
Kirill Nikitin

Integrity and Metadata Protection
in Data Retrieval

Decentralized and Distributed Systems Laboratory
PhD oral exam, 20.07.2021

Jury President:
Thesis Director:
Examiners:

Prof. Jean-Pierre Hubaux
Prof. Bryan Ford
Prof. Katerina Argyraki
Prof. Justin Cappos
Prof. Srdjan Capkun

Users retrieve data all the time 2

Ki
ril

l N
ik

iti
n

…!

Credit for the user and evil pictures here and graphics afterwards is to vecteezy.com

"
✉

https://www.vecteezy.com/

Current protection mechanisms do not suffice 3

Ki
ril

l N
ik

iti
n

…!

Credit for the user and evil pictures here and graphics afterwards is to vecteezy.com

"
✉

https://www.vecteezy.com/

This thesis

On-the-network attacker
• Protecting encryption metadata (Chapter 2) [1]

4

Ki
ril

l N
ik

iti
n

Malicious provider
• Data integrity in single-server private information retrieval (Chapter 3) [2]

Compromised provider
• Securing retrieval of software updates (Chapter 4) [3] !

[1] K. Nikitin*, L. Barman*, W. Lueks, M. Underwood, J.-P. Hubaux, and B. Ford, “Reducing Metadata Leakage from Encrypted
Files and Communication with PURBs”, PETS 2019.
[2] S. Colombo*, K. Nikitin*, B. Ford, and H.Corrigan-Gibbs, “Verifiable Private Information Retrieval”, Under submission.
[3] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive
Software-Update Transparency via Collectively Signed Skipchains and Verified Builds”, USENIX Security 2017.

Roadmap

❖ Introduction

❖ Protecting encryption metadata (Chapter 2)

❖ Data integrity in single-server PIR (Chapter 3)

❖ Securing retrieval of software updates (Chapter 4)

❖ Conclusion

5

Ki
ril

l N
ik

iti
n

Roadmap

❖ Introduction

❖ Protecting encryption metadata (Chapter 2)

❖ Data integrity in single-server PIR (Chapter 3)

❖ Securing retrieval of software updates (Chapter 4)

❖ Conclusion

6

Ki
ril

l N
ik

iti
n

Metadata exposure in ciphertexts 7

Ki
ril

l N
ik

iti
n

"

Metadata

Encrypted
Payload

"

$

Recipients,
Algorithms used,
Software used,
…

✉✉

OpenPGP Packet Format 8

Ki
ril

l N
ik

iti
n

8502 0c01 9497 608d d051 8f79 010f ff46
bd7f 1821 27a9 42c4 01b4 7ecd 433e 7f90
. 74b8 139c a802 6678 ba0d 1abd

d264 014b 6a5a f586 e3fa b98e 92d1 6759
7186 2ccc ac50 3db7 fa03 4f31 dcd7 fa40
. 4b09 d9b4 1654 972d 5c22 47db

OpenPGP Packet Format 9

Ki
ril

l N
ik

iti
n

Packet Type

8502 0c01 9497 608d d051 8f79 010f ff46
bd7f 1821 27a9 42c4 01b4 7ecd 433e 7f90
. 74b8 139c a802 6678 ba0d 1abd

d264 014b 6a5a f586 e3fa b98e 92d1 6759
7186 2ccc ac50 3db7 fa03 4f31 dcd7 fa40
. 4b09 d9b4 1654 972d 5c22 47db

Se
ss

io
n

Ke
y P

ar
t

Da
ta

 P
ar

t

Recipient Key ID Public-Key Algorithm

Encrypted Data

Format version

Is exposing
encryption
metadata

necessary?

An OpenPGP message to Martin Vetterli encrypted
with RSA-512 using an outdated format??

Small key? Outdated format? I might crack it!

Avoiding metadata leakage

• Can we design an application-level ciphertext format that avoids leakage of
encryption metadata?

• Encryption metadata concretely:

- The ciphertext’s intended recipients

- The encryption algorithm used

- What application has produced the ciphertext

- …

10

Ki
ril

l N
ik

iti
n

What If We Stripped Off All the Metadata? 11

Ki
ril

l N
ik

iti
n

Packet Type

8502 0c01 9497 608d d051 8f79 010f ff46
bd7f 1821 27a9 42c4 01b4 7ecd 433e 7f90
. 74b8 139c a802 6678 ba0d 1abd

d264 014b 6a5a f586 e3fa b98e 92d1 6759
7186 2ccc ac50 3db7 fa03 4f31 dcd7 fa40
. 4b09 d9b4 1654 972d 5c22 47db

Se
ss

io
n

Ke
y P

ar
t

Da
ta

 P
ar

t

Recipient Key ID Public-Key Algorithm

Encrypted Data

Format version

What If We Stripped Off All the Metadata? 12

Ki
ril

l N
ik

iti
n

8502 0c01 9497 608d d051 8f79 010f ff46
bd7f 1821 27a9 42c4 01b4 7ecd 433e 7f90
. 74b8 139c a802 6678 ba0d 1abd

d264 014b 6a5a f586 e3fa b98e 92d1 6759
7186 2ccc ac50 3db7 fa03 4f31 dcd7 fa40
. 4b09 d9b4 1654 972d 5c22 47db

Se
ss

io
n

Ke
y P

ar
t

Da
ta

 P
ar

t

Encrypted Data

• How does a recipient parse a ciphertext without any auxiliary information?

• What if the ciphertext is encrypted
- To multiple recipients
- By using multiple cryptographic algorithms

Encrypt the metadata instead!

Padded Uniform Random Blobs (PURBs)

• A ciphertext format for application data without any metadata in clear

• The metadata can be found efficiently by trial decryptions following predefined logic

• Generic, i.e., still works efficiently with a large number of recipients and encryption
algorithms used

• A PURB must be indistinguishable from a random bit string (IND$-CCA2)

13

Ki
ril

l N
ik

iti
n

Model 14

Ki
ril

l N
ik

iti
n

Is it a PURB or a random bit string?!

Active Adversary

— PURB —

%%

%

Honest Sender

Honest Recipient(s)

Insecure channel

application
data

Data-encapsulation strawman 15

Ki
ril

l N
ik

iti
n

pk payload MAC

Similar to the Integrated Encryption Scheme [ABR01] (DH-based)

Recipient – public key gy

c1 = gx c2 = Encgyx (data) MACgyx (c1 || c2)

distinguishable from
a random string

Data-encapsulation strawman 16

Ki
ril

l N
ik

iti
n

encoded pk payload MAC

• The encoded public key is indistinguishable from a uniform random string

• Public encoding algorithms, e.g., Elligator [BHKL13], for different public-key
types which all produce uniform strings

c1 = Hide(gx) c2 = Encgyx (data) MACgyx (c1 || c2)

1. Does not scale to multiple recipients (e.g., the issue of data duplication)
2. Does not accommodate multiple cryptographic algorithms

Entry points 17

Ki
ril

l N
ik

iti
n

encoded pk entry point payload MAC

• The data are encrypted with an one-time session key K

• An entry point per recipient stores K and additional metadata, and signals the
correctness of decryption

c1 = Hide(gx) c3 = EncK (data) MACK (c1||c2||c3)c2 = AEgyx (K || meta)

Multiple Recipients 18

Ki
ril

l N
ik

iti
n

— PURB —

Multiple Recipients 19

Ki
ril

l N
ik

iti
n

Recipients – public keys gy1, gy2, gy3.

Sender creates an entry point (EP) per recipient, each with K and metadata but
encrypted with gy1x, gy2x, gy3x respectively.

But how do we organize these entry points in the PURB?

EP1 EP2 EP3

AEgy1x(K||meta) AEgy2x(K||meta) AEgy3x(K||meta)

Linear Approach Strawman 20

Ki
ril

l N
ik

iti
n

encoded pk payloadEP1

Entry points for the recipients – EP1, EP2, EP3

EP2 EP3

We create an entry point (EP) per recipient, each with K and metadata but
encrypted with gy1x, gy2x, gy3x respectively.

Inefficient to decode
O(len(PURB))

Similar to private broadcast encryption [BBW06]

MAC

Hash Table

Single Hash-Table Strawman 21

Ki
ril

l N
ik

iti
n

encoded pk payload

Entry points are placed in
a hash table, indexed by gyix

MAC

Entry points for the recipients – EP1, EP2, EP3

22

Ki
ril

l N
ik

iti
n

Entry points are placed in
a hash table, indexed by gyix

Single Hash-Table Strawman

Entry points for the recipients – EP1, EP2, EP3

Hash Table

encoded pk payloadEP1

EP3

EP2

MAC

23

Ki
ril

l N
ik

iti
n

1. Space waste
2. Bound on N of recipients

Entry points are placed in
a hash table, indexed by gyix

Single Hash-Table Strawman

Entry points for the recipients – EP1, EP2, EP3

Hash Table

encoded pk payloadEP1

random

EP3

EP2

random

MAC

HT0 HT1 HT2

Multiple Recipients: Our Solution 24

Ki
ril

l N
ik

iti
n

encoded pk payloadEP1

EP2

Entry points are placed in a series of growing hash-tables!

EP3

EP1EP2EP3Entry points for the recipients – EP1, EP2, EP3

MAC

HT0 HT1 HT2

Multiple Recipients: Our Solution 25

Ki
ril

l N
ik

iti
n

encoded pk payloadEP1 random

EP2

Entry points are placed in a series of growing hash-tables!

random

random

EP3

random

Entry points for the recipients – EP1, EP2, EP3

MAC

HT0 HT1 HT2

Multiple Recipients: Decoding 26

Ki
ril

l N
ik

iti
n

encoded pk payloadEP1 random

EP2

Entry points are placed in a series of growing hash-tables!

random

random

EP3

random

Entry points for the recipients – EP1, EP2, EP3

MAC

Recipient 3
Decoding in
O(log len(PURB))

HT0 HT1 HT2

Multiple Recipients: Decoding 27

Ki
ril

l N
ik

iti
n

encoded pk? random

random

random

random

random

…

random random

random

random

random

random

random

Entry points for the recipients – EP1, EP2, EP3

Non-recipient

Multiple Suites 28

Ki
ril

l N
ik

iti
n

— PURB —

%%

%

Multiple Suites

• Recipients use several distinct suites, based on public-key group (e.g.,
Curve25519 or Curve448) or entry point encryption.

• Each suite (an encoded public key and hash tables) becomes a distinct logical
layer in a PURB, and these layers overlap!

29

Ki
ril

l N
ik

iti
n

Multi-suite PURB encoding 30

Ki
ril

l N
ik

iti
n

PURB bytes

Suite A

Suite B MACrandom

Hide(A) Enc(data)

Hide(B)
AEqy4h(K)

AEgy1x(K)
AEgy1x(K)

AEgy1x(K)

A recipient parses a multi-suite PURB in the same way
as in the single-suite scenario!

Evaluation of decoding performance 31

Ki
ril

l N
ik

iti
n

100 101 102 103 104

Number of Recipients

10−1

100

101

102

D
ec
od
in
g
ti
m
e
[m

s]

A
ss
em

b
ly
-

op
ti
m
iz
at
io
n

PGP hidden recipients

PURB

Roadmap

❖ Introduction

❖ Protecting encryption metadata (Chapter 2)

❖ Data integrity in single-server PIR (Chapter 3)

❖ Securing retrieval of software updates (Chapter 4)

❖ Conclusion

32

Ki
ril

l N
ik

iti
n

Service providers learn user’s choices 33

Ki
ril

l N
ik

iti
n

"

"Metadata

✉

Service providers learn user’s choices 34

Ki
ril

l N
ik

iti
n

Give me the value of x3 x3

x1 x2 x3 x4 x5

Private Information Retrieval (PIR) 35

Ki
ril

l N
ik

iti
n

Hidden query

Blind computation

Response

x1 x2 x3 x4 x5

Some applications:
software updates [Cap13]
online-presence service [BDG15]
anonymous messaging [AS16]
video streaming [GCM+16]
encrypted search [DFL+20]

The single-server PIR setting 36

Ki
ril

l N
ik

iti
n

Client wants to retrieve x3

x1 x2 x3 x4 x5

E(0), E(0), E(1), E(0), E(0) E(x1·0) + E(x2·0) + E(x3·1) + E(x4·0) + E(x5·0)

• The database is typically unencrypted
• Records xi are often bits (extending to

longer rows is a separate story)

Problem: No data integrity by default 37

Ki
ril

l N
ik

iti
n

x1 x2 x3 x4 x5y y y y y

A typical way to get integrity 38

Ki
ril

l N
ik

iti
n

x1,!1 x2,!2 x3,!3 x4,!4 x5,!5

Attach a digital signature to each record!

Signing data owner

When integrity breaks privacy 39

Ki
ril

l N
ik

iti
n

x1,!1 x2,!2 y,!3 x4,!4 x5,!5

I’ve been
fooled! Reject

For example, the client starts communication after
checking online presence of a friend, or connects
to a website after retrieving a DNS record, etc

E(y,!3)

x1,!1 x2,!2 x3,!3 x4,!4 x5,!5

When integrity breaks privacy 40

Ki
ril

l N
ik

iti
n

rand rand x3,!3 rand rand

E(0), E(0), E(1), E(0), E(0) E(x3,!3)

The client has retrieved x3!

accept / reject bit
(send a message, make a request, …)

Verifiable single-server PIR

• Provides privacy and integrity atomically

• Formally, adding the integrity property to the standard correctness and privacy

• Client detects any altering of the database, even for the records she is not
retrieving

• Prior work on verifiable PIR [ZS14, WZ18] relied on heavy machinery (signatures of
correct computation [PST13])

41

Ki
ril

l N
ik

iti
n

x1,!1 x2,!2 x3,!3 x4,!4 x5,!5x3,!3

Verifiable single-server PIR: Challenge 42

Ki
ril

l N
ik

iti
n

E(0), E(0), E(1), E(0), E(0) E(x1,!1·0) + E(x2,!2·0) + E(x3,!3·1) + E(x4,!4·0) + E(x5,!5·0)

The authentication information of non-
retrieved records is cancelled out

Verifiable single-server PIR 43

Ki
ril

l N
ik

iti
n

x1 x2 x3 x4 x5

Public database digest

d = g1x1 · g2x2 · g3x3 · g4x4 · g5x5

gi’s are the hashes of the record
indices to group elements

Verifiable single-server PIR 44

Ki
ril

l N
ik

iti
n

x1 x2 x3 x4 x5

g1r, g2r, g3r+t, g4r, g5r a = g1x1·r · g2x2·r · g3x3·(r+t) · g4x4·r · g5x5·r

If a = dr · g3t, x3 = 1
If a = dr · 1G, x3 = 0
Otherwise ⊥

Public database digest

d = g1x1 · g2x2 · g3x3 · g4x4 · g5x5

gi’s are the hashes of the record
indices to group elements

Reducing communication 45

Ki
ril

l N
ik

iti
n

Rebalancing

x1 x2 x3 x4 x5 x6 x7 x8 x9x1 x2 x3

x4 x5 x6

x7 x8 x9

E(0), E(0), E(1)
E(x3·1),
E(x6·1),
E(x9·1)

Bw: O(n) → O(√n)

Evaluation 46

Ki
ril

l N
ik

iti
n

• The scenario of private contact discovery (retrieving 1 bit of data)

• Compare with state-of-the-art lattice-based PIR as a baseline
Matrix DPF

DB size None Merkle Atomic None Merkle Atomic

CPU time [ms]

10 MiB 3.9 6 1.5⇥ 203 53⇥ 6 8 1.5⇥ 302 54⇥
100 MiB 72 122 1.7⇥ 1,356 19⇥ 73 122 1.7⇥ 2,453 34⇥
1 GiB 798 1,323 1.7⇥ 10,403 13⇥ 891 1,217 1.4⇥ 18,985 21⇥
10 GiB 7,901 15,134 1.9⇥ 111,839 14⇥ 9,552 13,854 1.5⇥ 179,076 19⇥

Bandwidth [KiB]

10 MiB 209 302 1.4⇥ 420 2.0⇥ 2.4 3.3 1.4⇥ 4.7 2.0⇥
100 MiB 655 1,009 1.5⇥ 1,331 2.0⇥ 2.5 3.6 1.4⇥ 4.8 1.9⇥
1 GiB 2,097 3,425 1.6⇥ 4,260 2.0⇥ 2.6 3.9 1.5⇥ 4.9 1.9⇥
10 GiB 6,634 11,661 1.8⇥ 13,470 2.0⇥ 2.7 4.3 1.6⇥ 5 1.9⇥

Table 1: The two-server setting. The cost of retrieving a 1 KiB block using classic PIR and
verifiable PIR (24 CPU threads). The table shows Merkle-tree-based (§4.1) and the atomic (§4.4)
verifiable PIR approaches with their respective multiplicative overhead over classic PIR without
integrity protection (shown as None). The bandwidth overhead of both verifiable schemes is less
than 2⇥ and the computation cost of the Merkle-based scheme is less than 1.9⇥.

DB size
w/o integrity Verifiable Overhead

[bits] Server CPU time [sec]

1 M 1.2 16 13⇥
10 M 7 160 24⇥
100 M 60 1,561 26⇥
1 B 668 15,769 24⇥

Bandwidth [MiB]

1 M 1.5 0.06 0.04⇥
10 M 3.8 0.2 0.05⇥
100 M 11 0.6 0.06⇥
1 B 33 2.0 0.06⇥

Table 2: The single-server setting.
The cost of retrieving one data bit us-
ing lattice-based classic PIR without
integrity protection (None) and our
verifiable PIR scheme (Atomic §5).

whole lattice plaintext, which leads to higher bandwidth over-
head. The setup cost consists of sending upstream the rotation
keys for ciphertext expansion [63] in the classic PIR scheme and
of downloading database digests in our verifiable PIR scheme.
Note that this classic PIR baseline is not fully optimized, e.g.,
SealPIR [1] achieves almost 100⇥ higher throughput. This is
primarily due to our conservative choice of lattice parameters (as
suggested by the Lattigo library that we use), i.e., the polynomial
degree N and log(QP) in our implementation are 4⇥ larger than
in SealPIR, which results in costlier operations, and SealPIR em-
beds 23 data bits per polynomial coefficient, whereas we embed
only 16 bits.

7.3 Application: privacy-respecting key server

Single-core time [s] Cores needed (est.)

Matrix DPF Matrix DPF

Atomic (§4.4) 15.5 47.3 155 473
Merkle (§4.1) 2.17 1.11 22 12
– No integrity 2.14 1.1 22 11

– No privacy 0.22s, including network RTT

Table 3: Server CPU single-core time to retrieve a single PGP
public-key from Keyd with different verifiable PIR schemes
(left). We use these numbers to estimate the number of CPU
cores (at right) needed to achieve the 10 queries/second through-
put that the OpenPGP server reportedly handles [16]. The table
shows Merkle-tree-based (§4.1) and atomic (§4) verifiable PIR
approaches together with classical PIR (“No integrity”). For
comparison, we give the total time needed to wget a file from
our nearest PGP key server.

In this section, we evaluate how our verifiable PIR schemes
perform in the context of the Keyd public-key server (Section 6).

We time the retrieval of a PGP public-key by using two-server
verifiable PIR, classic PIR without integrity protection, and by
direct download without privacy protection. The results are in
Table 3. To measure the latency of direct download, we download
a random PGP key from the https://keys.openpgp.org key
server by using the wget software. We take all measurements
over the entire processed dataset of PGP keys (see Section 6);
once we pad the rows to a fixed length, this yields a database
between 10 and 12 GiB for the different approaches. We perform
all the measurements the client and servers running on a single
thread.

The Merkle-based verifiable PIR schemes show a perfor-
mance comparable to classic PIR without integrity protection.
The Merkle overhead in comparison with PIR without integrity
is smaller than in Table 1 due to a larger block size in Keyd
(35 KiB vs. 1 KiB) and, hence, significantly smaller overhead
of adding the authentication data. The atomic schemes enable a
client to download a PGP key in less than 16 core-seconds for the
rebalanced scheme and 50 core-seconds for the distributed-point-
function-based scheme. The server-side costs of privacy are
substantial, but at least the servers’ workload is embarrassingly
parallel, so with enough cores the user-perceived latency could
be modest. The maintainers of https://keys.openpgp.org
informed us [16] that their service typically handles around 3–10
public-key lookups per second, which translates into less than 1
million requests per day. A careful multithreaded implementa-
tion of our atomic verifiable PIR schemes can handle this load
with 155 cores. In future work, we aim to further optimize the
implementation of our atomic verifiable PIR schemes.

8 Related work

Our work on verifiable PIR builds on the large and diverse
body of work on private information retrieval. Since the original
paper of Chor et al. [22], there has been a sequence of clever
constructions that improve the communication cost of multi-

12

Roadmap

❖ Introduction

❖ Protecting encryption metadata (Chapter 2)

❖ Data integrity in single-server PIR (Chapter 3)

❖ Securing retrieval of software updates (Chapter 4)

❖ Conclusion

47

Ki
ril

l N
ik

iti
n

Compromising a software-update system 48

Ki
ril

l N
ik

iti
n

!

Compromised software-update systems 49

Ki
ril

l N
ik

iti
n

1 AD 2021

Software Release Pipeline 50

Ki
ril

l N
ik

iti
n

Development/Review – Building release binaries – Sign-off – Release distribution

Developers

Users

Distribution
center

⚙ ⚙

Build server

Development/Review – Building release binaries – Sign-off – Release distributionDevelopment/Review – Building release binaries – Sign-off – Release distributionDevelopment/Review – Building release binaries – Sign-off – Release distribution

Challenges 51

Ki
ril

l N
ik

iti
n

(1) Make software-update process resilient to partial key compromise

Developers

Users

Distribution
center

Build server

Challenges 52

Ki
ril

l N
ik

iti
n

Users

⚙ ⚙

(2) Prevent malicious substitution of a release binary during a build process

!Developers

Distribution
center

Build server

Challenges 53

Ki
ril

l N
ik

iti
n

(2) Prevent malicious substitution of a release binary during a build process

Over 90% of the source packages
included in Debian 9 will build bit-
for-bit identical binary packages

1. Regular users do not compile from source code
2. Reproducible compilation can take hours (e.g., Tor browser)
3. Closed-source software?

https://www.debian.org/News/2017/20170617
https://www.debian.org/News/2017/20170617
https://www.debian.org/News/2017/20170617

Challenges 54

Ki
ril

l N
ik

iti
n

Users

⚙ ⚙

(3) Protect users from targeted attacks by coerced or bribed developers

Developers

Distribution
center

Build server

Challenges 55

Ki
ril

l N
ik

iti
n

(4) Enable developers to securely rotate their signing keys in case of renewal or compromise

Developers

Users

Distribution
center

Build server

CHAINIAC: Securing software-update retrieval 56

Ki
ril

l N
ik

iti
n

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Decentralized release approval 57

Ki
ril

l N
ik

iti
n

(1) Make software-update process resilient to partial key compromise

Policy

Developers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Policy

Decentralized release approval 58

Ki
ril

l N
ik

iti
n

(1) Make software-update process resilient to partial key compromise

Developers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Policy

Release
<source code>

Release
<binary>

⚙

Distribution center

Developers’
signatures

Release
<binary>

Developers’
signatures

Release
<binary>

Developers’
signatures

Background 59

Ki
ril

l N
ik

iti
n

Collective Authority (Cothority), Collective Signing (CoSi), and BFT-CoSi

1 record 2 record 3 record

Authority

Witness
Cosigners

each statement collectively
signed by both authority
and all or most witnesses

Authoritative statements: e.g. log records

References
1. E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly, I.

Khoffi, and Bryan Ford. Keeping Authorities “Honest or Bust” with
Decentralized Witness Cosigning. S&P 2016.

2. E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford.
Enhancing Bitcoin Security and Performance with Strong Consistency via
Collective Signing. USENIX Security 2016.

Verified builds 60

Ki
ril

l N
ik

iti
n

(2) Prevent malicious substitution of a release binary during building process

Developers

User

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Policy

Developers’
signatures

Release Tree
<source code>

<binaries>

Cothority

Distribution center

⚙⚙

⚙ Co-signature

Release Tree
<source code>

<binaries>

Download &
Verify

Verified builds 61

Ki
ril

l N
ik

iti
n

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Release Policy File
- List of individual
developer public keys

- Signing threshold

- Cothority public key

- Supported platforms for
verified builds

- …

Anti-equivocation measures 62

Ki
ril

l N
ik

iti
n

(3) Protect users from targeted attacks by coerced or bribed developers

Developers

UserPolicy

Developers’
signatures

Release Tree
<source code>

<binaries>
<previous head>

Cothority

Distribution center

⚙⚙

⚙ Download

Release 1

Co-signature

Transparency Release Log

Release 2

Co-signature

Release 3

Co-signature

Developers’
signatures

Release Tree
<source code>

<binaries>

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Release 4

Co-signature

Release 4

Co-signature

Verify

Anti-equivocation measures 63

Ki
ril

l N
ik

iti
n

(4) Enable developers to securely rotate their keys

Developers

User

Developers’
signatures

Release Tree
…

Cothority

Distribution center

⚙⚙

⚙
Release 1

Co-signature

Transparency Release Log

Release 2

Co-signature

Release 3

Co-signature

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Release 4

Co-signature

Policy
dev keys

Anti-equivocation measures 64

Ki
ril

l N
ik

iti
n

(4) Enable cothority to securely rotate its keys

Developers

User

Developers’
signatures

Release Tree
…

Cothority

Distribution center

⚙⚙

⚙
Release 1

Co-signature

Transparency Release Log

Release 2

Co-signature

Release 3

Co-signature

Decentralized
Release Approval Anti-equivocation Key EvolutionVerified Builds

Release 4

Co-signature

Policy
co-config

Cothority
key config I

Cothority
key config II

Policy
co-config

Evaluation 65

Ki
ril

l N
ik

iti
n

Cothority-node CPU cost of validating releases and maintaining release log

⚙⚙ Release 1

Co-signature

Release 2

Co-signature

Release 3

Co-signature

Cothority

⚙

3 15 127

Number of nodes

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 s

p
e
n
t
 o

n
 e

a
c
h
 n

o
d
e
 p

e
r
 p

a
c
k
a
g
e
 (

s
e
c
)

Wall-total over all nodes

CPU / Wall

Dev-signature verification

Creating timestamp

Collective signing

Reproducible build

10$/month server is sufficient to validate and
maintain the log of Debian-security repository

Roadmap

❖ Introduction

❖ Protecting encryption metadata (Chapter 2)

❖ Data integrity in single-server PIR (Chapter 3)

❖ Securing retrieval of software updates (Chapter 4)

❖ Conclusion

66

Ki
ril

l N
ik

iti
n

Contributions of the thesis

• Protecting encryption metadata (Chapter 2)

- The concept of Padded Uniform Random Blobs: an encryption format without any
cleartext markers

- An encoding ind$-cca2-secure scheme for efficient generation and decoding of
PURBs

‣ An efficient way to combine encryptions of different types in a single ciphertext

‣ The placement techniques (growing hash tables, public-key hiding) could find
application in other privacy systems

67

Ki
ril

l N
ik

iti
n

mailto:ludovic.barman@epfl.ch
https://github.com/dedis/purb

Contributions of the thesis

• Verifiable single-server PIR (Chapter 3)

- Selective failures in the PIR context

- A PIR protocol with inherent database integrity

• Chainiac (Chapter 4)

- Full use of decentralization for protecting software-update systems without
deteriorating usability for end users

- A practical system for real-world use

68

Ki
ril

l N
ik

iti
n

mailto:ludovic.barman@epfl.ch
https://github.com/dedis/purb

Future work

• Metadata protection

- Protocols for secure communication, such as TLS

• Verifiable PIR

- Better protocols (lower communication cost, larger database records)

- Extensions to Oblivious RAM, encrypted search, etc

• Transparency and verifiability

- From software updates to the Web

69

Ki
ril

l N
ik

iti
n

mailto:ludovic.barman@epfl.ch
https://github.com/dedis/purb

Future work

• More hybrid mechanisms that provably provide multiple security properties in an
atomic way

70

Ki
ril

l N
ik

iti
n

mailto:ludovic.barman@epfl.ch
https://github.com/dedis/purb

Conclusion

On-the-network attacker
• Protecting encryption metadata (Chapter 2) [1]

71

Ki
ril

l N
ik

iti
n

Malicious provider
• Data integrity in single-server private information retrieval (Chapter 3) [2]

Compromised provider
• Securing retrieval of software updates (Chapter 4) [3] !

[1] K. Nikitin*, L. Barman*, W. Lueks, M. Underwood, J.-P. Hubaux, and B. Ford, “Reducing Metadata Leakage from Encrypted
Files and Communication with PURBs”, PETS 2019.
[2] S. Colombo*, K. Nikitin*, B. Ford, and H.Corrigan-Gibbs, “Verifiable Private Information Retrieval”, Under submission.
[3] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive
Software-Update Transparency via Collectively Signed Skipchains and Verified Builds”, USENIX Security 2017.

Thank you!

