3PBCS: A Privacy-Preserving, Personhood-Based Credential System

Ksandros Apostoli, M.Sc. Cybersecurity **Supervised by**: Simone Colombo (EPFL/DEDIS), Daniel Moser (CYD Campus) **Professor**: Dr. Bryan Ford (EPFL/DEDIS) **Project Type**: Master Thesis Project

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

armasuisse Science and Technology Cyber-Defence Campus

March 22, 2022

Motivation: Credential Misuse 101

Credential: A set of one or more claims made by the same entity (W3C, 2021).

- Holds 100 sets of Digital Credentials (Williams, 2020),
- Uses credentials to engage in **45** Authentication Events daily (Mare et al., 2016).

Motivation: Credential Misuse 101

Credential: A set of one or more claims made by the same entity (W3C, 2021). ... typically containing excessive amounts of **Personal Identifiable Information**.

- Holds 100 sets of Digital Credentials (Williams, 2020),
- Uses credentials to engage in 45 Authentication Events daily (Mare et al., 2016).

Credential Misuse

Motivation: Credential Misuse 101

Credential: A set of one or more claims made by the same entity (W3C, 2021).

... typically containing excessive amounts of **Personal Identifiable Information**. The average user:

- Holds **100** sets of *Digital Credentials* (Williams, 2020).
- Uses credentials to engage in **45** Authentication Events daily (Mare et al., 2016).

Motivation: Credential Misuse 101

Credential: A set of one or more claims made by the same entity (W3C, 2021).

... typically containing excessive amounts of **Personal Identifiable Information**. The average user:

• Holds 100 sets of Digital Credentials (Williams, 2020),

• Uses credentials to engage in **45** Authentication Events daily (Mare et al., 2016).

Credential Misuse

Motivation: Credential Misuse 101

Credential: A set of one or more claims made by the same entity (W3C, 2021).

... typically containing excessive amounts of **Personal Identifiable Information**. The average user:

- Holds **100** sets of *Digital Credentials* (Williams, 2020).
- Uses credentials to engage in **45** Authentication Events daily (Mare et al., 2016).

Credential Misuse

Motivation: Credential Misuse 101

Credential: A set of one or more claims made by the same entity (W3C, 2021).

... typically containing excessive amounts of **Personal Identifiable Information**. The average user:

- Holds **100** sets of *Digital Credentials* (Williams, 2020).
- Uses credentials to engage in **45** Authentication Events daily (Mare et al., 2016).

State-of-the-Art misuse practices:

Motivation: Credential Misuse 101

Credential: A set of one or more claims made by the same entity (W3C, 2021).

... typically containing excessive amounts of **Personal Identifiable Information**. The average user:

- Holds 100 sets of Digital Credentials (Williams, 2020),
- Uses credentials to engage in 45 Authentication Events daily (Mare et al., 2016).

State-of-the-Art misuse practices:

Weak Privacy Guarantees

Lack of Sybil-Resistance

Lack of Accountability

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

What is on the Menu

- 1. Challenges in the Design of Credential Systems
- 2. Landscape of existing solutions, advantages and shortcomings:
 - Anonymous Credential Schemes
 - Proof-of-Personhood
- 3. The 3PB Credential System
- 4. Implementation Overview
- 5. Evaluation and Limitations
- 6. Demonstration
- 7. Questions and Discussion

Credential Owner

Credential Owner

Service Provider

EPS

Security and Privacy Goals

EPS

EPS

EP!

EP5

EPS

EP!

- Choose attributes to show in clear.
- 2. For private attributes, provide commitments, together with ZKP on their validity.
- 3. Upon verification, sign (partial) credential.
- Aggregate threshold of partial signatures.
- 5. Choose what to disclose.
- Make credential presentation unlinkable from other presentations.

1. Choose attributes to show in clear.

- For private attributes, provide commitments, together with ZKP on their validity.
- 3. Upon verification, sign (partial) credential.
- Aggregate threshold of partial signatures.
- 6. Choose what to disclose.
- Make credential presentation unlinkable from other presentations.

- 1. Choose attributes to show in clear.
- For private attributes, provide commitments, together with ZKP on their validity.
- 3. Upon verification, sign (partial) credential.
- Aggregate threshold of partial signatures.
- 5. Choose what to disclose.
- Make credential presentation unlinkable from other presentations.

1. Choose attributes to show in clear.

EPFI

- For private attributes, provide commitments, together with ZKP on their validity.
- 3. Upon verification, sign (partial) credential.
- Aggregate threshold of partial signatures.
- 5. Choose what to disclose.
- Make credential presentation unlinkable from other presentations.

1. Choose attributes to show in clear.

EPFI

- For private attributes, provide commitments, together with ZKP on their validity.
- 3. Upon verification, sign (partial) credential.
- 4. Aggregate threshold of partial signatures.
 - . Choose what to disclose.
- Make credential presentation unlinkable from other presentations.
Existing Solutions: Coconut (Sonnino et al., 2018)

1. Choose attributes to show in clear.

EPFI

- For private attributes, provide commitments, together with ZKP on their validity.
- 3. Upon verification, sign (partial) credential.
- 4. Aggregate threshold of partial signatures.
- 5. Choose what to disclose.
- Make credential presentation unlinkable from other presentations.

Existing Solutions: Coconut (Sonnino et al., 2018)

EPFI

- For private attributes, provide commitments, together with ZKP on their validity.
- 3. Upon verification, sign (partial) credential.
- 4. Aggregate threshold of partial signatures.
- 5. Choose what to disclose.
- Make credential presentation unlinkable from other presentations.

Idea: Bind every digital identity to a physical entity.

- User generates a (sk_u, pk_u) key-pair
- User presents *pk_u* to ta physical gathering known as a **PoP Party**
- **PoP Parties** conclude with organizers generating a list of all public keys, i.e. **PoP Transcript**
- (sk_u, pk_u) becomes the **PoP Token**

Idea: Bind every digital identity to a physical entity.

 \rightarrow Create cryptographic artifacts that remain unique per person across different digital identities.

- User generates a (sk_u, pk_u) key-pair
- User presents *pk_u* to ta physical gathering known as a **PoP Party**
- **PoP Parties** conclude with organizers generating a list of all public keys, i.e. **PoP Transcript**
- (sk_u, pk_u) becomes the **PoP Token**

Idea: Bind every digital identity to a physical entity.

 \rightarrow Create cryptographic artifacts that remain unique per person across different digital identities.

How to Obtain Proof-of-Personhood? (Ford, 2020)

- User generates a (sk_u, pk_u) key-pair
- User presents *pk_u* to ta physical gathering known as a **PoP Party**
- **PoP Parties** conclude with organizers generating a list of all public keys, i.e. **PoP Transcript**
- (sk_u, pk_u) becomes the **PoP Token**

Proof-of-Personhood

ΈP Existing Solutions: *Proof-of-Personhood* (Borge et al., 2017)

Idea: Bind every digital identity to a physical entity.

 \rightarrow Create cryptographic artifacts that remain unique per person across different digital identities.

How to Obtain Proof-of-Personhood? (Ford. 2020)

- User generates a (sk_{μ}, pk_{μ}) key-pair
- User presents pk_{ij} to ta physical gathering known
- **PoP Parties** conclude with organizers generating a
- (sk_{ii}, pk_{ii}) becomes the **PoP Token**

ksandros.apostoli@epfl.ch (EPFL)

Idea: Bind every digital identity to a physical entity.

 \rightarrow Create cryptographic artifacts that remain unique per person across different digital identities.

How to Obtain Proof-of-Personhood? (Ford, 2020)

- User generates a (sk_u, pk_u) key-pair
- User presents *pk_u* to ta physical gathering known as a **PoP Party**
- **PoP Parties** conclude with organizers generating a list of all public keys, i.e. **PoP Transcript**
- (sk_u, pk_u) becomes the **PoP Token**

Idea: Bind every digital identity to a physical entity.

 \rightarrow Create cryptographic artifacts that remain unique per person across different digital identities.

How to Obtain Proof-of-Personhood? (Ford, 2020)

- User generates a (sk_u, pk_u) key-pair
- User presents *pk_u* to ta physical gathering known as a **PoP Party**
- **PoP Parties** conclude with organizers generating a list of all public keys, i.e. **PoP Transcript**
- (sk_u, pk_u) becomes the **PoP Token**

PoP Transcript

PoP Transcript

Third Party Service

1. Verify that *Alice* is a person

- Use the uniqueness property of the tag L to enforce Sybil-Resistance an
- 1. Track *Alice*'s activity.
 - 2. Collapse pseudonymity of Alice's identities.

PoP Transcript

Third Party Service

LRS. **Sign** $(m, sk_1, pk_1, pk_2, pk_3, pk_4, pk_5)$

1. Verify that *Alice* is a person

- Use the uniqueness property of the tag L to enforce Sybil-Resistance and Accountability.
 - ksandros.apostoli@epfl.ch (EPFL)

- 1. Track *Alice*'s activity.
- 2. Collapse pseudonymity of Alice's identities.

 $LK3. Sign(m, sk_1, pk_1, pk_2, pk_3, pk_4, pk_5)$

1. Verify that *Alice* is a person

- Use the uniqueness property of the tag L to enforce Sybil-Resistance and Accountability.
 - ksandros.apostoli@epfl.ch (EPFL)

- 1. Track *Alice*'s activity.
- 2. Collapse pseudonymity of Alice's identities.

- 1. Verify that *Alice* is a person
- 2. Use the **uniqueness** property of the tag *L* to enforce **Sybil-Resistance** and **Accountability**.
- 1. Track *Alice*'s activity.
- 2. Collapse pseudonymity of *Alice*'s identities.

- 1. Verify that *Alice* is a person
- Use the uniqueness property of the tag *L* to enforce Sybil-Resistance and Accountability.
- 1. Track *Alice*'s activity.
- 2. Collapse pseudonymity of Alice's identities.

- 1. Verify that *Alice* is a person
- Use the uniqueness property of the tag *L* to enforce Sybil-Resistance and Accountability.
- 1. Track *Alice*'s activity.
- 2. Collapse pseudonymity of *Alice*'s identities.

- 1. Verify that *Alice* is a person
- Use the uniqueness property of the tag *L* to enforce Sybil-Resistance and Accountability.
- 1. Track *Alice*'s activity.
- 2. Collapse pseudonymity of *Alice*'s identities.

- 1. Verify that *Alice* is a person
- Use the uniqueness property of the tag *L* to enforce Sybil-Resistance and Accountability.
- 1. Track *Alice*'s activity.
- 2. Collapse pseudonymity of Alice's identities.

- \rightarrow *Third-Party Service* can now:
 - 1. Verify that *Alice* is a person
 - Use the uniqueness property of the tag *L* to enforce Sybil-Resistance and Accountability.
- 1. Track *Alice*'s activity.
- 2. Collapse pseudonymity of Alice's identities.

- \rightarrow *Third-Party Service* can now:
 - 1. Verify that *Alice* is a person
 - Use the uniqueness property of the tag *L* to enforce Sybil-Resistance and Accountability.
- ! But it can also exploit the **uniqueness** of *L* to:
 - 1. Track *Alice*'s activity.
 - 2. Collapse pseudonymity of Alice's identities.

ightarrow Weak Privacy

Anonymous Credential Schemes (Coconut)

Rely on ZKP and Pairing-Based Signatures to provide:

- Private Attributes
- Selective-Disclosure
- Re-randomisation (Un-linkability)
- + Privacy
- Sybil-Resistance
- Accountability

${\sf Proof-of-Personhood} + {\sf LRS}$

Recap

Recap of Existing Solutions

Anonymous Credential Schemes (Coconut)

Rely on ZKP and Pairing-Based Signatures to provide:

- Private Attributes
- Selective-Disclosure
- Re-randomisation (Un-linkability)
- + Privacy
- Sybil-Resistance
- Accountability

${\sf Proof-of-Personhood}\,+\,{\sf LRS}$

Anonymous Credential Schemes (Coconut)

Rely on ZKP and Pairing-Based Signatures to provide:

- Private Attributes
- Selective-Disclosure
- Re-randomisation (Un-linkability)
- + Privacy
- Sybil-Resistance
- Accountability

 ${\sf Proof-of-Personhood} \,+\, {\sf LRS}$

Recap

Recap of Existing Solutions

Anonymous Credential Schemes (Coconut)

Rely on ZKP and Pairing-Based Signatures to provide:

- Private Attributes
- Selective-Disclosure
- Re-randomisation (Un-linkability)
- + Privacy
- Sybil-Resistance
- Accountability

 ${\sf Proof-of-Personhood}\,+\,{\sf LRS}$

Anonymous Credential Schemes (Coconut)

Rely on ZKP and Pairing-Based Signatures to provide:

- Private Attributes
- Selective-Disclosure
- Re-randomisation (Un-linkability)
- + Privacy
- Sybil-Resistance
- Accountability

${\sf Proof-of-Personhood}\,+\,{\sf LRS}$

- PoP Token: (*sk*_u, *pk*_u)
- Anonymous signatures verify personhood
- Unique, yet anonymous linkage tags, computed using *sk*_u
- + Sybil-Resistance
- + Accountability
- Privacy

Anonymous Credential Schemes (Coconut)

Rely on ZKP and Pairing-Based Signatures to provide:

- Private Attributes
- Selective-Disclosure
- Re-randomisation (Un-linkability)
- + Privacy
- Sybil-Resistance
- Accountability

${\sf Proof-of-Personhood} + {\sf LRS}$

- PoP Token: (*sk*_u, *pk*_u)
- Anonymous signatures verify personhood
- Unique, yet anonymous linkage tags, computed using *sk*_u
- + Sybil-Resistance
- + Accountability
- Privacy

Anonymous Credential Schemes (Coconut)

Rely on ZKP and Pairing-Based Signatures to provide:

- Private Attributes
- Selective-Disclosure
- Re-randomisation (Un-linkability)
- + Privacy
- Sybil-Resistance
- Accountability

${\sf Proof-of-Personhood} + {\sf LRS}$

- PoP Token: (*sk*_u, *pk*_u)
- Anonymous signatures verify personhood
- Unique, yet anonymous linkage tags, computed using *sk*_u
- + Sybil-Resistance
- + Accountability
- Privacy

Anonymous Credential Schemes (Coconut)

Rely on ZKP and Pairing-Based Signatures to provide:

- Private Attributes
- Selective-Disclosure
- Re-randomisation (Un-linkability)
- + Privacy
- Sybil-Resistance
- Accountability

${\sf Proof-of-Personhood}\,+\,{\sf LRS}$

- PoP Token: (*sk*_u, *pk*_u)
- Anonymous signatures verify personhood
- Unique, yet anonymous linkage tags, computed using *sk*_u
- + Sybil-Resistance
- + Accountability
- Privacy

Anonymous Credential Schemes (Coconut) Proof-of-Personhood + LRS

Rely on ZKP and Pairing-Based Signatures to provide:

- Private Attributes
- Selective-Disclosure
- Re-randomisation (Un-linkability)
- + Privacy
- Sybil-Resistance
- Accountability

Bind digital identities with real persons:

- PoP Token: (*sk*_u, *pk*_u)
- Anonymous signatures verify personhood
- Unique, yet anonymous linkage tags, computed using *sk*_u
- + Sybil-Resistance
- + Accountability
- Privacy

3PF

Overview

3PBCS in a Nutshell

Overview

3PBCS in a Nutshell

Overview

3PBCS in a Nutshell

Overview

3PBCS in a Nutshell

Overview

3PBCS in a Nutshell

Overview

3PBCS in a Nutshell

Overview

3PBCS in a Nutshell

March 22, 2022

11 / 23

Overview

3PBCS in a Nutshell

Overview

3PBCS in a Nutshell

Overview

3PBCS in a Nutshell

ksandros.apostoli@epfl.ch (EPFL)

Overview

3PBCS in a Nutshell

Overview

3PBCS in a Nutshell

3PBCS: System Actors

User

- Credential Owner
- Holder of a valid PoP Token (sk_u, pk_u)

- Coconut Issuing Authority
- Mixnet Functionality
- SMPC Maintenance of Blacklists

- Service Provider
- Credential Verifier
- Linkage Tag Verifier

3PBCS: System Actors

User

- Credential Owner
- Holder of a valid PoP Token (sk_u, pk_u)

- Coconut Issuing Authority
- Mixnet Functionality
- SMPC Maintenance of Blacklists

- Service Provider
- Credential Verifier
- Linkage Tag Verifier

3PBCS: System Actors

User

- Credential Owner
- Holder of a valid PoP Token (*sk*_u, *pk*_u)

- Coconut Issuing Authority
- Mixnet Functionality
- SMPC Maintenance of Blacklists

- Service Provider
- Credential Verifier
- Linkage Tag Verifier

3PBCS: System Actors

User

Identity and Accountability Management Cothority

Service Provider

- Credential Owner
- Holder of a valid PoP Token (*sk*_u, *pk*_u)

- Coconut Issuing Authority
- Mixnet Functionality
- SMPC Maintenance of Blacklists

- Credential Verifier
- Linkage Tag Verifier

3PBCS: System Actors

User

- Credential Owner
- Holder of a valid PoP Token (*sk*_u, *pk*_u)

- Coconut Issuing Authority
- Mixnet Functionality
- SMPC Maintenance of Blacklists

- Credential Verifier
- Linkage Tag Verifier

3PBCS: System Actors

User

Identity and Accountability Management Cothority

Service Provider

- Credential Owner
- Holder of a valid PoP Token (*sk*_u, *pk*_u)

- Coconut Issuing Authority
- Mixnet Functionality
- SMPC Maintenance of Blacklists

- Credential Verifier
- Linkage Tag Verifier

3PBCS: System Actors

User

- Credential Owner
- Holder of a valid PoP Token (*sk*_u, *pk*_u)

- Coconut Issuing Authority
- Mixnet Functionality
- SMPC Maintenance of Blacklists

- Service Provider
- Credential Verifier
- Linkage Tag Verifier

3PBCS: System Actors

User

Identity and Accountability Management Cothority

Service Provider

- Credential Owner
- Holder of a valid PoP Token (*sk*_u, *pk*_u)

- Coconut Issuing Authority
- Mixnet Functionality
- SMPC Maintenance of Blacklists

- Credential Verifier
- Linkage Tag Verifier

3PBCS: System Actors

User

Identity and Accountability Management Cothority

Service Provider

- Credential Owner
- Holder of a valid PoP Token (*sk*_u, *pk*_u)

- Coconut Issuing Authority
- Mixnet Functionality
- SMPC Maintenance of Blacklists

- Credential Verifier
- Linkage Tag Verifier

3PBCS: Core System Overview

 \overline{m} : denotes a private attribute

 $\phi_{\it PoP}$: proof-of-membership in the PoP Transcript

 σ' : re-randomization of σ

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

March 22, 2022 13/23

3PBCS: Core System Overview

March 22, 2022 13/23

3PBCS: Core System Overview

 \overline{m} : denotes a private attribute

 $\phi_{\it PoP}$: proof-of-membership in the PoP Transcript

 σ' : re-randomization of σ

March 22, 2022 13 / 23

3PBCS: Core System Overview

 \overline{m} : denotes a private attribute

 $\phi_{\it PoP}$: proof-of-membership in the PoP Transcript

 σ' : re-randomization of σ

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

March 22, 2022 13 / 23

3PBCS: Core System Overview

\overline{m} : denotes a private attribute

 $\phi_{\it PoP}$: proof-of-membership in the PoP Transcript

 σ' : re-randomization of σ

3PBCS: Core System Overview

 \overline{m} : denotes a private attribute

 $\phi_{\it PoP}$: proof-of-membership in the PoP Transcript

 σ' : re-randomization of σ

March 22, 2022 13 / 23

3PBCS: Core System Overview

 \overline{m} : denotes a private attribute

 $\phi_{\it PoP}$: proof-of-membership in the PoP Transcript

 σ' : re-randomization of σ

3PBCS: Core System Overview

 \overline{m} : denotes a private attribute

 $\phi_{\it PoP}$: proof-of-membership in the PoP Transcript

 σ' : re-randomization of σ

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

March 22, 2022 13 / 23

3PBCS: Core System Overview

3PBCS: Core System Overview

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

March 22, 2022 13 / 23

EPF

EP!

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

March 22, 2022 13 / 23

ksandros.apostoli@epfl.ch (EPFL)

3PBCS Core System

EPE

3PBCS Core System

EPE

ksandros.apostoli@epfl.ch (EPFL)

Core System

EPS

Core System

EPS

3PBCS: Core System Overview

3PBCS

Core System

13/23

EPS

3PBCS Core

Core System

EP5

3PBCS Core

Core System

EP5

EPS

Core System

3PBCS: Core System Overview

Core System

3PBCS: Core System Overview

Core System

3PBCS: Core System Overview

Accountability

3PBCS: Enforcing Accountability

Q: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.
- *Solution:* Make blacklists *context-specific* too and *dynamically update them*.

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.
- *Solution:* Make blacklists *context-specific* too and *dynamically update them*.

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.

Solution: Make blacklists *context-specific* too - and *dynamically update them*.

 \bigwedge

 ϕ must be **only** possible to compute in **SMPC** manner by IAMC nodes!

- *Q*: Why can't we use linkage tags $L = H(sID||ctx_a)^{sk_u}$ as blacklist entries?
- A: Context-specific nature of L prevents from blacklisting across different contexts.

Solution: Make blacklists *context-specific* too - and *dynamically update them*.

 \wedge

- ϕ must be **only** possible to compute in **SMPC** manner by IAMC nodes!
 - → Otherwise, our activity tracking guarantees collapse!

Summary

3PBCS is the first Credential System to our knowledge providing :

- Anonymous Credentials
- Sybil-Resistance
- Accountability
- Unlimited credential generation for a single user
- Enhanced Privacy guarantees (without risking any of the above)

 \longrightarrow These make 3PBCS a strong candidate for a variety of applications such as social platforms, whistleblowing apps, e-voting etc.

Proof-of-Concept Implementation & Challenges

Proof-of-Concept Implementation & Challenges

Evaluation

Performance Evaluation

IAMC Nodes: 6; PoPTranscriptSize: 30; Measurements generated over a sample of 5000 executions.

ksandros.apostoli@epfl.ch (EPFL)

Evaluation

Demonstration

DEMO TIME!

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

March 22, 2022 18 / 23

Limitations and Future Directions

Limitations of 3PBCS:

- $\mathcal{O}(n)$ Computational and Space Complexity to the size of the PoP Transcript.
- Blacklisting is restricted to sequential actions only.
- Restricted Credential management at current state of advancement (e.g. Crendetial Recovery missing).
- PoC Implementation at present does not include our blacklist design.

Future Directions:

- Thorough Security Analysis of the scheme.
- Research towards alternative blacklisting methods.

EPEI

Thank You for Your Attention!

Questions and Discussion...

References I

- Borge, Maria et al. (2017). "Proof-of-Personhood: Redemocratizing Permissionless Cryptocurrencies". In: 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), pp. 23–26. DOI: 10.1109/EuroSPW.2017.46.
- Camenisch, Jan and Markus Stadler (1997). "Efficient group signature schemes for large groups". In: Annual International Cryptology Conference. Springer, pp. 410–424.
- Ford, Bryan (2020). "Identity and Personhood in Digital Democracy: Evaluating Inclusion, Equality, Security, and Privacy in Pseudonym Parties and Other Proofs of Personhood". In: arXiv: 2011.02412 [cs.CY].
- Liu, Joseph K and Duncan S Wong (2005). "Linkable ring signatures: Security models and new schemes". In: *International Conference on Computational Science and Its Applications*. Springer, pp. 614–623.

References II

- Mare, Shrirang, Mary Baker, and Jeremy Gummeson (2016). "A study of authentication in daily life". In: *Twelfth symposium on usable privacy and security (SOUPS 2016)*, pp. 189–206.
- Sonnino, Alberto et al. (2018). "Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to Distributed Ledgers". In: CoRR abs/1802.07344. arXiv: 1802.07344. URL: http://arxiv.org/abs/1802.07344.
- W3C (2021). Verifiable credentials data model V1.1: Expressing verifiable information on the Web. URL: https://www.w3.org/TR/vc-data-model/.
- Williams, Shannon (2020). Average person has 100 passwords study. URL: https: //securitybrief.co.nz/story/average-person-has-100-passwords-study.

Linkable Ring Signatures I

Definition (Linkable Ring Signature)

Let \mathcal{U} be the set of r users, each associated with a public key pk_u of a standard signature scheme, where $(pk_u, sk_u) \in \mathcal{R}$, such that $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{Y}$ denotes a secret-public key relation. We call \mathcal{U} the *ring*. Let $\mathcal{L} = \{pk_1, \ldots, pk_r\}$. Then, let the *s*-th member be the signer and denote their public key as $pk_s \in \mathcal{L}$ and the corresponding secret key sk_s . The generic Linkable Ring Signature Scheme is then described by the following:

Linkable Ring Signatures II

 $\begin{array}{l} \diamondsuitlet{ } \label{eq:linkableRing.Sign} (m, \mathcal{L}, sk_s) \rightarrow \sigma, L: \\ \mbox{Output} \end{array}$

$$L = H(\mathcal{L})^{sk_s}$$

and

$$\sigma = SPK\left\{ sk_s : \vee_{i=1}^r \left((sk_s, pk_i) \in \mathcal{R} \right) \land L = H(\mathcal{L})^{sk_s} \right\} (m)$$

where SPK denotes a Signature based on Proof-of-Knowledge (Camenisch et al., 1997).

- ◊ LinkableRing.Verify(m, σ, L) → True/False:
 Output True if the corresponding Proof-of-Knowledge included in σ is verified to be correct. Else, output False.
- ♦ LinkableRing.Link $(L_1, L_2) \longrightarrow True/False:$ Output *True* if $L_1 = L_2$, *False* otherwise.

Verifiable Credentials

Definition (Credential)

A credential is a 3-tuple

$$\texttt{cred} = \{\texttt{metadata,}\mathcal{C}, \sigma\}$$

where:

- 1. metadata describes the metadata of the credential, i.e. a set of details regarding the use-case and context of usage of the credential, described by any data-type.
- 2. C denotes the set of claims embedded in the credential. Moreover, $C = C_{pub} \cup C_{priv}$, where
 - if $\texttt{claim}_i \in \mathcal{C}_{\texttt{pub}}$, then

$$claim_i = \{attr_i, val_i, provider_i\}$$

• while if $\overline{\texttt{claim}}_i \in \mathcal{C}_{\texttt{priv}}$, then

$$\overline{\texttt{claim}}_i = \{\texttt{attr}_i, \phi_i, \pi_{\phi_i}, \texttt{provider}_i\}$$

3. σ : the signature issued by the issuer over the metadata and claims embedded in the credential.

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

March 22, 2022 23 / 23

$$\sigma pk_a = pk_a^1 * pk_a^2 * pk_a^3 * pk_a^4 * pk_a^5$$

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

EP!

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

ksandros.apostoli@epfl.ch (EPFL)

ksandros.apostoli@epfl.ch (EPFL)

Dynamic, Context-specific Blacklists: Context Registration I

Upon receiving registration request from the service provider, IAMC node *i* sets:

 $R_k^i = PRNG(seed_i, \mathtt{ctx}_k)$

Then,

• If k = 0, i.e. it is the first registered context, set

$$sk_k^i = R_k^i$$

• Else, set

$$sk_k^i = R_k^i * sk_{k-1}$$
, where $sk_k = \sum_{i \in [n]} sk_k^i$

Dynamic, Context-specific Blacklists: Context Registration II EPFL

Then the public key share for node *i* for context ctx_k will be:

$${\it pk}_k^i={\it h}_{{
m sID}}^{{
m sk}_k^i}$$

where $h_{sID} = H_{\mathbb{G}_1}(sID)$ and $H_{\mathbb{G}_1}(\cdot)$ is a cryptographic hash function mapping to elements of the group \mathbb{G}_1 . Lastly, the shared public key for context ctx_k , is

$$\mathsf{pk}_k = \mathsf{h}^{\mathsf{sk}_k}_{ extsf{sID}} = \prod_{i \in [n]} \mathsf{pk}^i_k$$

Note that $pk_k^i = pk_{k-1}^{R'_k}$, and therefore no party needs to learn the common shared secret key of any context at any point in time.

The user after receiving the context identifier \mathtt{ctx}_k from the third-party service, queries the IAMC nodes for their public key shares pk_k^i for this context. Upon receiving all such shares, the user can compute the shared public key $pk_k = \prod_{i \in [n]} pk_k^i$.

Providing Linkage Tags I

• **ProvideLinkageTag**($\mathtt{ctx}_k, pk_k, sk_u, \sigma$): First the user computes a context-specific linkage tag, using the public key for this context derived from IAMC nodes, and the user's secret-key sk_u .

$$L_k^u = pk_k^{sk_u}$$

Next, the user, prepares a credential that contains a single private claim

$$\overline{\texttt{claim}}_{sk_u}: \{\overline{sk_u}, \phi'_L, \pi_{\phi'_L}, \sigma'_L\}$$

where ϕ'_L : " L^u_k was properly computed using sk_u " and

$$\pi_{\phi_L} = \mathsf{NIZK}\left\{\mathsf{sk}_u : \mathsf{L}_k^u = \mathsf{pk}_k^{\mathsf{sk}_u}
ight\}$$

whereas σ'_L is a re-randomization of the signature σ received upon issuance of the credential.

Providing Linkage Tags II

This can be done using the feature of *Selective-Disclosure* in the *Coconut*, setting all attributes as private, i.e. $M = M_{prv}$, and using ϕ'_L as described above as a single predicate:

$$\begin{aligned} \mathtt{cred}_{\mathtt{anon}} = & \left\{ \mathsf{ProveCred}(\mathsf{vk}_0, \mathsf{M}_{\mathtt{prv}}, \sigma, \phi'_L), \mathsf{M}_{\mathtt{pub}} \right\} \\ = & \left\{ \{ \mathsf{M}_{\mathtt{prv}}, \Theta_L, \phi'_L \}, \mathsf{M}_{\mathtt{pub}} = \emptyset, \sigma'_L \right\} \end{aligned}$$

Note that the credential above does not contain any information on the user, apart from the fact that they hold a legitimately signed credential, and that the secret-key sk_u embedded in this credential has been used to compute L_k^u .

Using the anonymous credential prepared and the linkage tag computed, the user composes the following message object:

$$Tag_k^u = \{\mathtt{ctx}_k, \mathtt{cred}_{\mathtt{anon}}, L_k^u\}$$

The MixNetwork

IAMC nodes form a layered mixnet architecture of three layers, with entry (IN), first layer (L1) and exit nodes (OUT) on each path.

Let the pair-wise disjoint sets $S_{in}, S_{L1}, S_{out} \subset S$ denote the nodes corresponding to each of these layers respectively. Paths are computed in a *source-routing* manner as follows then:

 $\Diamond \quad \mathsf{SetMixRoute}(\mathit{Tag}_k^u) \longrightarrow (\mathit{mix}_{\mathtt{in}}, \mathit{mix}_{\mathtt{L1}}, \mathit{mix}_{\mathtt{out}}):$

Parse Tag_k^u as {ctx_k, cred_{anon}, L_k^u } 1. $mix_{in} \leftarrow \mathcal{H}_{mix}(ctx_k)$, where $\mathcal{H}_{mix} : \{0,1\}^\lambda \rightarrow S_{in}$ is a cryptographic hash function public to all users. 2. $mix_{L1} \stackrel{\$}{\leftarrow} S_{L1}$. 3. $mix_{out} \stackrel{\$}{\leftarrow} S_{out}$. Return ($mix_{in}, mix_{L1}, mix_{out}$).

- The user performs layered encryption on tag message, using public keys of all nodes in the path.
- Having tags of the same context sent to unique entry nodes, enables threshold batching: the entry nodes will ensure that they have received a threshold $\tau \ge 2$ of tags for each context, before relaying them to the next node in layer L1.

ksandros.apostoli@epfl.ch (EPFL)

Master Thesis

Blacklist Updates I

Upon initialization, each $node_i \in S$ from the IAMC, initializes its local blacklist hashtable blacklist[] $\leftarrow \emptyset$.

Then, upon receiving the misbehaviour report $\{\operatorname{ctx}_j, L_j^u\}$, for user u under context ctx_j each $\operatorname{node}_i \in S$ proceeds as follows:

 \Diamond **BlacklistReport** (L_i^u, \mathtt{ctx}_j) :

$$\begin{array}{l} \text{for } n=0; \; j+n\leq k; \; n\text{++:} \\ & \text{blacklist}_i[\text{ctx}_{j+n}] \; +=L^u_{j+n}; \\ & R^i_n=PRNG(seed_i, \text{ctx}_{j+n+1}); \\ & \text{broadcast } (L^u_{j+n})^{R^i_n}; \\ & \text{while not } ((L^u_{j+n})^{R^s_n} \; \text{received } \forall s\in \mathcal{S}) \\ & \text{wait();} \\ & L^u_{j+n+1} \; = \prod_{s\in \mathcal{S}} (L^u_{j+n})^{R^s_n}; \end{array}$$

Blacklist Updates II

Additionally, to maintain the blacklist across new contexts being created, the nodes run the following procedure every time a new context ctx_k is registered (by a third-party service) and **RegisterContext**(ctx_k) is executed:

```
Orghometry UpdateBlacklist(ctx_k):
```

```
\begin{split} R_k^i &= PRNG(seed_i, \mathtt{ctx}_k);\\ \text{for } L \text{ in blacklist[ctx_{k-1}]:}\\ & \text{broadcast } (L)^{R_k^i};\\ & \text{while not } ((L)^{R_k^s} \text{ received } \forall s \in \mathcal{S}):\\ & \text{wait();}\\ & \text{blacklist[ctx}_k] + = \prod_{s \in \mathcal{S}} (L)^{R_n^s}; \end{split}
```

Correctness of Blacklist Entries

We recall that a linkage tag for context ctx_k from user u is computed according to the procedures **RegisterContext** and **ProvideLinkageTag**, described above, where

$$L_k^u = pk_k^{sk_u} = h_{\mathtt{sID}}^{sk_u * sk_k} = h_{\mathtt{sID}}^{sk_u \sum_{s \in S} sk_k^s}$$

Moreover, recall that $\forall s \in S$ we have that $sk_{k+1}^s = R_{k+1}^s * sk_k$, where $R_{k+1}^s = PRNG(seed_i, ctx_{k+1})$, yielding

$$\mathsf{sk}_{k+1} = \sum_{s \in \mathcal{S}} (\mathsf{sk}_{k+1}^s) = \sum_{s \in \mathcal{S}} (\mathsf{R}_{k+1}^s * \mathsf{sk}_k) = \mathsf{sk}_k \sum_{s \in \mathcal{S}} \mathsf{R}_{k+1}^s$$

Note that in procedures BlacklistReport and UpdateBlacklist above we have

$$\begin{split} \mathcal{L}_{k+1}^{u} &= \prod_{s \in \mathcal{S}} (\mathcal{L}_{k}^{u})^{R_{k+1}^{s}} = \prod_{s \in \mathcal{S}} h_{\mathtt{s}\mathtt{ID}}^{sk_{u} * sk_{k} * R_{k+1}^{s}} \\ &= h_{\mathtt{s}\mathtt{ID}}^{sk_{u} * sk_{k} * \sum_{s \in \mathcal{S}} R_{k+1}^{s}} = h_{\mathtt{s}\mathtt{ID}}^{sk_{u} * sk_{k+1}} \\ &= \rho k_{\mathtt{s}\mathtt{ID}}^{sk_{u}} \end{split}$$

Hence, the linkage tag collectively computed by the IAMC nodes, corresponds to the tag that would be computed by the user themselves for context ctx_{k+1} .

ksandros.apostoli@epfl.ch (EPFL)

Figure: Attack Tree for Blacklist Entries

Complexity Analysis

Procedure	Communication	Size
RequestCredential	$\mathcal{O}(n)$	$\mathcal{O}(m+q)$
IssueCredential	$\mathcal{O}(n)$	$\mathcal{O}(m)$
ProveCredential	$\mathcal{O}(1)$	$\mathcal{O}(m)$
ProvideLinkageTag	$\mathcal{O}(n+r)$	$\mathcal{O}(m)$
VerifyCredential	$\mathcal{O}(1)$	$\mathcal{O}(1)$
VerifyLinkageTag	$\mathcal{O}(1)$	$\mathcal{O}(1)$
RegisterContext	$\mathcal{O}(n)$	$\mathcal{O}(1)$
UpdateBlacklist	$\mathcal{O}(n^2)$	$\mathcal{O}(1)$

Table: Communication and Size Complexity for 3PBCS procedures. n - number of IAMC nodes; m - number of private credential attributes; q - PoP Transcript Size; r - length of mix-route.

Figure: Effect of PoP Transcript size on credential issuance in 3PBCS.

500

PoP Transcript Size

750

1.000

250

250

Master Thesis