nyle and Omniledger on two dimensions: trans-

action exposure for the workload and the load on validators. For transaction exposure, we

measure the RTT diameter of the zone/shard that optimistically validates and settles the

transaction In Nyle this is the smallest zone of the sender and receiver; in Omniledger, it is

their smallest shard or micro-shard, or the inter-shard latency for a cross-shard transaction.

For both systems, we compute the reduction in exposure against a global ledger, where all

transaction have a global exposure equal to the maximum inter-node RTT.

Fig. 3.8 depicts the exposure results. We observe that Nyle significantly reduces the workload

exposure, with similar results across different level numbers K: 70% of the transactions observe

an exposure in Nyle1 of only 20% compared to a Global exposure, respectively 30% in Nyle2.

In contrast, only 20% of transactions in Omniledger observe any improvement in exposure,

and the improvement is modest: the exposure is 80% or more of a Global exposure.
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Figure 3.9: Simulation depicting a CDF of the load measured as the number of zones per

validator. Nyle1 uses zone radii (i − 2)∗p
2

i
, and Nyle2 uses (i − 2)∗ 2i . K represents the

number of levels in Nyle auto-zoning. Omniledger uses micro-shards of 4 and 8 nodes.

Load. We also measure the load as the number of zones in which each node participates,

and Fig. 3.9 depicts the results. The Nyle CDFs depict the price Nyle pays for the exposure

reduction: 60% of the validators can participate in up to 50 zones in Nyle1 K=5. Nyle2,

however, is less aggressive in reducing exposure, and the load is much lower than Nyle1: 60%

of the validators participate in up to 30 zones for K=5, which drops to only 15 zones for K=40.

Omniledger validators participate always participate in only 2 zones: one shard and one

micro-shard.

We anticipate that Nyle will be able to amortize the overhead per zone through implementation.

In order to disseminate transactions, ledgers typically use gossiping in their peer-to-peer

network in the Global zone. Using this existing mechanism, smaller zones incur no extra

overhead to obtain transactions. Transaction confirmation via signature aggregation would

incur a linear overhead if implemented naïvely, because different zones have a different

membership and thus different signature shares to create the zone signature. However, there

might be techniques where the signature shares could be reused, lowering this overhead.

3.8 Related Work

In this section, we discuss related work on various aspects of blockchain design: asymmetric

trust, prioritizing safety or liveness, state sharding, trust-but-verify architectures, and payment

channels.
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Asymmetric trust. Instead of one global trust assumption for all, some ledgers enable each

user to choose which nodes the user trusts and form its own quorums of validators that need

to agree on a transaction. Ripple [100] introduced a model where each user selects trusted

validators to build its own Unique Node List. Ripple does require users to have an estimate

of the total number of validators, and considers at most 20% of the nodes to be Byzantine at

any time. Although initially Ripple claimed that a list overlap of > 20% between user lists is

sufficient for safety and liveness, Chase and MacBrough [37] showed that Ripple may not be

safe unless the overlap is > 90%, and may not be live unless the overlap is > 99%.

Stellar [82] adopts a similar philosophy of asymmetric trust, however, it does not constrain

user’s chosen quorum sizes, as Ripple does. Instead, Stellar introduces federates byzantine

quorum systems, where the system-wide quorum emerges from the combined choices of

individual nodes. Each node (user/validator) chooses a validators set where any threshold of

nodes form a quorum slice, and adopts the decision of any slice where a threshold of nodes

agree. Thus the user is guaranteed safety as long as its chosen slices are honest, and liveness if

at least one of the slices is available. The advantage of stellar is that nodes that do not interact

do not need to be aware of each other, and also do not require a quorum.

Stellar’s argument for global agreement rests on trust transitivity via multiple quorums. It is,

however, unclear whether users and validators grasp the implications of their quorum slices.

The paper outlines cases of configurations with “dangerous or meaningless thresholds”, and

emphasizes the need to periodically collect all peers’ configurations (slices) and examine

quorum intersection. Disjoint quorums may indicate risky configurations. Stellar not only

detects but also aims to prevent system runs with unsafe configurations, thus it alerts nodes

when the network is nearing a critical state where risky configurations are imminent. Stellar’s

reliance on the “Internet hypothesis” for its convergence reasoning appears to result in Stellar

experiencing the same delayed convergence as the Internet when routing configurations are

stale If Stellar publishes more information about deployment experience, it will be interesting

to observe whether nodes may use these warnings to avoid problematic setups in tandem.

Motivated by understanding the relationship between asymmetric trust and standard quorum

systems, Cachin et al. [27] formalize asymmetric quorum systems. They derive conditions with

respect to the intersection between the quorums each node chooses such that the resulting

system satisfies consistency (safety) and availability (liveness). They also define wise and naïve

nodes as those nodes that are right, respectively mistaken in their trust assumptions over their

selected quorums. Finally, they generalize well known protocols to the notions of asymmetric

quorum systems.

Asymmetric trust is at the core of Nyle, however, users have a more constrained set of choices

than in the systems above in order to avoid misconfiguration. Users can choose whether to

trust some pre-existing local quorums in addition to the always trustworthy global quorum.

Because the system defines these quorums instead of the users, and all users and nodes in the

system know these quorums, it is easy to fulfill the conditions of quorum overlap for global
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consistency. Moreover, this guidance in quorum selection also distributes load in the system,

preventing compromised users from launching denial of service attacks.

Prioritizing safety or liveness. While some ledgers choose to prioritize either safety (finality)

or liveness (availability), others give the choice to clients. Neu et al. [93] refer to this issue as

the finality-availability dilemma. The authors define the new ebb-and-flow protocols that

make use of two ledgers: one ledger is available but transactions may not be safe/finalized,

just as Bitcoin, and the other ledger is finalized but may not be available at all times, just as

PBFT. The finalized chain is always a prefix of the available chain. Clients have the choice of

which chain to follow for their transaction confirmations, depending on how conservative or

aggressive clients are.

Similar to ebb-and-flow, Nyle provides clients a selection of ledgers, including a global safe

ledger. However, in contrast to the ebb-and-flow protocol above, where both ledgers run a

global consensus and hence have global exposure, Nyle has non-global ledgers running a

localized consensus to reduce exposure and boost availability. Clients may choose which

local ledgers to trust, if any. Moreover, all Nyle ledgers prioritize safety, thus a wise client is

guaranteed safety and more likely to experience availability in a local ledger than in a global

ledger. As with ebb-and-flow, naive or cautious clients may always rely on the safe global

ledger.

State sharding. Some blockchains designs employ zones, just like Nyle, but they target scal-

ability and do not bound exposure. Omniledger [76] and Monoxide [125] employ zones for

scalability, where zones process transactions in parallel, thereby increasing throughput. Be-

cause each transaction is processed by a single zone, every zone needs to be secure in order to

prevent double-spending, which Omniledger ensures by grouping in zones a large number

of randomly selected nodes. However, nodes in the same zone could be located anywhere;

random selection enhances security, but also increases Lamport exposure.

Trust but verify. In order to decrease transaction latency, some blockchains rely on the trust-

but-verify model, which Nyle also adopts. However, they lack a notion of locality, which

prevents them from reducing exposure. Omniledger [76] creates micro-zones within each

shard that validate transaction faster than the shard because they require synchronization

between fewer nodes. These micro-zones might not be secure, however, therefore each

transaction is also validated by the secure shard. Because these micro-zones contain randomly

selected nodes, they lack a locality notion, e.g., validators might not be in the same legal

jurisdiction or even within a certain latency boundary. Thus, they do not bound exposure.

Payment channels. Off-chain approaches, such as payment channels [84, 96], bypass the

main chain in order to increase throughput, but do not aim to nor reduce exposure. Individual

users create on-chain deposits, and then initialize pairwise channels each capped by the

78



3.9 Discussion

deposit either directly between users, or between users and payment hubs. Users transact

with each other by sending signed transactions to the channel counterparty, and this step

can repeat multiple times between channel counterparties to reach the destination. Every

transaction cumulates the previous payments on the channel, so that when the channel is

closed by the parties, they settle on the blockchain just a single transaction containing the

final channel balance. Thanks to transaction summarization, channels increase throughput

because the main blockchain processes fewer transaction.

Some payment channels seem to suffer from transaction latencies higher than for on-chain

transactions, because channels require a transaction dispute period before the final on-chain

settlement. Ethereum’s feature of rollups [47] resembles channels, but attempts to address the

latency issue. Rollups summarize transactions and have two modes of operation. Optimistic

rolllups require a grace period, just like channels do, for disputes. However, zero-knowledge

rollups eliminate the grace period by providing publicly verifiable proofs that the transaction

summaries correctly represent the batched transactions.

Channels have some exposure-limiting property, however, it is merely temporary and ad-hoc.

When parties settle transactions on a direct pairwise channel without intermediaries, then

indeed their transaction has the ideal Lamport exposure. However, deposits need to replenish

periodically, which takes place through an on-chain transaction with global exposure. Also,

creating and maintaining direct user channels requires prohibitively large on-chain deposits.

Therefore, most payments traverse payment hubs, leading to centralization and potentially

problematic trust chains. With intermediate hubs, the end-to-end transaction is exposed to

all intermediate parties clearing the payment, which they may refuse to do, leading to liveness

problems. Or the intermediary parties might be located far away, increasing the exposure to

potentially global. Most critically, users cannot decrease the exposure because they have no

influence on the choice of intermediate hops.

3.9 Discussion

We discuss two exposure metrics introduced by Limix, and their relevance in the context of

Nyle: geographical jurisdictions and RTTs. We also discuss possibilities for securing RTT-based

zoning.

The first exposure metric are existing jurisdictional boundaries such as countries and eco-

nomic zones, taken as input. This metric is advantageous because it supports the enforcement

of existing laws. Transactions between parties within a jurisdiction are subject to that ju-

risdiction’s laws and regulations, and the metric measures to which extent the transactions

can be under the influence of parties outside the jurisdiction. For example, we can limit

to what extent validators outside Germany decide on the validity of transactions between

parties in Germany. A high exposure is undesirable, because it might not be possible to hold

outsiders culpable under the jurisdiction’s laws, even though they decide the validity of an

intra-jurisdiction transaction. Such hurdles are a reality in Internet routing, where it is difficult
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to hold a foreign ISP culpable of traffic delay. Also, the metric might support the enforcement

of the travel rule, because a low exposure means that transacting parties are more likely to

adhere to a common jurisdictional sanction base and aid local law enforcement to access

transaction data [118].

The second exposure metric is the network round-trip time (RTT) between validators. Valida-

tors within smaller RTTs from each other communicate faster, and confirm transactions faster,

thus the metric indicates an estimate of the transaction confirmation time. The advantage of

this metric is that parties who watch a transaction, such as the receiver, can take informed

decisions within the trust-but-verify architecture. For example, the receiver can decide in

discrete intervals how long to wait for confirmations, and the security level and exposure of

each confirmation.

It is worth pointing out that both metrics could result in multi-level zone hierarchies and non-

strict zone hierarchies, where zones overlap partially. Multi-level hierarchies arise naturally,

for example Germany is part of the EU, which is part of Europe. Also, an area might belong

to multiple zones that do not fully overlap. For example Colorado City located in the United

States crosses the state border between Arizona and Utah, and is thus located in both states;

Pettigo is a city located in two countries: Northern Ireland and the Republic of Ireland; Baarle

is a border town located in both Belgium and The Netherlands, with non-continuous pieces

of land in either country; and the examples can continue. The RTT metric does not by itself

produce such hierarchies, but it does so when used in compact graph approximations as in

Limix.

Securing RTT-based zoning We described that Nyle enhances the Global zone membership

by having each validator sign a verifiable location claim at registration time and add it to

the membership blockchain. However, declaring location is insufficient when applying

an exposure metric such as RTT. This is because RTT-based zoning requires inter-validator

latencies, but RTTs generally do not correlate with geographical distances, albeit for small

distances and some specific locations, e.g.,, well-connected metropolitan areas. Compromised

nodes could arbitrarily increase their RTTs to benign nodes, potentially pushing benign nodes

out of certain zones because these benign nodes seem “far from everyone”. To secure RTTs,

we could leverage secure virtual coordinate systems that assign coordinates to nodes based

on their pairwise RTTs [42, 104]. We also refer to a protocol developed by Kall et al. [70]

for Nyle. Recently, Kohls and Diaz [74] proposed verifying geographical location claims via

RTTs. This suggests that we could use the correlation between the two metrics to derive a

potentially incomplete RTT map. However, measuring the entire RTT map is likely noisy with

a high number of nodes. A remaining challenge are thus autozoning algorithms that can

accommodate incomplete RTT maps.
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3.10 Summary

This chapter described Nyle, a trust-but-verify distributed ledger architecture that enhances

existing BFT-based blockchains with exposure-limiting capabilities for transactions. To limit

exposure, Nyle uses similar zoning techniques as Limix, but additionally secures the exposure

metrics reported by possibly Byzantine nodes. In Nyle, smaller local zones may be compro-

mised and break safety or lose liveness. To ensure safety, the global zone always verifies all

transactions and acts as a secure finalizer, whereas local zones act as opportunistic finalizers

that each user may independently choose to trust or not. Nyle also addresses transaction

censorship by compromised zones, and other liveness attacks. Preliminary simulation re-

sults show that Nyle significantly reduces exposure compared to Omniledger, with 60% of

transactions witnessing 70% less exposure in Nyle, at a cost of 10x increase in load.
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4 Asynchronous Consensus without
Common Coins

We have shown in the previous chapters that it is possible to build globalized systems with

strong consistency, where local interactions need just local coordination. While Limix shields

local interactions from remote failures and slowdowns, the consensus protocol must never-

theless account for local inner-zone failures. In fact, the network in any zone may become

asynchronous at any time due to various failures and network asynchrony within the locality,

caused by partially functional equipment [81] or (temporary) misconfiguration [2, 68], or even

with malicious intent by an adversary that applies selective censorship on network links or

launches a DoS attack [1, 109, 111]. Hence, we would prefer consensus to operate as robustly

as possible - in terms of both availability and performance - in the face of arbitrarily adverse

network conditions, and not just in “normal-case” conditions. The asynchronous network

model is the theoretical model that captures this maximally adverse scenario.

Most currently-deployed approaches to arbitrary value consensus impose network synchrony

constraints. Arbitrary value consensus was introduced by Pease et al. [95], and many algo-

rithms followed since using various assumptions. Some algorithms, such as Paxos [20, 78, 79]

and its variations [20, 36, 86, 86, 90, 122], and newer protocols such as HotStuff [131], assume

partial synchrony. However, synchronous and partially/weakly synchronous protocols may

suffer from unnecessary delays in the presence of asynchrony, because they rely on timing

assumptions [89]. In partially synchronous conditions, HotStuff drives consensus “at the speed

of the actual (vs maximum) network delay” [131] - a property the authors call responsiveness.

But, partially synchronous protocols may have infinite executions over an asynchronous

network, meaning they cannot ensure liveness. Thus, arguably, they are not responsive under

asynchrony.

Protocols that do ensure progress under asynchrony must rely on randomization to prevent

executions from not terminating [51]. To this extent, asynchronous consensus protocols [9,

73, 83, 89, 114] usually require common coins, a primitive that offers the same random value

to callers that is unpredictable to an adversary.

It is natural to ask whether common coins are required for efficient consensus. In this chapter,
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we present a negative answer to this question by introducing Que Sera Consensus (QSC), a

novel arbitrary value asynchronous consensus algorithm for crash faults. Other algorithms

need (perfect) common coins to elect a leader or to pick the same value from a set of re-

liably broadcast values, neither of which QSC needs. Instead, QSC builds atop Threshold

Synchronous Broadcast (TSB), a novel communication primitive, and private randomness.

TSB enables the step-synchronous distribution of a threshold of values to all live nodes, unlike

reliable broadcast, which distributes all values to all live nodes eventually. Nodes converge

to the same value within the optimum expected O(1) rounds and O(n2) message complexity

(O(n3) communication complexity) by using private randomness tied to the values.

One could argue that QSC actually builds a common coin, however, that would be imprecise.

Common coins select a random value from an input set, but are not concerned with obtaining

the input set. Assuming that all caller nodes call the common coin with the same input set, the

coin ensures that all nodes eventually select the same random value. Consensus is a strictly

stronger primitive than common coins: Besides ensuring that all nodes agree on the same

value eventually, consensus additionally guarantees validity, i.e., that the agreed value was

proposed by some node. For validity, consensus needs to disperse the input values between

the nodes. Observe that, even for binary consensus, nodes could not simply call a common

coin with the input set {0,1}, because they might break validity if they decide e.g., 0, but nobody

proposed 0. QSC builds consensus, which is strictly stronger than common coins, and it does

so without relying on an existing common coin.

Asynchronous consensus protocols are rarely, if ever, deployed in practice. Our hope is that

QSC is a first step towards more practical asynchronous consensus protocols. QSC removes

the need for common coins in the crash fault setting. Also, TSB seems to intuitively fulfill a

responsiveness property in asynchronous networks, because it enables group communication

at the speed of a threshold of nodes. QSC also appears elegant and modular, although these

properties are hard to quantify.

This chapter is organized as follows. We first give background into asynchronous consensus

and review related work. Then we give the system model and the overview of QSC and FSTSB
(full-spread TSB), a particular variant of TSB that QSC builds on. Next, we provide a detailed

description of QSC, followed by proofs of consensus safety and liveness. Afterwards, we

define TSB thresholds, properties, and describe a TSB implementation. Finally, we provide a

discussion and summarize the chapter.

This chapter is based in part on joint work with Pasindu Tennage and Eleftherios Kokoris-

Kogias, Philipp Jovanovic, Ewa Syta and Bryan Ford. Parts of this work appear in preprints

available online [52, 53].
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4.1 Background and Related Work

This chapter gives background information on consensus and compares related work with

QSC’s approach. We first review common network and failure models used in consensus,

and the impossibility of deterministic asynchronous consensus. Then we look at building

blocks for probabilistic asynchronous consensus, such as common coins. Finally, we survey

probabilistic consensus algorithms and their complexity, and contrast them with the approach

QSC takes. Although QSC operates with crash faults, we examine protocols with crash faults

and Byzantine faults. Because every protocol that can withstand Byzantine faults can also

withstand crash faults, we want to highlight the essential differences between QSC and these

protocols.

4.1.1 Consensus background

Consensus is a fundamental problem in distributed computing where a set of n nodes each

propose a value and need to agree on a value among these. Specifically, consensus satisfies

the following properties [32]:

• Agreement: No two correct nodes decide differently.

• Validity: If a node decides v , then v is a value proposed by some node.

• Integrity: No correct node decides twice.

• Termination: Every correct node eventually decides some value.

Modelling nodes. The definition specifies correct nodes, which brings into discussion the

abstraction we use for nodes. One popular abstraction that this chapter uses is fail-silent,

where all nodes faithfully follow the protocol, but some may crash at some point during the

execution of the protocol. Node crashes are silent, meaning no other entities are “notified”

of the crash. All live nodes are correct, but once a node crashes, it becomes incorrect and

remains crashed for the entire duration of the protocol. Another abstraction that some of the

related work uses is fail-arbitrary, where failed nodes can deviate arbitrarily from the protocol,

also known as Byzantine nodes. The fail-arbitrary model is more general than fail-silent, and

any algorithm that works in the former model also works in the latter. Byzantine nodes can

be under the control of a single adversary and collude in their attacks. We denote by f the

maximum number of incorrect nodes.

Modelling communication. Another aspect implicit in the consensus properties is that the

nodes need to communicate in order to agree, and one critical aspect concerns timing. Timing

assumptions refer to whether there is a known or even bounded time that elapses between

a node sending a message and the destination node receiving this message. Several timing

assumptions are possible, such as synchrony, partial/weak synchrony or asynchrony. In this

chapter, we consider the most generic model: asynchrony. Messages eventually reach the

85



Chapter 4. Asynchronous Consensus without Common Coins

destination, but they may take an arbitrarily long time to do so.

Deterministic asynchronous consensus is impossible. Because deterministic algorithms

cannot guarantee termination (liveness) of asynchronous consensus [51], algorithms that

do guarantee progress must rely on randomization to escape from unfavorable executions.

Fischer-Lynch-Patterson [51] gave a renowned impossibility result. They asserted that asyn-

chronous consensus is impossible even with a single failing process because there are ex-

ecutions when several proposals are equally probable outcomes. If such an execution is

incapable of breaking the symmetry, it does not terminate. There are two alternatives for

termination: failure detectors or randomization [15]. Failure detectors allow identifying and

discarding failing nodes, which breaks the symmetry because there is no uncertainty: All

nodes eventually receive the non-failing nodes’ messages. However, instead of fail-silent

nodes, failures detectors require fail-stop or fail-noisy nodes, which are less general. QSC
chooses the alternative approach, which is to keep the general fail-silent model and break

symmetry via randomization.

Message scheduling. Based on the previous paragraph, termination depends on which mes-

sages each node observes. The asynchronous network model generally assumes that messages

may be scheduled adversarially, i.e., in the worst possible way for a consensus algorithm. In

most asynchronous consensus algorithms that rely on randomization, including QSC, an ad-

versarial network scheduler would be able to defeat the consensus algorithm if it could obtain

the random coin flips “too early” and schedule messages accordingly. Therefore, like many

asynchronous consensus algorithms, QSC assumes an adversarial but content-oblivious net-

work scheduler [15]. TLS-encrypted private channels are a common way to keep the adversary

content-oblivious in practice.

The first randomized consensus algorithm. Ben-Or [18] gave the first randomized algorithm

for asynchronous consensus that terminates with probability 1. The algorithm achieves binary

consensus, where nodes need to decide either 0 or 1. Nodes run the algorithm over multiple

rounds, each consisting of two phases, where each node attempts to decide based on whether

it observes that the majority of processes proposed the same value. If no decision is possible

after the two phases, each node randomly picks 0 or 1 to propose for the next round. The

algorithm has O(n2) communication complexity in the crash-fault model, but an exponential

running time, because the algorithm is guaranteed to terminate only when a supermajority of

nodes pick the same random value.

The algorithm above highlights a couple of challenges. First, it presents binary consensus,

which is one possible flavor of consensus that can decide only 0 or 1. However, binary consen-

sus can be insufficient for some distributed applications where nodes propose non-binary

values [30]. Arbitrary value consensus is another flavor of consensus where the set of possible

decisions is not known apriori. In both flavors of consensus nodes need to learn of each others’
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values, but communication in arbitrary value consensus is more expensive, as we explain

below.

The second challenge that it highlights is the cost of consensus. The community aims for an

expected constant running time (O(1)) and a O(n2) or better communication complexity. The

communication complexity includes number of exchanged messages and message size.

The algorithm of Ben-Or [18] described above uses private randomness, where each node inde-

pendently chooses a random bit that it never sends to other processes. However, approaches

exist for nodes to obtain the same random value more efficiently, and these are called common

coins, which we describe next.

4.1.2 Common coins

Intuitively, a common coin offers the same random value to callers that is unpredictable to

an adversary. Common coin is an abstraction introduced by Bracha [21]. The coin selects the

value uniformly at random from a set given as input, for example {0,1} for a binary common

coin. If the coin always outputs the same value across all callers, it is called perfect; otherwise,

it is biased, and the number of rounds it takes for the coin to give perfect outputs gives the

coin’s time complexity. In consensus executions where nodes cannot decide, if nodes keep

proposing the same values, the undecidable execution might repeat infinitely. Common coins

break this symmetry by offering nodes a valid value to propose that is likely the same for all

nodes, hence the nodes are more likely to meet conditions favorable to deciding.

Common coins in Byzantine binary consensus. Although QSC targets a non-Byzantine

model, it is still instructive to examine briefly the literature in common coin protocols for

Byzantine consensus. Common coins used as a building block for consensus affect the

practicality of consensus. All the coins described here defend against an adaptive adversary. In

order to obtain constant-time complexity for consensus, one needs either a perfect practical

common coin, or a common coin with constant bias, which requires a constant number of

rounds to output the same value for all caller nodes. The first perfect common coin required

predistributed information by a trusted dealer [98], which is a strong assumption because a

compromised dealer breaks the entire system. Using this coin, Mostéfaoui et al. [91] provide

a constant-time binary agreement protocol that avoids signatures by using authenticated

channels, with a message complexity of |m| ∗O(n2), where |m| is the message size. Later

work still used a trusted dealer, but only for setup: Cachin et al. [29, 31] build a constant-time

common coin using threshold cryptography with l ∗O(n2) message complexity, where l is the

size of signatures in the message. Cachin et al. [30] use this coin to design a binary agreement

protocol with O(1) time complexity and l ∗|m|∗O(n2) message complexity, and SINTRA [26]

provides an implementation.

Some protocols used to bootstrap common coins remove the assumption of a trusted dealer.

Canetti and Rabin [33] removed the trusted dealer restriction with their constant-time com-
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mon coin with O(n2) total communication complexity. However, their communication proto-

col uses very large constants, which is prohibitive in practice [29, 91]. The most efficient recent

asynchronous common coins have a communication complexity of O(n3) in total, and either

O(1) [43] or O(logn) time complexity [10], but require complex distributed key generation

protocols.

Common coins in crash-silent binary consensus. Attiya and Welch [16] adapt the coin of

Canetti and Rabin [33] for the crash-silent model with an oblivious adversary. The authors

introduce the concept of common core, which is a set of n − f values that all nodes are

guaranteed to receive after engaging in three rounds of broadcast with O(n3) communication

complexity. In fact, the nodes obtain a superset of the common core – obtaining the exact

same set would be equivalent to solving consensus –, but cannot identify which of the values

are actually part of the common core. The coin has constant bias, thus expected O(1) running

time, and a bit complexity of O(n3). Using the coin and the concept of common core, the

authors propose an approach for binary consensus that uses majority voting, and obtain the

same complexity as the coin. More recent protocols [114] assume a shared secret among the

nodes, distributed by a trusted party, in order to bootstrap a perfect common coin.

Like Attiya and Welch [16], QSC’s novel group communication protocol TSB delivers a com-

mon core to every node without needing a trusted dealer. However, in contrast to their work,

TSB also enables each node to identify some non-empty subset of the values that definitely

belong to the common core, which is crucial for QSC’s safety properties.

4.1.3 Arbitrary value consensus

Arbitrary value consensus is a more difficult problem than binary consensus, because it solves

agreement on a value from a set not known apriori. Binary common coins know the domain

apriori and output 0 or 1. In contrast, choosing a random proposal in arbitrary value consensus

requires knowledge of some node proposals in order to satisfy validity. In binary consensus,

nodes broadcast values in order to fulfil validity, and use the majoritarian value to converge

on the decision. In contrast, arbitrary value consensus cannot rely on majorities because the

domain of values is larger.

Approaches using reliable broadcast. In the literature, there are two directions to arbitrary

value consensus. One direction is to use reliable broadcast. Simply using n instances of reliable

broadcast merely guarantees that eventually all nodes receive the same set of values, however,

the nodes cannot tell when the set is complete. Cachin et al. [32] describe a crash-silent

algorithm that, at the end of each round, feeds the possibly incomplete reliable broadcast set

into a common coin. Eventually, when the sets are complete, the coin has the same domain on

all nodes and outputs the same random value, leading to an O(N 3) bit complexity and O(N )

expected time.
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Miller et al. [89] and Keidar et al. [73] take the approach of amortizing the cost of reliable

broadcast by agreeing on multiple values per consensus instance. Their proposals solve Byzan-

tine consensus with an adaptive adversary. Both use the construction of Cachin et al. [28] to

instantiate reliable broadcast with a communication complexity of O(N |l |+N 2 log N ), where

|l | is the message size, and they batch O(N log N ) values without increasing the communica-

tion complexity. Honeybadger [89] proposes a construction for an asynchronous common

subset (ACS) (original proposed by Ben-Or [18] for a different purpose), where nodes run n

parallel reliable broadcasts and input 1 into n corresponding binary agreement instances of

Mostéfaoui et al. [91] to signal the completion of a reliable broadcast instance. When n − f

of the consensus instances complete, the protocol stop. Thus, their protocol agrees on a set

of values. The communication complexity is O(N 3 log N ) (amortized O(N )) and the running

time is O(log N ) in expectation (but can be reduced to O(1) at the expense of throughput).

Keidar et al. [73] obtain the same (amortized) communication complexity and O(1) running

time in expectation.

QSC does not rely on reliable broadcast, but instead introduces TSB, a communication

primitive ensuring that, when the call returns, each node receives a common core of values

and can identify a non-empty subset of values that are part of the common core.

Consensus approaches using leader election. Other Byzantine consensus protocols take

almost the opposite direction: There is no need to reliably broadcast all values when we only

require agreement on a single value. Thus, they reduce the communication cost by electing a

leader (via a common coin) as early as possible and only concern themselves with agreeing

on the leader’s proposal. VABA [9] is the first protocol to achieve O(n2) communication

complexity and O(1) expected termination. VABA first ensures that a node can become a

leader only if its value has been received by sufficient nodes. It uses four rounds of a secure

echo-broadcast, each of which ensures that f +1 honest parties observed the broadcasted

value and giving increasingly stronger guarantees about which nodes observed certain values.

Each node that managed to promote its proposal nominates itself for a leader election phase.

From that point, nodes only concern themselves with what other nodes observed about the

leader’s proposal and either decide, or run a view change that ensures safety across rounds.

Dumbo-MVBA [83] also uses leader election via a common coin, however, for large messages

of size O(n). Their contribution is to reduce the communication complexity for broadcasting

proposals from O(l∗n2) to O(l∗n) for broadcasting n proposals of size l . They do so by having

each node threshold-share its proposal, which takes per node n messages of size O(l /n). The

coin tossing has a communication complexity of O(n2), which dominates the cost, however, it

does not depend on the message size. Thus, Dumbo-MVBA can reach consensus on messages

of size l =O(n) for a total communication complexity of O(n2) and expected termination in

O(1).
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Set of all proposals, only known to an omniscient observer

 Existent A (EA)

Existent B (EB) 

Common A (CA)

Common B (CB)

Universal A (UA)

U I ⊆ C J ⊆ E K, ∀ I,J,K ∈ {A, B}

 Universal B (UB)

Sets’ relations:

“These proposals must be
in C B“

� Node A estimates node B’s sets based on U A ⊆C B ⊆ E A

(a) (b)

E A

C B

U A

“A proposal I don’t know of
cannot be in C B“

“This proposal might or
might not be in C B“

“This proposal might or
might not be in C B“

��

“A proposal I don’t know of
cannot be in C B“

All proposals

Figure 4.1: Illustrative example of the QSC sets of two nodes A and B. (a) The Existent set of
each node represents the node’s view of proposals; the Common set represents the node’s view
of proposals in all live nodes’ Existent sets; and the Universal set represents the node’s view of
proposals in all live nodes’ Common sets. The respective sets of different nodes may not be
the same. The guarantee is that UI ⊆C J ⊆ EK ,∀I , J ,K ∈ {A,B}. (b) Node A’s knowledge based
on its own sets ExistentA and UniversalA of node B’s CommonB set.

Comparison with QSC. Although QSC is an approach for crash-silent but not Byzantine

arbitrary value consensus, we believe it is worth contrasting QSC to the approaches above to

give an intuition. Like the approaches above, QSC avoids broadcasting sets of values of size

O(n), in order to keep the communication complexity low. However, unlike the approaches

above, QSC does not achieve that by electing a leader or using a common coin. Instead, QSC
relies on trimming the set of values that could be decided on in two steps per round. Because

nodes may not always trim the same values, several decidable values may survive, and nodes

in QSC converge towards the same value using private randomness attached to the values.

4.2 Overview

QSC is an approach to achieving arbitrary value consensus in the fail-silent model. This

section explains how QSC achieves consensus without depending on common coins or a

setup dealer. QSC enables every node to estimate (limit uncertainty on) the values that every

other node is aware of. We first give the intuition of why QSC’s approach of limiting uncertainty

benefits safety (validity and agreement). Then, we explain why TSB’s thresholds and private

randomness are essential for expected constant-time agreement.

4.2.1 Safety by limiting uncertainty

Challenge 1: Validity. Consensus protocols need to ensure consensus validity. Validity de-

mands that nodes decide on a value proposed by some node; hence, nodes must be aware

of each other’s proposed values. Some protocols use reliable broadcast at each node, which
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ensures that all live nodes eventually get the broadcast values. Due to their communication

complexity, however, these approaches are only practical for batch decisions, but not for

single-shot consensus.

Other protocols do not strive for the transmission of all values reliably; rather, they wish to

be able to retrieve the value of any live node on demand. Each node repeatedly broadcasts

its value to a quorum of other nodes using echo-broadcast, allowing anybody to obtain the

value by later asking a quorum. Echo-broadcast has a lesser complexity of communication

than reliable broadcast, making it suitable for single-shot consensus on small or big values.

Unlike the techniques above, QSC seeks to ensure that each node not only learns certain

values, but can also limit the uncertainty between the values it learned and the values any

other node may have learnt (Fig. 4.1-(a)). QSC accomplishes this by building on TSB, a new

primitive for group communication that utilizes echo broadcast. Through 2 calls to TSB, each

node i learns of three sets: an existent set Ei , a common set Ci , and an universal set Ui . The

essential guarantee is the set inclusion Ui ⊆ C j ⊆ Ek ,∀ nodes i , j ,k. From the viewpoint of

node i , its sets E and U set boundaries for the values in the C set of any other node. TSB helps

QSC in ensuring validity, and limiting uncertainty is a stepping stone towards agreement, as

we show in the next section.

Challenge 2: Agreement. Most existing approaches achieve agreement via the use of a com-

mon coin with a constant bias. Some systems, for instance, run binary agreement sub-

protocols that utilize a binary common coin. Others use a common coin to elect a leader, by

providing the set of nodes as the coin input. All nodes elect the same leader, and then retrieve

the leader’s proposal from a quorum of nodes. However, constant-bias common coins need a

dealer-operated setup step, an assumption that QSC eliminates.

QSC does not need a common coin, just private randomness. Recall that, from node i ′s per-

spective, a proposal P ∈ Ei and P ∈Ui must also P ∈C j , because Ui ⊆C j ⊆ Ei , ∀ i, j. However,

there might be multiple such proposals P , as it is the case in Fig. 4.1-(b). To guide proposal

selection, each node generates a random number (which we refer to as priority) and appends

it to its proposal before broadcasting it using TSB. The intuition is that priorities create

an ordering relationship across proposals, which nodes use to converge on their proposal

selection across rounds. If the highest priority proposal PHi ∈ Ei also satisfies PHi ∈Ui , then

the highest priority proposal in any other node’s set C j can only be PHi (our protocol also

allows for priority ties). A node that observes this condition can decide. A node that cannot

decide still relies on ordering to select its proposal for the next round. Section 4.3 describes

the protocol in detail.

Note that priorities do not have a qualitative meaning regarding a proposal, In other words,

no proposal is better than any other. The only goal of priorities is to speed up convergence, by

enabling nodes to compare proposals and converge on the same one.
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4.2.2 Liveness using random priorities

Challenge 3: Termination. Existing approaches that use a common coin depend on the coin’s

constant bias for optimal termination. In particular, it takes an expected constant number of

rounds for the constant-bias coin to output the same value, given the same input.

QSC relies on the TSB thresholds for termination. TSB is a novel group broadcast abstrac-

tion that provides threshold-reliability, and consequently the E , C and U sets each contain

a threshold number of values. QSC’s termination is contingent on the probability that the

highest priority value in E also exists in U , which is constant assuming adequate TSB thresh-

olds (Section 4.4) and a network-oblivious adversary.

4.3 QSC: Que Sera Consensus

This section explains QSC in depth. First we present the system model and assumptions. Next

we describe the QSC algorithm, which is based on private randomness and full-spread TSB.

FSTSB is a special case of TSB, and we briefly outline how its characteristics determine the

relationship between the E , C and U sets. Finally, we use the features of FSTSB and private

randomness to argue for the safety and liveness of QSC.

4.3.1 System model

A group of n nodes run QSC to reach consensus. Of these, at most a quorum f can crash in

the fail-silent model Section 4.1.1, with n = 2 f +1. Nodes that crash remain crashed forever

and do not take any other step in the protocol.

The nodes are connected through a communication network. The network is asynchronous,

which means that the network may take arbitrarily long to deliver any message, but it eventu-

ally delivers all messages between non-crashed nodes. The network can achieve that by using

perfect links [32], implemented for example in TCP [113]. For simplicity, a node broadcasting

a message sends n identical messages, one to each node including itself, which takes O(1)

time. In practice, one may also use broadcast algorithms that have a lower communication

complexity at the cost of higher time complexity, such as protocols based on gossiping [48, 71].

However, using these techniques is outside the scope of this thesis.

We also assume that the network adversary is content-oblivious, which means that it cannot

observe the contents of messages sent on links, nor any node state Section 4.1.1. In practice,

this assumption can be realized by having nodes communicate over private channels (e.g.,

encrypted with TLS [99]).
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Interface 7: Full-spread TSB (FSTSB) at node A.
Call : RA ,B A ←FSTSB(m)
Input : m represents the message to be broadcast by the node
Output : Sets RA , B A containing messages broadcast by nodes.
Parameters : tb represents the broadcast threshold, with tb > 0 and tb ≤ n − f .
Property : |B A | ≥ tb

: The messages in B A are received by all live nodes at the end of the step: ∀ live node I ,
B A ⊆ RI .

4.3.2 The QSC algorithm

QSC builds atop two primitives: (1) a novel full-spread threshold synchronous broadcast

(FSTSB) network abstraction, and (2) private randomness. We first briefly summarize their

properties and then the QSC protocol.

Full-spread TSB (FSTSB). We briefly summarize full-spread TSB or FSTSB (Fig. 4.2), be-

cause is a fundamental component of QSC. TSB is a novel group broadcast abstraction that

provides threshold-reliability regarding the messages broadcast and received by nodes. When

a group of nodes uses the TSB primitive to broadcast a message each, and there are enough

participants to meet certain thresholds, the call returns two message sets R and B to each

node. R holds the messages received by the node; B comprises some messages that were each

received by a threshold number of nodes.

FSTSB is a special case of TSB using certain thresholds to guarantee that all messages in any

node’s B set are received by all live nodes in their respective R sets. In other words, Bi ⊆ R j ,∀
nodes i , j . Interface 7 depicts the primitive’s interface.

By focusing on the communication properties for a threshold of the nodes, FSTSB enables

slow nodes to skip FSTSB steps and catch up to quicker nodes performing subsequent FSTSB
steps. It is essential to note that the R and B outputs of a node are not exclusive to that node.

In fact, FSTSB (and TSB) does not guarantee, for example, that a node’s own message appears

in its own R and B sets. Consequently, a node may use the R and B sets of another node,

and this would be a valid output satisfying FSTSB’s properties. Section 4.4.4 provides further

information on the "catch-up" process. In QSC, nodes repeatedly call FSTSB, as explained

later in this section, and QSC may employ the FSTSB catch-up to allow slow nodes to catch

up to subsequent QSC rounds.

Private randomness. We abstract private randomness through a node-private PrivateCoin
primitive that operates independently from other nodes. At each call, PrivateCoin outputs a

value selected uniformly at random from a domain D that has a partial ordering relationship

¹. The domain D is publicly known. For example, D could be the domain of 32-bit integers,

which has the ordering relationship ≤, and PrivateCoin calls the random number generator

provided standard in many operating systems.
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FSTSB

m1
m2

mn

R1,B1
R2,B2

Rn,Bn

B i ⊆ R j , ∀ i, j ∈ {1, .., n}

Full-spread TSB for n nodes R1
R2

R3

B2B1

B3

(a) (b)

Figure 4.2: Full-spread TSB (FSTSB). (a) FSTSB is a group communication primitive, where
each node inputs a message and outputs two sets R (received messages) and B (messages
received by other nodes). The respective sets of different nodes may not be the same. The
guarantee is that Bi ⊆ R J∀I , J ,K ∈ {1, ..,n}. (b) Illustrative example of the R and B set relation-
ship for three nodes.

QSC. Algorithm 8 depicts the QSC algorithm. QSC proceeds in rounds, and each node starts

a round with a proposal: either initial or chosen at the end of the previous round. The node

appends to the proposal a random priority obtained using its PrivateCoin, and broadcasts it

via FSTSB. The results of the first FSTSB execution initialize the sets ExistentA and B A . The

node then broadcasts the greatest priority (designated best for simplicity) proposal in B A in the

second FSTSB run, and initializes its sets CommonA and UniversalA with the execution results.

The node decides if the best proposal in UniversalA is also the best proposal in ExistentA ,

and there is no other proposal with the same priority in either UniversalA or in ExistentA .

Whether or not the node decides, it continues the protocol by choosing any best proposal

from CommonA as its proposal for the following round.

Intuition behind the decision condition. We now show why proposal ordering by priority and

the set inclusion relationship UniversalI ⊆CommonI ⊆UniversalK ,∀ nodes I , J ,K , are crucial

for safety. The proofs can be found in the next section. We modify the decision condition, and

provide examples of how nodes that cannot decide may make unsafe choices. Assume that

node A decides on some pHi that is not uniquely best in UniversalA . We take the perspective

of another node I to explain all possible “undecided” cases, depicted in Fig. 4.3.

First, if A decided on pHi ∈ ExistentA \ CommonA , there can be a node I for which pHi ∉
ExistentI (Fig. 4.3-(a)). If none of the nodes are aware that pHi exists, they have no chance of

ever selecting or deciding on pHi .

Second, if A decided on pHi ∈ CommonA \ UniversalA , we know that all live nodes I must

have pHi ∈ExistentA due to the set inclusion relationship. However, how could these nodes

determine which proposal is pHi ? If such a node I merely selected the best proposal from

its ExistentI set, it would not be safe, since it may choose a proposal P that A had not seen,
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Algorithm 8: Que Sera Consensus (QSC) at node A.
Uses : PrivateCoin, FSTSB, tb = n − f unless otherwise specified
Input : v , the proposed value of node A
Output : v ′, the decided value
forever // loop forever over consensus rounds

ExistentA ,B A ,CommonA ,UniversalA ← {}, {}, {}, {} // Reset sets every round

r ←PrivateCoin() // choose proposal priority using private randomness

m ← v || r // append priority to proposal

(ExistentA ,B A) ←FSTSB(m, tb ) // broadcast my proposal and learn existent values

m′ ← any best proposal in B A // choose the best proposal that I know all nodes know of

if m′.v is the value of all proposals in ExistentA then // if all proposals have the same value

if not decided then // decide if not already decided

Decide (m′.v)
break // exit the algorithm

(CommonA ,UniversalA) ←FSTSB(m′, tb ) // broadcast m′ and learn existent, universal sets

m′′ ← best proposal in UniversalA // choose any best universal proposal

if m′′ uniquely best in UniversalA then // proposal m′′ is the only best

if m′′ is uniquely best in ExistentA then // proposal m′′ has no possible competition

if not decided then // decide if not already decided, but continue

Decide (m′′.v)
m ← any best proposal in CommonA // continue with the best common proposal

v ← m.v

UA

EA

PHigh

CA

PHigh ∈ EA \ CA. 
Node I might not 
decide PHigh if 
PHigh ∉ E I 

PHigh ∈ CA \ UA. Node I 
might not decide PHigh if 
PHigh ∉ C I, and PHigh 
might not be the best ∈ E I  

A cannot decide when:

PHigh ∈ UA but not 
uniquely best in EA. 
Node I might choose 
P’High instead of PHigh.
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EA

PHigh

CA

UA

EA

PHigh
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PHigh P’High
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EA
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Figure 4.3: QSC decision process at the end of a round.

as in the previous example (P ∉ ExistentA). And, because there may be nodes I for which

pHi ∉CommonI , selecting the best proposal in CommonI would not safe either (Fig. 4.3-(b)).

Finally, if A decided on pHi ∈UniversalA but ∃p ′
Hi ∈ ExistentA with the same priority as pHi ,

then all other nodes I may have both p ′
Hi and pHi ∈ CommonI and may all choose P ′

Hi for

the next round (Fig. 4.3, (c))). In all of these situations, nodes cannot tell whether a proposal

choice is safe.

Intuition for safety across rounds. If a node A cannot decide, it must choose a safe proposal

for the subsequent round. A safe proposal must consider the possibility of a decision in the
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present round. If another node I has already decided p, then all remaining nodes must also

eventually decide p. Thus, the question is: is it unsafe if some nodes pick values different than

p for the next round?

We argue that an “undecided” node A must select the best proposal pHi ∈ CommonA for

the following round. Intuitively, any proposal p that a node I decided must be the best ∈
CommonA . First, P ∈ CommonA since UniversalI ⊆ CommonA and any node I that decides

chooses its decision from UniversalI . Second, node I that decided ensured that there was no

better proposal ∈ExistentI . Consequently, because CommonA ⊆ExistentI , there cannot be a

proposal ∈CommonA that is better than p, ∀ live nodes A.

A remaining question is: is it unsafe if a node chooses values different than the best in its

Common set for the next round? The answer is yes because, depending on the priorities and

network scheduling, certain nodes might decide on these unsafe values. If node A chose

for the following round pHi ∈ExistentA , it is possible that pHi ∉ExistentI (Fig. 4.1). In other

words, the node that decided may not be aware of pHi . The crucial observation is that all

undecided nodes may behave like A. In fact, PHi may be ∈ExistentA for all live nodes A, but

still pHi ∉ExistentI . Then, all undecided nodes choose pHi for the next round, and, although

decided nodes choose p, there is a risk that the remaining nodes decide pHi . Hence, node A

may violate safety by making an unsafe proposal in the next round.

Assume node A selects for the next round pHi ∈ UniversalA . It is possible, however, that I ’s

decided proposal p ∈CommonA \ UniversalA . In other words, p is an universal proposal to an

external observer and to some nodes, but node A is unaware of this fact. Consequently, A and

other live nodes may introduce an unsafe proposal in the next round.

Liveness intuition. For liveness, QSC relies on two techniques: randomization of proposals

and a content-oblivious message scheduler. (1) Randomization is necessary in QSC, as it is in

all asynchronous consensus protocols, to avoid repeated “unfavorable” executions in which

no node observes a decision condition. QSC ensures this by requiring each node to assign

a fresh random priority to its proposal at the start of each QSC round. The node attaches a

fresh priority regardless of whether it retained or changed its proposal. (2) QSC must prevent

a network attacker from reducing the effect of randomness by timing message delivery such

that no node observes a decision condition. Due to our assumption of a content-oblivious

adversary, who cannot observe node state or message contents on network links, the adversary

lacks the knowledge necessary to conduct an attack more effective than random message

delivery.

4.3.3 Safety

This section provides proofs that QSC satisfies the validity, agreement and integrity properties

of consensus.
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Lemma 4.3.1 (Set relationship). In any QSC round, UniversalI ⊆ CommonJ ⊆ ExistentK , ∀
nodes I , J , K that complete the second FSTSB call of that round.

Proof. Let node A be a node that completes its second FSTSB call in round r . We make two

observations. By FSTSB’s properties, UniversalA ⊆CommonI ,∀ nodes I that complete their

second FSTSB call in round r .

Also by FSTSB properties, all messages received in CommonA were broadcast by some node

in the second FSTSB instance. We now show that the message m′ broadcast by any node A in

the second FSTSB instance has the property m′ ∈ExistentI ,∀ nodes I that complete their first

FSTSB call. Let node A be a node that completes its first FSTSB call in round r . By FSTSB’s

properties, B A ⊆ExistentI ,∀ nodes I that complete their first FSTSB call in round r . Node A

chooses m′ ∈ B A , thus m′ ∈ExistentI ,∀ nodes I that complete their first FSTSB call in round

r . This observation enables us to conclude that all messages in CommonA are also in ExistentI ,

∀ nodes I that complete their first FSTSB call; thus, CommonA ⊆ExistentI .

Node A was chosen to be any node that completes its second FSTSB call in round r , and

round r was not chosen in any special way, thus the relationship holds for any round. Together

with the first observation, we conclude that UniversalI ⊆CommonJ ⊆ExistentK , ∀ nodes I , J ,

K that complete the second FSTSB call of any round r .

Lemma 4.3.2 (Validity). In QSC, any decided value was a value proposed by some node.

Proof. Let node A decide in some round r . We show that, after the first FSTSB call of any

round r , all sets of node A ExistentA ,B A ,CommonA ,UniversalA contain only node proposals.

Because node A decides either on a value from m′ ∈ B A , or on a value m′′ ∈ UniversalA , it

follows that A can decide only on proposed values, regardless the round r when it decides.

Since node A was not chosen in a special way, it follows that all nodes that decide decide on a

proposed value.

We show by induction that all messages in ExistentA after the first FSTSB call of any round

were proposed by some node. Base case: In round r = 1, every node executing the first FSTSB
call broadcasts the input proposal and the set ExistentA is empty before the call. By FSTSB’s

properties, because all messages in ExistentA were broadcast by nodes during the first FSTSB
call, all messages in ExistentA were proposed by some node. Induction step: Assuming that in

round r all messages in ExistentA were proposed by some node, we show the hypothesis holds

for round r +1. By Lemma 4.3.1, at the end of round r we have CommonA ⊆ ExistentA , and

nodes continue to the next round with m ∈CommonA , so by the induction step m ∈ExistentA

must have been proposed by some node. Thus in round r +1, all nodes broadcast such a

proposal via the first FSTSB, so all messages in ExistentA were proposed by some node.

By Lemma 4.3.1, after the second FSTSB call of round r we have UniversalA ⊆ CommonA ⊆
ExistentA . Together with the claim above, we conclude that all values in UniversalA and
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CommonA were proposed by some node.

Leveraging the properties of FSTSB, after the first FSTSB call of every round B A ⊆ExistentA ,

thus all values in B A were also proposed by some node.

Lemma 4.3.3. Integrity. No node decides twice.

Proof. A QSC node may decide only in two cases: via the early decision path or via the normal

decision path. Both path check whether the node decided already, and only decide if the node

had not already decided.

Agreement. There are two conditions in QSC where processes can decide. When a node A

decides using the first condition, i.e., when all proposals in the ExistentA set have the same

value, we say that it takes an early path decision. When the node decides using the second

condition, i.e., when the best proposal in UniversalA is uniquely best in both UniversalA and

ExistentA , we say that it takes a normal path decision. We prove lemmas for both decision

paths.

Lemma 4.3.4 (Early path decision.). Assume w.l.o.g. that node A is the first node to decide. Let

node A decide v in round r via the normal path decision. Then no node can decide v ′ 6= v in

round r ′ ≥ r .

Proof. We prove by contradiction. Assume ∃ node I that in round r ′ decides v ′ 6= v . We analyze

separately the case when r ′ = r and r ′ > r .

By the early decision condition of node A, ∀p ∈ ExistentA , p.v = v . From the FSTSB prop-

erties, ∀ node I that completes the first FSTSB instance in round r , BI ⊆ ExistentA . Thus,

it must be that ∀p ∈ BI , p.v = v , and the m′ ∈ BI selected by node I has m′.v = v . Our first

conclusion is that, in round r ′ = r , no node can decide via the early path on v ′ 6= v .

By Lemma 4.3.1, UniversalI ⊆ ExistentA in round r , and if node I decides v ′ 6= v , then ∃p ′ ∈
ExistentA s.t .p ′.v = v ′, which contradicts our hypothesis that in round r ′ = r node I decides

v ′ 6= v .

Assume ∃ node I that in round r ′ > r decides v ′ 6= v . ∀ node I advancing to round r +1, node I

proposes any best p ′ ∈CommonI of round r . By Lemma 4.3.1, CommonI ⊆ExistentA in round

r , thus it must be that p ′.v = v . Because the sets are reset at the beginning of round r +1, and

all proposals have value v , no node can ever decide any other value.

Lemma 4.3.5 (Normal path decision). Assume w.l.o.g. that node A is the first node to decide.

Let node A decide v in round r via the normal path decision. Then no node can decide v ′ 6= v in

round r ′ ≥ r .
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Proof. We prove by contradiction. Assume ∃ node I that in round r ′ decides v ′ 6= v . We analyze

separately the case when r ′ = r and r ′ > r .

By the normal path decision condition, the best proposal pHi ∈ UniversalA is uniquely best

in UniversalA , is also uniquely best in ExistentA , and pHi .v = v . If node I decides v ′ in round

r , then ∃p ′
Hi ∈ UniversalI that is uniquely best in UniversalI and ExistentI . By Lemma 4.3.1,

UniversalI ⊆ ExistentA in round r , thus p ′
Hi ∈ ExistentA , and UniversalA ⊆ ExistentI in round

r , thus pHi ∈ ExistentI . We are in the situation that {p ′
Hi , pHi } ⊆ ExistentA with pHi being

uniquely best, which means pHi .r > p ′
Hi ; at the same time, {p ′

Hi , pHi } ⊆ ExistentI with p ′
Hi

being uniquely best, which means p ′
Hi .r > pHi , which is a contradiction.

Assume ∃ node I that in round r ′ > r decides v ′ 6= v . ∀ node I advancing to round r +1, node

I proposes any best p ′
Hi ∈ CommonI of round r . By Lemma 4.3.1, UniversalA ⊆ CommonI ⊆

ExistentA in round r . We now have that pHi is uniquely the best in both UniversalA and

ExistentA , but also p ′
Hi best in CommonI . It must be that p ′

Hi = pHi and in particular p ′
Hi .v =

pHi .v Because the sets are reset at the beginning of round r +1, and all proposals have value

v , no node can ever decide any other value.

Lemma 4.3.6 (Agreement). No two nodes decide differently.

Proof. The lemma follows directly from Lemma 4.3.5 and Lemma 4.3.4.

4.3.4 Liveness

Lemma 4.3.7 (Network schedule independent of priorities). The network delivery schedule

at any node for the first and second FSTSB call in every round is independent of proposal

priorities.

Proof. Recall that the adversary is content-oblivious, i.e., it cannot observe node state or

contents of messages on network links. Thus the adversary cannot link any proposal priority

to its sender node before or during the first FSTSB call of each round r . Thus, message

delivery and in particular the contents of Existent and B sets does not depend on proposal

priority.

A similar property holds for the second FSTSB call: message delivery and in particular the

contents of Common and uni ver sale sets does not depend on proposal priority.

Lemma 4.3.8 (Termination). Once a node decides, all nodes decide in the next round.
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Proof. Assume w.l.o.g. that the node is the first to decide, and decides v in round r . By Lemma 4.3.4

and Lemma 4.3.5, no node can decide v ′ 6= v in round r ′ ≥ r . Thus, all proposals that could be

decided on in rounds r ′ ≥ r contain only value v . Once a node decided in round r , all nodes

take the early decision path in round r +1, because all possible proposals have the same value

v . Nodes decide v if they have not decided already, and all nodes exit.

Lemma 4.3.9 (Decision probability). The probability P that each node decides in any round r

is at least tb/n −pt , where pt is the probability that two proposals tie for highest priority.

Proof. Each node A may decide through the early path with probability Pe or the normal path

with probability Pn . The probability to decide in a round is thus P = Pe +Pn We compute the

probability Pn that a node decides via the normal path in any round r . Because Pe ≥ 0, we

have P ≥ Pn , thus Pn represents the lower bound for deciding in round r .

A node A decides via the normal path when the best proposal p ∈UniversalA is uniquely best in

both UniversalA and ExistentA . We compute the probability Pb that the best overall proposal

in the round is uniquely best and is in both UniversalA and ExistentA . However, note that the

normal path condition may also be true when p is not the best overall proposal in that round.

Thus P ≥ Pb −pt .

Based on the FSTSB properties, each node A completing the first FSTSB call in any round has

|B A| = tb . By Lemma 4.3.7, any proposal has the same probability tb/n to be in B A , thus also

the highest priority proposal of the round pHi ∈ B A with probability tb/n. The probability for

at least one node to have pHi ∈ B A is the sum of the probabilities that each node has pHi ∈ B A ,

i.e., the sum is tb . Nodes that have pHi ∈ B A necessarily broadcast the proposal in the second

FSTSB call. By Lemma 4.3.7, proposal pHi ∈UniversalA with probability tb/n.

Because pHi ∈UniversalA ⊆ExistentA (Lemma 4.3.1), and pHi is the unique best proposal in

that round, there cannot be a better proposal in any of these sets and the probability that node

A decides via the normal path is Pb = tb/n. As the final probability P ≥ Pb −pt , we conclude

that P ≥ tb/n −pt .

4.3.5 Asymptotic complexity

Lemma 4.3.10 (Time complexity). When tb = O(n), the expected termination of the QSC
algorithm is O(1) rounds.

Proof. By Lemma 4.3.9, the first node to decide does so with probability P ≥ tb/n −pt in any

round. Because tb =O(n), we expect the first node to decide in O(1) rounds. By Lemma 4.3.8,

all nodes decide and exit by the next round, thus the overall expected termination time is O(1)

rounds.
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Communication complexity. The communication complexity in QSC is mainly due to FSTSB.

We show in the next section that FSTSB has a message complexity of O(n2) across the n nodes.

The bit complexity of FSTSB is O(n3) if either tb = O(n) or f = O(n), which is consistent

with the largest value for f i.e., when n = 2 f +1. Together with Lemma 4.3.10, QSC has an

asymptotic communication complexity of O(n3).

4.3.6 Optimizations

Round catch-up. Slow QSC nodes may lag behind quicker nodes by several rounds. It is

feasible for a group of QSC-running nodes to complete a FSTSB step even if not all live

nodes participate in the step, provided the group is big enough to meet the communication

thresholds. Consequently, a group of nodes may be many rounds ahead of slower nodes.

Slow nodes may always execute one by one the steps that other FSTSB nodes have already

completed, without compromising the safety of QSC. The key to guaranteeing safety despite

slow nodes is to disregard a node’s proposal if the node does not start a step before another

node has already completed the step. Otherwise, the step-completing node might possibly

miss proposals. Therefore, the only option for a slow node to catch up to step s is for it to adopt

the sets of another node that has already completed step s. The TSB (and implicitly FSTSB)

catch-up mechanism ( Section 4.4.4) enables nodes to catch up one step by simply adopting

the R and B sets of any other node. If a slow node catches up to the first FSTSB call in a QSC
round, it learns Existent and B sets that satisfy FSTSB properties. If the node catches up to

the second FSTSB call in a QSC round, it learns valid Common and Universal sets.

Enabling slow nodes to bypass many QSC rounds and catch up to quicker nodes is a further

enhancement that has the potential to reduce decision latency on these nodes. There is one

constraint to catching-up, however. A node that completes a QSC round must have all three

sets Existent, Common, and Universal in order to decide, and choose and continue with a safe

value. Thus, a node skipping multiple steps should only catch up to the first FSTSB call of a

round. The node may then skip one additional step and catch up to the second FSTSB call. To

implement the optimization, QSC may leverage FSTSB’s multi-step catch-up (Section 4.4.4)

and apply the round constraints above.

4.4 Threshold-Synchronous Broadcast (TSB)

This section describes TSB, a novel group broadcast abstraction that provides threshold-

reliability regarding the messages broadcast and received by nodes. First, we describe the TSB
properties and the group communication thresholds, and explain how to set the thresholds

to obtain FSTSB. For context, we also compare TSB with related primitives, such as reliable

broadcast and common core. Next we provide a construction for TSB based on message

witnessing. We also give details on the “catch-up” mechanism that enables slow nodes to

progress quickly through TSB steps and reach a threshold of faster nodes. Finally we argue that
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the construction satisfies the TSB properties and we give the TSB communication complexity.

4.4.1 The TSB primitive

TSB operates on a group of n nodes communicating in the asynchronous network model and

delivers to the caller nodes threshold-synchronous group communication. Up to f nodes

can fail by crashing silently. Each node in the group that has not (yet) failed broadcasts

one message to the others, and receives some of the messages broadcast by the nodes. The

messages broadcast in a TSB instance - which we simply call TSB step - can only be received

in the same TSB step. Once a node has completed a certain TSB step, it no longer accepts

messages from that step. 1 If a node gets a message from a future step, it defers its processing

until the node advances to that step.

We represent the threshold broadcast primitive as a function TSB(m, tr , tb , ts) → (R,B). When

a node i calls TSB(m, tr , tb , ts) at time-step s, the network broadcasts message m and returns

two message sets R and B to the caller within one TSB step. R comprises at least tr messages

received by the node, each of which was broadcast by a node in that step (tr specifies the

threshold for receiving messages). B is a set of tb messages, each broadcast by a node and

received by ts nodes during the same time step (tb , ts are the broadcast and spread thresholds,

respectively). For the threshold-reliability properties to hold, all nodes participating in the

same TSB step should employ the same thresholds However, nodes may return R and B sets

that vary from those observed by other nodes.

Properties and non-guarantees. Formally, the properties that TSB provides to the caller

node are as follows:

• Receive threshold: There is a node set NR ⊆ {1, . . . ,n} such that |NR | ≥ tr , and R contains

exactly the set of messages m j broadcast by nodes j ∈ NR during step s.

• Broadcast threshold: There is a node set NB ⊆ {1, . . . ,n} such that |NB | ≥ tb , and B

contains exactly the set of messages m j broadcast by nodes j ∈ NB during step s.

• Spread threshold: For every message m′ ∈ B , there are at least ts nodes whose message

sets R to be returned from TSB in step s will include message m′. These node sets j

that receive a particular message m′ might be different for different messages m′ ∈ Bi .

Formally, ∀ node i ,∃ts nodes j s.t. Bi ⊆ R j .

TSB makes no additional guarantees. TSB does not guarantee, for example, that node i ’s own

message m is included in the sets R or B returned to node i . Further, two nodes i and j may

get distinct sets Ri 6= R j and/or different broadcast sets Bi 6= B j returned from their respective

TSB calls in the same step.

1This is readily accomplished by affixing a TSB step number to the messages; if a node receives a message with
a lower TSB step, it simply ignores it.
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One question is how failing nodes impact the properties of TSB. Due to the fact that TSB
involves group communication, nodes that fail during a TSB step may affect the properties

of other nodes. Clearly, if an excessive number of nodes fail, TSB may be unable to meet the

tr and tb thresholds in the first two properties. It is more subtle, however, how a failing node

may affect the ts (spread threshold) guarantee. If a node fails after TSB has spread messages

to it, the failed node will count towards the spread threshold for those messages. The intuition

is, had the failing node completed the TSB step, the node would have received that message

in its R set. Thus, the significance of the spread threshold is that, at the end of the step, TSB
guarantees that messages in each node’s B sets are spread to at least ts − f nodes that also

finish the step.

4.4.2 Thresholds for FSTSB and comparison with other primitives

A particularly useful primitive, which QSC builds on, is full-spread TSB (FSTSB). Full spread

means that, at the end of the step, all messages in B sets have been spread to all live nodes,

in their corresponding R sets. In principle, we could get FSTSB by calling TSB(m, tr , tb ,n).

Note, however, that some nodes could fail prior to the beginning of the TSB step or before

counting as spread witness for sufficient messages. In these cases, it is impossible to satisfy

ts = n and the TSB step never completes. Note, however, that setting ts = n − f would not

fulfill full spread either if fewer than f nodes fail.

Because we cannot specify full spread directly via ts , we obtain FSTSB by relying on classical

quorum intersection in the TSB implementation. Section 4.4.3 gives more details.

FSTSB versus related abstractions. A FSTSB primitive is missing from the classical dis-

tributed systems theory, and it is not easy to substitute it with alternative broadcast primitives

that provide reliability guarantees.

One naïve attempt to emulate FSTSB may consist of launching n instances of reliable broad-

cast, one on each node. Reliable broadcast guarantees to the caller that its message is eventu-

ally received by all live nodes. However, reliable broadcast does not actually inform the caller

when this desired event has happened or even when it can be guaranteed to happen. If each

node just waits for the first t values, where n − f ≥ t > 0, each node may end up with a set that

shares no values with the sets of the other nodes. Indeed, this situation is possible even when

f = 1: Node 1’s message might be delivered last to node 2, after node 2 has already received t

messages and moved on; node 2’s message could be delivered last to node 3 and hence missed

by node 3; and so on. By the time each node reaches its threshold t , it is missing one node’s

message - a different one for every node - and by the end of the protocol, no node’s message

has been received by every node. Thus, n instances of reliable broadcast fail to guarantee that

even a single node’s value is successfully received by all live nodes, which in FSTSB terms

means that the B set is empty.

However, FSTSB does not in general offer perfect communication reliability, whereas n

103



Chapter 4. Asynchronous Consensus without Common Coins

instances of reliable broadcast eventually deliver to all live nodes all successfully broadcast

messages. The disadvantage of reliable broadcast is that, without running binary consensus,

nodes cannot pinpoint the moment in the execution when the delivery occurs. Running

consensus is undesirable since it increases complexity.

A problem strictly easier than TSB is known as common core [16]. The common core is a set of

n − f values, and each node obtains a superset of the common core after broadcasting a value.

However, the nodes cannot identify which values comprise the common core. In TSB terms,

nodes executing the common core obtain R sets that overlap in n − f nodes; nevertheless,

each R set may contain more than n − f messages. Nodes are unable to identify even one of

the messages in the common core; in FSTSB terminology, nodes do not get explicit B sets.

Spreading and identifying a threshold of messages to all live nodes is the strength of TSB. The

next sections presents a TSB construction.

4.4.3 Building TSB

To build FSTSB, we rely on classical quorum intersection. We proceed in two phases - spread

and gather - ensuring that the quorums from both phases overlap. Algorithm 9 depicts the

pseudocode. First, using tSpread, each node obtains its B set by spreading its message to ts

nodes using best-effort broadcast, and collecting tb spread messages. Second, using tGather,

each node collects ≥ tr messages in its R set to ensure that Bi ∈ R j ,∀ nodes i , j .

Algorithm 10 depicts the pseudocode for tSpread. We present the algorithm using the event-

based notation of [32]. The first part of tSpread resembles an echo-broadcast algorithm, also

used by other protocols [9, 69], but without the signatures as they are unnecessary in an

environment with crash faults. Each node spreads its message through best-effort broadcast,

relying on unicast echos from the nodes to understand when the message has spread to (or

has been witnessed by) ts nodes; once witnessed, the node best-effort broadcasts the message.

The node also collects in its R set the messages it echoes. In parallel, the node collects tb

witnessed messages in its B set and finishes the algorithm once it does so, even if its own

message is not yet witnessed.

Algorithm 11 depicts the pseudocode for tGather. Each node simply best-broadcasts its R

set collected during tSpread, which contains the echoed messages. Each node gathers tr

messages sets and appends them to its R set. Messages in all B sets created during tGather
each appear in the R sets of at least ts nodes. Intuitively, when the tr and the ts quorums

overlap, we ensure the FSTSB property that Bi ⊆ R j ,∀ nodes i , j .

Lemma 4.4.1 (TSpread). If 0 ≤ ts ≤ n − f and 0 ≤ tb ≤ n − f , Algorithm 10 implements

TSB(0, tb , ts).

Proof. Let there be n nodes that that call tSpread. We first show that ∃ some node i that (1)

completes tSpread and does not fail; and (2) |Bi | = tb and ∃ts nodes j s.t. Bi ⊆ R j that are either
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Algorithm 9: TSB implements threshold-synchronous broadcast (node A).
Parameters : tr , tb , ts the receive, broadcast, and spread thresholds, respectively
Function input : message m to broadcast
Function output : sets R and B of messages received
State : R,B ← {}, {}

upon call TSB-broadcastm do
R ′,B ← tSpread(m) // Collectively get ≥ tb messages witnessed by ts nodes.

R ′′ ← tGather(R ′) // Gather the witnessed messages.

R ← R ′∪R ′′ // The messages I witnessed directly via tSpread and indirectly via tGather.
output TSB-deliver(R,B)

Algorithm 10: tSpread implements TSB(0, tb , ts) (node A).
Parameters : ts , tb the spread and broadcast thresholds
Function input : message m to broadcast
Function output : sets R,B of messages
State : R,B ← {}
State : echos ← 0 // Counter for the number of echos for m.

upon call tSpread-broadcast(m) do
best-effort broadcast [SEND,m] to all nodes j

upon receiving a message [SEND,m] from node j do
R ← R ∪ {m}
send message [ECHO,m] to node j

upon receiving a message [ECHO,m] from node j do
echos++ // By construction, this node receives echos only for its own message m.

if echos = ts then
best-effort broadcast [WIT,m] to all nodes j

upon receiving a message [WIT,m] from node j do
B ← B ∪ {m}
if |B| ≥ tb then

best-effort broadcast [WIT,m] for all m ∈ B to all nodes j // Ensure that all nodes eventually

observe the exit condition.

tSpread-deliver(R,B)

Algorithm 11: tGather implements TSB(tr ,0,0) (node A).
Parameters : tr the receive threshold
Function input : message m to broadcast
Function output : set R of messages received
State : R ← {}

upon call tGather-broadcast(m) do
best-effort broadcast message [SEND,m] to all nodes j

upon receiving a message [SEND,m′] from node j do
R ← R ∪ {〈 j ,m′〉}
if |R| ≥ tr then

output tGather-deliver(R)

still in the step or completed it. Because this node i broadcasts its B set before completing

the step, all nodes still in the step eventually observe the termination condition, which means

they also complete the step and fulfill the tSpread properties.

Assume w.l.o.g. that no node has completed the step yet. Node i completes the step when
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|Bi | ≥ tb , and it fulfills this condition after receiving tb messages tagged with WIT. We show

that at least tb nodes send WIT messages during the step.

A node k that has not failed sends a messages m with tag WIT after receiving ts ECHO mes-

sages for message m. Node k can only receive ECHO messages for its own message m that

node k broadcast when calling tSpread-broadcast(.) Because messages are eventually deliv-

ered, at most f nodes fail, and no node existed the step, eventually at least n− f nodes receive

node k’s message m, add it to their R sets, and ECHO it. Thus, unless node k fails, it eventually

receives at least n − f ECHO messages and, because ts ≤ n − f , node k eventually broadcasts

a WIT-labelled message.

We need to show that ∃tb that broadcast each a WIT-labelled message during the step. First,

there are tb nodes that do not fail, because tb ≤ n − f . Additionally, by our assumption, no

node completed the step, thus tb nodes will broadcast WIT messages.

Node i eventually receives these WIT messages from the tb nodes that do not fail, and adds

them to its B set, Moreover, each of the WIT messages is in the R sets of ts nodes. This

completes the proof.

Lemma 4.4.2 (TGather). If 0 ≤ tr ≤ n − f , Algorithm 11 implements TSB(tr ,0,0)

Proof. Let there be n nodes that that call tGather. We show that a node i that does not fail

completes the step and, since node i is chosen arbitrarily, any node i completes the step.

Node i completes the step when |Ri | ≥ tr , and it fulfills this condition after receiving tr SEND
messages. A node sends a SEND message when it starts the step. Because n nodes start the

step, of which at most f fail, and tr ≤ n − f , there are tr nodes that do not fail and broadcast a

SEND message each, which eventually are delivered by node i .

Lemma 4.4.3 (Full-spread TSB (FSTSB)). If f < ts , tr ≤ n − f , 1 ≤ tb ≤ n − f , and tr + ts > n,

Algorithm 9 implements FSTSB(tb).

Proof. Consider any nodes i , j that complete the algorithm without failing. Because node i

does not fail, node i also completes the tSpread step. By Lemma 4.4.1, node i ’s set B contains

only messages that node i knows to be in the R sets of at least ts nodes. In other words, ∃ts

nodes j that started the tSpread step (but might have not completed it) s.t. B ⊆ R j . Consider

any message m ∈ B .

All nodes that complete tSpread run tGather, where each node inputs its R set. By Lemma 4.4.2,

every node receives R sets from tr nodes.
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Because tr + ts > n, and both tr , ts > f , there exists at least one node k that does not fail whose

R set contains message m and that passes its R set on to every node that runs tGather. Because

node j does not fail, node j also completes the tGather step and thus m ∈ R j . Because this

applies to all messages m ∈ Bi , we have that Bi ⊆ R j . The reasoning above applies to all nodes

i and j , thus the algorithm implements FSTSB.

Communication complexity. Considering messages of size O(1), the TSB implementation

above has O(n2) message complexity and O(max{tb , tr }∗n2) bit complexity across the n nodes.

In tSpread, each node runs an echo-broadcast algorithm, and then a best-effort broadcast

algorithm, for a total of O(n2) messages and O(n2) bit complexity. At the end, every node

broadcasts its B set, for a total of O(n2) messages and O(tb ∗n2) bit complexity. In tGather,

each node runs a best-effort broadcast algorithm for set R , with a total message complexity of

O(n2) and a bit complexity of O(tr ∗n2).

For FSTSB, the message complexity across the n nodes is O(n2). The bit complexity depends

on tr > f and tb . If both f and tb have size O(1), then the bit complexity of the algorithm is

O(n2). If either of them is O(n), the bit complexity becomes O(n3).

4.4.4 Optimization: catch-up mechanism

One possible optimization is to enable nodes to skip through TSB steps by adopting another

node’s R and B sets. Note that this is possible because a node’s sets do not contain any node-

specific information. The only requirements is that any node’s sets meet the group-wide

properties and thresholds. Indeed, a threshold of nodes may advance quickly through TSB
steps as soon as they meet the required thresholds, while other nodes may fall behind. To help

slower nodes catch up, we could change the algorithm as follows. Every node starting a step

broadcasts not only its message, but also its R and B sets of the previous step. A node in step s

receiving a message from step s +1 immediately completes the step by adopting the R and B

sets in that message, which fulfill the properties required of any node completing step s.

This optimization may lead to faster implementations in practice, while not changing the

asymptotic communication complexity. A node broadcasting in tSpread its R and B sets

together with its message leads to a total bit complexity of tSpread of O((tb + tr )∗n2), and

an unchanged message complexity of O(n2). Overall, the TSB communication complexity is

O((tb + tr )∗n2). Compared to the previous complexity of O(max{tb , tr }∗n2), both implemen-

tations amount to O(n3) when at least one of tr or tb is O(n), or O(n2) when tr and tb are both

O(1)

One remaining question is whether a node could catch-up multiple steps at a time. From

TSB’s standpoint, there is no obstacle: A node that skips from step s to step s +k, where k > 1,

completes only step s +k −1 (by adopting the R and B sets of a node that completed step
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s+k−1) and starts step s+k. The node does not complete steps [s, s+k−2]. Depending on the

higher-level primitive that calls TSB, however, it may not make sense for nodes to arbitrarily

skip steps. For example in QSC, nodes can skip any number of steps, as long as they do not

skip to the middle of a QSC round. If desired, one could enforce that nodes skip at most one

TSB step at a time. One could achieve that via suitable thresholds that require a majority of

nodes in a step for any node to be able to complete the step, or by adding the assumption that

messages are pairwise-ordered, e.g., via TCP.

4.5 Discussion

QSC with different failure modes. TSB and QSC seem to be suitable (with a few changes)

for a Byzantine environment, as the earlier work of [52] indicates. It would be interesting to

develop TSB and QSC for hybrid failure modes, that separates nodes that are silent forever -

which affect liveness - from those that are Byzantine and eventually send a message - which

affect safety. Specifically, consider that up to e (evil) nodes can Byzantine, and up to f nodes

can crash (fail) or be silent forever. Denoting by V the set of Byzantine nodes, and by F the set

of nodes that eventually crash, then V \ F denotes those nodes that that are Byzantine and

eventually send a message, and F \ V denotes the honest nodes that crash. In essence, the

set V is relevant for QSC safety, and the set F is relevant for liveness in TSB. This model is

generic: When e = 0, then the model becomes the classical crash-stop model; when f = 0, then

the model becomes the anytrust threat model. This separation might enable more efficient

protocols for TSB and QSC.

4.6 Summary

We designed QSC, the first practical crash-fault-tolerant asynchronous consensus protocol

that does not rely on common coins. QSC employs private node randomness that each node

attaches to its proposal. Nodes disperse proposals using our novel group communication

primitive, threshold synchronous broadcast (TSB), which provides step-synchronous message

delivery atop an asynchronous network TSB guarantees that each node receives a common

core of values and can identify a non-empty subset of values that are part of the common core.

TSB also helps QSC be responsive by progressing at the speed of a threshold of nodes, and

reduces design complexity via modularity. Although QSC does not break any asymptotic com-

plexity bounds, QSC’s design may enable Byzantine fault tolerant asynchronous consensus

that does not require expensive distributed key generation protocols.
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We believe that distributed systems designers and practitioners can and should build reliable,

responsive systems by making Lamport exposure and asynchrony a core consideration in

their design. Our first key insight for limiting exposure is to place focus on user-observed

guarantees. By recognizing that strongly-consistent globalized infrastructures often exhibit

localized needs for access, such as users interacting through workplace collaborative applica-

tions, data confined to jurisdictions due to regulations, and patterns of economic activity, we

proposed exposure-limiting systems that removing false or implicit dependencies unnecessary

for the user’s activity. We designed Limix, the first distributed metadata coordination service

that enables global management in cloud environments while protecting local accesses from

distant failures. Limix insulates global strongly-consistent data-plane services and objects

from remote gray failures, network partitions, and slowdowns by ensuring that the definitive,

strongly-consistent metadata for every object is always confined to the same region as the

object itself. We also designed Nyle, a trust-but-verify distributed ledger architecture that

limits transaction exposure in Byzantine environments. Both Limix and Nyle support several

exposure metrics, such as jurisdictional boundaries suitable for regulatory reasons, or round-

trip time that additionally bounds slowdowns. The autozoning scheme we propose ensures

that any user can continue to access any strongly consistent object that matters to the user

located at distance ∆ away, while being insulated from failures outside a small multiple of ∆.

Our second key insight is that coordination protocols should ideally be responsive to adverse

and changing network conditions, by progressing at the actual speed of the network. However

the current ecosystem only infrequently employs asynchronous protocols, which are capable

of managing such situations. We demonstrated though the design of QSC that it is possible to

eliminate the common coin assumption and obtain a responsive algorithm in the crash-fault

model. Although QSC does not break any asymptotic complexity bounds, it relies only on

node-private randomness, which could make possible extensions in the Byzantine model

that require only verifiable random functions instead of expensive distributed key generation

protocols.
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5.1 Future work

Dependencies across layered systems. One challenge is complex cross-layer dependencies.

Today’s web/cloud paradigm is addicted to considering the location of data, metadata, and

code to be unimportant. While convenient for development, this paradigm increases Lamport

exposure. While Alice and Bob collaboratively edit a document, for example, layering creates

many dependencies beyond the document data itself: (1) Higher in the stack, web-based user

interfaces may pull icons and JavaScript from all over the world. (2) Lower in the stack, Alice’s

requests crossing the public Internet depend on BGP routing and many network elements out

of the application provider’s control. (3) Network congestion or other loads on Alice’s zone

from requests coming from outside the zone might degrade Alice’s access.

We might try to apply Limix across all layers in a system. This approach could in principle

account for all dependencies, but would require many stakeholders to coordinate. A more

tractable approach is to focus primarily on one layer, such as the application, accepting that

uncontrolled residual Lamport exposure may persist in other layers. While likely impossible to

eliminate, applications might reduce residual Lamport exposure from lower layers by building

on reservation-based infrastructure proving performance isolation, such as MPLS tunnels or

leased lines at the network layer.

Byzantine asynchronous consensus. With QSC, we show that it is possible to solve asyn-

chronous consensus in the crash-fault model without needing common coins. In the crash-

fault model, QSC removes the need for a shared secret set up by a dealer. It seems possible to

adapt QSC to the Byzantine model, thereby removing the need for common coins. This could

be a major step forward towards Byzantine asynchronous consensus protocols that require

only verifiable random functions instead of expensive distributed key generation protocols.
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