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Motivation for Federated Analytics

M oay * More than 1 billion people worldwide are fully vaccinated against
Review COVID-19

Why is it so hard to review
the Johnson & Johnson » Severe (life threatening) reactions are extremely rare and dispersed

vaccine? Data. around the globe

The clock is ticking for regulators looking into covid vaccine side

oot Bultherrtaskis madeharderby Americasreamenteacia | e Studying these cases requires the international sharing of dispersed
sensitive patients’ data

However, sensitive/personal data are difficult to share because of:

Stringent regulations, e.g., GDPR.

Complex/costly data-access agreements

—
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High repercussions in case of data leakage
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Competition among stakeholders

— Sensitive data are often siloed




Motivation for Privacy-Preserving Federated Analytics

By ensuring data privacy, one can enable data sharing among multiple
entities and :

Comply by-design with regulations, e.g., GDPR.
Reduce the need for data-access agreements

Control which information is revealed and avoid data leakages
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Existing Solutions for Federated Analytics

(a) Fully centralized

** Flexible computations
** No Bias

Single point of failure

Data leakage

Data outsourcing (require agreements)
Scalability with dataset size and number of
data providers

Trusted
3rd party

Public/private Initiatives:

- All of Us (US National Institute of Health)

- EGA (European Genome-phenome Archive)
- Genomics England



Existing Solutions for Federated Analytics

(b) Meta-Analysis

4

** Flexible computations
** No bias
Aggregated data ¢ Scalability

L)

o0

Trusted - Single point of failure
3rd party - Data leakage
- Data outsourcing (require agreements)

Public/private Initiatives:

(a) Fully cent%zed - Consortium for Clinical Characterization of
COVID-19 by EHR

Raw data

Trusted
3rd party

¢ Flexible computations
+** No bias

- Single point of failure
- Data leakage

- Data outsourcing

- Scalability




Existing Solutions for Federated Analytics

(c) Decentralized

(a) Fully centralized

Raw data

Trusted
3rd party

¢ Flexible computations
+** No bias

- Single point of failure
- Data leakage

- Data outsourcing

- Scalability

(b) Meta-Analysis
_ =
data
Trusted

¢ Flexible computations
+* No bias

+* Scalability

- Single point of failure
- Data leakage

- Data outsourcing

Aggregated

** Flexible computations
** No bias
¢ Scalability

- Data leakage

Public/private Initiatives:

- DataSHIELD (UK)

- Personalized Health Train (PHT)
- Vantageb



Existing Solutions for Federated Analytics

(d) Differential-Privacy-based Decentralized

Part'lal Results
Obfuscation

(a) Fully centralized (b) Meta-Analysis (c) Decentralized
@ f@ Aggregated
Raw data % Aggregated ) datg
data = !
Trusted @ Trusted
3rd party ) ":@ 3rd party

¢ Flexible computations
+** No bias
- Single point of failure
Data leakage
Data outsourcing
- Scalability

+* Flexible computations

+» Scalability

- Single point of failure
Data leakage
Data outsourcing

+* Scalability

- Single point of failure
Data leakage
Data outsourcing

** Flexible computations
¢ Scalability

- Bias introduced by-design
- Trade-off between data leakage and accuracy

Public/private Initiatives:
- NVIDIA



Existing Solutions for Federated Analytics

(e) Cryptography-based (SMC, HE) Decentralized

** No data leakage

- Difficult to scale with the number of parties

Secret .
- Data outsourcing
shared/
encrypted
data Public/private Initiatives:
- Sharemind
- Inpher
- Duality
(a) Fully centralized (b) Meta-Analysis (d) Differential Privacy
@ f@ Aggregated T E8 RER
Raw data & Aggregated | data E'%
data - T . T
Trusted 7P & Trusted SN L
3rd party - @ 3rd part oo E@E: Partial Results
== party L Obfuscation
. _ % Flexible computations ¢ Flexible computations ¢ Flexible computations
X FIeX{ble computations 2 No bias < No bias % Scalability
“ NP bias . . % Scalability % Scalability
- Single point of failure - Single point of failure - Single point of failure - Bias introduced by-design
Data leakage - Data leakage - Data leakage - Trade-off between data
Data outsourcing - Data outsourcing - Data outsourcing leakage and accuracy
Scalability




hesis Goal

Modular federated privacy-preserving analytics with:

¢ Data confidentiality

o
*%

’0

* Flexible computations

» No bias introduced by design

¢ Scalability in all dimensions: number of parties, size of datasets

» Decentralization, no single point of failure

(a) Fully centralized

Raw data

Trusted
3rd party

+* Flexible computations
+* No bias

- Single point of failure
- Data leakage

- Data outsourcing

- Scalability

(b) Meta-Analysis

% &

+* Flexible computations
+* No bias

+» Scalability

- Single point of failure
- Data leakage

- Data outsourcing

(c) Decentralized

& Aggregated
data

+* Flexible computations
+* No bias

+» Scalability

- Single point of failure
- Data leakage

- Data outsourcing

(d) Differential Privacy

Obfuscation
+* Flexible computations

*

L)

» Scalability

L)

- Bias introduced by-design
- Trade-off between data
leakage and accuracy

(e) Crypto (MHE, SMC)

. Secret
£ 0<3 shared/enc
rypted data

+** No data leakage

- Difficult to scale with the

number of parties
- Data outsourcing

10



nesis Structure

UnLynx (Chapter 3) [1]

303

(<& SELECT sum/count ... FROM DPy, ..., DP,
WHERE ... GROUP BY ...

.. Data privacy & Confidentiality
Computations Verification
Collective protection of local data

Anytrust Model with
passive adversary

Drynx (Chapter 4) [2]

ié’%%% SELECT statistic() ... FROM DPy, ..., DP,
“&% WHERE ... GROUP BY ...

Anytrust Model with

“» Data privacy & Confidentiality
7 active adversary

Computations & Input Verification

SPINDLE (Chapter 5) [3]

<% Cooperative gradient descent (training)
&% and model evaluation

Anytrust Model with
passive adversary

= | =6 =0

T Data & Model Confidentiality

FAMHE (Chapter 6) [4]

(- % Federated biomedical studies: survival
~%%# curves and genome-wide association
studies

i Anytrust Model with
passive adversary

\ Z/ Data Confidentiality

[1] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. Mouchet, B. Ford, and J.-P. Hubaux: “UnLynx: A Decentralized System for Privacy-Conscious Data Sharing.” PETS17.
[2] D. Froelicher, J.R. Troncoso-Pastoriza, J.S. Sousa and J.P. Hubaux, "Drynx: Decentralized, Secure, Verifiable System for Statistical Queries and Machine Learning on Distributed
Datasets.”, IEEE TIFS, 2020.

[3] D. Froelicher, J. R. Troncoso-Pastoriza, A. Pyrgelis, S. Sav, J. S. Sousa, J.-P. Bossuat, and J.-P. Hubaux. "Scalable Privacy-Preserving Distributed Learning." PETS’21.

[4] D. Froelicher, J. R. Troncoso-Pastoriza, J. L. Raisaro, M. Cuendet, J. S. Sousa, H. Cho, B. Berger, J. Fellay, and J.-P. Hubaux. “Truly Privacy-Preserving Federated Analytics for Precision
Medicine with Multiparty Homomorphic Encryption”. Conditionally Accepted in Nature Communications , 2021.



A Common Basis: Model & Security Requirement

System Model:

Interconnected data providers willing to
collaborate but not to share their data.

% P,
DPZ% - o E
4

n
Nve

Querier

Minimum Security Requirement:

Data Confidentiality must be ensured as long as
one DP is honest.

o %D% DP = Data Provider

12



A Common Basis: Framework

Querier

= i) w
Combine Combine Combine

DP = Data Provider

13



A Common Basis: Protection Mechanism

Public Key Secret Key

0L

Querier

=

DP = Data Provider

lo-ngd 8544 '
! Key Switching lo— &

Collective Public Key

14



A Common Basis:

11: Instatiation 1: Verifiable Statistics

Wo |Instantiations

-

Computations

Goal: Instantiate (based on Chapters 3 & 4) our

framework such that it

*»* Enables statistical computations
*» Enables efficient and public auditability
** Remains secure even against an active

adversary
Multiparty HE Encodings
N
Proofs Diff. Privacy

i

e

Instantiation 2: Machine Learning
Computations

Goal: Instantiate (based on Chapter 5) our
framework such that it

+** Enables the cooperative execution of a
gradient descent

** Enables an oblivious evaluation of the
trained model

+* Remains secure against a passive
adversary controlling all but one DPs

Gradient Descent| Multiparty HE

N

¥ .




11: Building Blocks

Multiparty Additive EIGamal Homomorphic Encryption

e Security: hardness of discrete logarithm in a finite field

» Collective Encryption Key: sum of the data providers’ public keys
O=&+&+ +&+6+ +5

* Encryption: each ciphertext encrypts one integer

* Homomorphic Operations: additions

* Key Switching: collective protocol in which each data provider uses its secret key to
partially decrypt the value and re-encrypt with another public key (e.g., querier)

* Decryption: one party (e.g., querier) uses her secret key to decrypt a message
encrypted with its public key

16



I1: Building Blocks

Publicly-verifiable zero-knowledge proofs of correctness

Correct Computations: proofs for general statements about discrete logarithms [1] and
computation transcripts

Correct Input: proof of input-range [2] adapted to the multiparty scenario

Differential Privacy

A public list of noise values satisfying (€,6)-differential privacy is collectively and
verifiably shuffled [3] by the data providers before the noise is added to the

computation’s result.

[1] J. Camenisch and M. Stadler. Proof Systems for General Statements about Discrete Logarithms. Technical Report, 1997

[2] J. Camenisch, R. Chaabouni, and a. Shelat. Efficient Protocols for Set Membership andRange Proofs. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 234-252. Springer, 2008

[3] C. A. Neff. Verifiable Mixing (Shuffling) of EIGamal Pairs, 2004.

17



11: Building Blocks

Encodings

To enable statistical computations with an additively homomorphic encryption scheme,
data providers locally encode their results before the collective aggregation.

Example: standard deviation

Each data provider i locally computes: sum of values: r;, sum of squared values r? and
count of values ¢;

Such that the final result can be aggregated over all DPs’ values as:

2 _
standard deviation = \/Zi — (&)2

2. C %G

18



11: Framework Instantiation

Map
[Local computations Encoding} Encryption Proof of range}
] ] [ (51 [ o ] [ }
! » x
Combine
[Homomorphic Aggregation Proofs of Correcéc Computations}
= I
Reduce
[Homomorphic Aggregation Proofs of Correc@’g Computations}
= I
Key Switching Querier’s Decryption

{Key SwitchingHProofs of Corr%ct Computations] {Decryption}[Final Computation
1

n '
= =

1

19



11: Auditability through Verifying Nodes

2

Querier

DP = Data Provider
VN = Verifying node

Each verifying node probabilistically verify the

proofs:

Proof 1

Proof 2

Proof p

v

X

Together the verifying nodes maintain an immutable
log, which can be publicly verified.

Query_UID

Query_UID

Proof1 | Proof2 | ..

v

Proof 1 | Proof2 | ...

vViv

Query_UID

20



|1: Evaluation

B Query Creation B Query Check Parameters:

R Corrbine & Reduce S Verl Come oo - 13 machines: 2 Intel Xeon E5-2680 v3 CPUs, 2.5GHz
Key Switching Block Insertion frequency, 24 threads on 12 cores, 256GB RAM.
Decryption * Operation: Variance of 30 different attributes

Query Execution

* 6000 records split among 60 DPs
* Input range of [0,229]
e 7VNs

DPs

Scalability:

VNS -
e Linear with the number of data providers and

with the DPs’ datasets

0005006500500, Proof Overhead

ooooooooooooooooo

0 1 | 3 5 7 10
Runtime (s)
21



A Common Basis:

Wo |Instantiations

11: Instatiation 1: Verifiable Statistics

Computations

Goal: Instantiate (based on Chapters 3 & 4) our
framework such that it

*»* Enables statistical computations

*»* Enables an efficient and public
auditability

** Remains secure even against an active
adversary

-

Instantiation 2: Machine Learning
Computations

Goal: Instantiate (based on Chapter 5) our
framework such that it

+»* Enables the cooperative execution of a
gradient descent

** Enables an oblivious evaluation of the
trained model

** Remains secure against a passive
adversary controlling all but one DPs

Gradient Descent| Multiparty HE

¥ "

ZL




: Building Blocks

Multiparty Homomorphic Encryption

adaptation to CKKS [1] of the multiparty scheme proposed by Mouchet et al. [2]

Security: hardness of the ring learning with errors (RLWE) problem

Collective Encryption Key: created in an interactive protocol among all data providers
Encryption: each ciphertext contains a vector of N values: E n(vl, veeey VN)
Homomorphic Operations: additions, multiplications, rotatic;ns

Collective Bootstrapping: interactive protocol to refresh a ciphertext, required after a certain number of
operations

Key Switching: collective protocol in which each data provider uses its secret key to partially decrypt the
value and re-encrypt with the querier’s public key

Decryption: one party (e.g., querier) uses her secret key to decrypt a message encrypted with its public key

[1] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic of approximate numbers. In ASIACRYPT, 2017.
[2] C. Mouchet, J. R. Troncoso-pastoriza, J.-P. Bossuat, and J. P. Hubaux. Multiparty Homomorphic Encryption from Ring-Learning-With-Errors. In PETS'21.

23



12: Building Blocks

Cooperative Gradient Descent

EDPl

EDP7

Iterations of local model training using:
- Batch of local data

- Previous local model

- Global Model

Operations:
2 vector-matrix multiplication, activation
function and substraction

R Aggregation of all local

models

‘| Update of global

model

Iterations of local model training using:
- Batch of local data

- Previous local model

-  Global Model

Operations:
2 vector-matrix multiplication, activation
function and substraction

24



12 Framework Instantiation

Key Switching fn=—> 5

Map
. . . O Encrypted
Stochastic Gradient Descent Operations: )
P I S 1! Cleartext
: T Samples’ N L 1
L — A —> L 4
(SEC HEVE - _'I batch ctivation [ Xi - |
features
. Row-based Approach  Activation
[T I e ]
X
NN NN NN Least Square Approx.
f(features, samples’ batch) # — ’/____
N J e *
Y Diagonal Approach ; /| 1
Input Dimension - -—E
I
Combine Reduce

[Homomorphic Aggregation ]

[ Homomorphic Aggregation ]

Key Switching

[Key Switching]

o

Querier’s Decryption

=)

[Decryption} fFinaI Computation]

25




12 Framework Instantiation

To cover the entire ML workflow, the trained model can remain collectively encrypted
and be used for oblivious evaluation

Y

Querier

26



12: Accuracy Evaluation

SPINDLE = instantiation of our solution for Generalized Linear Models (linear, logistic, multinomial regressions)

—> achieves accuracy close to centralized solution and (almost) same accuracy as non-secure distributed solutions

B Centralized [ Independent Training Distributed Not Secure [l SPINDLE
100 Evaluation Parameters
10 Data providers
128-bit security level
90
Legend
S Dataset: Name [#samples x #features]
3 (1) Pima = Pima Indians Diabetes
< https://www.kaggle.com/uciml/pima-indians-diabetes-database
(2) BCW = Breast cancer Wisconsin (original)
https://archive.ics.uci.edu/ml/datasets/
breast+cancer+wisconsin+(original)
(3,4) MNIST
~ [70000x784] [70000x784]
~ J
Logistic Logistic Multinomial
regression Regression  pegression

one-Vs-all


https://www.kaggle.com/uciml/pima-indians-diabetes-database

172 Performance Evaluation

Better than logarithmic increase with the number of features

2000

1500

1000 Maximum threading

400 A
150 mm mm BN BN B wm BN
29 210 211 212 213

22 23 24 2° 26 27 28
#features

Runtime (s)

5 data providers, 25600 record, 128-bit security; Each data provider: 2 Intel Xeon E5-2680 v3 CPUs, 2.5GHz frequency,
24 threads on 12 cores, 256GB RAM. Communication: 100Mbps, delay 20ms

28



=P-L
12: Performance Evaluation

Scales almost independently with Efficient workload Scales linearly with the size of
the number of data providers |S| distribution the data providers datasets n
5000 5000 ] Dataset size (n)= 215 5000 | mum [S|=5 b=2°

—— Batch size (b) b=28
—-8
1000 1000 - | 1000- . b=2
» 500 = 500" 3 500
(] Q (]
£ 200- £ 200-] £ 200
o o o
50 50 50- |
5 5-1 I I . . . 5 ]
5 10 20 40 80 160 5 10 20 40 80 160 215 216 217 18 519 520
S| IS| Dataset (n)

128-bit security level; Default number of features = 32, |S|=# data providers; n = global dataset size, b is the batch

size used in the stochastic gradient descent, One data provider: 2 Intel Xeon E5-2680 v3 CPUs, 2.5GHz frequency, 24
threads on 12 cores, 256GB RAM. Communication: 100Mbps, delay 20ms

29



Our Framework for Practical Use Cases

Goal: Reproduce in our framework (based on Chapter 6) two biomedical studies that originally relied on data
centralisation.

- demonstrate that we obtain accurate results while keeping the data decentralized and protecting
patients’ privacy

Study 1: Survival Curve: Study 2: Genome-Wide Association Study:
Samstein et al. [1] computed Kaplan-Meier overall MclLaren et al. [2] studied the link between HIV viral
survival curves on 1662 advanced-cancer patients to load and specific genome variants.
study the effect of a specific treatment.
| Tumor mutational load predicts survival after Polymorphisms of large effect explain the majority
immunotherapy across multiple cancer types of the host genetic contribution to variation of HIV-1
Robert M Samstein ' 2, Chung-Han Lee 3 4, Alexander N Shoushtari 3 4, Virus load
Matthew D Hellmann 2 4, Ronglai Shen %, Yelena Y Janjigian 3 4, David A Barron ' 2,
Ahmet Zehir @ Emmet J Jordan 2, Antonio Omuro®, Thomas J Kaley B, Paul J McLaren ', Cedric Coulonges 2, Istvan Bartha ', Tobias L Lenz 3, Aaron J Deutsch 4,
Sviatoslav M Kendall 2 8, Robert J Motzer 3 4, A Ari Hakimi @, Martin H Voss 3 4, Arman Bashirova %, Susan Buchbinder &, Mary N Carrington 7, Andrea Cossarizza &,
Paul Russo 2, Jonathan Rosenberg 3 4, Gopa lyer 3 4, Bernard H Bochner 9, Judith Dalmau @, Andrea De Luca '°, James J Goedert ', Deepti Gurdasani '2,
Dean F Bajorin 3 4, Hikmat A Al-Ahmadie ©, Jamie E Chaft 3 4, Charles M Rudin 3 4, David W Haas '3, Joshua T Herbeck ', Eric O Johnson '8, Gregory D Kirk ¢,
Gregory J Riely 3 4, Shrujal Baxi 3 4, Alan L Ho 3 4, Richard J Wong @, David G Pfister 3 4, Olivier Lambotte 7, Ma Luo '8, Simon Mallal ', Daniélle van Manen 2°,
| _1add D Wolchok 3 4, Christonher A Rarkar ' Bhijlip H Gutin 9, Cameron W Brennan 9 | lavier Martinez-Picado 2!, Laurence Mever 22_José M Mira 2 JamesiMullins 24~ |

[1] R. M. Samstein et al. Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nature Genetics, 2019.

[2] P.J. MclLaren et al. Polymorphisms of Large Effect Explain the Majority of the Host Genetic Contribution to Variation of HIV-1 Virus Load. Proceedings of the National Academy of 30
Sciences of the United States of America, 2015.



Study 1: Survival Curve

Overall Survival

Map

Each DP locally encrypts a

vector of time points
values

Combine

Collective aggregation

Reduce

Collective aggregation

Key Decryption
Switching Querier decrypts and

generates the survival
curve

Exact Results

1.001

0.751

0.501

0.254

0.00
0

Scale with the number of data providers and

with the dataset’s size

TMB -+ Bottom 80% -+~ Top 10%-20% -+ Top 10%

Centralized, Non-secure

12 24 36 48
Time [months]

Number at risk

Time [months] 0 12
Bottom 80% 1302 584

Top 10%-20% 186 103
Top 10% 172 99

FAHME
1.001 :
L
0.751 i GE)
[
C
0.501 ]
e
0.251
0.00
0 12 24 36 48
Time [months]
24 36 48
230 85 33
41 17 4
41 13 4

12.54
10.0;
Jai]

5.0

can |

2.5

0.0

B 4096 time points (t.p.)
1 8192 t.p.
v/, 10x dataset

{
[
[
|
[
[
|
|
|
|
|
[
|
{
|

41
Number of Data Providers




Study 2: Genome-Wide Association Study

GWAS Method: The p-value is computed from the variant weight, the mean-squared error and
the standard error of the variant’s weight. A small p-value indicates a link.

Map

Each DP locally computes covariance
matrix X"X of the covariates

Combine

Collective aggregation

Reduce

Inverse of XX

‘Map}»

For each variant: data providers engage in multiple MapReduce rounds to compute the extended inverse of the covariance matrix W
that includes the variant contribution.

Combine al Reduce ‘—> ‘Map }»

Combine

4 Reduce ‘

For each variant: data providers use W to collectively compute the values required to obtain the p-values

‘Map }» Combine al Reduce ‘—> ‘Map }» Combine al Reduce‘
Key Decryption
Switching Querier decrypts and computes the p-values

32



Study 2: Genome-Wide Association Study

Setting: 1857 patients spread among 12 data providers.

Original Study (Centralized, Non-Secure) Meta-Analysis (Decentralized, Non-Secure)
Q &
g5 e
. ~ il | i ¥
° 1 2 3 4 5 6 74 8 9 10 11 12 13; 14 16 18 20 22 < 1 2 3 4 5 6 - 8 9 10 11 12 13 14 16 18 20 22
Chromosomes Chromosomes
Independent (1 single data provider .
P ( 9 P ) Our Approach (Decentralized, Secure)
2 8
g3 f
g= e
12 5 |
: © ] o
o~ < . : » l.' ...... §
Chromosomes ° 1 2 3 4 5 6 7 8 9 10 1 12'1'3 14 16 18 20 22

Chromosomes

Almost Exact Results




Study 2: Genome-Wide Association Study

Default Setting: 1857 patients spread among 12 data providers.

Performance-optimized Approach: instead of computing the complete inverse of covariance
B matrix, we estimate the covariates weights through an efficient gradient descent and only
compute the standard error of the variant weight, i.e., one diagonal element.

1 Exact Approach Time dedicated to communication Overhead in WAN setting
2000 1860 6000; 6061 | 25007
2000
= 1500 = =
= 1590
E £ 4000 3894 £ 1500 -
€ 1000 930 < @ o2
= £ = 1023
.JE JE S g 1000 1082
2 _— ses Z 2000+ o:g 812
233 930 500
O 19 32 56 00 | | 0 | 56 1) l_som %m | ‘98 39 59
1M 2M 4M 8M 2K 4K 10K 20K 0 3 6 12
Number of variants Number of patients

Number of Data Providers

One data provider: 2 Intel Xeon E5-2680 v3 CPUs, 2.5GHz frequency, 24 threads on 12 cores, 256GB RAM.
Communication: 1Gbps, delay 20ms




Federated Analytics in the Medical Domain

Hypothetical Example: Study link between COVID-vaccine severe side-effect and specific variants.

Cohort Exploration

Medical Study

1. Count suitable 2. Study of age
subjects in » distribution, variance
federated dataset. in side-effect severity,

>

3. Execution of GWAS

Federated Data Exploration & Statistical
Analysis

Federated Learning

Chapter 3 & Chapter 4

Chapter 5 & Chapter 6

35



Impact

MedCO

Collective protection
of medical data

T“NE INSIGHT

Cohort Exploration Tool (based on Chapter 3)
» Deployed Network between multiple hospitals and universities in Switzerland

« Currently being deployed in Netherlands, Italy, USA, ...

Secure COllective
C¥£VID-19 Research

Startup building a tool for secure collaboration and federated analytics

2 patents filed based on our work in Chapter 5 and subsequent work

DPPH: Data Protection in Personalized Health funded by the Strategic Focus Area
Personalized Health and Related Technologies (PHRT) of the ETH Board.
2018-2021 | Budget: CHF 3M

MedCo: Enabling the Secure and Privacy-Preserving Exploration of Distributed
Clinical and *Omics Cohorts in the Swiss Personalized Health Network (SPHN)
funded by the PHRT and the SPHN.

2019-2021 | Budget: CHF 0,5 M *°



Conclusion

UnLynx (Chapter 3) &

-~ .. Data privacy & Confidentiality Anytrust Model with
;& SELECT sum/count/ ... FROM 4 Computations i passive/
5 DPy, ..., DP, WHERE ... GROUP BY ... Collective protection of local data adversary

- Encryption scheme less computationaly powerful but enabling the use of well-established zero-knowledge proofs
- Rely on edge-computing to enable flexible operations
- Modular security properties, efficient proof creation & verification with low-effect on query response time

- Linear scaling with the number of samples & with the number of data providers

SPINDLE (Chapter 5) & FAMHE (Chapter 6)

5% Cooperative gradient descent (training) {;// Data & Model Confidentiality i Anyt.rust Model with
%% and model evaluation, and federated g passive adversary

biomedical studies

- State-of-the-art encryption scheme enabling flexible operations and packing
- Rely on edge-computing to optimize the balance between operations on encrypted data and on cleartext data

- Logarithmic scaling with the number of features, linear with the dataset size and almost independent of the
number of data providers

- Accurate reproduction of existing results 37




Future Directions

* More Complex Operations:
* Training of neural networks
* Federated principal component analysis

* Federated parametrization on distributed datasets

 Computation Flexibility
* Example of survival Curve vs. Genome-Wide Association Study

* Combination of multiparty homomorphic encryption with other
techniques



Future Directions

* Adoption of secure solutions

 Solutions with similar properties as existing non-secure solutions (scaling,
tradeoff between accuracy and performance)

* Limited overhead brought by security mechanisms

* Multidisciplinary challenge
* Integration in existing tools
* Parametrization, cryptographic <-> domain specialised
e Data harmonization

Healthcare ]|
1M|T1nol H
Review > It took a pandemic, but
Why is it so hard to review the US finally has (some)
the Johnson & Johnson . centralized medical data
vaccine? Data. eforttobing together daarommillons ot paentsrs g to.
The clock s ticking for regulators looking into covid vaccine side show results.
effects. But their task is made harder by America’s fragmented data
systems. ] &t Ferguson June21, 2@




Conclusion

UnLynx (Chapter 3) &

-~ .. Data privacy & Confidentiality Anytrust Model with
;& SELECT sum/count/ ... FROM 4 Computations i passive/
5 DPy, ..., DP, WHERE ... GROUP BY ... Collective protection of local data adversary

- Encryption scheme less computationaly powerful but enabling the use of well-established zero-knowledge proofs
- Rely on edge-computing to enable flexible operations
- Modular security properties, efficient proof creation & verification with low-effect on query response time

- Linear scaling with the number of samples & with the number of data providers

SPINDLE (Chapter 5) & FAMHE (Chapter 6)

5% Cooperative gradient descent (training) {;// Data & Model Confidentiality i Anyt.rust Model with
%% and model evaluation, and federated g passive adversary

biomedical studies

- State-of-the-art encryption scheme enabling flexible operations and packing
- Rely on edge-computing to optimize the balance between operations on encrypted data and on cleartext data

- Logarithmic scaling with the number of features, linear with the dataset size and almost independent of the
number of data providers

- Accurate reproduction of existing results 40




