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Communication systems leak metadata

● Goal: protect sensitive information from network eavesdroppers

● Encryption is used to provide confidentiality

● Often, some metadata remain unprotected:
○ the (time, size) of network packets

○ the identity of the sender or recipient

○ at what times a party is sending messages

...
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Metadata can reveal sensitive information

● In research, metadata from network traces help to infer the contents:

○     : Tor: visited web pages

○       VPN: contents and the destination server

○       Skype: English words

○       Smartphones: installed applications

○       IoT: user activity

● Practical example using source / destination:

○ NSA phone-calls metadata collection 
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Every Byte Matters:
Traffic Analysis of Wearable Devices

(Chapter 2)
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Setting

Wearable devices communicate with a smartphone over Bluetooth

Smartwatch

Sleep tracker

Fitness 
tracker

ECG/BPM
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Consumer devices Medical devices

Blood sugar monitor

Asthma monitor

...

● List of apps (app to stop smoking, medication reminder)

● User activities (e.g., recording an insulin injection)



Privacy of Bluetooth communications

● Eavesdropping is expensive today

● Cost of eavesdropping is decreasing

19



Privacy of Bluetooth communications

Motivation: What will eavesdroppers learn from Bluetooth wearable devices ?
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● Bluetooth network stack specifics ?
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Privacy of Bluetooth communications

Motivation: What will eavesdroppers learn from Bluetooth wearable devices ?

Do Bluetooth wearable devices leak metadata ?

● Simple firmware with few capabilities => easy to model & fingerprint ?

● Power-constrained devices that transmit little data => naturally protected ?

● Bluetooth network stack specifics ?

Our contribution: Analysis of the encrypted communications of Bluetooth wearable devices
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Examples of attacks

● Can an advertiser in a store recognize users/devices from encrypted Bluetooth traffic ?

● Can a smart billboard infer nearby activities from Bluetooth traffic?

● Can a nosy neighbor infer my daily routine from wearable devices?

23



Test Bed

Phones used: Nexus 5, iPhone 8

Vendor Model OS
Samsung Galaxy Watch Tizen
Fossil Explorist HR Wear OS 2
Apple Watch 4 watchOS 5
Huawei Watch 2 Wear OS 2
Fitbit Versa 2 Fitbit OS 4
Sony MDR-XB9 -
Apple AirPods -

Vendor Model
Apple Watch 4
Fitbit Charge 2
Fitbit Charge 3
Huawei Band 3e
Mi Band 2
Mi Band 3
Mi Band 4

smartwatches
headphones
step counters & 
fitness trackers

Bluetooth Classic Bluetooth LE

24

We cover popular vendors and devices:



Data collection
Challenges:

● Heterogeneous devices

● Only Wear OS can be automated

● Generating real samples is difficult (e.g., UI Fuzzing won’t create realistic traces)

Methodology: We manually use the devices in the intended way, recording Bluetooth traffic.

We collect a dataset of 10’700 samples (≈ 100h of recording, 30-sec samples):

● 32 actions (e.g., Add Insulin, Measure Heart Rate, Start Workout, ...)

● 80 applications (categories: Religion, Health, Lifestyle, Local newspapers, ...) 

25



Features

We use simple, standard features (e.g., proposed in [6]):

min
mean
max
count
std dev

Slave -> Master
Master -> Slave
All with non-null payload

● Size histograms:  10-byte wide “buckets” [7] that count the packets of corresponding sizes

AvgIPT (seq) =
∑i  timei+1 - 
timei|seq| - 1

● Bursts: 

[6] J. Hayes, G. Danezis. k-fingerprinting: A Robust Scalable Website Fingerprinting Technique.  Usenix Security 2016.

[7] M. Liberatore, B. N. Levine. Inferring The Source of Encrypted HTTP Connections. CSS 2006.

[8] B. Saltaformaggio et al.  Eavesdropping on fine-grained user activities within smartphone apps over encrypted network traffic. WOOT 2016.

of the list of packet sizes from
of the inter-packet timings from

● General statistics:

x x

[8]
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Feature Extraction & Training

● We use standard features [9]

● We use a simple, standard model (Random Forests)

27[9] J. Hayes, G. Danezis. k-fingerprinting: A Robust Scalable Website Fingerprinting Technique.  Usenix Security 2016.

80% training 20% testing

Dataset:
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● Paired devices can stop advertising

● No friendly names (e.g. “Ludovic’s Apple Watch 4”), no MAC address

Methodology:

● 2 classifiers (Bluetooth Classic + LE)

● 7 devices each

Result:

● In both cases: ~96% precision / recall

● Top features: timings for Bluetooth Classic, sizes for LE



Identifying devices from traffic patterns

?

it’s a Huawei Watch 2!
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● Paired devices can stop advertising

● No friendly names (e.g. “Ludovic’s Apple Watch 4”), no MAC address

Methodology:

● 2 classifiers (Bluetooth Classic + LE)

● 7 devices each

Result:

● In both cases: ~96% precision / recall

● Top features: timings for Bluetooth Classic, sizes for LE

Take-away: 



Identifying user actions from traffic patterns

Methodology:
● 49 actions across 13 devices
● classify device + user action in one step
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Rate on its Huawei Watch 2!
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Identifying user actions from traffic patterns

Methodology:
● 49 actions across 13 devices
● classify device + user action in one step

Result:
● 82% precision / recall / F1 score

?

The wearer is Measuring the Heart 
Rate on its Huawei Watch 2!

Take-away: across all devices, most user actions generate unique patterns
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Identifying applications on Wear OS

Methodology:
● recognizing the opening of a particular app (e.g., DiabetesM, StopSmoking) on Wear OS
● 56 applications
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Identifying applications on Wear OS

Methodology:
● recognizing the opening of a particular app (e.g., DiabetesM, StopSmoking) on Wear OS
● 56 applications

Result:
● 64% precision / recall / F1 score

The wearer opened the 
app DiabetesM !

Take-away: the majority of apps can be recognized upon being opened
39



Identifying actions within an application

Methodology:
● 6 actions within the app DiabetesM
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Identifying actions within an application

Methodology:
● 6 actions within the app DiabetesM

Result:
● 70% precision / recall / F1 score
● Top features: timings
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Identifying actions within an application

Methodology:
● 6 actions within the app DiabetesM

Result:
● 70% precision / recall / F1 score
● Top features: timings

AddInsulin pressed on 
application DiabetesM  !
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Identifying actions within an application

Methodology:
● 6 actions within the app DiabetesM

Result:
● 70% precision / recall / F1 score
● Top features: timings

AddInsulin pressed on 
application DiabetesM  !
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Take-away: some sensitive, medical information are fingerprintable



Highlights of other experiments

● Transferability
○ Train on      +     , test on      +     :  good performance for Wear OS devices

● Model staleness

○ Small variations in accuracy over 1 month (95%     90% mean accuracy for 38 apps)→

44



Negative results (= good news for privacy)

● Audio
○ Phone calls / voice data use constant bit-rate (no “Skype”-like traffic-analysis attack)

● Transferability
○ Android / Apple transferability was unsuccessful
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Summary of the attacks

● recognize device
● infer user action (from many wearable devices)
● infer opened app (Wear OS)
● infer action within an app (Wear OS)
● attack with model transfer
● attack with “old” dataset
● ...

● voice (phone calls + VoIP)
● transfer Android/Apple

Successful attacks : Unsuccessful attacks :
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Summary of the attacks

● recognize device
● infer user action (from many wearable devices)
● infer opened app (Wear OS)
● infer action within an app (Wear OS)
● attack with model transfer
● attack with “old” dataset
● ...

● voice (phone calls + VoIP)
● transfer Android/Apple

Successful attacks : Unsuccessful attacks :

Our conclusion: 

● In most cases, sensitive information can be inferred despite the encryption
● Traffic analysis defenses might be required in this setting
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Defenses

● we evaluate 3 standard, orthogonal defenses
○ padding, delaying, adding dummy packets
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Defenses

● we evaluate 3 standard, orthogonal defenses
○ padding, delaying, adding dummy packets

● Take-aways
○ Defenses are expensive (e.g., 200x data sent) and mildly effective (e.g., -20% accuracy)

○ No one-size-fits-all defense:

● The “wrong” defense does not decrease the accuracy of the adversary

○ Other valid strategies: 

● data minimization (low-volume apps might be protected) 

● bulk-transfers
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Discussion

● No easy fix to the problem

● More awareness is needed
○ We contacted all relevant vendors & app developers with our findings
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Discussion

● No easy fix to the problem

● More awareness is needed
○ We contacted all relevant vendors & app developers with our findings

● Limitation: this work is a first quantification/discussion point

● Our hope: better protect the next generation of wearable devices
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Reducing Metadata Leakage from Static Files

Padmé

(Ch 3)
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Padmé

● The size is a stable & important feature in traffic analysis

● What is a good generic defense ?

● Naïve approaches:

○ constant-block-size padding

○ padding to the next power of two

56
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Leakage Overhead

Intuition behind Padmé

Little protection !
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Leakage Overhead

Intuition behind Padmé

Insight: a slowly-decreasing overhead is more practical
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Leakage Overhead

Intuition behind Padmé

Take-away: same leakage as next power of 2
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Overhead:

● max +12% ∀L
● max +6% ∀L > 1 MB
● max +3% ∀L > 1 GB
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Padmé

Overhead:

● max +12% ∀L
● max +6% ∀L > 1 MB
● max +3% ∀L > 1 GB

Take-away: low overhead + good hiding properties

Ubuntu Packages



PriFi

A low-latency ACN for LANs and WLANs

(§4.4)

67
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PriFi

● Problem: 

○ Risk of targeted attacks in loosely trusted, 

sensitive WLANs (e.g., NGOs)

● Goal: 

○ Hide the traffic of key individuals

68
organization

Internet



ACNs are poorly suited to LANs

● Tor / Mixnets add extra hops = extra latency 

● Traffic leaves the organization

69
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ACNs are poorly suited to LANs

● DC-nets can avoid this

● In practice, they don’t [10]

● At each round, “chatty” protocol with the servers [10]

70
organization

[10] D. Wolinsky, H. Corrigan-Gibbs, B. Ford. Dissent in Numbers: Making strong anonymity scale. OSDI 2012



PriFi

● New topology for DC-nets 

● Redesign of the protocols

○ servers contributions are sent in advance

○ avoid server-to-server messages

=> Latency to the servers is not important
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PriFi

● New topology for DC-nets 

● Redesign of the protocols

○ servers contributions are sent in advance

○ avoid server-to-server messages

=> Latency to the servers is not important

=> “on-path” anonymity

=> cheap broadcast in WLANs
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Rubato: Metadata-Private Communications 
for Mobile Devices

(§4.5)
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System for text communication on phones

“hey!”

Alice Bob

“hey!”
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System for text communication on phones

“hey!”

Alice Bob

“hey!”

Alice is sending something to Bob !
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Model

System

Honest
sender

Honest 
recipient

Global Active Adversary

● observes all network communication
● can edit/drop/inject any message
● controls a fraction of the entities

“hey!” “hey!”
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Model

System

Honest
sender

Honest 
recipient

Global Active Adversary

● observes all network communication
● can edit/drop/inject any message
● controls a fraction of the entities

“hey!” “hey!”

obs
A
(Alice↔Bob) ≅ obs

A
(Alice↮Bob)

Security notion:
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Current deployed systems are unsafe

inject delay delay ?

“hey!” “hey!”
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Loopix / Miranda [11,12]
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Service 
Provider

Service 
Provider

Loopix

Semi-honest Semi-honest

[11] A. Piotrowska, J. Hayes, T. Elahi, S. Meiser, G. Danezis, The Loopix anonymity system. Usenix Security 2017.

[12] H. Leibowitz, A. Piotrowska, G. Danezis, A. Herzberg. No right to remain silent: isolating malicious mixes. Usenix Security 2019.



Loopix / Miranda [11,12]
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Service 
Provider

Service 
Provider

Loopix

Semi-honest Semi-honest

[11] A. Piotrowska, J. Hayes, T. Elahi, S. Meiser, G. Danezis, The Loopix anonymity system. Usenix Security 2017.

[12] H. Leibowitz, A. Piotrowska, G. Danezis, A. Herzberg. No right to remain silent: isolating malicious mixes. Usenix Security 2019.

disconnect fewer 
messages ?



Mixnets with constant-rate communications

“hey !”

dummy

dummy dummy

● Safe         (+ scale to millions with latency in seconds)

Karaoke [13]

XRD [15]

Yodel [14]
“hey !”

dummy

time

82

[13] D. Lazar, Y. Gilad, N. Zeldovich. Karaoke: Distributed Private Messaging Immune to Passive Traffic Analysis. OSDI 2018

[14] D. Lazar, Y. Gilad, N. Zeldovich. Yodel: strong metadata security for voice calls. SOSP 2019

[15] A. Kwon, D. Lu, S. Devadas. XRD: Scalable Messaging System with Cryptographic Privacy. NSDI 20



State of the art: mixnets with constant-rate communications

“hey !”

dummy

dummy dummy

● Safe         (+ scale to millions with latency in seconds)
● Impractical for mobile users: global schedule

○ security concern: what if users disconnect ?
○ performance concern: how fast should it be ?

Karaoke [13]

XRD [15]

Yodel [14]
“hey !”

dummy

time
83



Mobile devices require asynchronicity

“hey !”

Rubato
dummy

“Bob ?”

...

(our system)

time 84
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Mobile devices require asynchronicity

“hey !”

“hey !”
Rubato

dummy

“Bob ?”

Bob goes offline

... ...

“Bob ?”

(our system)

dummy
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Mobile devices require asynchronicity

“hey !”

“hey !”
Rubato

dummy

“Bob ?”

Bob goes offline

... ...

“Bob ?”
Challenge 1: how to achieve 
asynchronicity safely ?

In particular, when Alice and Bob are the 
sole users of the system

(our system)

dummy

time 87



Messaging with multiple independent devices

“hey !”

time

“Bob ?”

“hey…”

Rubato
(our system)

The adversary can:

- Prevent synchronisation
- Equivocate

In practice, users have multiple devices!
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Messaging with multiple independent devices

“hey !”

time

“Bob ?”

“hey…”

Rubato
(our system)

The adversary can:

- Prevent synchronisation
- Equivocate
- Disconnect devices

No Internet

In practice, users have multiple devices!

Bob stopped 
receiving messages! 

No Internet
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Messaging with multiple independent devices

“hey !”

time

“Bob ?”

“hey…”

Rubato
(our system)

The adversary can:

- Prevent synchronisation
- Equivocate
- Disconnect devices
- Partition devices and observe more 

messages than intended

No Internet

“Call me”“Urgent”

In practice, users have multiple devices!

Bob is now getting 
more messages! 

No Internet
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Messaging with multiple independent devices

“hey !”

time

“Bob ?”

“hey…”

Rubato
(our system)

Challenge 2: how to support multiple 
independent, asynchronous devices 
safely ?

The adversary can:

- Prevent synchronisation
- Equivocate
- Disconnect devices
- Partition devices and observe more 

messages than intended

No Internet

“Call me”“Urgent”

In practice, users have multiple devices!

No Internet
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Rubato

- Rubato is a large-scale ACN for text communications
 

- It advances the state-of-the-art...
- Multi-devices (that only synchronize through the untrusted network)

- Devices can have their own communication patterns

- … and thus it better supports mobile devices.
  

- … by using new techniques:
- “Primed” circuits through a mixnet

- Path selection across devices, Circuit tagging techniques

- Efficient “Fetch” protocol (not presented)
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System 

Mix-network

Service 
Provider

(malicious)
f=80% honest

(honest)(honest)

The Service Provider (SP) buffers messages from and to the synchronous mixnet

Service 
Provider

93



Primed Circuits

Mixnet Dead drops

1fbf5c394ceb44acf

f76467765d2dd99b9

...

Per conversation, users build circuits: reusable, bidirectional paths

- last 1 day

- 1 msg / minute

Service 
Provider

94



Exchanging messages

Mixnet Dead drops

1fbf5c394ceb44acf

f76467765d2dd99b9

...

If two users pick the same dead drop, messages are swapped

Service 
Provider
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Primed Circuits

Service 
Provider

Mixnet Dead drops

Circuits:
- Resist active attacks

Honest server fills in
a message

f76467765d2dd99b9
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Primed Circuits

Service 
Provider

Mixnet Dead drops

Circuits:
- Resist active attacks
- Facilitate cover traffic:

- Every user receives at a constant rate, even when senders go offline 

f76467765d2dd99b9
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Primed Circuits

Service 
Provider

Mixnet Dead drops

Circuits:
- Resist active attacks
- Facilitate cover traffic:

- Every user receives at a constant rate, even when senders go offline

- Circuit setup is non-interactive
- Alice uploads for ~1 month worth of circuit-setup messages

f76467765d2dd99b9
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Handling many buddies

Upstream: Downstream:

Messages are broadcasted 
on all (50) 

Strawman: Download everything

Drawback: most messages are noise

Improved fetch protocol (not presented)

● One* circuit per friend (* actually two)
● 50 circuits = 50 friends
● Client send/fetches must not reveal which circuit is used
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Multi-device safety

Mixnet

● Devices share a key multiDeviceKey

● Even partitioned, devices pick the same paths:

● Each mix de-duplicates incoming messages with the same tag

device_i.circuit[j].path = PRNG(multiDeviceKey, epoch, j)

j in [0;50]
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Security properties

Two proofs:

● The mixnet provides differential privacy:

● Security of the service provider reduces to the mixnet

Pr[obs
A
|Alice↔Bob] ≤ eє

 Pr[obs
A
|Alice↮Bob] + δ

Pr[obs
A
|Alice↮Bob] ≤ eє

 Pr[obs
A
|Alice↔Bob] + δ

101



Experimental setup

● client: Pixel 4 phone

● 100 servers on AWS in 4 regions (US + EU)

● each server is a 32 core 3.1Ghz CPU, 256 GB RAM, 10 Gbps network

● 3 Mio users each with 50 conversations
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Experimental results - SP + Mixnet

Bandwidth usage:

Setup: 47.5 GB / epoch / mix server
Messaging: 13 GB / round / mix server

Storage at the Service Provider for 1 month:

Setup: 2.1 MB / user
Messaging: 264 MB / user
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Experimental results - SP + Mixnet

Bandwidth usage:

Setup: 47.5 GB / epoch / mix server
Messaging: 13 GB / round / mix server

Storage at the Service Provider for 1 month:

Setup: 2.1 MB / user
Messaging: 264 MB / user

Latency:

1M: 32s 2M: 55s 3M: 80sMessaging:
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130 KB/h 140 KB/h  = 190 MB/month

Experimental results - Phone

Bandwidth usage:

Setup: 110 KB/epoch = 100 MB/month

Messaging:

for a 1-min client schedule, SP + mixnet 
latency of 32s

latency: between 32s and 64s
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130 KB/h 140 KB/h  = 190 MB/month

Experimental results - Phone

Bandwidth usage:

Setup: 110 KB/epoch = 100 MB/month

Messaging:

for a 1-min client schedule, SP + mixnet 
latency of 32s

latency: between 32s and 64s

Energy usage:

With a 5-min schedule, after 1h: 
≈ +5% energy usage
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Conclusion
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Contributions of the thesis

● Every Byte Matters: Traffic Analysis of Bluetooth Wearable Devices (Ch 2)
○ First broad analysis of the communication metadata of wearable devices

○ We reveal a general susceptibility to traffic-analysis attacks, which can allow:

● identifying devices, applications, user actions

● tracking and profiling users

○ If we want to protect such information, we need defense strategies
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Contributions of the thesis

● Every Byte Matters: Traffic Analysis of Bluetooth Wearable Devices (Ch 2)
○ First broad analysis of the communication metadata of wearable devices

○ We reveal a general susceptibility to traffic-analysis attacks, which can allow:

● identifying devices, applications, user actions

● tracking and profiling users

○ If we want to protect such information, we need defense strategies

● Padmé (Ch 3)
○ Padding function with low costs (<12%) that outperforms classic approaches asymptotically

○ In practice, we show that it has good hiding properties
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Contributions of the thesis (cont’)

● PriFi (§4.4)
○ Low-latency, traffic-agnostic anonymity for a small set of users (VoIP support)

○ The latency does not depend on the latency to the anytrust servers

○ “On-path’’ anonymization that provides low latency
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Contributions of the thesis (cont’)

● PriFi (§4.4)
○ Low-latency, traffic-agnostic anonymity for a small set of users (VoIP support)

○ The latency does not depend on the latency to the anytrust servers

○ “On-path’’ anonymization that provides low latency

● Rubato (§4.5)
○ First large-scale ACN with multi-device, asynchronous clients (Global Active Adversary setting)

○ Each device can choose its communication frequency & costs

○ It enables mobile devices to participate at a reasonable cost
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Impact outside of research

● Every Byte Matters: Traffic Analysis of Bluetooth Wearable Devices
○ Contacted ~100 vendors and manufacturers, ~10 follow-ups by email, 2 follow-up meetings 

with large device manufacturers

○ Received a bug bounty

● Padmé
○ Maintainers of SequoiaPGP implemented Padmé

● PriFi
○ Demos at the Red Cross (ICRC) headquarters and at EPFL (one awarded a prize)

○ Patent
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Next steps for metadata privacy ?

Still an open problem:

● No one-size-fits-all defense

=> Per domain, iteratively evaluate risks

● Compared to non-metadata-private alternatives, solutions are costly

=> Increase visibility of the attacks to justify the costs
○ Open-source datasets & tooling
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Building safer apps

● Could we have automated guidelines for app developers ?

● Could we have “defense strategies” provided by the OS ? 

This could be an opportunity for designing the defenses iteratively
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Analyzing and Protecting Communication Metadata

Attacks Defenses

Every Byte Matters (Ch2) [4] 
Traffic-analysis attack of wearable 
devices.

Padmé (Ch3) [2]
A padding function that 
efficiently hides sizes.

PriFi (§4.4) [1,3]
Traffic-agnostic, low-latency 
ACN for local-area networks.

Rubato (§4.5) [5]
Large-scale ACN for text 
messaging on mobile devices.

Experimental Theoretical

Systems: Anonymous Communication Networks (ACN)
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