Integrity and Metadata Protection
In Data Retrieval

Kirill Nikitin

Decentralized and Distributed Systems Laboratory

PhD oral exam, 20.07.2021

Jury President: Prof. Jean-Pierre Hubaux
Thesis Director: Prof. Bryan Ford

—Xaminers: Prof. Katerina Argyraki
Prof. Justin Cappos
Prof. Srdjan Capkun

N

Users retrieve data all the time

Kirill Nikitin

¥

Credit for the user and evil pictures here and graphics afterwards is to vecteezy.com

https://www.vecteezy.com/

W

Current protection mechanisms do not suffice

Kirill Nikitin

Credit for the user and evil pictures here and graphics afterwards is to vecteezy.com

https://www.vecteezy.com/

This thesis

On-the-network attacker

Protecting encryption metadata (Chapter 2) [1]

Malicious provider

Data integrity in single-server private information retrieval (Chapter 3) [2] %

Compromised provider
Securing retrieval of software updates (Chapter 4) [3]

2.
3

1] K. Nikitin*, L. Barman™*, W. Lueks, M. Underwood, J.-P. Hubaux, and B. Ford, “Reducing Metadata Leakage from Encrypted
-iles and Communication with PURBS”, PETS 2019.

S. Colombo*, K. Nikitin*, B. Ford, and H.Corrigan-Gibbs, “Verifiable Private Information Retrieval”, Under submission.
K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, |. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive

Software-Update Transparency via Collectively Signed Skipchains and Verified Builds”, USENIX Security 2017.

N

Kirill Nikitin

Roadmap

* Protecting encryption metadata (Chapter 2)
 Data integrity in single-server PIR (Chapter 3)
» Securing retrieval of software updates (Chapter 4)

» Conclusion

ol

Kirill Nikitin

Roadmap

* Protecting encryption metadata (Chapter 2)

o

Kirill Nikitin

Metadata exposure in ciphertexts

Metadata

Encrypted
Payload

// \] h vﬁ ?g

—

_ - Recipients,

Algorithms used,
Software used,

~N

Kirill Nikitin

OpenPGP Packet Format

8502 0c01 9497 608d d051 8f79 010f ff4e6
bd7f 1821 27a9 42c4 01b4d 7ecd 433e 7£90
74b8 139c a802 6678 balOd labd
d264 014b 6aba £586 e3fa b98e 92dl1 6759
7186 2ccc ac50 3db7 fa03 4£f31 decd7 f£ado0
4b09 d9b4d 1654 972d 5c¢c22 47db

(0 0]

Kirill Nikitin

OpenPGP Packet Format

Packet Type

Format version Recipient Key ID

Encrypted Data .

| |

8502 0c01 9497 608d d051 8f79 O0f f£f46
bd7f 1821 27a9 42c4 01b4d 7ecd 433e 7£90

74b8 139c a802 6678 balOd labd
d264 014b 6aba £586 e3fa b98e 92dl1 6759
7186 2ccc ac50 3db7 fa03 4£f31 decd7 f£ado0
4b09 d9b4d 1654 972d 5c¢c22 47db

Session Key Part

Data Part

An OpenPGP message to Martin Vetterli encrypted
with using an outdated format’??

Small key? Outdated format? | might crack it!

Is exposing
encryption
metadata

hecessary?

©

Kirill Nikitin

Avoiding metadata leakage

e Can we design an application-level ciphertext format that avoids leakage of
encryption metadata”

e ENncryption metadata concretely:
- The ciphertext’'s intended recipients
- The encryption algorithm used

- What application has produced the ciphertext

—l
@

Kirill Nikitin

Packet Type

Format version

Encrypted Data o

|

8502 0cO01 9497
bd7f 1821 27a9

Recipient Key ID

|

d051 8f£79 Of
01b4d 7ecd 433e
a802 6678 bald

d264 014b 6aba
7186 2ccc achO0

e3fa b98e 92dl1
fa03 4£31 dcd7
1654 972d 5c22

What If We Stripped Off All the Metadata?

Session Key Part

Data Part

—h
—h

Kirill Nikitin

What If We Stripped Off All the Metadata?

Encrypt the metadata instead!

Of ££f46
bd7f 1821 27a9 42c4 01b4 7ecd 433e 7£90
. 7/4b8 139c a802 6678 balOd labd

4b 6aba £f586 e3fa b98e 92d1l 6759

Session Key Part

7186 2ccc acb50 3db7 fa03 4f31 decd7 f£adl
Encrypted Data * 4b09 d9b4 1654 972d 5c22 47db

Data Part

e How does a recipient parse a ciphertext without any auxiliary information?

e \What if the ciphertext is encrypted

- To multiple recipients

- By using multiple cryptographic algorithms

—
N

Kirill Nikitin

Padded Uniform Random Blobs (PURBSs)

o A ciphertext format for application data without any metadata in clear
e [he metadata can be found efficiently by trial decryptions following predefined logic

e (Generic, I.e,, still works efficiently with a large numlber of recipients and encryption
algorithms used

e A PURB must be indistinguishable from a random bit string (IND$-CCA2)

—
W

Kirill Nikitin

Model

Honest Sender

Honest Recipient(s)
application

/lé
\l

Insecure channel

Is it a PURB or a random bit string?!

S

Active Adversary

N

Kirill Nikitin

Data-encapsulation strawman

Similar to the Integrated Encryption Scheme [ABRO1] (DH-based)
Recipient - public key gY
ok payload MAC
Ci = gX Co = Encgy*(data) MACY* (Cill C2)

T

distinguishable from
a random string

—
ol

Kirill Nikitin

Data-encapsulation strawman

e [he encoded public key Is indistinguishable from a uniform random string

1.

Public encoding algorithms, e.g., Elligator |
types which all produce uniform strings

BHKLI13], for different public-key

encoded pk

payload

MAC

ci = Hide(g¥)

Co = Encgy*(data)

MAngX (C1 ” Co)

Does not scale to multiple recipients (e.g., the issue of data duplication)

2. Does not accommodate multiple cryptographic algorithms

—
(o)

Kirill Nikitin

Entry points

e [he data are encrypted with an one-time session key K

e An entry point per recipient stores K and additional metadata, and signals the

correctness of decryption

encoded pk entry point

payload

MAC

ci = Ride(g¥) c2 = AEg¥ (K || meta)

Cs = Enck(data)

MACKk (cillcalles)

—
~

Kirill Nikitin

Multiple Recipients

Kirill Nikitin

Multiple Recipients

Recipients - public keys g¥!, gv2, gv3.

Sender creates an entry point (EP) per recipient, each with K and metadata but
encrypted with gvx, gy2x, gy3xrespectively.

— P4 -P» - P53

AEYX(K[Imeta) AEy2X(K|Imeta) AE3X(K|Imeta)

BSut how do we organize these entry points in the PURB?

—
O

Kirill Nikitin

Linear Approach Strawman

—ntry points for the recipients - EPs, EP2, EP3

Inefficient to decode
O(len(PURB))

encoded pk =i -P) -P3 payload

MAC

We create an entry point (EP) per recipient, each with K and metadata but
encrypted with gvx, gv2x, gy3xrespectively.

Similar to private broadcast encryption [BBWOO]

N
o

Kirill Nikitin

Single Hash-Table Strawman

-Ntry points for the recipients - &

Ty

—Po, EP3

encoded pk

payload

MAC

Entry points are placed in
a hash table, indexed by gy

Hash Table

N
—k

Kirill Nikitin

Single Hash-Table Strawman

-Ntry points for the recipients - &

Ty

—Po, EP3

encoded pk

payload

MAC

-ntry points are placed in

a hash table, indexed by gy

Hash Table

N
N

Kirill Nikitin

Single Hash-Table Strawman

-Ntry points for the recipients - &

Ty

—Po, EP3

encoded pk

payload

MAC

random

-ntry points are placed in

random

a hash table, indexed by gy

Hash Table

1. Space waste

2. Bound on N of recipients

N
w

Kirill Nikitin

Multiple Recipients: Our Solution

EP3

—ntry points for the recipients - EP4, EP», EP3

N
N

Kirill Nikitin

[11
U

encoded pk

payload

MAC

[11
U

[11
U

HTO HTT HT2

—Nntry points are placed in a series of growing hash-tables!

Multiple Recipients: Our Solution

—ntry points for the recipients - EP4, EP», EP3

N
&)

Kirill Nikitin

encoded pk

HTO

random random payload MAC
—P» random
—Ps3
random
HT HT2

—Nntry points are placed in a series of growing hash-tables!

Multiple Recipients: Decoding

—ntry points for the recipients - EP4, EP»,

encoded pk

—Ps random
=P
HTO HT1

N
o))

Kirill Nikitin

==X
random payload MAC
random
=P
random
e Recipient 3
Decoding in

—Nntry points are placed in a series of growing hash-tables!

O(log len(

PURB))

Multiple Recipients: Decoding

—ntry points for the recipients - EP4, EP», EP3

encoded pk?

random

HTO

random random random
random random random
random random
random random

HT1 HT2

random

N
~

Kirill Nikitin

¢

Non-recipient

Q undIN Uy

)

QR R,

Multiple Suites

Multiple Suites

e Recipients use several distinct suites, based on public-key group (e.g.,
Curve25519 or Curved48) or entry point encryption.

e Each suite (an encoded public key and hash tables) becomes a distinct logical
ayer in a PURB, and these layers overlap!

N
(o

Kirill Nikitin

Multi-suite PURB encoding

Hide(A) AEX(K) Enc(data) |
/ / / AEYX(K) / l
AEX(K) , ,

Suite B | Hide(B) | | | randomw | MAC |
AEN(K)

A recipient parses a multi-suite PURB in the same way
as in the single-suite scenario!

W
o

Kirill Nikitin

Evaluation of decoding performance

- PGP hidden recipients
_' - PURB

1003

Decoding time [ms]

Assembly- *
optimization

1071+

10t 102 100 10
Number of Recipients

H_III
O_
-

W
—

Kirill Nikitin

Roadmap

 Data integrity in single-server PIR (Chapter 3)

W
N

Kirill Nikitin

Service providers learn user’s choices

N—

Metadata Q

W
W

Kirill Nikitin

Service providers learn user’s choices

Give me the value of x3

A\

\ /

W
N

Kirill Nikitin

Private Information Retrieval (PIR)

Hidden query

A\

\/

Response

Blind computation

Some applications:

software updates [Capl3
nline-presence service [BDG15]
iNng [AS10]

O
d

NoONYMOUS Mmessag

W
ol

Kirill Nikitin

video streaming [GCM+10]
encrypted search [DFL+20]

The single-server PIR setting

e [he database is typically unencrypted

Recorc

S Xjd

onger

‘'OWS

‘e often bits (extending to

IS a separate story)

E(x1-0) + E(x2:0) + E(x31) + E(x4-0) + E(x5-0)

Client wants to retrieve xs

W
o

Kirill Nikitin

Problem: No data integrity by default

-
——
N—

Yy Y ¥y Yy ¥

W
~

Kirill Nikitin

A typical way to get integrity

>
v
N————
v

X1,01 X2,02 X3,03 X4,04 X5,05

Attach a digital signature to each record!

J

Signing data owner

W
o0

Kirill Nikitin

When integrity breaks privacy

g

e

X1,01 X2,02 Y,03 X4,04 X5,05

E(y,03)

I've been
fooled! Reject

For example, the client starts communication after
checking online presence of a friend, or connects
to a website after retrieving a DNS record, etc

\
/

W
©

Kirill Nikitin

When integrity breaks privacy

@ent has retrieve@
wﬂ

rand rand | Xz,63 | rand | rand

E(xs,03)

accept / reject bit
(send a message, make a request, ...)

N
o

Kirill Nikitin

Verifiable single-server PIR

e Provides privacy and integrity atomically

e Formally, adding the integrity property to the standard correctness and privacy

e Client detects any altering of the datalbase, even for the records she is not

retrieving

e Prior work on verifiable

P

R [£514, W/Z18] relied on heavy machinery (signatures of

correct computation [PST13])

war

Kirill Nikitin

Verifiable single-server PIR: Challenge

-
——
N—

X3,03

/
\/

E(X1,61-0) + E(X2,62:0) + E(X3,631) + E(X4,064-0) + E(X5,05-0)

The authentication information of non-
retrieved records Is cancelled out

N
N

Kirill Nikitin

Verifiable single-server PIR

Public database digest

d = g1x1 : 92X2' gSXS : g4x4 : g5x5

gi's are the hashes of the record
indices to group elements

N
w

Kirill Nikitin

Verifiable single-server PIR

Public database digest

d = g1x1 : 92X2' gSXS : g4x4 : g5x5

gi's are the hashes of the record
indices to group elements

a1, 92, 931, 94", g5

V\’
V\/
—

X1

X2

X3 X4 @ X5

d

g1x1-r : 92x2-r : 93X3-(r+’[) : g4x4-r . g5x5-r
fa=d-gs, Xg=1
fa=dr-lg, x3=0

Otherwise 1L

N
I N

Kirill Nikitin

Reducing communication

Rebalancing

X1 X2 | X3

X172 X817 X X

Bw: O(n) = OH n)

N
Ol

Kirill Nikitin

Evaluation

e [he scenario of private contact discovery (retrieving 1 bit of data)

e Compare with state-of-the-art lattice-based PIR as a baseline

w/o integrity Verifiable Overhead

DB size

[bits] Server CPU time [sec]

IM 1.2 16 13 x
10M] 160 24 X
100 M 60 1,561 26 X
1B 663 15,769 24 X

Bandwidth [M1B]

IM 1.5 0.06 0.04 x
10M 3.8 0.2 0.05 x
100 M 11 0.6 0.06 %

1B 33 2.0 0.06 x

N
(@)

Kirill Nikitin

Roadmap

< Securing retrieval of software updates (Chapter 4)

D
~

Kirill Nikitin

Compromising a software-update system

$ + @
L

7 NN
glglg

Compromised software-update systems

HNOTPETYA

L &P Codecov solarwinds

1AD

N
©

Kirill Nikitin

o1
@

Software Release Pipeline

Kirill Nikitin

Build server
Distribution

center

Developers @
/D |

:_5_\

s L

Challenges

(1) Make software-update process resilient to partial key compromise
Build server

B Distribution
P conter
& O=

Developers

s & L

/>

s

.
.
.

Users

>

N
o %

Ol
—

Kirill Nikitin

Challenges

(2) Prevent malicious substitution of a release binary during a build process

Build server

Distribution
center

Developers

s L

3

O1
N

Kirill Nikitin

Challenges

(2) Prevent malicious substitution of a release binary during a build process

reproducible-builds

debian

Over 90% of the source packages

Provide a verifiable path from source code to binary.

included in Debian 9 will build bit-
for-bit identical binary packages

1. Regular users do not compile from source code
2. Reproducible compilation can take hours (e.g., Tor browser)
3. Closed-source software?

ol
W

Kirill Nikitin

https://www.debian.org/News/2017/20170617
https://www.debian.org/News/2017/20170617
https://www.debian.org/News/2017/20170617

Challenges

(3) Protect users from targeted attacks by coerced or bribed developers

Build server

Distribution
center

Developers

o1
N

Kirill Nikitin

Challenges

(4) Enable developers to securely rotate their signing keys in case of renewal or compromise

Build server

B Distribution
P conter
& O=

Developers

s

.
.
.

Users

ol
o1

Kirill Nikitin

CHAINIAC: Securing software-update retrieval

o1
(o)

Kirill Nikitin

Decentralized release approval

(1) Make software-update process resilient to partial key compromise

Developers
s
:““O | Policy

':.'.f/
=y

Decentralized

Release Approval Verified Builds

User

Policy

O1
~l

Kirill Nikitin

Decentralized release approval

(1) Make software-update process resilient to partial key compromise

Distribution center

Developers
\ O
Release | | Release Release ? User
<source code>| ~ <binary> <binary> :
- Policy
Release
<binary>

Decentralized

Release Approval Verified Builds Anti-equivocation Key Evolution

o1
00)

Kirill Nikitin

Background

a1
(o

Collective Authority (Cothority), Collective Signing (CoSi), and BFT-CoSi

Authoritative statements: e.g. log records

record %@ 2 | record <----3 1 record
W <

S\ /’
N\ /
N\ /

N\ /

each statement collectively
signed by both authority
and all or most witnesses

Authority

Witness
Cosigners

References

1. E.Syta, . Tamas, D. Visher, D. |. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly, I.
Khoffi, and Bryan Ford. Keeping Authorities “Honest or Bust” with
Decentralized Witness Cosigning. S&P 2016.

2. E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford.
Enhancing Bitcoin Security and Performance with Strong Consistency via
Collective Signing. USENIX Security 2016.

Kirill Nikitin

Verified builds

(2) Prevent malicious substitution of a release binary during building process

Release Tree
<source code>

Developers
;A Cothority
a E ™
Rel Ti
<source code> A
<binaries> ’ Sy
N--Nad N

Policy

<binaries>

Distribution center

o=

W Download &

Decentralized
Release Approval

! Verify

User

A

‘/ Anti-equivocation Key Evolution

(o))
o

Kirill Nikitin

Verified builds

Release Policy File

— List of 1ndividual
developer public keys

— Signing threshold
— Cothority public key

— Supported platforms for
verified builds

Decentralized
Release Approval

, /'/

Key Evolution

(o)
—

Kirill Nikitin

Anti-equivocation measures

(3) Protect users from targeted attacks by coerced or bribed developers
Distribution center

Developers %
s - O=
o Cothority
K E \ Release 4
Release Tree Hﬁ
= (O <source code> A 0 Release 1 Release 2 Release 3

<binaries>

Q¥ LX<
x 1
| .' © Download
= ~ - \?A D E@ Transparency Release Log Verivm !
I:i & Policy User

Release Approval

Pk
Release 4 ***K
R ized ‘ Anti-equivocation Key Evolution

(9]
N

Kirill Nikitin

Anti-equivocation measures

(4) Enable developers to securely rotate their keys
Distribution center

Developers %
’ - O=
o Cothority

O Release Tree
; & :
oMk % O
Policy x’ 2
dev keys
o}
K g <----> ej Release 1 Release 2

Transparency Release Log User

R ized Anti-equivocation Key Evolution
Release Approval

Release 3 Release 4

(o)
6V

Kirill Nikitin

Anti-equivocation measures

(4) Enable cothority to securely rotate its keys
Distribution center

Developers %
’ - O=
o Cothority

f \ Cothority Cothority
S E key config | key config Il
Release Tree A / \ /
o < / \ / "
/ \ / \

ksg’g
L |

Policy

e
["
co-config
(o]
\ E <+---->

/ \ / \

| \ | \
\ N . \ \
QJ \ | Release 1 %Release 2 ﬂ Release 3 | # Release 4

Transparency Release Log User

R ized Anti-equivocation Key Evolution
Release Approval

(@)
»

Kirill Nikitin

Evaluation

Release 1 ' Release 2 . Release 3
Co-signature Co-signature Co-signature

Cothority-node CPU cost of validating releases and maintaining release log

10°

10$/month server is sufficient to validate and
maintain the log of Debian-security repository

Time spent on each node per package (sec)
|_|
d
l
|
|
|
|
|
|
|
|
|

15

127

Number of nodes

o
&)

Kirill Nikitin

Roadmap

» Conclusion

o
o

Kirill Nikitin

Contributions of the thesis

o Protecting encryption metadata (Chapter 2)

T
C

ne concept of Padded Uniform Random Blobs: an encryption format without any

eartext markers

- An encoding ind$-cca2-secure scheme for efficient generation and decoding of

» An efficient way to combine encryptions of different types in a single ciphertext

4

PURBS

The placement technigues (growing hash tables, public-key hiding) could find
application in other privacy systems

(o))
~l

Kirill Nikitin

mailto:ludovic.barman@epfl.ch
https://github.com/dedis/purb

Contributions of the thesis

e \eriflable single-server PIR (Chapter 3)

- Selective failures in the PIR context

- A PIR protocol with inherent database integrity

e Chainiac (Chapter 4)

- Full use of decentralization for protecting software-update systems without
deteriorating usabillity for end users

- A practical system for real-world use

(@)
(00

Kirill Nikitin

mailto:ludovic.barman@epfl.ch
https://github.com/dedis/purb

Future work

e Metadata protection

- Protocols for secure communication, such as TLS

e \erifilable PIR

- Better protocols (lower communication cost, larger database records)

- Extensions to Oblivious RAM, encrypted search, etc

e [ransparency and verifiability

- From software updates to the Web

o
©

Kirill Nikitin

mailto:ludovic.barman@epfl.ch
https://github.com/dedis/purb

Future work

e More hybrid mechanisms that provably provide multiple security properties in an
atomic way

N
O

Kirill Nikitin

mailto:ludovic.barman@epfl.ch
https://github.com/dedis/purb

Conclusion Thank you!

On-the-network attacker

Protecting encryption metadata (Chapter 2) [1]

Malicious provider

Data integrity in single-server private information retrieval (Chapter 3) [2] %

Compromised provider
Securing retrieval of software updates (Chapter 4) [3]

2.
3

1] K. Nikitin*, L. Barman™*, W. Lueks, M. Underwood, J.-P. Hubaux, and B. Ford, “Reducing Metadata Leakage from Encrypted
-iles and Communication with PURBS”, PETS 2019.

S. Colombo*, K. Nikitin*, B. Ford, and H.Corrigan-Gibbs, “Verifiable Private Information Retrieval”, Under submission.
K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, |. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive

Software-Update Transparency via Collectively Signed Skipchains and Verified Builds”, USENIX Security 2017.

~
—

Kirill Nikitin

