Integrity and Metadata Protection
In Data Retrieval

Kirill Nikitin

Decentralized and Distributed Systems Laboratory

PhD oral exam, 20.07.2021

Jury President: Prof. Jean-Pierre Hubaux
Thesis Director:  Prof. Bryan Ford

—Xaminers: Prof. Katerina Argyraki
Prof. Justin Cappos
Prof. Srdjan Capkun




N

Users retrieve data all the time

Kirill Nikitin

¥

Credit for the user and evil pictures here and graphics afterwards is to vecteezy.com



https://www.vecteezy.com/

W

Current protection mechanisms do not suffice

Kirill Nikitin

Credit for the user and evil pictures here and graphics afterwards is to vecteezy.com



https://www.vecteezy.com/

This thesis

On-the-network attacker

Protecting encryption metadata (Chapter 2) [1]

Malicious provider

Data integrity in single-server private information retrieval (Chapter 3) [2] %

Compromised provider
Securing retrieval of software updates (Chapter 4) [3]
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Roadmap

* Protecting encryption metadata (Chapter 2)
 Data integrity in single-server PIR (Chapter 3)
» Securing retrieval of software updates (Chapter 4)

» Conclusion
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Roadmap

* Protecting encryption metadata (Chapter 2)
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Metadata exposure in ciphertexts

Metadata

Encrypted
Payload

// \ ] h vﬁ ?g

—

_ - Recipients,

Algorithms used,
Software used,
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OpenPGP Packet Format

8502 0c01 9497 608d d051 8f79 010f ff4e6
bd7f 1821 27a9 42c4 01b4d 7ecd 433e 7£90
74b8 139c a802 6678 balOd labd
d264 014b 6aba £586 e3fa b98e 92dl1 6759
7186 2ccc ac50 3db7 fa03 4£f31 decd7 f£ado0
4b09 d9b4d 1654 972d 5c¢c22 47db
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OpenPGP Packet Format

Packet Type

Format version Recipient Key ID

Encrypted Data .

| |

8502 0c01 9497 608d d051 8f79 O0f f£f46
bd7f 1821 27a9 42c4 01b4d 7ecd 433e 7£90

74b8 139c a802 6678 balOd labd
d264 014b 6aba £586 e3fa b98e 92dl1 6759
7186 2ccc ac50 3db7 fa03 4£f31 decd7 f£ado0
4b09 d9b4d 1654 972d 5c¢c22 47db

Session Key Part

Data Part

An OpenPGP message to Martin Vetterli encrypted
with using an outdated format’??

Small key? Outdated format? | might crack it!

Is exposing
encryption
metadata

hecessary?
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Avoiding metadata leakage

e Can we design an application-level ciphertext format that avoids leakage of
encryption metadata”

e ENncryption metadata concretely:
- The ciphertext’'s intended recipients
- The encryption algorithm used

- What application has produced the ciphertext
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Packet Type

Format version

Encrypted Data o

|

8502 0cO01 9497
bd7f 1821 27a9

Recipient Key ID

|

d051 8f£79 Of
01b4d 7ecd 433e
a802 6678 bald

d264 014b 6aba
7186 2ccc achO0

e3fa b98e 92dl1
fa03 4£31 dcd7
1654 972d 5c22

What If We Stripped Off All the Metadata?

Session Key Part

Data Part
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What If We Stripped Off All the Metadata?

Encrypt the metadata instead!

Of ££f46
bd7f 1821 27a9 42c4 01b4 7ecd 433e 7£90
. 7/4b8 139c a802 6678 balOd labd

4b 6aba £f586 e3fa b98e 92d1l 6759

Session Key Part

7186 2ccc acb50 3db7 fa03 4f31 decd7 f£adl
Encrypted Data * . . . . . 4b09 d9b4 1654 972d 5c22 47db

Data Part

e How does a recipient parse a ciphertext without any auxiliary information?

e \What if the ciphertext is encrypted

- To multiple recipients

- By using multiple cryptographic algorithms

—
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Padded Uniform Random Blobs (PURBSs)

o A ciphertext format for application data without any metadata in clear
e [he metadata can be found efficiently by trial decryptions following predefined logic

e (Generic, I.e,, still works efficiently with a large numlber of recipients and encryption
algorithms used

e A PURB must be indistinguishable from a random bit string (IND$-CCA2)
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Model

Honest Sender

Honest Recipient(s)
application

/lé
\l

Insecure channel

Is it a PURB or a random bit string?!

S

Active Adversary
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Data-encapsulation strawman

Similar to the Integrated Encryption Scheme [ABRO1] (DH-based)
Recipient - public key gY
ok payload MAC
Ci = gX Co = Encgy*( data) MACY* (Cill C2)

T

distinguishable from
a random string

—
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Data-encapsulation strawman

e [he encoded public key Is indistinguishable from a uniform random string

1.

Public encoding algorithms, e.g., Elligator |
types which all produce uniform strings

BHKLI13], for different public-key

encoded pk

payload

MAC

ci = Hide(g¥)

Co = Encgy*( data)

MAngX ( C1 ” Co )

Does not scale to multiple recipients (e.g., the issue of data duplication)

2. Does not accommodate multiple cryptographic algorithms

—
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Entry points

e [he data are encrypted with an one-time session key K

e An entry point per recipient stores K and additional metadata, and signals the

correctness of decryption

encoded pk entry point

payload

MAC

ci = Ride(g¥) c2 = AEg¥ (K || meta)

Cs = Enck(data)

MACKk ( cillcalles )
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Multiple Recipients
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Multiple Recipients

Recipients - public keys g¥!, gv2, gv3.

Sender creates an entry point (EP) per recipient, each with K and metadata but
encrypted with gvx, gy2x, gy3xrespectively.

— P4 -P» - P53

AEYX(K[Imeta) AEy2X(K|Imeta) AE3X(K|Imeta)

BSut how do we organize these entry points in the PURB?
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Linear Approach Strawman

—ntry points for the recipients - EPs, EP2, EP3

Inefficient to decode
O(len(PURB))

encoded pk =i -P) -P3 payload

MAC

We create an entry point (EP) per recipient, each with K and metadata but
encrypted with gvx, gv2x, gy3xrespectively.

Similar to private broadcast encryption [BBWOO]
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Single Hash-Table Strawman

-Ntry points for the recipients - &

Ty

—Po, EP3

encoded pk

payload

MAC

Entry points are placed in
a hash table, indexed by gy

Hash Table

N
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Single Hash-Table Strawman

-Ntry points for the recipients - &

Ty

—Po, EP3

encoded pk

payload

MAC

-ntry points are placed in

a hash table, indexed by gy

Hash Table

N
N
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Single Hash-Table Strawman

-Ntry points for the recipients - &

Ty

—Po, EP3

encoded pk

payload

MAC

random

-ntry points are placed in

random

a hash table, indexed by gy

Hash Table

1. Space waste

2. Bound on N of recipients

N
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Multiple Recipients: Our Solution

EP3

—ntry points for the recipients - EP4, EP», EP3

N
N
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encoded pk

payload

MAC

[ 11
U

[ 11
U

HTO HTT HT2

—Nntry points are placed in a series of growing hash-tables!



Multiple Recipients: Our Solution

—ntry points for the recipients - EP4, EP», EP3

N
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encoded pk

HTO

random random payload MAC
—P» random
—Ps3
random
HT HT2

—Nntry points are placed in a series of growing hash-tables!



Multiple Recipients: Decoding

—ntry points for the recipients - EP4, EP»,

encoded pk

—Ps random
=P
HTO HT1

N
o))
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==X
random payload MAC
random
=P
random
e Recipient 3
Decoding in

—Nntry points are placed in a series of growing hash-tables!

O(log len(

PURB))




Multiple Recipients: Decoding

—ntry points for the recipients - EP4, EP», EP3

encoded pk?

random

HTO

random random random
random random random
random random
random random

HT1 HT2

random

N
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Multiple Suites

e Recipients use several distinct suites, based on public-key group (e.g.,
Curve25519 or Curved48) or entry point encryption.

e Each suite (an encoded public key and hash tables) becomes a distinct logical
ayer in a PURB, and these layers overlap!

N
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Multi-suite PURB encoding

Hide(A) AEX(K) Enc(data) |
/ / / AEYX(K) / l
AEX(K) , ,

Suite B | Hide(B) | | | randomw | MAC |
AEN(K)

A recipient parses a multi-suite PURB in the same way
as in the single-suite scenario!

W
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Evaluation of decoding performance

- PGP hidden recipients
_' - PURB

1003

Decoding time [ms]

Assembly- *
optimization

1071+

10t 102 100 10
Number of Recipients

H_III
O_
-
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Roadmap

 Data integrity in single-server PIR (Chapter 3)

W
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Service providers learn user’s choices

N—

Metadata Q

W
W
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Service providers learn user’s choices

Give me the value of x3

A\

\ /

W
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Private Information Retrieval (PIR)

Hidden query

A\

\/

Response

Blind computation

Some applications:

software updates [Capl3
nline-presence service [BDG15]
iNng [AS10]

O
d

NoONYMOUS Mmessag

W
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video streaming [GCM+10]
encrypted search [DFL+20]



The single-server PIR setting

e [he database is typically unencrypted

Recorc

S Xjd

onger

‘'OWS

‘e often bits (extending to

IS a separate story)

E(x1-0) + E(x2:0) + E(x31) + E(x4-0) + E(x5-0)

Client wants to retrieve xs

W
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Problem: No data integrity by default

-
——
N—

Yy Y ¥y Yy ¥
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A typical way to get integrity

>
v
N————
v

X1,01 X2,02 X3,03 X4,04 X5,05

Attach a digital signature to each record!

J

Signing data owner

W
o0

Kirill Nikitin



When integrity breaks privacy

g

e

X1,01 X2,02 Y,03 X4,04 X5,05

E(y,03)

I've been
fooled! Reject

For example, the client starts communication after
checking online presence of a friend, or connects
to a website after retrieving a DNS record, etc

\
/

W
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When integrity breaks privacy

@ent has retrieve@
wﬂ

rand rand | Xz,63 | rand | rand

E(xs,03)

accept / reject bit
(send a message, make a request, ...)

N
o
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Verifiable single-server PIR

e Provides privacy and integrity atomically

e Formally, adding the integrity property to the standard correctness and privacy

e Client detects any altering of the datalbase, even for the records she is not

retrieving

e Prior work on verifiable

P

R [£514, W/Z18] relied on heavy machinery (signatures of

correct computation [PST13])

war
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Verifiable single-server PIR: Challenge

-
——
N—

X3,03

/
\/

E(X1,61-0) + E(X2,62:0) + E(X3,631) + E(X4,064-0) + E(X5,05-0)

The authentication information of non-
retrieved records Is cancelled out

N
N
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Verifiable single-server PIR

Public database digest

d = g1x1 : 92X2' gSXS : g4x4 : g5x5

gi's are the hashes of the record
indices to group elements

N
w
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Verifiable single-server PIR

Public database digest

d = g1x1 : 92X2' gSXS : g4x4 : g5x5

gi's are the hashes of the record
indices to group elements

a1, 92, 931, 94", g5

V\’
V\/
—

X1

X2

X3 X4 @ X5

d

g1x1-r : 92x2-r : 93X3-(r+’[) : g4x4-r . g5x5-r
fa=d-gs, Xg=1
fa=dr-lg, x3=0

Otherwise 1L

N
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Reducing communication

Rebalancing

X1 X2 | X3

X172 X817 X X

Bw: O(n) = OH n)

N
Ol
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Evaluation

e [he scenario of private contact discovery (retrieving 1 bit of data)

e Compare with state-of-the-art lattice-based PIR as a baseline

w/o integrity  Verifiable  Overhead

DB size

[bits] Server CPU time [sec]

IM 1.2 16 13 x
10M ] 160 24 X
100 M 60 1,561 26 X
1B 663 15,769 24 X

Bandwidth [M1B]

IM 1.5 0.06 0.04 x
10M 3.8 0.2 0.05 x
100 M 11 0.6 0.06 %

1B 33 2.0 0.06 x

N
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Roadmap

< Securing retrieval of software updates (Chapter 4)
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Compromising a software-update system

$ + @
L

7 NN
glglg




Compromised software-update systems

HNOTPETYA

L &P Codecov solarwinds

1AD

N
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Software Release Pipeline

Kirill Nikitin

Build server
Distribution

center

Developers @
/D |

:_5_\

s L




Challenges

(1) Make software-update process resilient to partial key compromise
Build server

B Distribution
P conter
& O=

Developers

s & L

/>

s

.
.
.

Users

>

N
o %
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Challenges

(2) Prevent malicious substitution of a release binary during a build process

Build server

Distribution
center

Developers

s L

3

O1
N
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Challenges

(2) Prevent malicious substitution of a release binary during a build process

reproducible-builds

debian

Over 90% of the source packages

Provide a verifiable path from source code to binary.

included in Debian 9 will build bit-
for-bit identical binary packages

1. Regular users do not compile from source code
2. Reproducible compilation can take hours (e.g., Tor browser)
3. Closed-source software?

ol
W
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https://www.debian.org/News/2017/20170617
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Challenges

(3) Protect users from targeted attacks by coerced or bribed developers

Build server

Distribution
center

Developers

o1
N
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Challenges

(4) Enable developers to securely rotate their signing keys in case of renewal or compromise

Build server

B Distribution
P conter
& O=

Developers

s

.
.
.

Users

ol
o1

Kirill Nikitin



CHAINIAC: Securing software-update retrieval

o1
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Decentralized release approval

(1) Make software-update process resilient to partial key compromise

Developers
s
:““O | Policy

':.'.f/
=y

Decentralized

Release Approval Verified Builds

User

Policy

O1
~l
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Decentralized release approval

(1) Make software-update process resilient to partial key compromise

Distribution center

Developers
\ O
Release | | Release Release ? User
<source code>| ~ <binary> <binary> :
- Policy
Release
<binary>

Decentralized

Release Approval Verified Builds Anti-equivocation Key Evolution

o1
00)
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Background

a1
(o

Collective Authority (Cothority), Collective Signing (CoSi), and BFT-CoSi

Authoritative statements: e.g. log records

record %@ 2 | record <----3 1 record
W <

S\ /’
N\ /
N\ /

N\ /

each statement collectively
signed by both authority
and all or most witnesses

Authority

Witness
Cosigners

References

1. E.Syta, . Tamas, D. Visher, D. |. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly, I.
Khoffi, and Bryan Ford. Keeping Authorities “Honest or Bust” with
Decentralized Witness Cosigning. S&P 2016.

2. E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford.
Enhancing Bitcoin Security and Performance with Strong Consistency via
Collective Signing. USENIX Security 2016.
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Verified builds

(2) Prevent malicious substitution of a release binary during building process

Release Tree
<source code>

Developers
;A Cothority
a E ™
Rel Ti
<source code> A
<binaries> ’ Sy
N--Nad N

Policy

<binaries>

Distribution center

o=

W Download &

Decentralized
Release Approval

! Verify

User

A

‘/ Anti-equivocation Key Evolution

(o))
o
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Verified builds

Release Policy File

— List of 1ndividual
developer public keys

— Signing threshold
— Cothority public key

— Supported platforms for
verified builds

Decentralized
Release Approval

, /'/

Key Evolution

(o)
—
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Anti-equivocation measures

(3) Protect users from targeted attacks by coerced or bribed developers
Distribution center

Developers %
s - O=
o Cothority
K E \ Release 4
Release Tree Hﬁ
= (O <source code> A 0 Release 1 Release 2 Release 3

<binaries>

Q¥ LX<
x 1
| .' © Download
= ~ - \?A D E@ Transparency Release Log Verivm !
I:i & Policy User

Release Approval

Pk
Release 4 ***K
R ized ‘ Anti-equivocation Key Evolution

(9]
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Anti-equivocation measures

(4) Enable developers to securely rotate their keys
Distribution center

Developers %
’ - O=
o Cothority

O Release Tree
; & :
oMk % O
Policy x’ 2
dev keys
o}
K g <----> ej Release 1 Release 2

Transparency Release Log User

R ized Anti-equivocation Key Evolution
Release Approval

Release 3 Release 4

(o)
6V
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Anti-equivocation measures

(4) Enable cothority to securely rotate its keys
Distribution center

Developers %
’ - O=
o Cothority

f \ Cothority Cothority
S E key config | key config Il
Release Tree A / \ /
o < / \ / "
/ \ / \

ksg’g
L |

Policy

e
[ "
co-config
(o]
\ E <+---->

/ \ / \

| \ | \
\ N . \ \
QJ \ | Release 1 %Release 2 ﬂ Release 3 | # Release 4

Transparency Release Log User

R ized Anti-equivocation Key Evolution
Release Approval

(@)
»
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Evaluation

Release 1 ' Release 2 . Release 3
Co-signature Co-signature Co-signature

Cothority-node CPU cost of validating releases and maintaining release log

10°

10$/month server is sufficient to validate and
maintain the log of Debian-security repository

Time spent on each node per package (sec)
|_|
d
l
|
|
|
|
|
|
|
|
|

15

127

Number of nodes

o
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Roadmap

» Conclusion
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Contributions of the thesis

o Protecting encryption metadata (Chapter 2)

T
C

ne concept of Padded Uniform Random Blobs: an encryption format without any

eartext markers

- An encoding ind$-cca2-secure scheme for efficient generation and decoding of

» An efficient way to combine encryptions of different types in a single ciphertext

4

PURBS

The placement technigues (growing hash tables, public-key hiding) could find
application in other privacy systems

(o))
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Contributions of the thesis

e \eriflable single-server PIR (Chapter 3)

- Selective failures in the PIR context

- A PIR protocol with inherent database integrity

e Chainiac (Chapter 4)

- Full use of decentralization for protecting software-update systems without
deteriorating usabillity for end users

- A practical system for real-world use

(@)
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Future work

e Metadata protection

- Protocols for secure communication, such as TLS

e \erifilable PIR

- Better protocols (lower communication cost, larger database records)

- Extensions to Oblivious RAM, encrypted search, etc

e [ransparency and verifiability

- From software updates to the Web

o
©
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Future work

e More hybrid mechanisms that provably provide multiple security properties in an
atomic way

N
O
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Conclusion Thank you!

On-the-network attacker

Protecting encryption metadata (Chapter 2) [1]

Malicious provider

Data integrity in single-server private information retrieval (Chapter 3) [2] %

Compromised provider
Securing retrieval of software updates (Chapter 4) [3]
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