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• More than 1 billion people worldwide are fully vaccinated against 
COVID-19

• Severe (life threatening) reactions are extremely rare and dispersed 
around the globe

• Studying these cases requires the international sharing of dispersed 
sensitive patients’ data

However, sensitive/personal data are difficult to share because of:

• Stringent regulations, e.g., GDPR.

• Complex/costly data-access agreements

• High repercussions in case of data leakage

• Competition among stakeholders

→ Sensitive data are often siloed

Motivation for Federated Analytics Mo5va5on for Federated Analy5cs 
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By ensuring data privacy, one can enable data sharing among multiple 
entities and :

Comply by-design with regulations, e.g., GDPR.

Reduce the need for data-access agreements

Control which information is revealed and avoid data leakages

Motivation for Privacy-Preserving Federated Analytics 
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(a) Fully centralized

Raw data

Trusted
3rd party

Exis5ng Solu5ons for Federated Analy5cs

v Flexible computations
v No Bias

- Single point of failure
- Data leakage
- Data outsourcing (require agreements)
- Scalability with dataset size and number of 

data providers

Public/private Initiatives:
- All of Us (US National Institute of Health)
- EGA (European Genome-phenome Archive)
- Genomics England
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(a) Fully centralized

v Flexible computations
v No bias
- Single point of failure
- Data leakage
- Data outsourcing
- Scalability

Raw data

Trusted
3rd party

Existing Solutions for Federated Analytics

v Flexible computaWons
v No bias
v Scalability

- Single point of failure
- Data leakage
- Data outsourcing (require agreements)

Public/private Ini2a2ves:
- ConsorWum for Clinical CharacterizaWon of 
COVID-19 by EHR

Aggregated data

Trusted
3rd party

(b) Meta-Analysis
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(a) Fully centralized

v Flexible computations
v No bias
- Single point of failure
- Data leakage
- Data outsourcing
- Scalability

Raw data

Trusted
3rd party

Existing Solutions for Federated Analytics

(b) Meta-Analysis

v Flexible computations
v No bias
v Scalability
- Single point of failure
- Data leakage
- Data outsourcing

Aggregated 
data

Trusted
3rd party

v Flexible computations
v No bias
v Scalability

- Data leakage

Public/private Initiatives:
- DataSHIELD (UK)
- Personalized Health Train (PHT)
- Vantage6

Aggregated 
data

(c) Decentralized
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(a) Fully centralized

v Flexible computations
v No bias
- Single point of failure
- Data leakage
- Data outsourcing
- Scalability

Raw data

Trusted
3rd party

Existing Solutions for Federated Analytics

(b) Meta-Analysis

v Flexible computa=ons
v No bias
v Scalability
- Single point of failure
- Data leakage
- Data outsourcing

Aggregated 
data

Trusted
3rd party

v Flexible computations
v Scalability

- Bias introduced by-design
- Trade-off between data leakage and accuracy

Public/private Initiatives:
- NVIDIA

Aggregated 
data

(c) Decentralized

v Flexible computations
v No bias
v Scalability
- Single point of failure
- Data leakage
- Data outsourcing

Par,al Results 
Obfusca,on

(d) Differential-Privacy-based Decentralized
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(a) Fully centralized

v Flexible computations
v No bias
- Single point of failure
- Data leakage
- Data outsourcing
- Scalability

Raw data

Trusted
3rd party

Existing Solutions for Federated Analytics

(b) Meta-Analysis

v Flexible computations
v No bias
v Scalability
- Single point of failure
- Data leakage
- Data outsourcing

Aggregated 
data

Trusted
3rd party

v No data leakage

- Difficult to scale with the number of parties
- Data outsourcing

Public/private Initiatives:
- Sharemind
- Inpher
- Duality

Aggregated 
data

(c) Decentralized

v Flexible computations
v No bias
v Scalability
- Single point of failure
- Data leakage
- Data outsourcing

(d) Differen@al Privacy

v Flexible computations
v Scalability

- Bias introduced by-design
- Trade-off between data 

leakage and accuracy

= Partial Results 
Obfuscation

Secret 
shared/ 
encrypted 
data

(e) Cryptography-based (SMC, HE) Decentralized
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(a) Fully centralized

v Flexible computations
v No bias
- Single point of failure
- Data leakage
- Data outsourcing
- Scalability

Raw data

Trusted
3rd party

Thesis Goal

(b) Meta-Analysis

v Flexible computations
v No bias
v Scalability
- Single point of failure
- Data leakage
- Data outsourcing

Aggregated 
data

Trusted
3rd party

Modular federated privacy-preserving analytics with:

v Data confidentiality

v Flexible computations

v No bias introduced by design

v Scalability in all dimensions: number of parties, size of datasets

v Decentralization, no single point of failure

Aggregated 
data

(c) Decentralized

v Flexible computations
v No bias
v Scalability
- Single point of failure
- Data leakage
- Data outsourcing

(d) Differential Privacy

v Flexible computations
v Scalability

- Bias introduced by-design
- Trade-off between data 

leakage and accuracy

= Partial Results 
Obfuscation

(e) Crypto (MHE, SMC)

v No data leakage

- Difficult to scale with the 
number of parties

- Data outsourcing

Secret 
shared/enc
rypted data
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UnLynx (Chapter 3) [1]
SELECT sum/count … FROM DP1, …, DPn
WHERE … GROUP BY …

Data privacy & Confidentiality
Computations Verification
Collective protection of local data

Anytrust Model with 
passive adversary

Drynx (Chapter 4) [2]
SELECT statistic() … FROM DP1, …, DPn
WHERE … GROUP BY …

Data privacy & Confiden7ality
ComputaQons & Input VerificaQon

Anytrust Model with 
active adversary

SPINDLE (Chapter 5) [3]
Cooperative gradient descent (training) 
and model evaluation

Data & Model Confidentiality Anytrust Model with 
passive adversary

FAMHE (Chapter 6) [4]
Federated biomedical studies: survival
curves and genome-wide association 
studies

Data Confiden7ality Anytrust Model with 
passive adversary

Thesis Structure

[1] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. Mouchet, B. Ford, and J.-P. Hubaux: “UnLynx: A Decentralized System for Privacy-Conscious Data Sharing.” PETS’17.
[2] D. Froelicher, J.R. Troncoso-Pastoriza, J.S. Sousa and J.P. Hubaux, ”Drynx: Decentralized, Secure, Verifiable System for Statistical Queries and Machine Learning on Distributed 
Datasets.”, IEEE TIFS, 2020.
[3] D. Froelicher, J. R. Troncoso-Pastoriza, A. Pyrgelis, S. Sav, J. S. Sousa, J.-P. Bossuat, and J.-P. Hubaux. "Scalable Privacy-Preserving Distributed Learning." PETS’21.
[4] D. Froelicher, J. R. Troncoso-Pastoriza, J. L. Raisaro, M. Cuendet, J. S. Sousa, H. Cho, B. Berger, J. Fellay, and J.-P. Hubaux. “Truly Privacy-Preserving Federated Analytics for Precision 
Medicine with Multiparty Homomorphic Encryption”. Conditionally Accepted in Nature Communications , 2021.
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DP1

DP3

DP2

DP4

DP5

DP6

DP = Data Provider

DP7

System Model:
Interconnected data providers willing to 
collaborate but not to share their data.

Minimum Security Requirement:
Data Confidentiality must be ensured as long as 
one DP is honest.

Querier

A Common Basis: Model & Security Requirement
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MapReduce:

Map
DP1

Map
DP2

Map
DP3

Map
DP4

Map
DP5

Map
DP6

Map
DP7

Combine
DP1

Combine
DP2

Combine
DP3

Reduce
DP1

(ITERATE)

DP1
DP3

DP2

DP4

DP5

DP6

DP = Data Provider

DP7

Querier

A Common Basis: Framework
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DP1

DP3

DP2

DP4

DP5

DP6

DP = Data Provider

DP7

MapReduce:

Map
DP1

Map
DP2

Map
DP3

Map
DP4

Map
DP5

Map
DP6

Map
DP7

Combine
DP1

Combine
DP2

Combine
DP3

Reduce
DP1

(ITERATE)

Secret KeyPublic Key

= f(                                 )

Collec7ve Public Key

Querier

Key Switching

A Common Basis: Protection Mechanism
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A Common Basis: Two Instantiations
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I1: Instatiation 1: Verifiable Statistics 
Computations

Goal: Instantiate (based on Chapters 3 & 4) our 
framework such that it

v Enables statistical computations 
v Enables efficient and public auditability
v Remains secure even against an active 

adversary

InstanJaJon 2: Machine Learning 
ComputaJons

Goal: InstanXate (based on Chapter 5) our 
framework such that it

v Enables the cooperaXve execuXon of a 
gradient descent

v Enables an oblivious evalua2on of the 
trained model

v Remains secure against a passive 
adversary controlling all but one DPsMultiparty HE Encodings

Proofs Diff. Privacy
Multiparty HEGradient Descent



Multiparty Additive ElGamal Homomorphic Encryption

• Security: hardness of discrete logarithm in a finite field

• Collective Encryption Key: sum of the data providers’ public keys

• Encryption: each ciphertext encrypts one integer 

• Homomorphic Operations: additions

• Key Switching: collective protocol in which each data provider uses its secret key to 
partially decrypt the value and re-encrypt with another public key (e.g., querier)

• Decryption: one party (e.g., querier) uses her secret key to decrypt a message 
encrypted with its public key

=    +    +    +    +    +    +    

I1: Building Blocks
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Publicly-verifiable zero-knowledge proofs of correctness
Correct Computations: proofs for general statements about discrete logarithms [1] and 
computation transcripts

Correct Input: proof of input-range [2] adapted to the multiparty scenario

Differential Privacy
A public list of noise values satisfying (ϵ,𝛿)-differential privacy is collectively and 
verifiably shuffled [3] by the data providers before the noise is added to the 
computation’s result.

[1] J. Camenisch and M. Stadler. Proof Systems for General Statements about Discrete Logarithms. Technical Report, 1997
[2] J. Camenisch, R. Chaabouni, and a. Shelat. Efficient Protocols for Set Membership andRange Proofs. In International Conference on the Theory and 
Application of Cryptology and Information Security, pages 234–252. Springer, 2008
[3] C. A. Neff. Verifiable Mixing (Shuffling) of ElGamal Pairs, 2004.

I1: Building Blocks
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Encodings
To enable statistical computations with an additively homomorphic encryption scheme, 
data providers locally encode their results before the collective aggregation.

Example: standard deviation

Each data provider i locally computes: sum of values: ri, sum of squared values ri2 and 
count of values ci
Such that the final result can be aggregated over all DPs’ values as:

standard deviation = ∑ ri2
∑ ci

− (∑ ri
∑ ci

)2

I1: Building Blocks
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Map

Local computations Encoding Encryption Proof of range

Combine

Homomorphic Aggregation Proofs of Correct Computations

Reduce

Homomorphic Aggregation Proofs of Correct Computations

Key Switching

Key Switching    Proofs of Correct Computations

Querier’s Decryp2on

DecrypXon  Final ComputaXon

I1: Framework Instantiation

19



DP = Data Provider
VN = Verifying node

DP7

DP1
DP3

DP2

DP4

DP5

DP6

Querier VN1

VN2 VN3 VN4

VN5 VN6 VN7

Query_UID

Each verifying node probabilistically verify the 
proofs:

Proof 1 Proof 2 … Proof p

- …

Together the verifying nodes maintain an immutable 
log, which can be publicly verified.

…Query_UID Query_UID
…

I1: Auditability through Verifying Nodes
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Parameters:
• 13 machines: 2 Intel Xeon E5-2680 v3 CPUs, 2.5GHz 

frequency, 24 threads on 12 cores, 256GB RAM. 
• Operation: Variance of 30 different attributes
• 6000 records split among 60 DPs
• Input range of [0,220]
• 7 VNs

DPs

Combine & Reduce
Key Switching
Decryption

Verify Comp. Proofs
Map

Scalability:

• Linear with the number of data providers and 
with the DPs’ datasets

I1: Evaluation
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A Common Basis: Two Instantiations

22

I1: Instatiation 1: Verifiable Statistics 
Computations

Goal: Instantiate (based on Chapters 3 & 4) our 
framework such that it

v Enables statistical computations 
v Enables an efficient and public 

auditability
v Remains secure even against an active 

adversary

ØLimited by the encryption scheme
ØLimited scalability with the number of 

features
ØNot quantum resistant

Instantiation 2: Machine Learning 
Computations

Goal: Instantiate (based on Chapter 5) our 
framework such that it

v Enables the cooperative execution of a 
gradient descent

v Enables an oblivious evaluation of the 
trained model

v Remains secure against a passive 
adversary controlling all but one DPs

Multiparty HEGradient Descent



Multiparty Homomorphic Encryption
adaptation to CKKS [1] of the multiparty scheme proposed by Mouchet et al. [2]

• Security: hardness of the ring learning with errors (RLWE) problem

• Collective Encryption Key: created in an interactive protocol among all data providers

• Encryption: each ciphertext contains a vector of N values: E  (v1, …., vN)

• Homomorphic Operations: additions, multiplications, rotations

• Collective Bootstrapping: interactive protocol to refresh a ciphertext, required after a certain number of 
operations

• Key Switching: collective protocol in which each data provider uses its secret key to partially decrypt the 
value and re-encrypt with the querier’s public key

• Decryption: one party (e.g., querier) uses her secret key to decrypt a message encrypted with its public key

[1] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic of approximate numbers. In ASIACRYPT, 2017.
[2] C. Mouchet, J. R. Troncoso-pastoriza, J.-P. Bossuat, and J. P. Hubaux. Multiparty Homomorphic Encryption from Ring-Learning-With-Errors. In PETS’21.

I2: Building Blocks
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Cooperative Gradient Descent

DP1

Iterations of local model training using:
- Batch of local data
- Previous local model
- Global Model

Operations:
2 vector-matrix multiplication, activation 
function and substraction

Aggregation of all local 
models

Update of global 
model

DP7

……

I2: Building Blocks

Iterations of local model training using:
- Batch of local data
- Previous local model
- Global Model

Operations:
2 vector-matrix multiplication, activation 
function and substraction

24



Map

DP1

Map

DP2
Map

DP3

Map

DP4

Map

DP5

Map

DP6
Map

DP7

Combine
DP1

Combine

DP2

Combine

DP3

Reduce
DP1

(ITERATE)

Key Switching

Map

Combine

Homomorphic Aggregation

Reduce

Homomorphic Aggregation

Key Switching

Key Switching 

Querier’s Decryption

Decryption  Final Computation

features

Samples’ 
batchx Activation x

Stochastic Gradient Descent Operations:

f(features, samples’ batch)

x

x

Diagonal Approach
Input Dimension

Encrypted

Cleartext

Activation

: Least Square Approx.

x Row-based Approach

I2: Framework Instantiation
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To cover the entire ML workflow, the trained model can remain collectively encrypted
and be used for oblivious evaluation

DP1

DP3

DP2

DP4

DP5

DP6

DP7

Querier

I2: Framework Instantiation
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Logistic 
regression

Logistic 
Regression 
one-Vs-all

Multinomial 
Regression

SPINDLE = instantiation of our solution for Generalized Linear Models (linear, logistic, multinomial regressions)

à achieves accuracy close to centralized solution and (almost) same accuracy as non-secure distributed solutions

Evaluation Parameters
10 Data providers
128-bit security level

Legend
Dataset: Name [#samples x #features]

(1) Pima = Pima Indians Diabetes 
https://www.kaggle.com/uciml/pima-indians-diabetes-database
(2) BCW = Breast cancer Wisconsin (original)
https://archive.ics.uci.edu/ml/datasets/ 
breast+cancer+wisconsin+(original)
(3,4) MNIST 
Y. LeCun and C. Cortes. Handwritten digit database. 2010.

I2: Accuracy Evaluation
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5 data providers, 25600 record, 128-bit security; Each data provider: 2 Intel Xeon E5-2680 v3 CPUs, 2.5GHz frequency, 
24 threads on 12 cores, 256GB RAM. Communication: 100Mbps, delay 20ms

Better than logarithmic increase with the number of features

I2: Performance Evaluation

28



128-bit security level; Default number of features = 32, |S|= # data providers; n = global dataset size, b is the batch 
size used in the stochastic gradient descent, One data provider: 2 Intel Xeon E5-2680 v3 CPUs, 2.5GHz frequency, 24 
threads on 12 cores, 256GB RAM. Communication: 100Mbps, delay 20ms

Scales almost independently with 
the number of data providers |S|

Scales linearly with the size of 
the data providers datasets n

Efficient workload 
distribution

I2: Performance Evaluation
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Goal: Reproduce in our framework (based on Chapter 6) two biomedical studies that originally relied on data 
centralisation.

à demonstrate that we obtain accurate results while keeping the data decentralized and protecting 
patients’ privacy

Study 1: Survival Curve: 
Samstein et al. [1] computed Kaplan-Meier overall 
survival curves on 1662 advanced-cancer patients to 
study the effect of a specific treatment. 

Study 2: Genome-Wide Association Study: 
McLaren et al. [2] studied the link between HIV viral 
load and specific genome variants.

Our Framework for Practical Use Cases

[1] R. M. Samstein et al. Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nature Genetics, 2019.
[2] P. J. McLaren et al. Polymorphisms of Large Effect Explain the Majority of the Host Genetic Contribution to Variation of HIV-1 Virus Load. Proceedings of the National Academy of 
Sciences of the United States of America, 2015.
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Exact Results Scale with the number of data providers and 
with the dataset’s size

Map
Each DP locally encrypts a 
vector of time points 
values

Combine

Collective aggregation

Reduce

Collective aggregation

Key 
Switching

Decryption
Querier decrypts and 
generates the survival 
curve

Study 1: Survival Curve
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Map
Each DP locally computes covariance 
matrix XTX of the covariates

Combine
Collective aggregation

Reduce
Inverse of XTX

For each variant: data providers engage in multiple MapReduce rounds to compute the extended inverse of the covariance matrix W
that includes the variant contribution. 

Map Combine Reduce Map Combine Reduce…

For each variant: data providers use W to collectively compute the values required to obtain the p-values

Map Combine Reduce Map Combine Reduce…

Key 
Switching

Decryption
Querier decrypts and computes the p-values

GWAS Method: The p-value is computed from the variant weight, the mean-squared error and 
the standard error of the variant’s weight. A small p-value indicates a link.

Study 2: Genome-Wide Association Study
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Setting: 1857 patients spread among 12 data providers.

Original Study (Centralized, Non-Secure)

Our Approach (Decentralized, Secure)

Meta-Analysis (Decentralized, Non-Secure)

Independent (1 single data provider)

Almost Exact Results

Study 2: Genome-Wide Association Study
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Default Setting: 1857 patients spread among 12 data providers.

Performance-optimized Approach: instead of computing the complete inverse of covariance 
matrix, we estimate the covariates weights through an efficient gradient descent and only 
compute the standard error of the variant weight, i.e., one diagonal element.

Exact Approach Time dedicated to communication Overhead in WAN setting

One data provider: 2 Intel Xeon E5-2680 v3 CPUs, 2.5GHz frequency, 24 threads on 12 cores, 256GB RAM. 
Communication: 1Gbps, delay 20ms

Study 2: Genome-Wide Association Study

34



Hypothetical Example: Study link between COVID-vaccine severe side-effect and specific variants.  

1. Count suitable 
subjects in 

federated dataset.

2. Study of age 
distribution, variance 
in side-effect severity, 

3. Execution of GWAS

Cohort Exploration Medical Study

Federated Data Exploration & Statistical 
Analysis

Chapter 3 & Chapter 4

Federated Learning

Chapter 5 & Chapter 6

Federated Analytics in the Medical Domain
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Cohort Exploration Tool (based on Chapter 3)
• Deployed Network between multiple hospitals and universities in Switzerland
• Currently being deployed in Netherlands, Italy, USA, …

Startup building a tool for secure collaboration and federated analytics 

2 patents filed based on our work in Chapter 5 and subsequent work

Impact

DPPH: Data Protection in Personalized Health funded by the Strategic Focus Area 
Personalized Health and Related Technologies (PHRT) of the ETH Board. 
2018-2021 | Budget: CHF 3M
MedCo: Enabling the Secure and Privacy-Preserving Exploration of Distributed 
Clinical and *Omics Cohorts in the Swiss Personalized Health Network (SPHN) 
funded by the PHRT and the SPHN. 
2019-2021 | Budget: CHF 0,5 M 36



UnLynx (Chapter 3) & Drynx (Chapter 4)

- Encryption scheme less computationaly powerful but enabling the use of well-established zero-knowledge proofs

- Rely on edge-computing to enable flexible operations
- Modular security properties, efficient proof creation & verification with low-effect on query response time
- Linear scaling with the number of samples & with the number of data providers

SELECT sum/count/statistic() … FROM 
DP1, …, DPn WHERE … GROUP BY …

Data privacy & Confidentiality
Computations & Input Verification
Collective protection of local data

Anytrust Model with 
passive/active
adversary

SPINDLE (Chapter 5) & FAMHE (Chapter 6)

- State-of-the-art encryption scheme enabling flexible operations and packing
- Rely on edge-computing to optimize the balance between operations on encrypted data and on cleartext data

- Logarithmic scaling with the number of features, linear with the dataset size and almost independent of the 
number of data providers

- Accurate reproduction of existing results

Cooperative gradient descent (training) 
and model evaluation, and federated
biomedical studies

Data & Model Confidentiality Anytrust Model with 
passive adversary

Conclusion
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• More Complex Operations:
• Training of neural networks 
• Federated principal component analysis

• Federated parametrization on distributed datasets

• Computation Flexibility
• Example of survival Curve vs. Genome-Wide Association Study

• Combination of multiparty homomorphic encryption with other 
techniques

Future Directions
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Future Directions

• Adoption of secure solutions
• Solutions with similar properties as existing non-secure solutions (scaling, 

tradeoff between accuracy and performance)
• Limited overhead brought by security mechanisms

• Multidisciplinary challenge
• Integration in existing tools
• Parametrization, cryptographic <-> domain specialised
• Data harmonization
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UnLynx (Chapter 3) & Drynx (Chapter 4)

- Encryption scheme less computationaly powerful but enabling the use of well-established zero-knowledge proofs

- Rely on edge-computing to enable flexible operations
- Modular security properties, efficient proof creation & verification with low-effect on query response time
- Linear scaling with the number of samples & with the number of data providers

SELECT sum/count/statistic() … FROM 
DP1, …, DPn WHERE … GROUP BY …

Data privacy & Confidentiality
Computations & Input Verification
Collective protection of local data

Anytrust Model with 
passive/active
adversary

SPINDLE (Chapter 5) & FAMHE (Chapter 6)

- State-of-the-art encryption scheme enabling flexible operations and packing
- Rely on edge-computing to optimize the balance between operations on encrypted data and on cleartext data

- Logarithmic scaling with the number of features, linear with the dataset size and almost independent of the 
number of data providers

- Accurate reproduction of existing results

Cooperative gradient descent (training) 
and model evaluation, and federated
biomedical studies

Data & Model Confidentiality Anytrust Model with 
passive adversary

Conclusion
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