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Abstract

Most communication systems (e.g., e-mails, instant messengers, VPNs) use encryption to pre-
vent third parties from learning sensitive information. However, encrypted communications
protect the contents but often leak metadata: the amount of data sent and the time it was
sent, the way the data should be decrypted, the identity of the sender and the recipient. These
metadata are a pervasive threat to privacy: They enable a variety of attacks that range from
recovering plaintext contents from encrypted communications to inferring communicating
parties.

Our goal in this thesis is two-fold: First, to raise awareness about this problem by demonstrat-
ing attacks that threaten user privacy; and second, to propose novel solutions that reduce the
metadata leakage and maintain acceptable usability and costs.

To achieve the first goal, we present the first work that performs an in-depth analysis of the
communications of wearable devices under the lens of traffic analysis. We demonstrate that the
metadata of Bluetooth communications of wearable devices (smartwatches, fitness trackers,
and blood-pressure monitors) leak sensitive information to a passive observer, despite the
use of encryption. By design, these devices handle fine-grained and long-term, personal,
medical and lifestyle-related data from their users. We show that typical defense strategies
are ineffective: they only moderately hamper the adversary’s task and have a high overhead.
Our work highlights the need to rethink how sensitive data is exchanged in this setting. More
generally, we confirm that metadata can pose a threat to user privacy, even in settings where
traffic-analysis attacks are perhaps not an immediate threat.

For the second goal, we begin by presenting a theoretical contribution that concerns ciphertext
formats: Padmé, a padding function designed to reduce the metadata leakage of files and
messages through their length. Padmé efficiently hides the size of objects, even when they
have very different sizes. Padmé is a part of PURBs, a ciphertext format that does not leak
metadata, except for a small amount about the size.

Then, we design systems that enable communicating while reducing metadata leakage: Anony-
mous Communication Networks (ACNs). ACNs protect against some metadata leakage (e.g.,
who is communicating and when). Traffic-analysis resistant ACNs have not seen widespread
adoption yet, possibly due to their technical shortcomings. We focus on two particular aspects
that remain unsolved by the related work: small-scale traffic-agnostic communication that
achieves low latency, and large-scale asynchronous messaging that handles millions of users.

We present PriFi, an ACN that provides provable traffic-analysis resistance and low-latency in
the context of a local-area network. The protocol hides the source of a message by ensuring that
the communication patterns of all participants are equal, even in the presence of active attacks.
PriFi has a high bandwidth cost but ensures low-latency and traffic-agnostic communication
for a small set of users.
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Abstract

We then present Rubato, an ACN for anonymous messaging that handles millions of users.
Other large-scale ACNs have an important limitation: A sender and a recipient need to be
online at the same time to resist intersection attacks. As participants are uncoordinated, they
need to be online and to send cover traffic at all times, which is infeasible for many users. We
present Rubato, a circuit-based mixnet that enables its users to be asynchronous; they can
participate in the network according to their own schedule. Unlike all previous ACNs, this
enables users to participate using their mobile devices.
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Résumé

La plupart des systèmes de communications (e.g., courriels, messageries instantanées, VPNs)
font appel au chiffrage pour empêcher qu’une personne non-autorisée n’accède à des données
confidentielles. Malheureusement, les communications chiffrées protègent le contenu mais
laissent échapper des informations au travers des métadonnées : les volumes de données
et le moment de leur émission, la façon dont les données chiffrées doivent être manipulées,
l’identité de l’émetteur et du destinataire. Ces métadonnées sont une menace insidieuse
pour la protection des données privées: elles permettent diverses attaques dites «d’analyse de
trafic», qui peuvent révéler qui sont les participants d’une communication privée ou même
certaines données «en clair» malgré le chiffrage.

L’objectif de cette thèse est double: premièrement, de susciter une prise de conscience en
démontrant une attaque qui menace la vie privée d’utilisateurs; deuxièmement, de proposer
de nouvelles solutions qui réduisent les métadonnées révélées tout en maintenant un coût
acceptable.

Pour atteindre le premier objectif, nous présentons la première analyse en profondeur des mé-
tadonnées des communications des wearables (appareils connectés portés par un utilisateur,
e.g., montres connectées, fitness trackers, moniteurs de pression cardiaque). Ces appareils
traitent avec des informations médicales et personnelles liées au style de vie de l’utilisateur,
sur le long terme et avec une granularité fine. Nous démontrons que les métadonnées des com-
munications Bluetooth de ces appareils révèlent des informations personnelles et sensibles à
un observateur passif, malgré l’utilisation du chiffrage. Par ailleurs, nous démontrons que les
mécanismes de défenses typiques ne sont pas efficaces: ils ne réduisent que partiellement
l’efficacité de l’attaque et ont un coût élevé. Notre contribution souligne le besoin de repenser
globalement à la manière dont ces données sont échangées dans ce contexte. De manière
plus générale, ceci confirme que les métadonnées peuvent constituer une menace pour la
vie privée des utilisateurs, même dans un contexte où l’analyse des métadonnées n’est pas
pratique courante.

Concernant le deuxième but, nous commençons par une contribution théorique. Nous
présentons Padmé, une fonction de remplissage1 conçue pour réduire les métadonnées qui
sont révélées par la taille d’un contenu. Padmé masque efficacement les tailles de contenus,
même si elles sont de grandeurs très différentes. Padmé fait partie de PURBs, un format
de données chiffrées qui ne révèlent aucune métadonnée, sauf une quantité contrôlée de
métadonnées via la taille.

Puis, nous nous concentrons sur la création de systèmes qui permettent de communiquer en
limitant les métadonnées révélées: les réseaux de communications anonymes (RCA). Les RCAs
dissimulent certaines métadonnées, par exemple l’identité des acteurs d’une communication,

1En anglais: «Padding function».
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Résumé

et le moment où ils transmettent des données. À ce jour, les RCAs les plus sécurisés n’ont
pas connu un usage étendu, possiblement à cause de limitations techniques. Nous nous
concentrons sur deux aspects non-résolus: les communications anonymes à haute fréquence
et à petite échelle, et les communications anonymes à large échelle.

Pour garantir des communications anonymes et rapides au niveau des réseaux locaux, nous
proposons PriFi, un RCA à haute fréquence et à l’épreuve des analyses de trafic. Ce protocole
protège les émetteurs de messages en assurant que leurs communications suivent des motifs
identiques, même en présence d’attaques actives. PriFi a un coût élevé en bande passante,
mais permet des communications à faible latence pour un petit nombre d’utilisateurs.

Nous proposons ensuite Rubato, un système de messagerie instantanée anonyme qui supporte
des millions d’utilisateurs. Les systèmes actuels similaires souffrent d’un important défaut: un
émetteur et un destinataire doivent être connectés au même moment pour résister à certains
types d’attaques. Si les participants ne peuvent pas se coordonner, cela implique qu’ils doivent
être connectés et envoyer des messages factices en permanence. Cette contrainte est souvent
irréalisable pour la plupart des utilisateurs. D’autre part, les téléphones mobiles sont de facto
exclus de ce type de protocole d’échange. Rubato est un réseau de mixage qui permet à ses
utilisateurs d’être asynchrones et non-coordonnés, et donc de bénéficier de communications
anonymes selon leur propre horaire. Contrairement aux systèmes actuels, Rubato permet des
communications anonymes depuis des téléphones portables.

4



Acknowledgements

This thesis would not have been possible without the help, guidance, and contributions of
many friends and collaborators.

First, I am very grateful to my advisors Prof. Jean-Pierre Hubaux and Prof. Bryan Ford. Both
contributed immensely to this thesis taking shape. I thank them especially for their patience,
guidance, and their uninterrupted support through the ups and downs of research, and for the
total freedom they gave me in choosing my topics. Looking back, I enjoyed greatly these years
at LDS and DEDIS. Thank you for this opportunity.

I wish to thank my jury committee, Prof. Claudia Diaz, Prof. Mathias Payer, Dr. Nina Taft and
Prof. Carmela Troncoso for finding the time in their busy schedules to review this dissertation.

I am very thankful to all my colleagues and friends at LDS and DEDIS for making these years
the pleasant, thrilling, and fun experience they have been. I would like to thank my colleagues
at LDS: Alexandra, Christian, David, Francesco, Jean-Philippe, Jean-Louis, Joao, Juan, Romain
and Sinem. I also wish to thank the first-generation of DEDIS: Cey, Gaurav, Gaylor, Henry,
Jeff, Kelong, Lefteris, Linus, Maggy, Nicolas, Noémien, Philipp, and Simone, along with the
relief team: David, Haoqian, Louis-Henri, Pasindu, Pierluca and Sandra. Thank you all for the
interesting discussions, the fancy restaurants, and the weekend trips.

I wish to thank Angela and Patricia for their invaluable help with the administrative tasks
through the years. I also thank Holly for her relentless efforts with the editing of my texts.

The technical contributions of co-authors and collaborators are acknowledged in the relevant
chapters. More importantly, I wish to thank them all for our very pleasant collaborations. I will
remember these times of joint efforts towards a shared goal as the most enjoyable parts of my
PhD.

Finally, a special word goes to Anh, Apostolos, Italo, Kirill and Sylvain for being excellent
partners in crime.

5





1. Introduction

The modern era of information technology is characterized by a rapid integration of digital
technologies into virtually all aspects of society. In particular, individuals increasingly use a
plethora of connected devices: instant messengers to communicate, IoT devices to secure
their homes, and wearable devices to measure vitals, fitness activities, and sleep patterns.
Never before in history has such a large quantity of personal data been recorded, sent, shared
and analyzed [124].

However, all the benefits brought by the processing of personal data come with an increase
of the threats to individual privacy and security. Personal information is extremely valuable
to many entities: Advertisers build profiles from user data [85, 105]; companies monitor and
track users [39, 64, 117, 156, 242]; hackers can blackmail users and steal identities [198, 214];
governments monitor and track citizens by collecting and sifting over large amounts of data [37,
130, 241].

Thankfully, this looming threat is partially contrasted by the public’s slowly-increasing aware-
ness of risks and their rights to digital privacy. Interest in encrypted communication rose after
the 2013 Snowden leaks about mass surveillance [123]. Perhaps one of the consequences is
that the use of encryption on the Web has seen a rapid increase over the past decade [106].
Similarly, in the Western world, we observed an increased adoption of end-to-end encryption
in instant messengers [15, 197, 230].

This shift towards encrypted communications is a necessary step towards privacy: it protects
data in transit from eavesdroppers. However, despite the strong properties provided by
encryption, such an eavesdropper might still be able to infer sensitive information through
communication metadata: contextual information such as the identity of the sender and the
recipient, the amount of data sent and the time at which it was sent, the way the encrypted
data should be handled. As they are a part of the context hence often not encrypted in the
data, such metadata are readily available to third parties.

Communication metadata can be surprisingly informative. Two decades of research demon-
strate how they can be (mis)used: The metadata of encrypted VoIP calls enable the inference
of the spoken language and some sentences, despite the use of encryption [46, 236]; the meta-
data of anonymized phone and VoIP calls enables the re-identification and geolocation of
users [147, 155]. Through the analysis of communication metadata, web activities on a VPN
are identifiable despite encryption [79, 201], and this is also the case for video streams over
TLS [174, 175, 189] and Web pages over Tor [164, 226, 227]. By using communication metadata,
user activities can be inferred from encrypted communications in a smart home [2, 204] and
on smartphones [60, 186, 207].

But the analysis of communication metadata is not only a research exercise: In 2013, Edward
Snowden revealed how the National Security Agency (NSA) was conducting, as part of their
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intelligence operations, a large-scale collection of metadata. The fact that metadata were
collected — and not data — is telling. When commenting on the issue, the former NSA General
Counsel Steward Baker said,

“Metadata absolutely tells you everything about somebody’s life. If you have
enough metadata, you don’t really need content.” Steward Baker [56, ¶2]

These examples indicate that in the wrong hands, communication metadata can be a threat to
privacy: They can be sensitive in themselves, and they can reveal information from encrypted
communications. We deem that the threat is both pervasive and concrete: Despite these leaks
and the many research works highlighting the problem, in practice, few systems enable users
to hide some of their communication metadata [78]. Virtually all widespread communication
systems (e.g., Signal, WhatsApp, e-mails, VPNs) leak some metadata to a network observer.
Some of these metadata are available to many private and public actors, some of whom have
incentives to collect data: e.g., companies that provide end-to-end instant messaging services,
employers, ISPs, and governments.

Hence, our goal in this thesis is two-fold: first, to raise awareness about this problem by
demonstrating attacks that threaten user privacy; second, to propose novel solutions that
reduce the metadata leakage of encrypted communications.

Scope. We note that many researchers are working on the open problem of protecting com-
munication metadata [19, 102, 201]. Our goal in this thesis is not to “solve” the problem as
a whole; we believe that a holistic solution might not even exist. Rather, we propose novel
solutions to specific problems in order to advance the state of the art, in the hope to see, one
day, better privacy and security practices in digital communications.

Contributions

Our first goal is to raise awareness about the problem of communication metadata. Although
the problem of information leakage through metadata is now well-acknowledged in the secu-
rity research community, most real-world systems still leak sensitive communication metadata.
One hypothesis explaining the current state of affairs outside the research world is that the
problem is sometimes considered to be a remote concern, or to be too costly to solve com-
pared to the concreteness of the threat. We seek to demonstrate the problem in a sensitive,
previously unexplored setting. We use for an example the ecosystem of wearable devices:
smartwatches, step counters, blood pressure monitors, sleep trackers, etc. We demonstrate
that the Bluetooth communications of wearable devices can leak sensitive information to a
passive observer, despite the use of encryption. By design, these devices handle fine-grained
and long-term personal, medical and lifestyle-related data. We explore common defense
strategies that moderately hamper the adversary’s task, yet at a high cost. This highlights the
need to rethink how sensitive data is exchanged in this setting.

Our second goal is to propose new solutions to the problem of metadata leakage in communi-
cations. As addressing the overarching problem of communication metadata is notoriously
difficult, we focus on three particular aspects: (1) a ciphertext format that reduces metadata
leakage, (2) a system for small-scale traffic-agnostic communications that achieves low latency,
and (3) a system for large-scale asynchronous messaging that handles millions of users.

First, we consider a single static file or message, such as a PGP ciphertext. To ease decryption,
such an encrypted file typically reveals many metadata: the full list of public keys it has
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been encrypted for, the cryptographic parameters used, and its length. We1 propose a new
ciphertext format that does not leak any metadata at all, except for its length, for which the
leakage is minimized. In this thesis, we introduce Padmé, a padding function designed to
reduce the metadata leakage of files and of messages through their length. Padmé efficiently
hides the size of objects, even when the sizes vary significantly.

Second, we focus on the design of systems that communicate without leaking metadata:
anonymous communication networks (ACN). ACNs protect against some metadata leakage,
such as the identity of the person communicating. Traffic-analysis resistant ACNs have not
seen widespread adoption, possibly due to their technical shortcomings.

We first focus on the setting of organization networks: LANs and WLANs in companies, uni-
versities, and non-governmental organizations. It is easy for a local eavesdropper to capture
traffic and launch targeted attacks against high-value individuals. Current ACNs are poorly
suited to hiding communication metadata in the context of an organizational network; most
of them rely on mixing or shuffling over a chain of servers distributed around the world, which
adds latency. We present PriFi, an ACN that provides provable traffic-analysis resistance and
low-latency in the context of a local-area network. The protocol hides the communicating
entities by ensuring that the communication patterns of all participants are equal, even in
the presence of active attacks. PriFi has a high bandwidth cost, but ensures low-latency,
traffic-agnostic communication for a small set of users.

Finally, we focus on large-scale anonymous messaging. A fundamental limitation of current
large-scale ACNs is synchronicity: users need to follow a fixed global schedule to resist inter-
section attacks. In practice, this means that users need to be online and send cover traffic at all
times, which is unrealistic for many users. In particular, this constraint is hardly compatible
with mobile devices. We present Rubato, an ACN for anonymous messaging that handles
millions of users and enables its users to be asynchronous, that is to say, to participate in the
network according to their own schedule. This enables users to choose their quality of service,
depending on their own constraints such as battery life. At the same time, all users benefit
from a single global anonymity set.

Thesis Outline

In Chapter 2, we demonstrate how communication metadata can be used to infer sensitive
information from wearable devices. In Chapter 3, we present PURBs and Padmé, respectively,
a ciphertext format and a padding function. In Chapter 4, we present PriFi and Rubato, two
anonymous communication networks. We conclude and present the limitations of our work
in Chapter 5.

Publications

Chapter 2 is based on the results of [23]. Chapter 3 is based on the results of [161]. Chapter 4 is
based on the results of [20, 25, 26].

1This contribution is a joint work with Kirill Nikitin; the contribution is separated between the two theses
(Chapter 3).
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2. Metadata Leakage from Communications:
Wearable Devices

In this first chapter, we study the effect of metadata leakage in one particular ecosystem in
which data privacy is essential: wearable devices. Devices such as smartwatches, fitness
trackers, and blood-pressure monitors have access to long-term and fine-grained sensitive
information about the wearer: health-related data, fitness-related metrics, daily usage pat-
terns, etc. This personal data is typically synchronized with a companion app running on a
smartphone over a Bluetooth (Classic or Low Energy) connection.

In this work, we investigate the information that can be inferred from the metadata (such as
the packet timings and sizes) of encrypted Bluetooth communications between a wearable
device and its connected smartphone. We consider a nearby Bluetooth eavesdropper (e.g., a
nosy neighbor, a smart billboard in a shop). We demonstrate that such an adversary can use
traffic patterns to recognize the devices, the applications and the actions performed by the
users in its vicinity.

In particular, we show that a passive eavesdropper can use communication metadata to
accurately recognize:

1. communicating devices, even without having access to the MAC address or friendly
name;

2. human actions (e.g., monitoring heart rate, exercising) performed on wearable devices
ranging from fitness trackers to smartwatches;

3. the mere opening of specific applications on a Wear OS smartwatch (e.g., the opening of
a medical app, which can immediately reveal a condition of the wearer);

4. fine-grained actions (e.g., recording an insulin injection) within a specific application
that helps diabetic users to monitor their condition;

5. the profile and habits of the wearer, by continuously monitoring their traffic over an
extended period.

We run traffic-analysis attacks by collecting a dataset of Bluetooth communications concerning
a diverse set of wearable devices, by designing features based on packet sizes and timings,
and by using machine learning to classify the encrypted traffic to actions performed by the
wearer. Then, we explore standard defense strategies against traffic-analysis attacks such as
padding, delaying packets, or injecting dummy traffic. We show that these defenses do not
provide sufficient protection against our attacks and introduce significant costs. Overall, our
research highlights the need to rethink how applications exchange sensitive information over
Bluetooth, to minimize unnecessary data exchanges, and to research and design new defenses
against traffic analysis tailored to the wearable setting.

Acknowledgments. This work has been made possible by the help of Alexandre Dumur,
Friederike Groschupp, and Stéphanie Lebrun. It is a joint work with Dr. Apostolos Pyrgelis.
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Metadata Leakage from Communications: Wearable Devices

(1) Wearable devices communicate  
 with a smartphone using Bluetooth

(2) An adversary eavesdrops upon 
their encrypted communications

(3) Feature extraction (4) Traffic classification: 
identification of sensitive actions

0, -1, 0.3, 4, ...
New Insulin Injection

Figure 2.1 – Traffic-analysis attack on the encrypted traffic of Bluetooth wearable devices. After
an offline training phase (not depicted here), the passive eavesdropper can recognize the
action to record an insulin injection despite the use of encryption.

2.1 Introduction

With the rising interest in personalized health care and “quantified self”, wearable Bluetooth
devices are becoming pervasive in our societies. To improve aspects of their daily lives, users
increasingly use smartwatches, medical and fitness-related devices such as activity trackers,
step counters, blood-pressure monitors and sleep trackers1. These devices process, store,
and transmit personal and sensitive data linked to the wearer’s identity and health status:
fine-grained and long-term activity levels, heart rates, arrhythmia alerts, medication and
sleep schedules, etc. Such personal information should be protected from third parties, as
it can be used to build profiles, to identify and track users (e.g., for advertising purposes), or
can be sold to insurance companies for the quantification of users’ medical risks. Medical
wearable devices that are FDA-approved2 are already subject to such a requirement: they
“should have appropriate protections in place that prevent sensitive information from being
read by unauthorized parties either in storage or in transmission” [88].

For enhanced functionalities, most wearable devices communicate with a smartphone via
Bluetooth. These devices can use encryption at the Bluetooth link layer or application layer.
In this work, we show that these encrypted communications leak information about their
contents via their communication patterns (e.g., distribution of packet sizes and inter-arrival
timings). We consider a local passive eavesdropper who attempts to infer sensitive infor-
mation from the communications. This adversary could be a nosy neighbor, an advertiser
in a shopping mall attempting to infer the shoppers’ habits, an employer [64], or a more
nefarious adversary collecting data for sale to insurance companies. These threats against
privacy are concrete: For over a decade, advertisers have been using Bluetooth, Wi-Fi, and
cellular networks, to track consumers in stores [117, 156, 242], and to link their profiles to
online advertisement databases [150]; these advertisers could use Bluetooth traffic patterns to
learn new information or to better profile users.

We infer sensitive information from the encrypted communications of wearable devices by
using traffic-analysis attacks [66], a technique that exploits the communication patterns
(e.g., packet sizes and timings) of encrypted traffic. These attacks have been successfully
demonstrated in diverse settings: to recognize web pages on Tor traffic [82, 164, 226, 227], to
fingerprint devices [165] or to infer the activities performed in a user’s smart home [2, 204] and
to recognize user activities and applications used on a smartphone (e.g., sending an e-mail or
browsing a web page) [60, 186, 207, 208, 244]. The focus of recent related works has been on
inferring user activities in the IoT and smart home setting [2, 6, 16, 17, 215], eavesdropping on

1In 2019, 46 million wearable devices were sold. This number is expected to rise to 158 millions by 2022 [205].
2U.S. Food and Drug Administration. This institution notably edicts rules for medical devices sold in the U.S.
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2.1. Introduction

WLAN or Internet traffic (or both). Very few related works consider the communications of
Bluetooth wearable devices at the Personal Area Network (PAN) scale, despite the sensitive
nature of the information exchanged. Das et al. [69] demonstrate how the bitrate of some
fitness trackers is correlated with the user’s gait; however, their analysis is restricted to 6 BLE
devices, and they do not attempt to recognize devices, applications or users actions. To the
best of our knowledge, ours is the first work that performs in-depth device, application and
user-action identification on the Bluetooth communications of wearable devices.

To perform the traffic analysis of wearable devices, we build a Bluetooth (Classic and Low
Energy) traffic-collection framework. We set up a testbed consisting of a diverse set of wear-
able devices (smartwatches, fitness trackers, blood-pressure monitors, etc.) connected to
a smartphone, and we use a Bluetooth sniffer to capture the traffic. To generate realistic
traffic traces, we manually use the wearable devices in the intended way: e.g., by performing
a short running exercise in the case of a fitness monitor, repeated multiple times to obtain a
sufficient number of samples. We obtain a dataset of labeled (encrypted) Bluetooth Classic
and Low Energy traces; we then design features based on packet sizes and timings, and we
apply machine-learning classification techniques for identifying devices, applications, and
user actions despite the encryption.

Our experimental results show that an eavesdropper can exploit encrypted communication
patterns to passively identify devices, even when these devices are already paired and do
not broadcast Bluetooth addresses or names. Our methods identify specific models/versions
of the device, and hence enable the tracking of devices and users, despite the Bluetooth
address-randomization protection-mechanism employed by the Bluetooth Low-Energy pro-
tocol. Moreover, we demonstrate that the adversary, for instance a nosy neighbor, can use
our traffic-analysis attacks to accurately recognize user actions (e.g., recording the heart rate,
beginning a workout or receiving an SMS) performed on different wearable devices such
as smartwatches, step counters, and fitness trackers. We then focus on smartwatches and
show that an eavesdropper, for instance an unscrupulous advertiser, can recognize the mere
opening of specific applications, which can be immediately sensitive (e.g., in the case of a
medical app) or used to build a profile (e.g., based on religious or political apps). Furthermore,
we show that our methodology generalizes well: The model trained on a smartphone/wearable
device pair performs accurately on a different device pair, indicating its cost-effectiveness.
We also highlight how a targeted adversary can recognize sensitive user activities within a
specific application; we accurately recognize the action of recording an insulin injection in a
diabetes-helper application (Figure 2.1). Finally, we show that an attacker can infer a wearer’s
habits and build their profile by eavesdropping her Bluetooth traffic over a long time-period.

Finally, we focus on countermeasures against the presented traffic-analysis attacks. We eval-
uate how standard approaches against traffic analysis (i.e., padding or delaying messages,
injecting dummy traffic) perform against our attacks. Our results show that these defenses
provide insufficient protection: though they yield a drop in the adversary’s accuracy, none
of them reduces it to that of random guessing. Furthermore, their costs are high (from tens
to hundreds of kilobytes of additional exchanged data) for wearable device communications
where energy consumption is crucial. We also observe that the effectiveness of these defenses
varies greatly with the adversarial task: although the “right” defense drops the attacker’s ac-
curacy, non-adapted defenses have almost no effect yet still incur high costs. This suggests
that a “one-size fits all” defense for preventing device fingerprinting, as well as application
and action fingerprinting, is unlikely to exist at a reasonable cost. Our defense evaluation
highlights the need to rethink how wearable devices exchange sensitive data over Bluetooth
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communications and prompts for the design of novel defenses. For example, for applications
that can support it, data minimization is a valid strategy: data that is not exchanged cannot be
fingerprinted, and we observe in our experiments that low-volume exchanges are naturally
protected from traffic analysis. Moreover, bulk transfers (e.g., synchronizing a step counter
every day at midnight) also hamper the task of the adversary.

Overall, the purpose of our work is to raise awareness, notably among device manufacturers
and application developers, of the limited confidentiality on the Bluetooth link with today’s ap-
plications and devices. For instance, manufacturers might be willing to implement mitigations
directly to the wearable devices’ firmware, hence it is urgent that the research community pro-
vides them with acceptable solutions that will protect the next generation of wearable devices.
Application developers might want to carefully consider the information their application can
leak through its communication patterns and to implement an application-level defense (for
instance, pad all communications to a fixed size). We hope that our research results will be
a starting point for further research on the communication metadata of Bluetooth wearable
devices. To facilitate future research on the topic, we open-source our dataset for research
purposes: it consists of Bluetooth traces of wearable devices used to perform multiple actions
and that have been, for most devices, manually recorded over months. Although our experi-
ments focus only on Bluetooth communication metadata, our dataset contains all captured
data (e.g., link-layer information, pairings) that might be of independent interest.

In summary, our contributions in this chapter are as follows:

• We show traffic-analysis attacks that, based on the encrypted traffic of wearable devices,
recognize:

1. communicating wearable devices, up to the model number of the same device;
2. user activities and the opening of specific applications;
3. fine-grained sensitive actions (i.e., recording an insulin injection) within an appli-

cation;
4. actions recorded over a long time-period, which can be used to build a profile.

• We experimentally evaluate standard defenses against traffic analysis and suggest possi-
ble strategies;

• We make available a large dataset of Bluetooth traffic captures for future research.

2.2 Background

There exist two flavors of Bluetooth: Bluetooth Classic, referred to as “BR/EDR” for Basic
Rate/Enhanced Data Rate, and Bluetooth Low Energy (BLE). The former is used for data-
intensive or latency-sensitive scenarios (e.g., audio streaming), whereas the latter is used for
low-power or low-throughput scenarios. Most wearable devices we collected for our testbed
use Bluetooth Low Energy, except for smartwatches that typically use Bluetooth Classic. Both
Bluetooth specifications [32] are produced by the Bluetooth Special Interest Group (SIG), and
their latest version is 5.2.

Data Exchange. In both Bluetooth Classic and BLE, data exchange occurs after a pairing
process between one or more slaves (the wearable device) and a master (e.g., the smartphone).
We remark that a smartwatch can be a master for another wearable device. Initially, to discover
each other, devices broadcast and listen on advertising channels in Bluetooth Low-Energy, or
on channels determined by a predefined hopping sequence in Bluetooth Classic. Then, the
pairing process assigns the slave to the master’s Piconet, and both devices communicate using
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the non-advertising channels. Unlike Bluetooth Classic, BLE also supports data exchange
without establishing a link-layer connection: devices simply broadcast short information to
its surroundings on the advertising channel.

To communicate in a Piconet, all devices use the same frequency hopping pattern (derived
from the master’s MAC address and clock). The channel is divided into time-slots; odd
time-slots are for the slaves, and even time-slots for the master. When the connection is Asyn-
chronous Connectionless (ACL), devices communicate opportunistically during unreserved
time-slots. In the case of Synchronous Connection-Oriented (SCO) connections, devices
communicate at predetermined time-slots without acknowledgment.

Security. The security properties are similar between Bluetooth Classic and BLE. Devices
first establish and authenticate a long-term key through a pairing process. In this process,
both devices also derive a short- or long-term key. “Legacy” pairings are generally insecure by
today’s standards [235]: they rely on a short PIN and can be easily brute-forced. Secure Simple
Pairing (SSP) is a more recent pairing protocol based on elliptic curve cryptography [169]. It is
available since Bluetooth 2.1. There exists several active attacks on SSP, based on some form
of Man-in-the-Middle [112, 113, 114] or low-entropy key generation [13, 14]. If the pairing is
done correctly and the key uses sufficient entropy, the subsequent communication should be
confidential and integrity-protected (AES-CCM with a 128-bit key).

Bluetooth Eavesdropping. Eavesdropping on Bluetooth traffic is complex due to the fre-
quency hopping. Inexpensive sniffers (such as the Ubertooth [107]) attempt to follow the
frequency hopping of a connection and often require observing the pairing [185]. However, by
listening concurrently on all channels, high-end commercial scanners accurately capture all
traffic without the need to observe the pairing. Recent advances in research use coordinated
Ubertooth devices to achieve a greater capture accuracy [4, 5], or use software-defined radios
(SDRs) to cover the Bluetooth spectrum at a cost lower than commercial scanners [57, 58]. We
discuss the practicality of Bluetooth eavesdropping in §2.8.1.

2.3 System and Adversarial Model

We consider a user U that possesses a smartphone S and a collection of wearable devices
W . This collection W contains heterogeneous devices: some with a general-purpose OS
(e.g., an Android smartwatch) or a simpler firmware (e.g., a step counter). Devices in W can
communicate with S over Bluetooth Classic or Low Energy.

Adversary. We consider an adversary A who is a passive eavesdropper. A uses a Bluetooth
sniffer to capture all Bluetooth traffic in the vicinity of U . In particular, A might capture traffic
from other users and devices that are also nearby. A does not compromise any devices and
does not possess the keys to decrypt Bluetooth traffic.

Goals and Traffic Captured. Informally, A attempts to infer information from all communica-
tions between the wearable devices in W and S (Figure 2.2). However, we need to precisely
define the aforementioned adversary. In practice, an eavesdropper who sees all traffic between
a wearable device and its connected smartphone is not realistic: a sporadic or local adversary
is unlikely to consistently capture one-time events such as pairings. Therefore, we define
as Aall an adversary who sees all communications between a wearable-smartphone device
pair, and we further define two weaker adversaries in the sense of A, but who only observe,
respectively:
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BD_ADDR: ??:??:??:dd:ee:ff

BD_ADDR: ?
AA: 1

BD_ADDR: ??:??:??:aa:bb:cc

BD_ADDR: ?
AA: 2

BD_ADDR: ?
AA: 0 BD_ADDR: ?

AA: 3 ACOMM

LAP

LAP

Figure 2.2 – Information visible to Acomm: (1) the active connections between each pair of
wearable-smartphone, identified by a random Access Address (AA); A sees all packets on these
connections; (2) for each master device, the Lower Address Part (LAP) of the BD_ADDR (some-
times called the MAC address). Acomm cannot tell what types of devices are communicating.

• Apaging: all paging events (devices waking up from sleep and performing minimal dis-
covery) and subsequent communications, but not the pairings;

• Acomm: all active communications, but neither pairing nor paging events.

In terms of adversarial power, we have that Aall ≥ Apaging ≥ Acomm. We focus on the weakest
adversary Acomm who only observes ongoing communications between a wearable device and
its connected smartphone. This matches what a passive adversary can do consistently.

Information Visible to Acomm. Figure 2.3a shows the information that is visible to Acomm

during Bluetooth Classic communications. The sensitive/identifying fields are the Sync word
and the Active-Member Address (AM-ADDR). The Sync word reveals the 24 lower bits of the
master’s MAC address (LAP). The Upper Address Part (UAP), that is not transmitted in this
packet, is assigned to manufacturers and identifies a wearable device. Finally, the Active-
Member Address is a 3-bit integer (and not a MAC address) identifying a device in a given
Piconet; this is similar to a connection identifier. Figure 2.3b shows the information visible to
Acomm for Bluetooth LE. Similar to AM-ADDR, the Access Address is a connection identifier
(and not a MAC address). On a higher-level, in both Bluetooth flavors, the information given
to Acomm per packet is

(Packet type, connection ephemeral ID, time, payload)

where the Packet type indicates whether Bluetooth Classic or LE is used, and where the
connection ephemeral ID is randomized, except for the master device in Bluetooth Classic
where it is fixed. The payload can contain upper-layer packet information, for instance the
packet type, as well as the encrypted application payload.

Capabilities of Acomm. In conclusion, with the information visible on the Bluetooth channel,
Acomm can

• enumerate the devices w ∈W and assign a pseudonym to each of them;
• group them by connection between a pair of devices; and
• collect a series

{(
time, packet type, packet size

)}
w for each device w ∈W for the dura-

tion of the capture.
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Preamble Sync word Trailer . . .

. . . AM-ADDR Flow/ACK/Seq . . .

. . . HEC Payload

(a) Structure of a BB_PDU packet (BaseBand
Packet Data Unit) used in Bluetooth Classic. HEC
(Header Error Correction) is an error-correction
code.

Preamble Access Address . . .

. . . Header Payload

(b) Structure of a Link Layer packet used in Blue-
tooth LE.

Figure 2.3 – Packet Structures. The features used in our attacks are derived from the time of
reception and the size of the payload.

We assume that the adversary is able to isolate a communication of interest, e.g., using the
Active-Member Address (AM-ADDR) of Bluetooth Classic or Access Address of Bluetooth Low
Energy, possibly combined with other techniques, e.g., distance estimation using the Received
Signal Strength Indicator (RSSI). The pseudonymous recipient of a packet is often known, as
most packets are acknowledged.

Attacker Goals. Given the Bluetooth information available, the goal of Acomm is threefold:

G1) Device Identification: for a device w , recognize the device brand/manufacturer;
G2) Action Identification: for a device w , recognize user actions (i.e., interactions with the

device);
G3) Application Identification: for a device w , recognize the running application.

We use Goal 1 as a stepping-stone for the following goals. However, meeting the first goal
already has privacy implications: such an adversary can recognize and track a user through
the list of her wearable devices, despite MAC address randomization, and can build a profile
for that particular user.

2.4 Methodology and Datasets

We describe how the adversary defined in §2.3 can perform traffic-analysis attacks to achieve
its goals. First, we build a data collection framework to record Bluetooth traffic and to automate
the data transmission for some Bluetooth wearable devices. For other devices, we manually
trigger Bluetooth traffic by performing the appropriate human action (e.g., pressing a sequence
of buttons, performing a physical activity). Then, we process the captured traffic and use it with
machine-learning classification techniques to infer information from encrypted Bluetooth
traffic.

Testbed. We set up a testbed with multiple wearable devices to account for a wide range of
manufacturers, device capabilities, and functionalities. We initially selected 18 Bluetooth
Classic and LE devices: 5 popular smartwatches, 2 headphones, and 11 other wearable devices
(step counters, fitness trackers, and blood-pressure monitors) from the most popular vendors.

All Bluetooth Classic devices analyzed use link-layer encryption. To our surprise, from the
Bluetooth Low Energy devices, only the Fitbit Charge 2 uses link-layer encryption. We perform
entropy tests to validate that the remaining Low Energy devices use encryption at the applica-
tion layer. We observe a high entropy (6−8bit of information per byte) for all devices, except
for 3 of them (the Beurer AS80, SW170, and PanoBike+, ≈ 4bit/byte). Hence, we discard
these three devices from our testbed. We remark that though our attacks do not use plaintext
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contents and would work on these three devices, an attacker can achieve the same results by
simply reading the payload. We also discard two blood-pressure monitors (the Qardio and
H2-BP) that we could not reliably use. In total, the testbed consists of 13 devices: 7 Bluetooth
Classic and 7 Low Energy devices (Tables 2.1 and 2.2).

Although our testbed consists of a modest number of devices, most devices use proprietary
firmware and software (i.e., they are closed-source), which does not allow us to automate their
Bluetooth traffic-data collection. Except for Wear OS smartwatches that we can automate, the
data collection is a sequential and manual process.

We use a Nexus 5 as the smartphone for all Android/Tizen smartwatches and wearable devices
without an OS, and an iPhone 8 for the Apple Watch/AirPods. We updated all devices with the
latest firmware and OS updates.

Actions Recorded. For each device, we manually compile a set of possible user-actions: low-
end devices sometimes only Sync with the smartphone; mid-range devices support activities
such as Running Workout, Measure Heartbeat, etc., whereas high-end devices such as
smartwatches offer a large range of user actions through the use of additional apps (e.g., AppX
Open, AppX DoActionY) that users can choose to personalize their device.

Capture Methodology. We record all Bluetooth traffic by using a wide-band scanner (an Ellisys
Vanguard [83]). For each device w , we pair w with the phone S and let some time pass to
allow for an initial data synchronization. Then, we trigger the desired action and record the
corresponding Bluetooth traffic for T = 30 seconds (we observe this to be a conservative
value); this constitutes one sample. To collect sufficient number of samples for an action,
we repeat the capture process N = 25 times (we observe this to be a conservative value,
Appendix A.4, Figure A.1c). We record real activities: for instance, for a Running Workout, we
perform a short running activity in the vicinity of the sniffer; for the wearable that records
the heart rate, we fit the wearable to ourselves during the experiment. This is in contrast with
some previous works (in the context of Wi-Fi traffic) that use UI fuzzing to quickly provide
many traffic samples generated by smartphones [60, 207, 208]. This ensures that most values
communicated by the wearable reflect what a real user would generate (e.g., the number
of steps, speed, and distance). However, due to our non-portable experimental setup, the
recorded GPS coordinates will show an almost-fixed position.

Environment. We conduct the experiments in an office where both Wi-Fi devices and other
Bluetooth devices communicate. This corresponds to a noisy environment; an anechoic
chamber or a Faraday cage would advantage the adversary by allowing to record trace with
less noise. We turned off unused devices to avoid unnecessary interference.

Dataset. We collect a dataset that consists of 10,700 Bluetooth captures with a duration of
≈30 sec, recorded over 13 devices, 80 applications and 32 user-actions (see Table 2.3). This
amounts to ≈96 hours of recording and represents 21 GB of data. 10,371 of these traces are
over Bluetooth Classic, and 329 Bluetooth Low Energy. 2,215 of these captures are the result of
the corresponding human action (e.g., performing a short workout), and 8,485 are automated
actions (e.g., the opening of an application) on Wear OS devices.

Additionally, we record a second dataset that contains longer captures with a duration of ≈
20min. These captures contain automated actions that, when combined, represent a plausible
usage of a smartwatch over a day. We use them to model a persistent adversary (§2.6.2.4). This
amounts to 38 hours of recording and 9.5 GB of data.
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Overall, the datasets contain raw binary files with all captured traffic. As the file format is
proprietary, we extract the corresponding CSV files.

Sample Processing. We process the captured raw Bluetooth traces as follows. We manually
select the connection of interest. We follow the approach of the related work and extract
only the total length of the payload to avoid relying on the presence of plaintext markers in
it [207, 208]. From each recorded Bluetooth trace, we extract the Bluetooth packets at the
Logical Link Control and Adaptation Protocol (L2CAP) layer and output a series of (arrival time,
size)-tuples. We label the trace with the Device used, the Application used (in the case of a
smartwatch), the Action performed, and whether it used Bluetooth Classic or LE. We split the
set of recorded samples S into two subsets SClassic and SLE depending on the Bluetooth variant
used; An adversary is able to do the same, as the frames are different.

Feature Extraction. We design features to capture patterns based on incoming/outgoing size
distributions and inter-packet timings. We map each sample in SClassic and SLE to a 32-scalar
feature vector: First, we capture global statistics about packet sizes. We filter each sample into
3 packet sequences: (1) from Master to Slave, (2) from Slave to Master, and (3) sequences con-
sisting of all non-null, non-ACK packets. From each filtered sequence, we extract the following
5 statistics: the min/mean/max/count/standard deviation of the packet sizes in bytes. Then,
we observe that different devices/applications send packets with a distinctive size. To this
end, following the techniques used by Liberatore and Levine [148] and Herrmann et al. [115]
in the context of website fingerprinting, we extract features corresponding to the number of
packets that are in a certain range. We select 10 buckets that represent the size (in bytes) ranges
[0,9], [10,19], · · · , [80,89] and a last “catch-all” bucket for packets with [90,∞] bytes. Finally,
we examine the timings of the packets. In more detail, we compute, in seconds, the series
of inter-packet durations and extract the same 5 statistics (min/mean/max/count/standard
deviation) from it. Furthermore, we calculate the average send/receive inter-packet times as

done by Saltaformaggio et al. [186] in the case of TLS traffic: AvgIPT(P ) =
∑|P |−1

i=0 tsi+1−tsi

|P |−1 , where
P is the set of sent/received packets, and tsi is the timestamp of packet i . Intuitively, this
captures the communication bursts of each device.

Classification. For our traffic-analysis attacks (described in §2.5 and §2.6), we use a Random
Forest classifier, a popular algorithm for multi-class classification that is also widely used in
the related work [207, 208]. We opt for a Random Forest classifier over the recently proposed
deep-learning approaches [199, 200] due to its interpretability and the moderate size of our
dataset. We split the samples of each device/application/action (depending on the adversarial
goal) into 80% training and 20% testing sets and perform 10-fold random-stratified cross-
validation. We also retain the most important features according to the classifier’s importance
using Recursive Feature Elimination (RFE).
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Tables 2.1 and 2.2 — Bluetooth wearable devices used in our experiments. BT indicates the
Bluetooth version. The AppleWatch uses both flavors of Bluetooth.

Table 2.1 – Bluetooth Classic devices.

Vendor Model OS BT Chipset
Samsung Galaxy Watch Tizen OS 5.0 Broadcom
Fossil Explorist HR Wear OS 4.2 Qualcomm
Apple Watch 4 Watch OS 5 5.0 Apple
Huawei Watch 2 Wear OS 2 4.1 Broadcom
Fitbit Versa 2 Fitbit OS 4 5.0 Cypress S.
Sony MDR-XB9 — 4.1 Qualcomm
Apple AirPods 2 — 5.0 Apple

Table 2.2 – Bluetooth LE devices.

Vendor Model BT Chipset
Apple Watch 4 5.0 Apple
Fitbit Charge 2 4.1 Microelectronics
Fitbit Charge 3 5.0 Cypress S.
Huawei Band 3e 4.2 RivieraWaves
Mi Band 2 4.1 Dialog S.
Mi Band 3 4.1 Dialog S.
Mi Band 4 5.0 Dialog S.

Table 2.3 – Applications and Actions captured in the dataset. Some actions are application-
specific, e.g., DiabetesM_AddCalorie. Other actions, e.g., Workout, exist in different apps
and in the firmware of wearable devices.

Applications 20Min, ASB, Alarm, AppInTheAir, AthanPro, AthkarOfPrayer, Battery, BeurerApp, Bild, Bring,
Calm, Camera, ChinaDaily, Citymapper, DCLMRadio, DailyTracking, DenverApp, DiabetesM,
DuaKhatqmAlQuran, Endomondo, FITIVApp, FITIVPlus, FindMyPhone, Fit, FitBreathe,
FitWorkout, Fitbit, Flashlight, FoursquareCityGuide, Glide, GooglePay, GooglePlayMusic,
HealthyRecipes, HeartRate, HuaweiApp, Kaia, KeepNotes, Krone, Lifesum, MapMyFitness,
MapMyRun, Maps, Medisafe, Meduza, MiApp, Mobills, Music, MyFitnessPalApp, NYT, NoApp,
Outlook, PearApp, Phone, PhotoApp, PillReminder, PlayMusic, PlayStore, Qardio, Ramadan-
Time, Reminders, Running, SalatTime, SamsungHealthApp, Shazam, Sleep, SleepTracking,
SmartZmanim, SmokingLog, Spotify, Strava, Telegram, Timer, Translate, Walgreens, WashPost,
WearCasts, Weather, Workout.

Actions AddCalorie, AddCarbs, AddFat, AddFood, AddGlucose, AddInsulin, AddProteins, AddWater,
Browse, BrowseMap, CaloriesAdd, Coffees, EmailReceived, HeartRate, Leisure, LiveStream,
NightLife, Open, PhoneCallMissed, PhotoTransfer, Play, Restaurants, Running, SearchRecipe,
Shopping, Skip, SMSReceived, Sync, Walking, Workout.

2.5 Device Identification

We first focus on the adversarial goal G1: recognizing a device name/brand from the metadata
of its encrypted Bluetooth traffic. This attack is a stepping-stone for other attacks that aim to
infer more fine-grained information such as actions performed by the wearer or applications
installed on her device (§2.6). We recall our assumption that the adversary Acomm does not
observe the pairing event between a wearable w and the smartphone S, which would give him
the device information in plaintext. Instead, we demonstrate how Acomm can infer this infor-
mation from encrypted communication patterns. Many recent related works already highlight
that current BLE devices do not rotate their MAC addresses sufficiently or at appropriate times,
enabling tracking [28, 44, 154]. We highlight a deeper problem: the communication patterns
(e.g., inter-packet timings) are sufficient to accurately identify devices.

Attack. We use the methodology described in §2.4 and train two classifiers: one for identifying
Bluetooth Classic devices and one for distinguishing BLE devices from their encrypted traffic.
We use our captured dataset of encrypted traces with the device label as the classifier’s target.
Initially, we have 10,371 feature vectors across diverse applications/actions of 7 Bluetooth
Classic devices, and 329 feature vectors for 7 Bluetooth Low Energy devices. The AppleWatch
is in both categories as it uses both Bluetooth flavors.

The large sample difference in Bluetooth Classic is due to the automation of two Wear OS
smartwatches (§2.6.2). As the Bluetooth Classic dataset is imbalanced with respect to the
number of samples per device, we balance the samples per device label and maintain an
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Figure 2.4 – Normalized confusion matrix per true label for device identification. Values in the
diagonal are the recall per class.

equal representation of each device’s actions. This gives us between 20 and 60 samples per
device, except for the HuaweiWatch that has 125 samples (1 per class). In total, the equalized
Bluetooth Classic dataset consists of 326 feature vectors. We use a Random Forest classifier
with 10 trees (our experiments showed that additional trees were not necessary – Appendix A.4,
Figure A.1a) that we train using the features described in §2.4, and we do not limit their depth.
We apply Recursive Feature Elimination and keep the most significant 10 features.

Results. For the multi-class classification problems with 7 Classic and 7 LE devices, the
classifier’s precision/recall/F1-score is 0.96 for Bluetooth Classic and 0.97 for Low Energy
(Appendix A.5, Tables A.1 and A.2), thus showing that identifying a wearable device from
its encrypted traffic is successful. We also find that our classifier accurately distinguishes
between different models from the same vendor (i.e., Mi Band 2, 3 or 4, and Fitbit Charge 2 or
3) indicating that each model has distinctive traffic patterns. Figures 2.4a and 2.4b show the
confusion matrices. The values in the diagonals are the recall per class.

We perform a feature importance analysis and find that timings are crucial for discriminating
among the Bluetooth Classic devices: all three most important features are related to inter-
packet timings (Figure 2.5a). This corroborates the findings of Aksu et al. [3] who show that the
traffic from 6 smartwatches has a distinct inter-packet timing distribution, and is in agreement
with some fingerprinting results in other domains (e.g., website fingerprinting based on Tor
traffic [173]). In the case of Bluetooth Low Energy, the classifier selects primarily size-based
features (Figure 2.5b). We postulate that this difference is due to the increased capabilities of
Bluetooth Classic devices (i.e., high-end smartwatches) compared to LE devices that consist
of simpler devices. Smartwatches support a wide range of possible actions that can generate
small or large amounts of data, which makes global-volume-based features less stable than
timings that are inherently tied to the OS and the hardware. On the contrary, LE devices
support only limited functionalities (e.g., activity tracking or heart rate monitoring), and their
communication pattern is inherent to the nature of the application, making size-based features
discriminative across devices. Another possible explanation is that due to the absence of a
block cipher on the link-layer, BLE packet sizes reveal more information to an eavesdropper.
Finally, we observe that the relative feature importance is less pronounced than in the case
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Figure 2.5 – Feature Importance for device identification. ∆time is the sequence of inter-arrival
times. avgIPT_X are the features from Saltaformaggio et al. [186] also describing inter-arrival
times. The x-axis indicates the relative feature importance.

of Bluetooth classic, thus indicating that the classifier needs more features to successfully
distinguish the samples.

Chipset Fingerprinting. Our classifier described above fingerprints a combination of the
hardware, the firmware, the OS, and the applications installed. In Appendix A.1, we briefly
explore if the chipset (e.g., Broadcom) can be recognized from the encrypted communication.
We observe that there exist stable communication patterns across the devices sharing the
same chipset. However, the low number of devices (i.e., 1−3 devices per chipset manufacturer)
prevents from reaching a definitive conclusion.

Take-Aways. Our experiments confirm that there exist discriminating features across the
encrypted traffic of Bluetooth wearable devices; an eavesdropper can use these features to
differentiate devices. This raises a question about the level of protection offered by tracking
countermeasures, e.g., MAC address randomization, employed by the Bluetooth LE protocol.
Moreover, our results show that Bluetooth Classic devices are distinguishable due to their
communication time patterns, whereas LE ones have distinct size patterns. We also find that
the traffic of devices with the same chipset manufacturer have common patterns. Despite these
common patterns, devices from the same vendor can still be distinguished from each other
using the device-identification methodology, demonstrating the robustness of our approach.
Finally, we remark that device identification is an entry-level attack to other attacks (e.g., action
or application identification described next) that aim at inferring more sensitive information
about the owners of wearable devices.

2.6 Action and Application Identification

We now consider the adversarial goals G2/G3 and focus on recognizing user-actions from their
corresponding encrypted Bluetooth communications. Actions are related to the capabilities of
wearable devices: measuring a heartbeat, beginning a workout, tracking a meal or medicine
intake, playing music, etc. Our dataset analysis shows that most user-actions — even the mere
opening of an application on a smartwatch — result in Bluetooth communication with the
paired phone. In this section, we train a classifier to recognize user-actions from the metadata
of these encrypted Bluetooth communications.
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Due to technical constraints, our experimental evaluation is two-fold and “T-shaped”:

1. “Wide”-part (§2.6.1): We run the attack on all the wearable devices of our testbed
(Tables 2.1 and 2.2). Since most of them are not automatable due to their proprietary OS-
/firmware, we use the samples that we manually trigger by performing the appropriate
action (e.g., performing a short running workout).

2. “Deep”-part (§2.6.2): We build and use an automation pipeline for Wear OS devices to
generate more data. We use this enhanced dataset (1) to identify applications running on
a smartwatch, for instance religious or medical applications, (2) to identify fine-grained
actions within specific applications, for instance the action “record an insulin injection”
in an application that is used to manage diabetes, and (3) to model an attacker capturing
traffic over a longer period of time (hours) and attempting to recognize actions and
applications in the trace.

Methodology. For our two-fold experimental evaluation, we follow the methodology described
in §2.4 except that we enhance the set of extracted features (see next point). We use the Action
(or Application) label as our classifier’s target. In subsections §2.6.1 and §2.6.2, we include
further details that depend on the specific experimental settings.

Feature Extraction & Classification. We slightly modify the features described in §2.4. First,
we replicate the 3 packet sequences: (1) from Master to Slave, (2) from Slave to Master, and
(3) the sequence consisting of all non-null, non-ACK packets. Then, we remove small packets
from the copies: we empirically observe that small packets are not useful to the classifier
because they are common across applications and actions. After experimenting with different
thresholds, we filter out packets smaller than 46B from the 3 new time-series. As before, we
extract the min/mean/max/count/standard deviation from these time-series, which leads
to 15 additional scalar features. Furthermore, we tweak the features proposed by Liberatore
and Levine [148] regarding the counts of packets in certain size ranges. Recall that, for device
identification (§2.5), we used coarse, 10-byte wide buckets. However, our analysis of the
Bluetooth traffic concerning user actions shows that some of them produce consistent and
unique packet sizes. As a result, we define more fine-grained buckets and record the number
of packets with size x, for x ∈ [46; 1,005] bytes. We ignore packets above 1,005 B, the maximum
payload size in our dataset. This leads to 960 scalar features replacing the 10 described in
§2.4. Finally, we retain the same timing features as those described in §2.4. Overall, with our
modified approach, we extract 997 features that we feed to our random forest classifier. To
cope with the increased number of labels (i.e., 49 actions in the “wide’ experiment of §2.6.1
and 56 applications for the “deep” experiment of §2.6.2), we set the number of trees in the
Random Forest algorithm to 30 and we use Recursive Feature Elimination to retain the 50 most
important features (Appendix A.4, Figure A.1b justifies the choices of these values).

2.6.1 “Wide” Experiment on All Wearable Devices of our Testbed

We first focus on devices whose Bluetooth traffic capture can not be automated: step coun-
ters and fitness trackers (Fitbit Charge 2–3, Huawei Band 3e, Mi Band 2–3–4), and
smartwatches (Fitbit Versa 2, Apple Watch, Samsung Galaxy Watch), all with pro-
prietary OS/firmware. We also include manually-triggered actions from Wear OS watches
(Huawei Watch 2, Fossil Explorist), but not machine-automated ones that we use in
§2.6.2. The subset of the dataset that we use in this section consists solely of Bluetooth traces
triggered by the corresponding human action. We demonstrate that most actions performed
on the wearable devices under examination result in a distinctive encrypted Bluetooth com-
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Figure 2.6 – Normalized confusion matrix per true label, Application and Action Identification
(“wide” experiment). Red squares regroup actions within one application.

munication, and that an eavesdropper can automatically and passively recognize user actions
(e.g., starting a workout) and various events (e.g., the reception of an e-mail/SMS/phone call).

Attack. We do not assume that the adversary knows the device; we train a classifier to infer
both the device and the action in one step. A true positive occurs when both the device and the
action are guessed correctly. We enumerate and collect 49 actions from the set of wearable de-
vices considered and the companion apps installed on the phone (e.g., Measure Heartbeat,
Record Food/Water intake). The dataset is balanced: for each action, our dataset contains
between 20 and 25 samples.

Results. The classifier performance over 49 actions is 82% precision/recall/F1-score (Fig-
ure 2.6 and Appendix A.5, Table A.7). We observe that most actions are recognized with a
recall close to one which demonstrates that their corresponding Bluetooth communications
have distinct patterns. This includes potentially sensitive user actions such as measuring
heart rate, beginning a workout, receiving an e-mail or phone call. Moreover, there exist
few classes with lower accuracy compared to others (with precision/recall between 40% and
60%). Our analysis shows that these classes concern actions within the same application, e.g.,
EndomondoApp_Running or EndomondoApp_Walking, on the SamsungGalaxyWatch. How-
ever, this can be a limitation due to the number of samples (20–25 per class); we show in
further experiments that fine-grained actions within one application can be inferred with
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Figure 2.7 – Feature importance, Application and Action Identification (“wide” experiment).

more data (§2.6.2.3). We also observe that the classifier accurately labels the same action
Running on devices from the same line of products: MiBand2, MiBand3, MiBand4 demonstrat-
ing how it performs device and action identification in one step. Finally, we observe that our
classifier yields the same accuracy for the devices Fitbit2 and Fitbit3 — which only Sync
with their connected smartphone — thus confirming our Device Identification results (§2.5):
an eavesdropper can recognize the communicating devices based on their metadata.

We perform a feature analysis and find that the most important features are based on commu-
nication volumes (number of incoming pkts, Figure 2.7) and packet sizes (features 1 and
4–8 of Figure 2.7), with a single highly-ranked feature about timings (avgIPT of incoming
packets). This is consistent with our initial dataset analysis that demonstrated that various
user actions trigger Bluetooth traffic with distinct packet sizes. Finally, we remark that in this
experiment, the classifier recognizes the device and the application in one step. In §2.6.2.3,
we improve the classifier’s accuracy for identifying actions within the same-application by
assuming that device and application identification has already taken place and by tailoring
the training of our classifier to one specific application.

2.6.2 “Deep” Experiment on Wear OS devices

We now perform an in-depth analysis of Bluetooth communications’ metadata on Wear OS
smartwatches. We use automation to increase the size of our dataset, and we demonstrate the
performance of our methodology on various adversarial tasks. To ensure that our synthetic
(i.e., computer triggered) actions generate plausible Bluetooth traffic, we restrict ourselves
to a one-click action: the opening of an application on the smartwatch. We argue that this
should be independent of the wearer’s data and inputs and should generalize across users.
The first purpose of this section is to demonstrate that the simple opening of a smartwatch
application generates (encrypted) Bluetooth traffic patterns that can be accurately recognized
by an eavesdropper (§2.6.2.1). Then, we investigate if the classifier trained by an adversary
generalizes and transfers across different smartwatch-smartphone pairs, i.e., to a different
setup than that used offline by the adversary (§2.6.2.2). Furthermore, we build upon our device
and application identification attacks, and we target a specific application used to manage
diabetes to infer actions within that application. We also demonstrate how an eavesdropper
can passively recognize sensitive, health-related actions (e.g., record an insulin injection)

25



Metadata Leakage from Communications: Wearable Devices

within this specific application (§2.6.2.3). Finally, we show how a persistent adversary that
continuously monitors the Bluetooth traffic of a user can extract her profile by inferring her
application openings and actions over the course of a day (§2.6.2.4).

2.6.2.1 Application Identification

We train our classifier to infer the opening of specific applications on a smartwatch. Identifying
app openings has the benefit of being (1) independent of user actions and data more than of
the recognition of actions (§2.6.1), and (2) easier to automate (and hence to train a classifier
upon) for an adversary.

We remark that the mere presence of an app can leak sensitive information about the wearer.
For instance, medical and well-being applications (e.g., medication reminders, applications to
stop smoking) hint that the wearer is concerned with a medical condition, and religious (e.g.,
prayer time reminders) or news applications with a political orientation can reveal information
about the users’ beliefs. Even less revealing apps can be useful to a long-term adversary; users
naturally install applications based on their interests and behaviors, and the list of apps on
their wearable device can be exploited to build personal profiles. We argue that it is difficult to
foresee whether the presence of an application is sensitive or not, especially when considering
long-term profile building based on data from multiple sources, e.g., for machine-learning-
based advertising [71, 167]. We envision that as Bluetooth sniffing technologies are becoming
less expensive (see our discussion in §2.8.1), Bluetooth traffic could become a valuable source
of information. Companies are currently experimenting with Bluetooth-based “proximity
advertising”, a technology used to track users and display local targeted advertisements in
transportation systems, airports, and supermarkets [7, 135, 196].

Automation Pipeline & Applications. We use the automation part of our Bluetooth traffic
capture pipeline (§2.4) that consists of a Linux laptop that coordinates with a Windows ma-
chine that records traces via a Bluetooth sniffer. Using adb and monkeyrunner [104], the Linux
laptop issues synthetic clicks and swipes to a Wear OS smartwatch connected over Wi-Fi. We
force the watch to send data over Bluetooth (rather than Wi-Fi) by making sure that the Wi-Fi
network does not have Internet access. We do not perform UI fuzzing; we manually specify
the clicks and swipes needed to perform the desired actions on the watch. The exact same
clicks and swipes are reused to repeat an action. At the time of writing, due to the lack of
debugging tools, only Wear OS smartwatches could be automated in the desired way. Devices
running Tizen OS should support automation using a variant of adb called sdb [213], however,
the current API does not enable it. Our first experiment uses a Huawei Watch 2 (LEO-BX9)
running Wear OS 2.16, paired with a Pixel 2 running Android 9.

We select 56 applications from the Google (Wear OS) Play store, favoring top-rated applications
per category. Our choice of applications was constrained by the availabilities of apps on the
Swiss Play store. Our list includes:

• Religious apps (DuaKhatqmAlQuran, AthkarOfPrayer, SalatTime, DCLMRadio)
• Health-related apps (DiabetesM, Medisafe, SmokingLog, Qardio, HeartRate)
• Lifestyle-related apps (Lifesum, Calm, DailyTracking, HealthyRecipes, SleepTracking,

etc)
• Sport/Activity-related apps (Endomondo, FitWorkout, FITIVPlus, etc)
• Local newspapers (ChinaDaily, WashingtonPost, Meduza, Krone)
• Mobile banking and finances (ABS, Mobills)
• “Local guides”/maps (Citymapper, Foursquare)
• Communication apps (Telegram, Glide, Outlook)
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Figure 2.8 – Normalized confusion matrices per true label for recognizing smartwatch applica-
tion openings. The applications are sorted by increasing median transmitted volume.

We also include stock applications (e.g., Reminders, Weather, Phone), as well as common
applications (e.g., Telegram, Translate) as a control for the sensitive groups and to increase
the number of applications. Finally, we include a NoApp label that corresponds to background
communications between the smartwatch and the phone.

Results. The classifier’s performance (precision/recall/F1-score) over the 56 apps is 64%.
However, we find that the precision and recall per class varies greatly. In particular, the majority
of apps (39 out of 56 apps) is classified with a mean accuracy close to 1, whereas a smaller
subset of the apps is confused among each other by the classifier. Our analysis shows that
this concerns apps that trigger minimal Bluetooth communications upon their opening (e.g.,
Battery, Flashlight); this fact is visible when we order the confusion matrix by the median
transmitted volume (Figure 2.8). We call these apps “low-volume”, as they communicate less
than 200 bytes for at least 75% of their samples. However, except for Battery and Reminders,
which are the unique apps that trigger absolutely no communication, we find that low-volume
apps communicate a small amount of information on the Bluetooth layer (Appendix A.5,
Table A.8). To further investigate the difference across the two subsets of apps, we train
two separate classifiers: one specifically targeting the 18 low-volume apps and another one
to distinguish among the remaining 38 non-low-volume apps. The mean accuracy of the
first classifier reaches 17% (Appendix A.5, Table A.10) with high variance across the labels,
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Figure 2.9 – Feature importance for application identification, “deep” experiment.

which shows that the data exchanged by these apps is simply too small and/or too variable
to be learned by the model. We find that the NoApp label that corresponds to background
communications between the smartwatch and the smartphone is part of the low-volume
group. This indicates that low-volume apps are not only hard to distinguish among their
peers but are also difficult to differentiate from the absence of activity. On the contrary, the
non-low-volume apps are recognized by the second classifier with a high accuracy of 90%
(Appendix A.5, Table A.11), demonstrating the practicality of the attack in this case. We observe
that — as before — the important features are based on the sizes of packets and the timings
(Figure 2.9).

2.6.2.2 Model Transferability & Aging

Our application-identification attack was successful on a single smartwatch-smartphone pair
(§2.6.2). However, this attack requires the adversary to train a classifier on the particular pair
of devices that the target possesses. In this subsection, we investigate if the trained model
generalizes to other devices which the adversary not used for training.

In more detail, in the previous experiment we use a Huawei Watch 2 (LEO-BX9) running Wear
OS 2.16, paired with a Pixel 2 phone running Android 9. In this experiment, we include a
new pair of devices: a Fossil Q Explorist HR smartwatch running Wear OS 2.16, paired with a
Nexus 5 phone running Android 6. We could not downgrade one Wear OS device to a different
version to introduce more variability to our experiment. Also, we could not include the Apple
Watch / iPhone pair in the transfer experiment due to a lack of overlap in the apps that we
selected and the apps available in the Apple Store. Hence, we leave the question of cross-OS
transferability as an interesting future work.

We select 34 apps from the Huawei-Pixel pair that could also be installed on the Fossil-Nexus
pair (Appendix A.5, Table A.5). We follow the same methodology, except that we use all the
samples collected from one pair of devices as the classifier’s training set and the data collected
from the other pair as the testing set. We perform our experiments in both directions.

Our results show that the trained model generalizes well: it has a precision/recall/F1-score
of 81% when the data collected from the Huawei-Pixel pair is part of the training set and the
data collected from the Fossil-Nexus pair is the testing set (Figure 2.10a, and Appendix A.5,
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Figure 2.10 – Transferability experiment for the application identification (“deep” experiment).

Table A.12). The classifier’s precision/recall/F1-score reaches 86% when we perform the
experiment in the opposite direction (Figure 2.10b, and Appendix A.5, Table A.13). Some apps
are misclassified: our analysis shows that these are applications that are native to the OS (Fit
Packages). This is not surprising, given the differences in major Android versions. However,
and more importantly, our experiment shows that fingerprinting non-native applications by
their (encrypted) Bluetooth traffic is possible independently of the smartphone’s OS version,
which demonstrates the robustness of our attack methodology.

Dataset Aging. In Appendix A.2, we briefly explore the effect of dataset aging, that is, the loss of
accuracy incurred as the adversary uses older datasets. We observe that although performance
vary over a month, it remains generally high (Figure A.1). We observe that some applications
with dynamic traffic have naturally the lowest F1-score (Figure A.2a), but that training over a
few days may help improve the performance over the whole month (Figure A.2b).

2.6.2.3 Fingerprinting Fine-grained Actions Within an Application

We now use the application-opening identification (§2.6.2) as a stepping stone to another
attack that aims at inferring potentially sensitive actions within one particular application. For
a use-case, we choose the app DiabetesM that helps people diagnosed with diabetes to keep
track of their meals and medicine intakes. Although the Huawei smartwatch that we use for
this experiment is not marketed as a medical device, this information is of medical nature.

We follow the previous methodology and use the automation tool to generate traffic that
corresponds to the usage of the DiabetesM app. We manually program user interactions
(i.e., pressing buttons) within the application and capture the traffic of 6 actions related to
the management of meals and medicine intakes: Add Calorie, Add Carbs, Add Fat, Add
Glucose, Add Insulin, and Add Proteins. We collect 150 samples per action, map them
to feature vectors using the features described in §2.6 and split them into 80% for training and
20% testing. Then, we train a classifier tailored to this particular app that aims to distinguish
among the 6 possible user actions, i.e., we assume that the application’s traffic has been already
classified as DiabetesM.
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Figure 2.11 – Fingerprinting fine-grained action within on application: DiabetesM.

The overall accuracy of the classifier over the 6 actions is 70% (Figure 2.11a, and Appendix A.5,
Table A.4), which is significantly better than guessing at random. This indicates that actions
within a specific application generate distinct Bluetooth traffic that can be fingerprinted by an
eavesdropper. More importantly, our results show that the sensitive action Add Insulin is
recognized with a precision/recall/F1-score of 0.9/0.95/0.92%, respectively, i.e., the encrypted
communication patterns generated by this sensitive action “stand out” from other actions of
the DiabetesM app.

We here remark that all of these actions are semantically similar: they all update a variable
in a database stored on the paired smartphone. We expect that developers could prevent
the traffic-analysis attacks by simply padding the traffic corresponding to all of these actions
to a constant size. However, the feature analysis reveals that timings matter most, not sizes
(Figure 2.11b). A closer inspection reveals that a human has to interact with DiabetesM in two
consecutive steps: (a) by increasing a value (e.g., pressing “record insulin injection”), and, (b)
by clicking on a “save” button on a different screen. To our surprise, both actions generate
traffic, and the classifier detects the timing differences between the two actions.

First, this highlights a limitation of our experiment. In our methodology, the duration between
the press of the first button, the swipes, and then the press of the “save” button are constant
and precisely reproduced by the automation framework. A human would produce more
variable durations that would be harder to fingerprint by their encrypted traffic. However, we
believe that this finding is still an interesting showcase for the capabilities of traffic-analysis
attacks: padding each action into a similar message is not sufficient, because the classifier can
“count” the number of swipes from the screen containing the save button back to the screen
containing the target action. Hence, it is necessary to obfuscate this duration, or rethink the
strategy that the application employs to synchronize data with the smartphone.

2.6.2.4 A Persistent Adversary

We now consider a longer-term adversary that aims at identifying the actions performed on a
smartwatch by its wearer over the course of a day. This adversary could be a nosy neighbor
or an office eavesdropper, capturing Bluetooth traffic continuously over a long period, and
attempting to monitor the habits of the target. This experiment drops a simplifying assump-
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tion made in the previous experiments, i.e., that the adversary knew when the traffic related to
an action starts and stops. Indeed, all previous experiments used 30-second traffic samples,
each corresponding to exactly one action. In this new experiment, the adversary records a
continuous traffic capture over 24 hours, and its goal is to output a series of predictions over
this period. Furthermore, the adversarial task is slightly tweaked: the prediction can be either
a user-action, or the NoAction label corresponding to the absence of user activity. Finally, due
to their long duration, these traffic captures contain background traffic (updates, synchroniza-
tion) more than the short 30-sec samples used previously. The goal of the adversary is therefore
to distinguish specific app openings from background noise and OS communications.

Methodology. We generate application openings and user actions with the HuaweiWatch2
smartwatch, using the automation framework presented in the “deep” experiment (§2.6.2).
We simulate one user who wears the watch for 24 hours. Over the course of a day, we model
the user’s interactions with her smartwatch following a recent user study that quantifies
smartwatch usage in the wild [149]. In particular, for each 1-hour slot, the number of in-
teractions is drawn from a probability distribution favoring daytime hours over nighttime
ones (Figure 4 of [149], page 389). User actions are not triggered with an equal probability:
popular applications such as messaging/e-mails, maps, alarms/clocks, and fitness trackers,
are more likely to be triggered than others (Table 6 of [149], page 390). We model this by
updating their prior probability to 2× compared to that of non-popular applications. We
select 33 high-volume applications from popular categories and enumerate 17 user actions
within these applications, e.g., DiabetesM_AddInsulin, HealthyRecipes_SearchRecipe,
FitWorkout_Open (Appendix A.5, Table A.6). Individually, each of these actions has a short
duration (≤ 20sec). However, these fine-grained actions follow each others in semantic se-
quences: e.g., we automate the sequence Endomondo_Open, Endomondo_Running, waiting
2min, Endomondo_Close, which is the equivalent of a 2-min workout. The classifier attempts
to recognize each individual action (except for _Close actions).

Then, we automate the recording and triggering of actions. Due to technical constraints, we
record 20min-captures that we concatenate to form a 24h capture. The parameters of each
20min-capture are drawn from the distribution of the modeled time of the day. Within one
capture, the simulation is a simple state machine that loops over the following actions: (1)
it flips a biased coin deciding whether to trigger an action or not, and (2) if the outcome is
positive, it draws one action at random following the biased probability distribution, runs the
action, and waits for a random time defined by the expected number of events in the modeled
time of the day. In parallel, the smartwatch and smartphone normally exchange background
data.

Attack. To train its classifier, the attacker uses the short 30-sec captures corresponding to the
50 classes (i.e., applications and actions) selected. Moreover, it employs a 51st class that it uses
to model noise: this class contains the background communications of the wearable, recorded
as NoApp_NoLabel. In addition, we notice that closing an application also generates network
communications. The volume exchanged is low, hence they are difficult to classify. However,
we observe that when treated as noise, they are useful in helping the classifier distinguish
between actions of interest and background traffic. Therefore, we add the classes AppX_Close
for all 33 applications of interest. The adversary’s dataset is balanced: it contains between 30
and 40 samples per class. Finally, the attacker extracts features, as in the previous experiments
(§2.6.2), and trains a Random Forest classifier.

During testing, the attacker is provided with the uncut 24-hour traffic capture. First, it runs
a splitting algorithm that identifies sequences in the capture that possibly correspond to
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Figure 2.12 – Attacker’s score when classifying events over 24-hour captures. The threshold is
the minimum confidence needed to output a prediction.

user-actions. This splitting algorithm uses a sliding window and records the times at which
the sum of bytes exchanged in the window is greater than 200 bytes, following the criteria
for “high-volume” apps presented in §2.6.2. Then, it classifies the contents of each window;
however, it only outputs the most likely class if its probability is greater than a confidence
threshold T . If no class meets this criteria, it outputs NoAction.

Evaluation Metrics. We adapt the attack’s evaluation metrics to the new task. A true positive
corresponds to a correct prediction in the “correct” time-interval, i.e., if the time intervals
of the real action and the predicted one overlap. A false positive occurs when the attacker’s
classifier outputs a label other than NoAction that does not overlap with a real action of the
same label. Finally, a false negative is when the classifier misses a real action. Following these
definitions, we calculate the classifier’s precision/recall/F1-score as usual.

Results. The results are computed over the 72×20min = 24 hours of the experiment. We pa-
rameterize them with the confidence threshold T , which impacts the overall sensitivity: lower
T values result in a higher recall and lower precision, and vice-versa. For the classification task
with 51 classes, the classifier’s average precision ranges from 0.65 to 1, and its mean recall per
class from 0.7 down to 0 (Figure 2.12). The maximum recall is 83.5%, for a threshold T of 0.1,
and the corresponding precision is 74.9%. The maximum precision is 1.0%, for T = 0.6, and
the corresponding recall is 23.5%. The best F1-score is 0.83 and is achieved at T = 0.25. This
experiment demonstrates that a persistent adversary successfully recognizes high-volume
applications from the absence of activity and accurately classifies them over the course of the
day. The different values for the confidence threshold T indicate a precision/recall trade-off.
An adversary can choose to optimize its strategy towards one metric or the other (or both)
depending on its goals. For instance, an adversary who aims at recognizing, with high pre-
cision, an application of interest or a particularly sensitive action (e.g., , AddInsulin) could
do so at the cost of more false negatives (and lower recall). Whereas, another adversary, e.g.,
a smart billboard displaying an advertisement to a passer-by, aiming to identify the set of
applications and actions of its target (that can help to build a profile) could choose a lower
decision threshold and achieve better overall performance.
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2.6.3 Summary of the Attacks

Overall, the experimental results of this section demonstrate that different actions (e.g., declar-
ing an insulin shot on a diabetes monitoring application) performed on a wearable device
trigger unique Bluetooth traffic. These communication patterns can be recognized by an eaves-
dropper (e.g., a nosy neighbor or a proximity-based advertiser) to infer the action performed
despite the encryption. This holds across the multiple wearable devices such as smartwatches
and fitness trackers from diverse vendors. We also find that the mere opening of an app on a
smartwatch generates distinguishable traffic, leaking potentially sensitive information that is
associated with the presence of the app (e.g., a religious or a political app). For application-
openings, we identify a subset of applications that is inherently well-protected against traffic
analysis: “low-volume” applications. This hints that minimizing data exchanges is an obvious
natural defense against our attacks. Furthermore, our results demonstrate that our attacks gen-
eralize well across different devices: we show that a model trained for recognizing application
openings on one smartwatch-smartphone pair can be applied with high accuracy on another
smartwatch-smartphone pair. This suggests that our methodology can be cost-effective for
an adversary. Finally, we demonstrated how a persistent long-term tracking adversary can
benefit from our traffic-analysis attacks by employing them to profile users, i.e., infer their
habits and actions on their daily lives, and that dataset aging does not significantly affect the
attack’s performance.

2.7 Protections

In the previous sections (§2.5, §2.6), we demonstrated how an eavesdropper capturing Blue-
tooth communications between a wearable device and its connected smartphone can perform
traffic-analysis attacks and infer information such as the device model, the applications in-
stalled on it, and the actions performed by the wearer. In this section, we investigate defense
strategies against Bluetooth traffic-analysis attacks. We first review the existing types of de-
fenses against traffic-analysis attacks and identify the most popular approaches. Then, we
implement these strategies and evaluate them against our traffic-analysis attacks.

High-level Defense Strategies. Before diving into the design of a defense, we remark that
data minimization is a simple, inexpensive, and valid approach: data that is not exchanged
cannot be fingerprinted. Indeed, our “deep” experiment shows that applications with low
traffic volumes are naturally better protected against traffic analysis (§2.6.2). In a similar vein,
infrequent “bulky” communications (e.g., syncing a step counter only once a day at midnight)
make the adversary’s task harder in two ways: by leaking less metadata about timings, and
by requiring the adversary to observe the communication at the right time. However, such
high-level strategies do not apply to all applications (e.g., interactive applications such as
newspapers, radios or music players).

Defense Design. The purpose of this section is not to discover a perfect defense: it might
not exist or its cost might be unbounded. Rather, we evaluate the effectiveness of common
protections against traffic analysis with respect to the attacks that we presented earlier and
study the communication overheads that they introduce. Fundamentally, a classifier properly
trained can detect even small differences between two network traces. Ensuring that all
network traces are perfectly indistinguishable from each other is infeasible. Therefore, we
analyze the effectiveness/cost trade-offs introduced by standard defenses and discuss their
feasibility for the protection of Bluetooth communications.

33



Metadata Leakage from Communications: Wearable Devices

Defense Categories. We first perform a brief taxonomy of defenses against traffic analysis.
The most active research fields are focused on the Tor network [41, 82, 102, 126, 152, 164,
225, 228, 237] and on IoT traffic/smart-homes [6, 16, 17, 82]. In a different category, recent
anonymous messaging protocols often resist traffic analysis against a much stronger global
adversary, at the cost of having a high bandwidth [20, 50] or a high latency [10, 61, 137]; indeed,
spending time or bandwidth is a fundamental trade-off for achieving traffic-analysis resistant
communications [70]. To the best of our knowledge, traffic-analysis defenses have not yet
been explored on wearable devices.

We distinguish three defense categories [102]: regularization, obfuscation, and randomization:

• Regularization defenses make packet traces harder to distinguish by removing their
differences, e.g., by enforcing constant bit-rates and packet sizes [17, 40, 41, 82], by
altering the traces into the common closest “super-sequence” of packets [225], or by
forbidding duplex communications [228].

• Obfuscation approaches aim at confusing the adversary by tweaking the setting, e.g., by
hiding traffic into another protocol [152, 237], or by loading two web pages at the same
time, as in the case of website fingerprinting [164].

• Randomization defenses confuse the adversary by adding randomized dummy traffic [6,
16, 82, 102, 126].

Defenses based on regularization are often easier to reason about and to analyze their formal
guarantees, but they have the downside of being more costly than the others. On the contrary,
obfuscation approaches consist of more practical defenses that often assume a certain type of
adversary, e.g., that cannot de-multiplex encrypted web pages, or recognize Tor traffic hidden
as Skype traffic. We do not explore obfuscation strategies as this category does not apply
well to wearable devices that only support a few classes of traffic. One possible obfuscation
strategy (not explored in this work) could be to split the traffic between Wi-Fi and Bluetooth,
for smartwatches that are capable of both. Finally, randomization defenses tend to be the
most lightweight. However, their efficacy evaluation is harder and is typically done using the
success rate of the state-of-the-art attacks [102, 126].

Defense Evaluation. Our goal is to investigate and understand what degree of protection
against Bluetooth traffic-analysis attacks would be provided by a practical and lightweight
defense. We remind the reader that our classifiers use features based on timings (Figures 2.5a,
2.7, and 2.11b) and packet size distributions (Figures 2.5b and 2.7). Thus, we evaluate three
orthogonal defenses that mask real sizes and timings, and that inject dummy packets (which
achieves both):

1. pad: A lightweight regularization defense. Each Bluetooth packet is individually padded
to a maximum size (255B for BLE packets and 1,021B3 for Bluetooth Classic packets).
Per-packet padding hides specific sizes and unlike per-flow padding, it incurs no delay
(ignoring the small delay due to transmitting larger packets).

2. delay_group: A regularization defense that delays and groups packets to the next
second. This obfuscates fine-grained timing information by imposing a pace. This
approach is clearly incompatible with latency-sensitive Bluetooth communications such
as audio streaming, real-time and interactive applications. It does not incur bandwidth
overhead.

3. add_dummies: A randomization defense that injects packets at times drawn from a
Rayleigh probability distribution. The use of the Rayleigh distribution is inspired by the

3This corresponds to the max payload of a 3-DH5 ACL packet in Bluetooth Classic.
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“Front” part of Front/Glue [102], a state-of-the-art lightweight randomization defense
designed for website fingerprinting. We experimentally select 6s for the mean of the
Rayleigh distribution, and 300 for the number of dummies we generate (Appendix A.4,
Figure A.2). Finally, we sample the size of each dummy from a distribution created with
the collected samples. Therefore, this defense assumes that the defender knows a priori
the distribution of packet sizes.

To assess the protection level provided by the defenses, we measure the accuracy achieved by
the classifier trained by the adversary. We assume that the adversary knows the defense in use
and is able to adapt the training of the classifier. To quantify the cost of each defense, we use 5
metrics: the mean delay introduced per packet, the total added duration to the sample, the
number of bytes added (both in terms of padding and dummy messages), and the total size
overhead in percentage.

2.7.1 Experimental Results

We apply the various defenses on the Bluetooth traffic traces used for the device identification
attack (§2.5), the “wide” experiment consisting of human-triggered actions on all wearable
devices (§2.6.1), the “deep” experiment consisting of automated apps openings on Huawei
Watch 2 (§2.6.2), and the fine-grained action recognition within the DiabetesM application
(§2.6.2.3). This enables us to evaluate the performance of the defenses against multiple
adversarial goals and various traffic settings.

Tables 2.4, 2.5, 2.6, 2.7, and 2.8 display the performance and cost of each defense against the
attacks considered. The accuracy of the attack is averaged over the possible classes, and the
defense costs are averaged per traffic sample. Our first immediate observation is that regardless
of the attack and the defense, the mean accuracy achieved by the adversary’s classifier is still
significantly better than random guessing, which indicates that the defenses are far from being
“strong” ones that provide cryptographic guarantees. Overall, the cost of each defense lies
between 1–23× in terms of data transmission (at most ≈400 kB of extra data).

Device Identification. Tables 2.4 and 2.5 show that all defenses yield, at best, a moderate
drop in this attack’s accuracy. However, both flavors of the device identification attack are
performed on a small number of devices (7 both for Bluetooth Classic and Low Energy). It
is therefore not surprising that hiding the traffic of a device into that of another is a difficult
task for the defenses. Among the evaluated defenses, we observe that the delay_group is the
most effective one: it diminishes the attack’s accuracy by 29 percentage points in the case
of Bluetooth Classic, and 17 for Bluetooth Low Energy. However, the cost of delay_group is
prohibitively high (≈ 0.5s delay added per packet) for a defense that is meant to be applied
to all the communications performed by a device. Moreover, we find that the defense pad is
ineffective with both Bluetooth flavors. This is not surprising for the case of Bluetooth Classic
where the attacker’s classifier relies mostly on timing features (Figure 2.5a). For Low Energy,
features that relied on packet sizes (Figure 2.5b) have been replaced by the same top-rated
timing features as in Bluetooth classic (max/min/std of ∆time, Appendix A.4, Figure A.3a).
This suggests that these three features are important for device identification, regardless of the
Bluetooth flavor and corroborates the findings of Aksu et al. [3] on smartwatches. We observe
that add_dummies is lightweight and reduces the attacker’s accuracy by 18 and 12 percentage
points for Bluetooth Classic and LE, respectively. However, its performance is not uniform
across the classes (Appendix A.4, Figure A.4). The confusion matrix shows that add_dummies
only moderately protects the 3 Mi Band 2–3–4 devices and does not protect the others.
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Table 2.4 – Analysis of the defenses against device identification, Bluetooth Classic devices.

Defense Acc. [%] Delay/pkt [s] Extra dur. [s] Pad. [kB] Dummy [kB] Overh. [%]
No defense 96.3 - - - - -
pad 93.8 - - 401.6 - 203.2
delay_group 67.7 0.5 0.2 - - -
add_dummies 78.0 - - - 92.9 47.0

Table 2.5 – Analysis of the defenses against device identification, Bluetooth LE devices.

Defense Acc. [%] Delay/pkt [s] Extra dur. [s] Pad. [kB] Dummy [kB] Overh. [%]
No defense 97.7 - - - - -
pad 94.5 - - 139.0 - 277.1
delay_group 80.6 0.5 0.1 - - -
add_dummies 85.8 - - - 20.4 40.6

Table 2.6 – Analysis of the defenses against action identification, “wide” experiment.

Defense Acc. [%] Delay/pkt [s] Extra dur. [s] Pad. [kB] Dummy [kB] Overh. [%]
No defense 82.3 - - - - -
pad 64.1 - - 272.0 - 270.5
delay_group 52.0 0.5 0.2 - - -
add_dummies 64.0 - - - 62.5 62.2

Table 2.7 – Analysis of the defenses against application identification, “deep” experiment.

Defense Acc. [%] Delay/pkt [s] Extra dur. [s] Pad. [kB] Dummy [kB] Overh. [%]
No defense 64.4 - - - - -
pad 27.9 - - 150.5 - 585.0
delay_group 37.3 0.5 0.4 - - -
add_dummies 33.8 - - - 46.8 182.0

Table 2.8 – Analysis of the defenses against action-identification in DiabetesM application.

Defense Acc. [%] Delay/pkt [s] Extra dur. [s] Pad. [kB] Dummy [kB] Overh. [%]
No defense 70.4 - - - - -
pad 61.1 - - 77.8 - 2374.8
delay_group 60.1 0.5 0.1 - - -
add_dummies 61.7 - - - 11.8 360.2

“Wide”-Experiment. We evaluate the performance of the defenses against the action identifi-
cation attack demonstrated in §2.6.1. Compared to the previous attack, the task is different,
and the classifier has to account for more labels (i.e., actions). We find that all defenses
perform better in general, reducing the attacker’s accuracy between 18 and 30 percentage
points (Table 2.6). In particular, the difference in efficiency between pad and delay_group
is now of only 12 percentage points, for a cost of 272 kB per sample for pad, and 0.5 sec delay
for delay_group. This result suggests that both masking individual sizes or masking fine-
grained timing information can help; developers could select the appropriate defense based
on the cost (either in bandwidth or latency) that best matches their requirements. Finally,
add_dummies performs similarly to pad but with a lower cost (62.5 kB per sample versus
272 kB for pad). However, add_dummies requires that the distribution of packet sizes is a priori
known to generate dummies of plausible size. It is unclear how to compute this distribution for
a defense meant to be applied to multiple devices from different vendors. One option would
be to combine add_dummies and pad to avoid this requirement (we experimented with it and
observed better effectiveness at a higher cost). Finally, the protection provided by the defenses
is not uniform (we provide an example with add-dummies in Appendix A.4, Figure A.5a, other
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defenses yield similar results), but unlike in the “deep” experiment (§2.6.2), the precision/recall
per class does not seem correlated with the transmitted size. Similarly, the cost of padding
varies greatly with the classes: it has a mean of 272 kB added, but a median of only 96 kB and a
standard deviation of 650 kB. The costs soar up to 4.3 MB with streaming applications such
as AppleWatch_PhotoApp_LiveStream or PhoneCallMissed. The defenses delay_group
and add_dummies are more consistent, with a standard deviation of, respectively, 0.4 sec of
delay per packet and 7 kB of dummy traffic.

“Deep”-Experiment. The traffic in this experiment consists of automated app openings on
a Wear OS smartwatch. For this type of traffic, we observe that all three defenses perform
similarly, reducing the attacker’s accuracy by 31–36 percentage points down to ≈ 30% mean
accuracy (Table 2.7). This highlights that on a specific class of traffic, i.e., with more homoge-
neous traffic, the defenses are more efficient. In this case, add_dummies is the least expensive
defense, requiring 46.8 kB of dummy traffic/sample, which is in the range of what the heaviest
applications naturally use (Appendix A.5, Table A.9). A deeper analysis of the results also shows
that all defenses successfully confuse the attacker for “medium-volume” apps (Appendix A.4,
Figure A.5b). “High-volume” applications still stand out, but the gradual hiding visible on Fig-
ure A.5b suggests that increasing the parameters of the defense, e.g., injecting more dummies
in add_dummies, could potentially protect better such applications. However, this protection
would come at an even higher cost for the applications that transmit smaller amount of traffic.
As in the “wide” experiment, we observe that pad has a highly variable cost ranging from 6 kB
to 1.6 MB. We observe the latter on the opening of the Camera, which suggests that pad is not
adapted for constant-traffic. As before, delay_group and add_dummies have a consistent
cost across labels.

Fine-Grained Action Fingerprinting on DiabetesM. In this case, we observe that all 3 de-
fenses pad, delay_group, add_dummies are only moderately effective, reducing the attacker’s
accuracy by ≈ 10 percentage points. One possible explanation is the increased number of
samples (150/label) compared to the previous experiments (25/label) that enable the ad-
versarial classifier to adapt better to the defenses. In §2.6.2.3, we highlighted that timings
were of importance to classify fine-grained actions in the application DiabetesM. However, in
this case the attacker fingerprints a combination of the sizes and the timings, as the feature
importance on delay_group defended traces reveals (Figure A.3b). In this experiment, we
observe that all three defenses have a consistent cost across labels.

2.7.2 Summary of the Defenses

Our experimental evaluation of defense approaches, such as regularization and randomization,
against the traffic-analysis attacks presented in this work yields some interesting insights. First,
we find that these defenses achieve only a limited protection against our traffic-analysis attacks:
although they do reduce the attacks’ accuracy, the classifier trained by an eavesdropping
adversary still performs significantly better than random guessing. This indicates that even the
defended Bluetooth traffic traces contain useful information for an adversary. At the same time,
the costs introduced by the defenses are high: to achieve their small levels of protection they
introduce additional traffic and/or delays reaching an overhead in the range of 1× to 23× and
delays up to 1 sec per packet. This raises a question about the applicability of such defenses
for Bluetooth applications running on current wearable devices. Furthermore, we find that
the various defenses behave differently, depending on the adversarial task. In particular, our
results show that defending against application or action identification is somewhat easier
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than device identification, thus indicating that global traffic patterns are the hardest to hide.
Additionally, our evaluation shows that the defenses are not fair: we find that they do not
provide the same level of protection across applications or actions (for instance, apps that
communicate a lot are not well protected) and their costs are variable across applications or
actions (we observe that applications that stream information have high padding costs, e.g.,
Camera and fitness applications for workout monitoring). Finally, our empirical evaluation of
these defenses confirms the robustness of our attacking methodology as depending on the
adversarial task and the defense, our classifier adapts its important features. For instance,
Bluetooth Low Energy device identification relied mostly on packet sizes (Figure 2.5b), unlike
Bluetooth Classic that used mostly timings (Figure 2.5a). However, when we apply per-packet
padding to the Low Energy traces, the classifier adjusts and gives higher importance to timings
(Appendix A.4, Figure A.3a). Overall, our experimental results highlight the need for the design
and evaluation of novel approaches for defending against traffic-analysis attacks on Bluetooth
communications.

2.8 Discussion & Limitations

2.8.1 Discussion

Impact of the Attacks. The traffic-analysis attacks presented in this work can be used to infer
information from Bluetooth communications, despite the use of encryption.

Device identification enables tracking users only by observing encrypted communications,
thus defeating MAC address randomization. This does not require observing any pairings /
paging events or plaintext identifiers. Device identification can also facilitate active attacks by
revealing the model and version of a communicating device. Advertisers already use Bluetooth
and Wi-Fi signals to passively and actively locate users (e.g., consumers in a store) [156, 242].

Similarly, application and action fingerprinting leak sensitive actions performed by the wearer,
e.g., the recording of an insulin injection or a heartbeat measurement. On a side note, Apple
Watch has an “arrhythmia alert” feature that continuously measures the heart beat on the
watch and sends notifications to the phone in case of irregular patterns that could indicate
a stroke. We could not simulate arrhythmia events, but all the evidence we have from our
experiments suggests that such an action could be fingerprintable without an appropriate
defense mechanism. Therefore, a passive observer could identify users’ susceptibility to heart
attacks over the Bluetooth network, despite the encryption. Finally, application-opening
identification and action identification can be exploited to build user profiles and to serve
targeted advertisements, as it is already the case with Bluetooth-based “proximity advertis-
ing” [7, 135, 196].

Cost of the Attack. The overall cost of the attack consists of purchasing a set of devices of
interest (including both wearable devices and smartphones). These devices are consumer-
grade hardware that have accessible prices. We also showed in §2.6.2.2 that the adversary does
not have to train on every combination of devices and applications. We suspect that after
collecting data from enough devices, actions on new hardware can become classified without
the overhead of training. A counter-argument is the aging of the dataset, which could force
the adversary to re-train often. We briefly demonstrate in Appendix, Section A.2 how a dataset
can be used over at least a month, but further study is needed to understand how quickly the
usefulness of a dataset degrades. In other domains such as website fingerprinting, attacks have
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been successful with datasets that were several years old [200]. We expect wearable devices’
firmware, OSes and applications to change at a slower rate than websites.

Bluetooth Sniffing Technologies. The adversary also needs a reliable Bluetooth sniffer. The
most accurate models are so-called “wide-band” scanners (e.g., the Ellisys Vanguard [83]
or the Frontline Sodera [202]). These models ignore the Bluetooth frequency hopping and
concurrently capture the traffic of all channels. The complexity and broad functionality of
these devices comes at a high price (≈ 50K USD). However, recent research has demonstrated
that similar results can be achieved using less expensive Software-Defined Radios (SDRs) [57,
58, 206]. For instance, Cominelli et al. built an SDR sniffer that works on a single Ettus N310
board (≈ 10K USD) or two Ettus B210 boards (2×2,000 USD) [57]. Finally, there also exists
a consumer-grade class of cheaper, less accurate Bluetooth sniffers (e.g., Ubertooth, ≈ 100
USD). They only listen on one channel at a time. These low-end scanners attempt to follow an
active connection by brute-forcing the hopping pattern parameters [185]. When successful,
this enables an inexpensive scanner to accurately capture all traffic simply by “hopping along”
with the pair of communicating devices. In practice today, this process is still imprecise and
many packets are missed. Nonetheless, researchers have shown that using two synchronized
Ubertooth scanners leads to improved Bluetooth traffic capture rate [4, 5]. Although this
work uses a commercial Bluetooth sniffer, there is an ongoing research trend focusing on less
expensive, accurate Bluetooth sniffing.

Impact of Packet Loss on the Attacks. In our experiments, we use a high-end sniffer that is
co-located with the target devices. In this configuration, the sniffer has close to 100% packet
capture rate. In practice, lower-end sniffers will suffer packet loss. Collisions from other devices
and the distance between the target and the eavesdropper also increase loss. In Appendix A.3,
we briefly investigate how the attack accuracy varies with degraded capture conditions. We
observe that even with 50% packet loss, the loss in accuracy is only 10 percentage points
(Appendix A.3, Figure A.1), with the mean accuracy dropping from 64% to 54%. For high-
volume apps, the mean accuracy drops from 90% to 77%. This experiment indicates that the
approach is robust to packet losses: even when missing every other packet, the attacker is able
to classify with significant accuracy. This observation suggests that the attack could also be
performed with inexpensive Bluetooth sniffers.

Other Attacks. There exist a number of active attacks that can break the confidentiality of
Bluetooth communications [12, 14, 223, 239, 245]. There are also attacks against the MAC
randomization mechanism employed by the Bluetooth protocol [28, 28, 44, 154, 247]. Cur-
rently, these attacks are more economical to run than our traffic-analysis attacks that require
a significant effort for training the adversarial machine-learning classifiers. However, these
attacks have already received significant visibility, and we expect that the Bluetooth Special
Interest Group and device manufacturers will soon take them into account and apply the
necessary countermeasures. We remark that our approach is complementary to these attacks
and will be applicable even when the above attacks are patched. Finally, we remind the reader
that unlike these works, ours considers a weaker adversary who passively observes ongoing
communications.

Implementation of Defenses. A defense against traffic analysis could be implemented at
different layers of the stack involved with Bluetooth communications: the Bluetooth protocol,
the OS, or the applications. An implementation in a lower layer, e.g., the Bluetooth stack,
would provide application transparency, but specifying a single defense strategy that works
across devices and applications without a prohibitive cost seems challenging. On the con-
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trary, application developers could protect against in-application actions fingerprinting by
enumerating the data exchanges and ensuring that the traffic from sensitive actions “blends-
in”. In this case, all sensitive actions would need to have the same patterns as some other
non-sensitive actions (or ideally, all other actions). Nonetheless, such an approach would
only provide local (i.e., in-application) protection. To make the fingerprinting of applications
and cross-application actions more difficult, the various developers would need to coordinate
with each other. Otherwise, a defense can easily become itself a fingerprint if only one or
a few applications implement it. Therefore, another interesting possibility is to create “anti
traffic-analysis policies” in the OS of wearable devices. Apps could request a particular de-
fense strategy that matches their requirements in terms of latency, bandwidth, and battery
usage. Meanwhile, the operating system could standardize and maintain defense strategies
transparently, making their deployment easy for developers.

2.8.2 Limitations

Moderate Testbed Size. Our testbed consists of only 13 devices. Although this number is mod-
est, our experiments incurred significant human costs in operating these non-automatable
devices. Our primary dataset consists of 96 hours of raw recording. Each of the 2,361 30-
second samples was recorded by a human and required sometimes minutes of resetting the
devices, not to mention performing the physical activities corresponding to the action cap-
tured. We made a best-effort to cover a comprehensive and diverse set of wearable devices
from popular vendors. We are hopeful that future work will further generalize the attack to
more devices, which we could only hint towards with our transferability experiment (§2.6.2.2).

Closed-world Scenario. Our setting corresponds to a “closed-world” scenario where the
adversary can model all possible actions/applications of the devices available in our testbed.
This could be justified due to the small number of applications currently available on wearable
devices. We leave as an interesting future work the task to explore the performance of the
attacks “in the wild”, e.g., by collecting real Bluetooth traffic traces around a campus or a gym
and attempting to classify them.

Method Scalability. We demonstrated an example in which a model trained on a pair of
devices can be used for classifying actions of other devices (§2.6.2.2). However, this experiment
has been limited to two pairs of devices, and it is unclear whether a unique model could be
successfully trained to classify actions originating from many classes of devices. While we
expect it to be the case for similar devices, our preliminary results show that a model trained
to recognize applications on an Apple watch does not perform well when used to recognize
applications on an Android device, highlighting that an adversary should take into account
heterogeneous devices when training her classifier.

Environment of the Capture. In this work, we did not experiment with the range of capture
and kept the sniffer close-by to the devices (max ≈2 m). Bluetooth Classic and Low Energy
have a maximum theoretical range that greatly varies depending on the Bluetooth flavor, the
encoding, the sender/receiver’s antenna gains and the transmitted power [33]. For consumer
devices, the range under optimal conditions is between 50 and 100 m and, we estimate, from
meters to tens of meters under realistic conditions. Furthermore, our attacks were conducted
in a single environment that is fairly noisy (with tens of active Wi-Fi and Bluetooth devices in
vicinity). We suspect that a less noisy environment (e.g., a home, in the case of a nosy neighbor)
would produce cleaner traces that are easier to train upon, facilitating the attacks, but further
study is needed to understand the impact of noise and collisions on traffic analysis.
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2.9 Related Work

Bluetooth Eavesdropping. The first open-source Bluetooth Sniffer was BlueSniff [203]: This
work demonstrates how to retrieve the MAC address of communicating Bluetooth Classic
devices and how to recover the hopping sequence. Similar results are later shown on Bluetooth
Low Energy [185]: using an Ubertooth device, Mike Ryan showed how to recover the hopping
sequence and eavesdrop on a single BLE connection. The author also demonstrates that a
pairing done with JustWorks or a 6-digit PIN can be decrypted. Subsequently, Albazrqaoe et al.
used two synchronized Ubertooth devices to obtain a capture accuracy greater than a single
Ubertooth [4, 5]. Finally, Cominelli et al. rely on software-defined radio (SDR) to concurrently
capture Bluetooth Classic traffic on all channels [57], at a lower cost than full-band commercial
sniffers. Their most recent work uses a GPU to process BLE traffic in real-time [58].

Bluetooth Traffic Analysis. There exist few related works that perform traffic-analysis attacks
on Bluetooth communications. This is possibly due to the non-existence of reliable, inexpen-
sive Bluetooth sniffing tools in the past. Closest to ours is the work by Das et al. [69]. They
focus on 6 Bluetooth Low Energy fitness trackers in a gym. First, they demonstrate that BLE
traffic is correlated with the wearer’s movements, thus making it possible to infer if the wearer
is idle, walking, or running. Second, they show how the traffic is linked to the gait of the wearer,
and that the encrypted traffic is enough to recognize a person with 97.6% accuracy across 10
users. Acar et al. infer user actions in a smart home using a layered traffic-analysis attack [2].
Their methodology is similar to ours: they first perform device identification and then use it as
a stepping stone to further infer device states and user activities. However, their IoT testbed
consists of only one device that communicates using Bluetooth (a smart BLE light bulb).

Bluetooth Device Fingerprinting/Tracking. Several works focus on Bluetooth device finger-
printing, i.e., device identification and tracking. Their goal is either to propose an authentica-
tion mechanism, e.g., to identify MAC spoofing, or to demonstrate an attack, e.g., BLE device
tracking despite the MAC address rotation. Our device-identification attack (§2.5) falls into the
second category; however, we only use it as a first step towards the rest of our contributions
(application and user-action identification) that are orthogonal to this category of related
works.

On the defense side, Aksu et al. create a testbed composed of 6 Bluetooth Classic smartwatches
connected to a single smartphone, and they demonstrate that the smartwatches can be
identified via their communications’ timings [3]. However, their model is different and they do
not sniff Bluetooth traces in the air, rather collect them using the Bluetooth Host Controller
Interface (HCI) log on the smartphone. Huang et al. propose BlueID [120], a system that
prevents identity spoofing by fingerprinting the clock of the master device.

Concerning the attacks, Zuo et al. demonstrate that Bluetooth Low Energy devices can be rec-
ognized by plaintext identifiers found in their communications [247]. They suggest application-
or protocol-level solutions to better rotate static identifiers. Their solutions would not thwart
our device identification attack that works on encrypted traffic (§2.5). Becker et al. use static
identifiers differently [28]: they demonstrate that the rotation of MAC address and other static
identifiers are not synchronized, which enables defeating the MAC randomization. More gen-
erally, Celosia and Cunche examine BLE devices in the wild and show that they fail to properly
rotate their MAC addresses, thus enabling tracking [44]. Then, Korolova and Sharma show
that the “nearby devices” list that Bluetooth devices maintain and which most applications
can obtain, can be used to track users across applications [132]. Targeting more specifically
Apple’s Continuity protocol, Martin et al. reverse-engineer the protocol and find flaws that
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defeat MAC address randomization and that leak information about the device types and
user activities [154]. Similarly, Celosia and Cunche also reverse-engineer the protocol and
demonstrate how it reveals information about human activities in a smart home [45].

Other Bluetooth Attacks and Tools. There exist other attacks on the Bluetooth protocol
that are orthogonal to our work; for instance, active attacks, or protocol-specific attacks
on wearable devices. Fixing these will likely not affect our higher-level attacks that rely on
Bluetooth communication metadata.

We first list attacks on the Bluetooth protocol and implementations. Antonioli et al. demon-
strate how to break the key negotiation protocol of Bluetooth Classic [14], forcing it to a 1-byte
entropy encryption key. The same authors reverse-engineer and identify vulnerabilities in
Google Nearby Connections [11], a protocol that uses a combination of Bluetooth Classic, Low
Energy, and Wi-Fi for short-distance transfers. Then, they also exploit role-switching (slave/-
master) and legacy pairings to perform a Man-in-the-Middle on Bluetooth Classic [12]. Wu et
al. present an active spoofing attack on Bluetooth Low Energy by exploiting the reconnection
procedure [239], whereas Wang et al. demonstrate an active attack to bypass Bluetooth Low
Energy authentication and encryption [223]. Finally, Zhang et al. show a downgrade attack
based on Bluetooth Low Energy’s Secure Connection Only (SCO) mode [245].

In the category of Bluetooth tools, Mantz et al. present InternalBlue [153], a Bluetooth ex-
perimentation framework that enables patching the Bluetooth firmware of Broadcom chips.
Similarly, Classen and Hollick show how to analyze Bluetooth communications using con-
sumer devices [54], while Ruge et al. design an emulation framework and perform fuzzing
to uncover vulnerabilities [184]. In particular, the authors find unattended Remote Code
Executions (RCE) on some Bluetooth chips.

Focusing on wearable devices, Classen et al. perform an in-depth security analysis of the
Fitbit ecosystem [55], analyzing the firmware and the application of a fitness tracker. They
find vulnerabilities that enable flashing malware, disabling encryption, and extracting private
information about the users. Hilts et al. perform a comparative analysis of the security and
privacy of fitness trackers [116]; they highlight security vulnerabilities and issues with their
data policies.

2.10 Conclusion

In this work, we have shown that encrypted Bluetooth communications between a wearable
device and its connected smartphone leak information about their contents: a passive adver-
sary can infer sensitive information by exploiting their metadata via traffic-analysis attacks.
Our empirical evaluation on a Bluetooth (Classic and Low Energy) traffic dataset generated by
a diverse set of wearable devices demonstrates that an eavesdropper can accurately identify
communicating devices to their model number, recognize user activities (e.g., health monitor-
ing or exercising), the opening of specific applications on smartwatches, and fine-grained user
actions (e.g., recording an insulin injection), and extract the profile and habits of the wearer.
Our experimental analysis of common defense strategies against our traffic-analysis attacks,
such as padding or delaying packets, and injecting dummy traffic, show that these do not
provide sufficient protection, and that they introduce significant costs for Bluetooth commu-
nications. Overall, this research highlights an open problem regarding the confidentiality of
Bluetooth communications and the need for designing novel efficient defenses to address it.
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3. Reducing Metadata Leakage from
Static Objects

In this chapter, we propose a new ciphertext format designed to minimize metadata leakage.
The traditional ciphertext formats (e.g., PGP, TLS) typically contain plaintext metadata that
help a recipient decrypt in multiple scenarios: with symmetric or asymmetric keys, with
multiple recipients, with multiple cryptographic suites. However, these metadata also reveal
information to third parties. We demonstrate that this leakage to third parties is not needed:
the same functionality can be achieved with the concept of PURBs, Padded Uniform Random
Blobs that do not leak any metadata except their length. PURBs employ Padmé, a novel
padding scheme that limits information leakage via ciphertexts of maximum length M to a
practical optimum of O(loglog M) bits, comparable to padding to a power of two, but with
lower overhead of at most 12% and decreasing with larger payloads.

Scope. In this chapter, we focus exclusively on the leakage of a single file or network message
that we regroup under the notion of an encrypted blob or encrypted byte array. When used in
a larger system (e.g., in a communication system with many participants), transmitting a blob
has additional metadata, which we explore in Chapter 4.

Acknowledgments. This work is a collaboration between Kirill Nikitin and Ludovic Barman:
both authors contributed equally [161]. To ensure non-overlapping contents in the respective
doctoral theses, the results are divided between the two authors. The technical contribution in
PURBs is composed of two distinct components: an encoding scheme and a padding scheme.
In this thesis, we do not describe the former, rather we focus on the latter. To properly convey
the contribution, the introduction, motivations and related work present the whole project.

3.1 Introduction

Traditional encryption schemes and protocols aim to protect only their data payload, leaving
related metadata exposed. Formats such as PGP [246] reveal in cleartext headers the public
keys of the intended recipients, the algorithm used for encryption, and the actual length of
the payload. Secure-communication protocols similarly leak information during key and
algorithm agreement. The TLS handshake [178], for example, leaks in cleartext the protocol
version, chosen cipher suite, and the public keys of the parties. This metadata exposure is
traditionally assumed not to be security-sensitive, and it facilitates the decryption for the
intended recipient(s).

Research has consistently shown, however, that attackers can exploit metadata to infer sen-
sitive information about communication content. In particular, an attacker may be able to
fingerprint users [165, 218] and the applications they use [244]. Using traffic analysis [66],
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an attacker may be able to infer websites a user visited [66, 82, 164, 226, 227] or videos a
user watched [174, 175, 189]. On VoIP, metadata can be used to infer the geolocation [147],
the spoken language [236], or the voice activity of users [46]. Side-channel leaks from data
compression [128] facilitate several attacks on SSL [29, 98, 182]. The lack of proper padding
might enable an active attacker to learn the length of the user’s password from TLS [222]
or QUIC [180] traffic. In social networks, metadata can be used to draw conclusions about
users’ actions [108], whereas telephone metadata has been shown to be sufficient for user
re-identification and for determining home locations [155]. Furthermore, by observing the
format of packets, oppressive regimes can infer which technology is used and use this infor-
mation for the purposes of incrimination or censorship. Most TCP packets that Tor sends, for
example, are 586 bytes due to its standard cell size [115].

As a step towards countering these privacy threats, we propose that encrypted data formats
should produce Padded Uniform Random Blobs or PURBs: ciphertexts designed to protect
all encryption metadata. A PURB encrypts application content and metadata into a single
blob that is indistinguishable from a random string, and is padded to minimize information
leakage via its length while minimizing space overhead. Unlike traditional formats, a PURB
does not leak the encryption schemes used, who or how many recipients can decrypt it, or
what application or software version created it. While simple in concept, because PURBs by
definition contain no cleartext structure or markers, encoding and decoding them efficiently
presents practical challenges.

This first key contribution is an encoding scheme that supports any number of recipients, who
can use either shared passwords or public-private key pairs utilizing multiple cryptographic
suites. The main technical challenge is providing efficient decryption to recipients without
leaving any cleartext markers. If efficiency was of no concern, the sender could simply discard
all metadata and expect the recipient to parse and trial-decrypt the payload using every
possible format version, structure, and cipher suite imaginable. However, real-world adoption
requires both decryption efficiency and cryptographic agility. The encoding scheme combines
a variable-length header containing encrypted metadata with a symmetrically-encrypted
payload. The header’s structure enables efficient decoding by legitimate recipients via a small
number of trial decryptions. It facilitates the seamless addition and removal of supported
cipher suites, while leaking no information to third parties without a decryption key.

To reduce information leakage from data lengths, the second main contribution is Padmé, a
padding scheme that groups encrypted PURBs into indistinguishability sets whose visible
lengths are representable as limited-precision floating-point numbers. Like obvious alter-
natives such as padding to the next power of two, Padmé reduces maximum information
leakage to O(loglog M) bits, where M is the maximum length of encrypted blob a user or ap-
plication produces. Padmé greatly reduces constant-factor overhead with respect to obvious
alternatives, however, enlarging files by at most +12%, and less as file size increases.

Our evaluation shows that the performance of decoding a PURB is similar to that of PGP;
at the same time, unlike PGP, the encrypted PURB does not reveal which cryptographic
parameters are used. Creating a PURB is slower than creating a PGP ciphertext, due to the
header construction being more involved.

Regarding Padmé, we evaluate its performance with real-world datasets. Our analysis shows
that many objects are trivially identifiable by their unique sizes without padding, or even after
padding to a fixed block size (e.g., that of a block cipher or a Tor cell). We show that Padmé can
significantly reduce the number of objects uniquely identifiable by their sizes: from 83% to 3%
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for 56k Ubuntu packages, from 87% to 3% for 191k YouTube videos, from 45% to 8% for 848k
hard-drive user files, and from 68% to 6% for 2.8k websites from the Alexa top 1M list. This
stronger leakage protection incurs an average space overhead of only 3%.

In summary, the contributions of this section are as follows:

• We introduce PURBs, a ciphertext format that reveals no metadata information to
observers without decryption keys, while efficiently supporting multiple recipients and
cipher suites.

• We introduce Padmé, a padding scheme that asymptotically minimizes information
leakage from data lengths while also limiting size overheads.

3.2 Motivation and Applications

Our goal is to define a generic method applicable to most of the common data-encryption
scenarios such that the techniques are flexible to the application type, to the cryptographic
algorithms used, and to the number of participants involved. We also seek to enhance plausible
deniability such that a user can deny that a PURB is created by a given application or that the
user owns the key to decrypt it. We envision several immediate applications that could benefit
from using PURBs.

E-mail Protection. E-mail systems traditionally use PGP or S/MIME for encryption. Their
packet formats [43], however, exposes format version, encryption methods, number and
public-key identities of the recipients, and public-key algorithms used. In addition, the payload
is padded only to the block size of a symmetric-key algorithm used, which does not provide
“size privacy”, as we show in §3.5. Using PURBs for encrypted e-mail could minimize this
metadata leakage. Furthermore, as e-mail traffic is normally sparse, the moderate overhead
PURBs incur can easily be accommodated.

Initiation of Cryptographic Protocols. In most cryptographic protocols, initial cipher suite
negotiation, handshaking, and key exchange are normally performed unencrypted. In TLS
1.2 [76], an eavesdropper who monitors a connection from the start can learn many details
such as cryptographic schemes used. The eavesdropper can also fingerprint the client [181]
or distinguish censorship-circumvention tools that try to mimic TLS traffic [92, 118]. TLS
1.3 [178] takes some protective measures by reducing the amount of unencrypted metadata
during the handshake.These measures are only partial, however, and leave other metadata,
such as protocol version number, cipher suites, and public keys, still visible. PURBs could
facilitate fully-encrypted handshaking from the start.

3.3 PURB Construction

As stated in the introduction of the chapter, this section is only a brief overview of the con-
struction technique of a PURB. We refer the reader to the paper for the full contribution [161].

Preliminaries. Let λ be a standard security parameter. Let S be cipher suite defined as

S = 〈G, p, g ,Hide(·),Π,H,Ĥ〉

where:
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• G is a cyclic group of order p generated by g where the gap-CDH problem is hard to
solve (e.g., an elliptic curve or a multiplicative group of integers modulo a large prime);

• Hide is a mapping: G→ {0,1}λ that encodes a group element of G to a binary string
that is indistinguishable from a uniform random bit string (e.g., Elligator [31], Elligator
Squared [18, 211]);

• Π= (E ,D) is an ind$-cca2-secure authenticated-encryption scheme [30] where EK (m)
and DK (c) are encryption and decryption algorithms, respectively, given a message m, a
ciphertext c, and a key K .

• H :G→ {0,1}2λ and Ĥ : {0,1}∗ → {0,1}2λ are two distinct cryptographic hash functions.

PURB Definition. Then, we define the four algorithms PurbEnc= (Setup,KeyGen,Enc,Dec)
as follows:

• Setup(1λ) → S: Create a cipher suite S = 〈G, p, g ,Hide(·),Π,H,Ĥ〉.
• KeyGen(S) → (sk, pk): Create a key pair (sk(S), pk(S)).
• Enc(R,m) → c : Given a set of public keys R = {pk1(S1), . . . , pkr (Sr )}, each on an indicated

suite, and a message m, output a ciphertext c.
• Dec(sk(S),c) → m/⊥: Given a valid ciphertext c and a valid decryption key sk(S), return

m. Return ⊥ otherwise.

In the related paper [161], we present MSPURB, a instantiation of a PurbEnc algorithm. In the
case of one recipient using a public key, the MSPURB is equivalent to Integrated Encryption
Scheme (IES) [1]; it also supports multiple recipients each using their own suite. We show that
MSPURB is ind$-cca2-secure against an adversary that does not possess a decryption key.

The key aspect of a PURB is that c can be efficiently decrypted by any valid sk in any suite S,
without additional metadata. To achieve this, the PGP header format uses plaintext informa-
tion to indicate the position of group elements and nonces. On the contrary, the ciphertext c
is not accompanied by any header, and hence reveals no information to the adversary (except
its length |c|).

3.4 Padmé Construction

The encoding scheme PurbEnc (§3.3) produces blobs of data that are indistinguishable from
random bit-strings of the same length, thus leaking no information to the adversary directly
via their content. The length itself, however, might indirectly reveal information about the
content. Such leakage is already used extensively in traffic-analysis attacks, e.g., website
fingerprinting [82, 164, 226, 227], video identification [174, 175, 189], and VoIP traffic finger-
printing [46, 236]. Although solutions involving application- or network-level padding are
numerous, they are typically designed for a specific problem domain, and the more basic
problem of length-leaking ciphertexts remains. In any practical solution, some leakage is
unavoidable. We show, however, that typical approaches such as padding to the size of a block
cipher are fundamentally insufficient for efficiently hiding the plaintext length effectively,
especially for plaintexts that may vary in size by orders of magnitude.

We introduce Padmé, a novel padding scheme designed for, though not restricted to, encoding
PURBs. Padmé reduces length leakage for a wide range of encrypted data types, ensuring
asymptotically lower leakage of O(loglog M), rather than O(log M) for common stream- and
block-cipher-encrypted data. Padmé’s space overhead is moderate, always less than 12% and
decreasing with file size. The intuition behind Padmé is to pad objects to lengths representable
as limited-precision floating-point numbers. A Padmé length is constrained in particular to
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have no more significant bits (i.e., information) in its mantissa than in its exponent. This
constraint limits information leakage to at most double that of conservatively padding to the
next power of two, while reducing overhead through logarithmically-increasing precision for
larger objects.

Scope. Many defenses already exist for specific scenarios, e.g., against website fingerprint-
ing [82, 228]. Padmé does not attempt to compete with tailored solutions in their domains.
Instead, Padmé aims for a substantial increase in application-independent length-leakage
protection as a generic measure of security and privacy.

3.4.1 Definitions

We design Padmé again using intermediate strawman approaches for clarity. To compare
these straightforward alternatives with our proposal, we define a game where an adversary
guesses the plaintext behind a padded encrypted blob. This game is inspired by related work
such as defending against a “perfect attacker” [228].

Padding Game. Let P denote a finite collection of plaintext objects of maximum length M :
e.g., data, documents, or application data-units. Let f : N → N be a padding function that
yields the padded size |c| given a plaintext length |p|, for p ∈ P .

An honest user chooses a plaintext p ∈ P , then pads and encodes it into a PURB c such that
|c| = f (|p|). The adversary knows almost everything: all possible plaintexts P , the PURB c and
the public parameters used to generate it, such as schemes and the recipients. The adversary
lacks only the private inputs and decryption keys for c. The adversary’s goal is to guess the
plaintext p based on the observed PURB c of length |c|.

Overhead. We define the additive overhead of |c| over |p|to be |c|− |p|, the number of extra
bytes added by padding. The multiplicative overhead of padding is |c|−|p|

|p| , the relative fraction
by which |c| expands |p|.

Leakage. Let R be the image set of f ; R consists of the padded lengths that f can produce
from plaintexts in P . We quantify the leakage of padding function f in terms of the number of
elements in R. More precisely, we define the leakage as the number of bits required to specify
a unique element of R, which is dlog2 |R|e.

Intuitively, a function that pads everything to a constant size larger than all plaintexts (e.g.,
f (p) = maxp |p|) leaks no information to the adversary, because |R| = 1 and observing |c|
leaks no information about the plaintext: every one of them could have produced |c|. On the
contrary, more fine-grained padding functions leak more bits.

Design Goals. Our goal in designing the padding function is to manage both space overhead
from padding and maximum information leaked to the adversary.

3.4.2 Strawman Padding Approaches

We first explore two strawman designs, based on different padding functions f . A padding
function that offers any useful protection cannot be one-to-one, otherwise the adversary could
trivially invert it and recover |p|. We also exclude randomized padding schemes for simplicity,
and because adversaries may be able to cancel out and defeat random padding statistically
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over many observations. Therefore, only padding functions that group many plaintext lengths
into fewer padded ciphertexts are of interest in our analysis.

Strawman 1: Fixed-Size Blocks. We first consider a padding function f (L) = b · dL/be, where
b is a block size in bytes. This is how objects often get “padded” by default in practice, e.g.,
in block ciphers or Tor cells. In this case, the ciphertext size is a multiple of b, the maximum
additive overhead incurred is b −1 bytes, and the leakage is dlog2 M/be =O(log M), where M
is the maximum plaintext size.

In practice, when plaintext sizes differ by orders of magnitude, there is no good value for b
that serves all plaintexts well. For instance, consider b =1 MB. Padding small files and network
messages would incur a large overhead: e.g., padding Tor’s 512 B cells to 1 MB would incur
overheads of 2000×. In contrast, padding a 700 MB movie with at most 1 MB of chaff would
add only a little confusion to the adversary, as this movie may still be distinguishable from
others by length.

Therefore, to reduce information leakage asymptotically over a vast range of cleartext sizes,
the padding must depend on plaintext size.

Strawman 2: Padding to Powers of 2. The next step is to pad to varying-size blocks, which
is the basis for our actual scheme. The intuition is that for small plaintexts, the blocks are
small too, yielding modest overhead, whereas for larger files, blocks are larger and group more
plaintext lengths together, improving leakage asymptotically. A simple approach is to pad
plaintexts into buckets bi of size varying as a power of some base, e.g., two, so bi = 2i . The
padding function is thus f (L) = 2dlog2 Le. We call this strawman NEXTP2.

Because NEXTP2 pads plaintexts of maximum length M into at most dlog2 Me buckets, the
image R of f contains only O(log M) elements. This represents only O(loglog M) bits of entropy
or information leakage, a major asymptotic improvement over fixed-size blocks. However, the
maximum overhead is substantial: almost +100%. This implies that a 17 GB Blu-ray movie
would be padded into 32 GB.

Using powers of another base x > 2, we reduce leakage further at a cost of more overhead:
e.g., padding to the nearest power of 3 incurs overhead up to +200%, with less leakage but still
O(loglog M). We could reduce overhead by using a fractional base 1 < x < 2, but fractional
exponents are cumbersome in practical padding functions. Although this second strawman
succeeds in achieving asymptotically lower leakage than padding to fixed-size blocks, it is less
attractive in practice.

3.4.3 Padmé

We now describe our padding scheme Padmé, which limits information leakage about the
length of the plaintext for wide range of encrypted data sizes. Similarly to the previous straw-
man, Padmé also asymptotically leaks O(loglog M) bits of information, but its overhead is
much lower (at most 12% and decreasing with L).

Intuition. In NEXTP2, any permissible padded length L has the form L = 2n . We can therefore
represent L as a binary floating-point number with a

⌊
log2 n

⌋+1-bit exponent and a mantissa
of zero, i.e., no fractional bits.

In Padmé, we similarly represent a permissible padded length as a binary floating-point
number, but we allow a non-zero mantissa at most as long as the exponent (see Figure 3.2).
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Figure 3.1 – Maximum multiplicative expansion overhead with respect to the plaintext size
L. The naïve approach to pad to the next power of two has a constant maximum overhead of
100%, whereas Padmé’s maximum overhead decreases with L, following 1

2log2 L .

⌊
log2 n

⌋+1-bit exponent 0-bit mantissa

In the strawman NEXTP2, the allowed length L = 2n can be represented as a binary floating-
point number with a

⌊
log(n)+1

⌋
bits of exponent and no mantissa.

⌊
log2 n

⌋+1-bit exponent
⌊

log2 n
⌋+1-bit mantissa

Figure 3.2 – Padmé represents lengths as floating-point numbers, allowing the mantissa to be
of at most

⌊
log2 n

⌋+1 bits.

This approach doubles the number of bits used to represent an allowed padded length — hence
doubling absolute leakage via length — but allows for more fine-grained buckets, reducing
overhead. Padmé asymptotically leaks the same number of bits as NEXTP2, differing only by a
constant factor of 2, but reduces space overhead by almost 10× (from +100% to +12%). More
importantly, the multiplicative expansion overhead decreases with L (see Figure 3.1).

Algorithm. We provide the pseudocode for Padmé in Algorithm 3.1. To compute the padded
size L′ = f (L), ensuring that its floating-point representation fits in at most 2× ⌊

log2 n
⌋+1

bits, we require the last E − S bits of L′ to be 0. E = ⌊
log2 L

⌋
is the value of the exponent,

and S = ⌊
log2 E

⌋+1 is the size of the exponent’s binary representation. The reason for the
substraction will become clear later. For now, we demonstrate how E and S are computed in
Table 3.1.

Recall that Padmé requires the mantissa’s bit length to be no longer than that of the exponent.
In Table 3.1, for the value L = 9 the mantissa is longer than the exponent: it is “too precise” and
therefore not a permitted padded length. The value 10 is permitted, however, so a 9 byte-long
ciphertext is padded to 10 bytes.

To understand why Padmé requires the low E −S bits to be 0, notice that forcing all the last E
bits to 0 is equivalent to padding to a power of two. In comparison, Padmé allows S extra bits
to represent the padded size, with S defined as the bit length of the exponent.
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Algorithm 3.1: Padmé

Data: length of content L
Result: length of padded content L′

E ← ⌊
log2 L

⌋
// L’s floating-point exponent

S ← ⌊
log2 E

⌋+1 // # of bits to represent E

z ← E −S // # of low bits to set to 0

m ← (1 ¿ z)−1 // mask of z 1’s in LSB

L′ ← (L+m) & ∼m // round up using mask m to clear last z bits

Table 3.1 – The IEEE floating-point representations of 8, 9 and 10. The value 8 has 1 bit of
mantissa (the initial 1 is omitted), and 2 bits of exponents; 9 has a 3-bits mantissa and a 2-bit
exponent, while the value 10 as 2 bits of mantissa and exponents. Padmé enforces the mantissa
to be no longer than the exponent, hence 9 gets rounded up to the next permitted length 10.

L L E S IEEE representation
8 0b1000 3 2 0b1.0 * 2^0b11
9 0b1001 3 2 0b1.001 * 2^0b11
10 0b1010 3 2 0b1.01 * 2^0b11

Leakage and Overhead. By design,if the maximum plaintext size is M , Padmé’s leakage is
O(loglog M) bits, the length of the binary representation of the largest plaintext. As we fix E −S
bits to 0 and round up, the maximum overhead is 2E−S −1. We can estimate the maximum
multiplicative overhead as follows:

max overhead = 2E−S −1

L
< 2E−S

L
≈ 2blog2 Lc−blog2 log2 Lc−1

L
≈ 1

2 ·2log2 log2 L
= 1

2log2 L
(3.1)

Thus, Padmé’s maximum multiplicative overhead decreases with respect to the file size L. The
maximum overhead is +11.11%, when padding a 9-byte file into 10 bytes. For bigger files, the
overhead is smaller.

On Optimality. There is no clear sweet spot on the leakage-to-overhead curve. We could easily
force the last 1

2 (E −S) bits to be 0 instead of the last E −S bits, for example, to reduce overhead
and increase leakage. Still, what matters in practice is the relationship between L and the
overhead. We show in §3.5 how this choice performs with various real-world datasets.

3.5 Evaluation

In evaluating a padding scheme, one important metric is overhead incurred in terms of bits
added to the plaintexts. By design, Padmé’s overhead is bounded by 1

2·log2 L . As discussed
in §3.4.3, Padmé does not escape the typical overhead-to-leakage trade-off, hence Padmé’s
novelty does not lie in this trade-off. Rather, the novelty lies in the practical relation between
L and the overhead. Padmé’s overhead is moderate, at most +12% and much less for large
PURBs.

A more interesting question is how effectively, given an arbitrary collection of plaintexts
P , Padmé hides which plaintext is padded. Padmé was designed to work with an arbitrary
collection of plaintexts P . It remains to be seen how Padmé performs when applied to a
specific set of plaintexts P , i.e., with a distribution coming from the real world, and to establish
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Table 3.2 – Datasets used in the evaluation of anonymity provided by Padmé.

Dataset # of objects
Ubuntu packages 56,517
YouTube videos 191,250
File collections 3,027,460
Alexa top 1M websites 2,627

how well it groups files into sets of identical length. In the next section, we experiment with
four datasets made of various objects: a collection of Ubuntu packages, a set of YouTube
videos, a set of user files, and a set of Alexa Top 1M websites.

3.5.1 Datasets and Methodology

The Ubuntu dataset contains 56,517 unique packages, parsed from the official repository of a
live Ubuntu 16.04 instance. As packages can be referenced in multiple repositories, we filtered
the list by name and architecture. The reason for padding Ubuntu software updates is that
the knowledge of updates enables a local eavesdropper to build a list of packages and their
versions that are installed on a machine. If some of the packages are outdated and have known
vulnerabilities, an adversary might use it as an attack vector. A percentage of software updates
still occurs over un-encrypted connections, which is still an issue; but encrypted connections
to software-update repositories also expose which distribution and the kind of update being
done (security / restricted1 / multiverse2 / etc). We hope that this unnecessary leakage will
disappear in the near future.

The YouTube dataset contains 191,250 unique videos, obtained by iteratively querying the
YouTube API. One semantic video is generally represented by 2−5 .webm files, which corre-
sponds to various video qualities. Hence, each object in the dataset is a unique (video, quality)
pair. We use this dataset as if the videos were downloaded in bulk rather than streamed; that
is, we pad the video as a single file. The argument for padding YouTube videos as whole
files is that, as shown by related work [174, 175, 189], variable-bitrate encoding combined
with streaming leak which video is being watched. If YouTube wanted to protect the privacy
of its users, it could re-encode everything to constant-bitrate encoding and still stream it,
but then the total length of the stream would still leak information. Alternatively, it could
adopt a model similar to that of the iTunes store, where videos have variable bit-rate but are
bulk-downloaded; but again, the total downloaded length would leak information, requiring
some padding. Hence, we explore how unique the YouTube videos are by length with and
without padding.

The files dataset was constituted by collecting all file sizes in the home directories (‘~user/’)
of 10 users, on machines running Fedora, Arch, and Mac OS X.

Finally, the Alexa dataset is made of 2,627 websites from the Alexa Top 1M list. The size of
each website is the sum of all the resources loaded by the web page, which has been recorded
by piloting a ‘chrome-headless’ instance with a script, mimicking real browsing. One reason
for padding whole websites – as opposed to padding individual resources – is that related
work in website fingerprinting showed the importance of the total downloaded size [82]. The

1Contains proprietary software and drivers.
2Contains software restricted by copyright.
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Figure 3.3 – Distribution of the sizes of the objects in each dataset.

effectiveness of Padmé when padding individual resources, or for instance bursts [228], is left
as interesting future work.

3.5.2 Evaluation of Padmé

The distribution of the objects sizes for all the datasets is shown in Figure 3.3. Intuitively, it is
harder for an efficient padding scheme to build groups of same-sized files when there are large
objects in the dataset. Therefore, we expect the last 5% to 10% of the four datasets to remain
somewhat unique, even after padding.

For each dataset, we analyze the anonymity set size of each object. To compute this metric,
we group objects by their size, and report the distribution of the sizes of these groups. A large
number of small groups indicate that many objects are easily identifiable. For each dataset, we
compare three different approaches: the NEXTP2 strawman, Padmé, and padding to a fixed
block size of 512 B, like a Tor cell. The anonymity metrics are shown in Figure 3.4, and the
respective overheads are shown in Table 3.3.

For all these datasets, despite containing very different objects, a large percentage of objects
have a unique size: 87% in the case of YouTube video (Figure 3.4a), 45% in the case of files
(Figure 3.4b), 83% in the case of Ubuntu packages (Figure 3.4c), and 68% in the case of websites
(Figure 3.4d). These characteristics persist in traditional block-cipher encryption (blue dashed
curves) where objects are padded only to a block size. Even after being padded to 512 B, the
size of a Tor cell, most object sizes remain as unique as in the unpadded case. We observe
similar results when padding to 256 B, the typical block size for AES (not plotted).

NEXTP2 (red dotted curves) provides the best anonymity: in the YouTube and Ubuntu datasets
(Figures 3.4a and 3.4c), there is no single object that remains unique with respect to its size; all
belong to groups of at least 10 objects. We cannot generalize this statement, of course, as shown
by the other two datasets (Figures 3.4b and 3.4d). In general, we see a massive improvement
with respect to the unpadded case. Recall that this padding scheme is impractically costly,
adding +100% to the size in the worst case and +50% in mean. In Table 3.3, we see that the
mean overhead is of +45%.

Finally, we see the anonymity provided by Padmé (green solid curves). By design, Padmé has
an acceptable maximum overhead (maximum +12% and decreasing). In three of the four
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(a) Dataset ‘YouTube videos’.
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(b) Dataset ‘File collections’.
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(c) Dataset ‘Ubuntu packages’.
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(d) Dataset ‘Alexa top 1M websites’.

Figure 3.4 – Analysis of the anonymity provided by various padding approaches: NEXTP2,
Padmé, padding with a constant block size and no padding. NEXTP2 provides better
anonymity, at the cost of a drastically higher overhead (at most +100% instead of +12%).

datasets, there is a constant difference between our expensive reference point NEXTP2 and
Padmé; despite having a decreasing overhead with respect to L, unlike NEXTP2. This means
that although larger files have proportionally less protection (i.e., less padding in percentage)
with Padmé, this is not critical, as these files are rarer and are harder to protect efficiently, even
with a naïve and costly approach. When we observe the percentage of uniquely identifiable
objects (objects that trivially reveal their plaintext given our perfect adversary), we see a
significant drop by using Padmé: from 83% to 3% for the Ubuntu dataset, from 87% to 3% for
the YouTube dataset, from 45% to 8% for the files dataset and from 68% to 6% for the Alexa
dataset. In Table 3.3, we see that the mean overhead of Padmé is around 3%, more than an
order of magnitude smaller than NEXTP2. We also see how using a fixed block size can yield
high overhead in percentage, in addition to insufficient protection.

Table 3.3 – Analysis of the overhead, in percentage, of various padding approaches. In the first
column, we use b =512 B as block size.

Dataset Fixed block size Next power of two Padmé
YouTube videos 0.01 44.12 2.23
File collections 40.15 44.18 3.64
Ubuntu packages 14.09 43.21 3.12
Alexa top 1M websites 36.71 47.12 3.07
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3.6 Related Work

The closest related work PURBs build on is Broadcast Encryption [27, 36, 74, 86, 96], which
formalizes the security notion behind a ciphertext for multiple recipients. In particular, the
most relevant notion in (Private) Broadcast Encryption is Recipient Privacy [27], in which an
adversary cannot tell whether a public key is a valid recipient for a given ciphertext. PURBs
goes further by enabling multiple simultaneous suites, while achieving indistinguishably from
random bits in the ind$-cca2 model. PURBs also addresses size leakage.

Traffic morphing [237] is a method for hiding the traffic of a specific application by masking
it as traffic of another application and imitating the corresponding packet distribution. The
tools built upon this method can be standalone [224] or use the concept of Tor pluggable
transport [157, 229, 232] that is applied to preventing Tor traffic from being identified and
censored [209]. There are two fundamental differences with PURBs. First, PURBs focus on
a single unit of data; we do not yet explore the question of the time distribution of multiple
PURBs. Second, traffic-morphing systems, in most cases, try to mimic a specific transport
and sometimes are designed to only hide the traffic of one given the other. PURBs are indistin-
guishable from random string regardless of the application.

Traffic-analysis aims at inferring the contents of encrypted communication by analyzing
metadata. The most well-studied application of it is website fingerprinting [82, 164, 226, 227],
but it has also been applied to video identification [174, 175, 189] and VoIP traffic [46, 236].
In website fingerprinting over Tor, research has repeatedly showed that the total website size
is the feature that helps an adversary the most [52, 82, 163]. In particular, Dyer et al. [82]
show the necessity of padding the whole website, as opposed to individual packets, to prevent
an adversary from identifying a website by its observed total size. Wang et al. [228] propose
deterministic and randomized padding strategies tailored for padding Tor traffic against a
perfect attacker, which inspired the design of Padmé.

Finally, Sphinx [68] is an encrypted packet format for mix networks with the goal of minimizing
the information revealed to the adversary. Sphinx shares similarities with PURBs in its binary
format (e.g., the presence of a group element followed by a ciphertext). Unlike PURBs, however,
it supports only one cipher suite, and one direct recipient. To the best of our knowledge, PURBs
is the first solution that hides all metadata while providing cryptographic agility.

3.7 Limitations

Padmé is a generic approach which we observed to provide good trade-off in some domains
(§3.5) while having better theoretical properties than trivial solutions. Our design is a generic
approach that is likely to be outperformed by solutions tailored for their application domain.

A practical limitation behind the concept of PURBs is when attempting to decrypt a ciphertext
for which the recipient does not possess the recipient key. In this case, the recipient will attempt
potentially a high number of trial-decryptions (logarithmic in the size of the ciphertext). This
can be a limitation in scenarios in which minimizing CPU computations is important (e.g., a
high-volume web server performing TLS decryptions). To avoid leaking timing information,
a variant of this limitation also applies to a recipient with a decryption key: the decryption
implementation must behave as if his key is was the last possible position in the PURB. These
constraints comes from the design choice that the header and the payload cannot be told
apart without a decryption key.
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3.8 Conclusion

We presented a way to reduce metadata leakage from an encrypted file or message, while at
the same time maintaining cryptographic agility for the recipient.

Conventional encrypted data formats leak information, via both unencrypted metadata and
ciphertext length, that may be used by attackers to infer sensitive information via techniques
such as traffic analysis and website fingerprinting. We have argued that this metadata leakage
is not necessary, and as evidence have presented PURBs, a generic approach for designing
encrypted data formats that do not leak anything at all, except for the padded length of the
ciphertexts, to anyone without the decryption keys. Despite having no cleartext header, PURBs
can be efficiently encoded and decoded, and can simultaneously support multiple public keys
and cipher suites. Finally, we have introduced Padmé, a padding scheme that reduces the
length leakage of ciphertexts and has a modest overhead decreasing with file size. In terms of
“object anonymity”, Padmé performs better than classic padding schemes with fixed block size,
and its overhead is asymptotically lower than using exponentially increasing padding.
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4. Reducing Metadata Leakage from Communi-
cations

In this chapter, we focus on building Anonymous Communication Systems (ACNs). These
systems enable users to communicate (e.g., among themselves, or with the Internet) while
reducing the metadata that is exposed compared to their non-anonymous equivalent. We
propose two new systems: (1) PriFi, a system that behaves like a VPN but that strongly protects
user identities, and (2) Rubato, a metadata-private messaging system for mobile devices.

4.1 Introduction

Traditional communication systems (e.g., emails, instant messengers) can harm the privacy of
their users by revealing sensitive metadata, such as the identity of the people communicating
or the time a particular user is sending messages.

Anonymous Communication Networks (ACNs) are systems built to hide some of this metadata;
in particular, the identities of the communicating parties, and the times at which a particular
honest user is sending messages. Many ACNs were developed in the past 20 years of research
(§4.3). Few of these systems, however, have seen a widespread use. One of the reasons
might be technical: such systems have tremendous running costs compared to their non-
anonymous equivalent (as discussed briefly in §4.2). This hypothesis is supported by the fact
that the most widespread ACN is Tor, a system that does not protect all metadata for the sake
of efficiency [210], although researchers have since then proposed more secure and costly
alternatives.

Hence, one of our goals in this thesis is to propose new systems that protect communication
metadata. The contributions we make in this chapter remove some of the limitations of the
state of the art in ACNs, thus facilitating low-latency communications, or enabling mobile
users to participate. However, our proposed systems do not solve the overarching problem of
metadata leakage in communications, which we believe is a difficult problem that cannot be
fixed at a reasonable cost yet.

Contributions in this Chapter. We address two limitations of ACNs.

One limitation is that most ACNs have latency that is too high for “low-latency” categories of
traffic, such as VoIP or video streaming. The ACNs that do support these categories of traffic
are often tailored exclusively for these types of traffic [142, 144, 145]. This creates friction for
users, who might find useful a single system that protects communication metadata while
they browse the Web, write emails, and perform a voice call (similar to a VPN). We present
PriFi (§4.4), an ACN that provides low-latency communications in the context of a local-area
network. The protocol hides the source of a message by ensuring that the communication
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patterns of all participants are equal, even in the presence of active attacks. PriFi has a high
bandwidth cost, but ensures low-latency, traffic-agnostic communication for a small set of
users.

Another limitation of many ACNs is synchronicity (or sender coordination): users follow a
global schedule that divides the time in rounds, in which all users must participate [20, 26,
141, 142, 220]. This requirement might be acceptable for non-battery-constrained devices
that are always online. However, mobile devices might sporadically disconnect to save battery
energy or due to network conditions; they cannot be expected to reliably participate following
a global fixed schedule, especially when the rounds are short. We present Rubato (§4.5), an
ACN for instant messaging that has a latency in seconds to minutes and handles millions of
users. Rubato is a circuit-based mixnet that enables its users to be asynchronous; that is to say,
to participate in the network according to their own schedule.

4.2 Background

This section is a short highlight of some common concepts in the field of anonymous commu-
nications. The relevant notions are explained more formally in the following sections (§4.4
and §4.5).

Model and Adversary. ACNs consider some users who want to communicate securely and
anonymously. Whereas the former goal is achieved through traditional end-to-end encryp-
tion and authentication, ACNs are also concerned with keeping private the sender/receiver
identities against an adversary A. Most works consider an adversary who observes all network
messages, who controls some of the clients and servers, and who is able to actively tamper
with messages. Such a strong adversary is believed to be a realistic threat [125].

The security notion of “anonymity” encompasses several more fine-grained notions: e.g.,
unobservability (whether a sender/receiver communicates or not), or unlinkability (between
a sender and a receiver, between a sender/receiver and a message). These notions are not
mutually exclusive; one can imply the other, as formalized by Kuhn et al. [134].

In this thesis, we propose two systems that target two different notions:

1. In PriFi (§4.4), where anonymous messages can be sent to a non-anonymous recipient
outside of the system, we seek unlinkability between an honest sender Alice and any
message m output by the protocol: an adversary cannot infer whether Alice sent m
(written Alice→m) or not (written Alice6→m).

2. In Rubato (§4.5), the security notion provides unlinkability between an honest sender
Alice and an honest recipient Bob: it hides whether they are in communication (written
Alice↔Bob) or not (written Alice6↔Bob).

In both cases, we can formalize the security notion in terms of the adversary’s observations O.
Taking the example of Rubato (the case of PriFi is similar), we write

Pr[O|Alice ↔ Bob] ≈ Pr[O|Alice 6↔ Bob] (4.1)

Informally, the adversary’s observations O does not change significantly whether Alice and
Bob communicate or not. The probabilities are taken over the random processes and over the
random coins used in the system.
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Most systems do not conceal that Alice uses the ACN in the first place. The probability that
she will communicate with Bob must be independent from when she uses the system, which
the adversary can observe. If Alice does not communicate with anyone, most systems require
her to send dummy traffic (also called chaff ) to fool the adversary.

Levels of Anonymity. In practice, Expression 4.1 can take different forms. Some works, includ-
ing PriFi (§4.4), provide perfect anonymity (under a cryptographic assumption): in this case,
Expression 4.1 has an equality sign in the middle. This means that the adversary’s observations
are identical whether Alice and Bob communicate or not.

Some related work, including Rubato (§4.5), provide a weaker, differential-privacy guaran-
tee [81], often with the benefit of increased performance. In this case, the expression is
rewritten as:

Pr[O|Alice ↔ Bob] ≤ eεPr[O|Alice 6↔ Bob]+δ, and

Pr[O|Alice 6↔ Bob] ≤ eεPr[O|Alice ↔ Bob]+δ

for small values of ε,δ≥ 0. Intuitively, this enables the adversary to learn a small amount of
statistical information, bounded by ε and δ.

Traffic Analysis and Adversarial View. The analysis of the communication metadata of ACNs
is also called traffic analysis; and an ACN that protects or does not leak metadata is said to be
traffic-analysis resistant.

Some older approaches are not traffic-analysis resistant [67, 78, 91, 176]: the analysis of
communication metadata (e.g., packet timings) can reveal the sender or receiver. These
systems consider either a weaker form of anonymity, or an adversary that cannot observe
such metadata (e.g., because he only observes some portion of the network). In the latter
case, Expression 4.1 could still hold, but O does not consist of all network features. Recent
systems typically strive to resist traffic analysis against a global passive adversary, or even a
global active adversary (see §4.3).

On the high cost of ACNs. We briefly highlight the reason why ACNs are inherently costly. We
consider an ACN as a black box that receives and forwards messages. Suppose that at some
point in time, Alice sends a message to Bob through the ACN. The adversary A observes a
message leaving Alice’s computer; he might also observe other messages sent by other users.
We want to hide the fact that Alice is a sender; intuitively, we want any honest user to be the
potential sender. Then, it is necessary that all honest users also transmit a message before the
system delivers the message to Bob. Each idle participant is trivially excluded from the list of
potential senders.

Therefore, to achieve sender anonymity, an ACN system can follow (a combination of) two
paradigms:

1. Wait upon all participants to have a real message to send before delivering any message;
this introduces delays.

2. Have all users send dummy traffic at regular intervals, even when they have no real
message to send; this adds bandwidth usage.

This results in the necessity to spend either significant time (through delays) or bandwidth to
reduce communication metadata. In contrast, traditional systems that do not protect metadata
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can be more efficient. Often, users can send messages without delays or any synchronization
with other users; when they have nothing to send, users can simply be idle.

This intuition has been formalized as the Anonymity Trilemma by Das et al. [70].

4.3 Related Work

Anonymous communications are often built upon one of the following primitives: onion-
routing [100] and mix-networks [47], DC-nets [48], or on variants of Private Information Re-
trieval (PIR) [53]. Both onion-routing networks and mix-networks (mixnets) forward messages
over a chain of servers, called routers or mix-servers. At each server, messages are re-encrypted
and potentially delayed. The security guarantee lies in the difficulty for an eavesdropper to
learn the whole path taken by a message. Onion-routing systems (and some mix networks)
often build circuits that are reused by many packets [78]; these systems typically do not add
artificial delays and focus on providing low-latency. Mixnets tend to delay and batch messages,
and to have synchronous rounds.

Onion-routing. Tor [78] has the largest user-base. It operates at the application layer and
establishes circuits that are reused by many packets. To provide low-latency communications,
messages are not delayed. Packets have a fixed size, but no end-to-end padding is used. Hence,
Tor does not provide traffic-analysis resistance against a global passive adversary, and many
attacks have been proposed to break its anonymity guarantees [160, 164, 168, 225, 226].

A category of work target better performance by operating on the network layer. LAP [119]
and Dovetail [187] provide “lightweight” anonymity against a local adversary; they re-encrypt
packet headers but not the contents. Hornet [49] considers a stronger adversary that observes
multiple network location, but that does not fully observe the network. Finally, TARANET [50]
uses circuits that have constant traffic even in the presence of active attacks, achieving traffic-
analysis resistance and low-latency. Network-layer solutions are agnostic to the transported
contents, which can be a disadvantage when designing padding.

Some work target the peer-to-peer setting: Crowds [176] targets Web browsing and pick
paths on the network using a random walk; it has been shown to be vulnerable to route
capture attacks (i.e., malicious nodes proxying all traffic among themselves) and predecessor
attacks [238]. MorphMix [177] presents a collusion-detection technique to avoid the route
capture attack. Tarzan [91] instead makes collusion among nodes harder by selecting paths
using pseudo-randomness; it however requires a lookup mechanism to keep track of all nodes
in the network. I2P [243] is a fully decentralized low-latency network that provides its own
closed-world services, but does not resist a global adversary [212]. ACNs in the P2P setting
scale better than their counterparts and remove single points of failure [243]. However, the
node discovery and the selection of an unbiased path are challenging in this setting.

Mixnets. Mixnets have been introduced by Chaum [47]. It was followed by several proposals
to mix emails: Babel [111], Mixmaster [158] (a type II remailer), Mixminion [67] (a type III
remailer). These systems collect messages until a threshold is reached, at which point they
are sent to the next hop; this introduces significant latency. The latter design by Danezis et al.
use a new packet format to handle replay attacks and tagging attacks. They improve resilience
against flooding attacks using a timed dynamic pool batching strategy, yet do not fully resist
such active attacks. Several other mixing strategies have been presented, notably Stop-and-Go
mixes [129]. In such systems, messages are independently delayed at mixes without batching,
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and the mix work in a continuous manner. More complex designs eliminate some active
attacks using techniques such as zero-knowledge proofs [122] and verifiable shuffles [93, 159].

Modern mix-network approaches improve scalability and efficiency with new topologies and
other techniques. Vuvuzela [220] is a mixnet with differential-privacy guarantee against a
strong, active attacker. The differential-privacy guarantee enables quantifying precisely what
is revealed to an adversary performing an active attack, and enables Vuvuzela to precisely
chose how much noise should be injected in the system to resist the attack. Alpenhorn [143]
is a variant optimized for the bootstrapping of communication: users don’t communicate
directly on Alpenhorn but derive a key that can be used with other systems. Alpenhorn’s
dialing mechanism uses Identity-Based-Encryption to provide forward-secret key exchanges
without using a global key directory. Stadium [216] improves upon Vuvuzela and tackles
horizontal scalability. Its mixnet is layered: it has (1) small groups of anytrust servers that
mix a fraction of the messages, and (2) distribution layers that mix messages between all
anytrust groups. It uses verifiable processing to ensure that noise messages are properly
forwarded through the mixnet. In the same vein, Atom [136] focuses on horizontal scalability
using a mixnet composed of small anytrust groups of servers. Atom is a free-path mixnet that
uses a new re-encryption scheme. Unlike Stadium and Vuvuzela, Atom relies on standard
cryptographic assumptions and not on differential privacy: thus, it has stronger guarantees
against active attacks at the cost of worse performance. However, to ensure that messages
can be exchanged, users must send more data compared to Atom. Karaoke [141] improves
upon Vuvuzela with a new topology, and by reducing the amount of noise and computations
needed. Messages in Karaoke either double-pair with a recipient, or pair with themselves in
the absence of communication. This reduces the information revealed to the adversary. The
noise verification is done using Bloom filters instead of expensive proofs. The topology is also
more horizontal than in Vuvuzela, and Karaoke uses longer paths to achieve proper overall
mixing. Yodel [142] builds upon Karaoke and focuses on low-latency for VoIP calls. It uses fast
circuits that only require symmetric cryptography, and that are re-used for several messages
during a conversation. Each user has up to one active conversation at any time.

Aqua [145] is a system to provide anonymous file sharing. It uses a weaker threat model than
related works: Users are organized in trust zones, which corresponds to their anonymity set,
and their provider in this trust zone is assumed to be honest. Herd [144] is an anonymous
communication system for VoIP with similar assumptions. To reduce bandwidth usage, Herd
proposes a hybrid architecture with a first layer of P2P clients, which connect to a set of servers
on the Internet. Both these works do not resist a global adversary who observes the source
and destination trust zone.

Loopix [171] is a modern Stop-and-go mixnet that delays messages independently. Loopix
uses Poisson noise and exponential delays to ensure that mixes are memoryless, and hence
achieve good mixing without batching. Mix-servers and users use self-loops to detect some
active attacks. Users connect to a semi-trusted service provider that sends and receives
messages for them if they disconnect. AsynchroMix [151] uses an asynchronous multiparty
computation to mix broadcast messages. It focuses on shuffling messages when servers can go
offline or delay processing messages. Finally, XRD [138] proposes a novel design composed of
parallel independent mix-chains. Each mix-chain thwarts active attacks using aggregate hybrid
shuffles. To communicate across chains and achieve global mixing, each users participates
in l of these mix-chains, where l is minimized while ensuring that every pair of users have
at least one mix-chain in common. Hydra [188] uses circuits to connect two endpoints like
Tor’s hidden services. It addresses some of Tor’s vulnerabilities by routing messages through a
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mixnet on synchronous rounds. However, it does not hide the number of active conversations
to the adversary, which allows for intersection attacks.

PIR-based. Riposte [61] enables anonymous microblogging using a “reverse-PIR” that allows
private writes, similar to a DC-net. They improve communication efficiency using distributed
point functions and using a database design that can recover from two-ways collisions. They
propose two systems: an efficient one based on two non-colluding servers, and a more
heavyweight variant that uses a set of anytrust servers. Riffle [137] is a more efficient variant
that uses a mixnet for uploading messages and a PIR scheme for download. In a similar vein to
Yodel, they use a hybrid construction that first sets up a shuffle using asymmetric cryptography,
but then anonymizes messages using only fast symmetric cryptographic operations. However,
their guarantee is cryptographic, not differentially-private. Like DC-nets, Riffle requires re-
running the setup phase in case of client churn.

Pung [8] proposes a novel PIR construction to lower the costs of anonymous communications.
Pung optimizes the bandwidth costs using a private search to first locate indices of interest,
then by batching the retrievals. However, despite the improvements brought by the amortized
operations, fetching a message still involves a number of operations that is linear in the size
of the database. Express [84] optimizes a PIR construction to reduce the cost of reads, while
making writes more expensive. As a result, clients in Express can retrieve messages cheaply
but the system only supports sending tens of messages per second across all clients.

Metal [51] provides anonymous file sharing using two semi-honest, non-colluding servers. It
uses a combination of secure two-party computation and ORAM to allow users share these
files, even when they are not online at the same time.

DC-nets. DC-nets [48] work by having all clients send a share of a message. These shares are
collected and combined into one anonymous message. By design, users are synchronized
and must send the share at the appropriate time: the collective output is delayed until all
shares are sent. Most systems have provable traffic-analysis resistance and typically have high
bandwidth and latency costs.

Dissent [62, 233] and Verdict [63] operate at the application layer; Dissent brings DC-nets
to the anytrust model with a client/server reducing the number of keys, whereas Verdict
thwarts some active attacks with a verifiable DC-net. Herbivore [99] propose to organize users
in small clusters to improve communication efficiency. Finally, DC-nets have been further
studied with an emphasis on detecting malicious behavior from insiders [63, 101], collisions
resolutions [94, 95], user scheduling [133] and applications to voting [219].

4.4 PriFi: Anonymous Communications for Local-Area Networks

We now present PriFi, an ACN tailored for organizational networks: it protects users from
eavesdropping and tracking attacks. PriFi targets the setting of local-area networks (e.g., non-
governmental organizations, companies, universities), for which typical ACNs tailored to the
Internet and are poorly suited. PriFi exploits the characteristics of LANs and WLANs to provide
high-performance traffic-analysis resistant communication against a strong adversary.

PriFi builds on Dining Cryptographers networks (DC-nets), but reduces the high communi-
cation latency of prior designs via a new client/relay/server architecture, in which a client’s
packets remain on their usual network path without additional hops, and in which a set of
remote servers assist the anonymization process without adding latency. PriFi also solves the
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Figure 4.4.1 – PriFi’s architecture consisting of clients, a relay, and group of anytrust servers
called the guards. Clients’ packets remain on their usual network path without additional
hops, unlike in mix-networks and onion-routing protocols.

challenge of equivocation attacks, which are not addressed by related work, by encrypting
traffic based on communication history. Our evaluation shows that PriFi introduces modest
latency overhead (≈ 100ms for 100 clients) and is compatible with delay-sensitive applications
such as Voice-over-IP.
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4.4.1 Introduction

Local-area networks (LANs and WLANs) deployed in organizational networks are vulnerable
to eavesdropping attacks. Sensitive traffic is usually encrypted, but metadata such as who
is communicating and the communication patterns remain visible. Such metadata enable
an eavesdropper to identify and track users passively [90, 240], to infer contents and end-
points [42, 46, 80, 103, 164, 189, 226, 231], and potentially to perform targeted attacks on
high-value devices and users. Eavesdropping attacks can be performed by a single compro-
mised endpoint or malicious user. This is particularly worrisome when the users are loosely
trusted, or when the organizational network is deployed in an adverse environment. For
example, the International Committee of the Red Cross (ICRC) has strong privacy and se-
curity needs regarding their communications: a previous study confirms that its “staff and
beneficiaries need to communicate in a multitude of adverse environments that are often
susceptible to eavesdropping, to physical attacks on the infrastructure, and to coercion of the
personnel” [146].

To protect against eavesdropping in LANs, few solutions exist today. Standard encryption
protocols (e.g., TLS, VPNs, IPsec) do not hide the identity of the communicating entities [109,
110, 179]. VLANs isolate users but do not hide the traffic patterns on wireless channels, which
remains visible even when the network infrastructure is not compromised, e.g., in the case of
a parking-lot attack1. In both cases, an attacker can use traffic-analysis attacks to passively
track individuals and infer communication’s contents (e.g., identifying endpoints such as

1Attacking or eavesdropping on a wireless network from the parking lot outside a company building, e.g., using
specialized antennas.
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websites [42, 103, 164, 226], contents such as videos streams [80, 189], or even English words
in encrypted Skype calls [46, 231]).

Anonymous communication networks (ACNs) are designed to conceal the communicating
entities; however, most ACNs are designed for the Internet and translate poorly to the LAN
setting. Most ACNs rely on mix-networks or onion-routing, a common drawback of which is
that their security relies on routing the traffic through a series of servers distributed around
the Internet [49, 50, 78, 136, 171]. First, this implies that internal communications in the
organization’s network would need to be routed over the Internet. More importantly, to
minimize the risks of coercion and collusion, these servers are typically spread across different
jurisdictions, hence these designs introduce significant latency overhead.

Dining Cryptographers networks (DC-nets) [48] are an anonymization primitive that could be
attractive in terms of latency in some contexts, as their security relies on information coding
and not on sequential operations done by different servers. In theory, therefore, anonymity can
be achieved without high-latency server-to-server communication. This theoretical appeal
has not been achieved in practice, however. Previous DC-net systems such as Dissent [62],
Dissent in Numbers [233], and Verdict [63] still use costly server-to-server communication,
thus imposing latencies in the order of seconds [233], and notably routing users’ traffic through
the servers.

We present PriFi, the first low-latency anonymous communication network tailored to organi-
zational networks. PriFi provides anonymity against global eavesdroppers: Users are assured
that their communication patterns are indistinguishable from the communications of other
PriFi users, even if the local network infrastructure is compromised. To anonymize IP packet
flows, PriFi works at the network level like a VPN. Unlike a VPN, however, PriFi’s security
does not depend on a single endpoint, and the protocol provably resists traffic analysis. PriFi
provides low-latency, traffic-agnostic communication suitable for delay-sensitive applications
such as streaming and VoIP, at the cost of higher LAN bandwidth usage.

Compared with previous work, PriFi significantly reduces communication latency through a
new three-tier architecture composed of clients, a relay in the LAN (e.g., a router), and guard
servers that are geographically distributed over the Internet (Figure 4.4.1). This architecture is
compatible with organizational networks, and enables PriFi to avoid major latency overheads
present in other ACNs. Unlike previous DC-net systems that use multi-hop, multi-round
protocols, and costly server-to-server communications [62, 63, 233], PriFi achieves similar
guarantees while removing all server-to-server communications from the latency-critical
path. To produce anonymous output, PriFi ciphertexts pre-computed and sent by the guards
are combined locally at the relay, so that relay↔guard delay does not affect the latency ex-
perienced by clients. Moreover, the traffic from clients remains on its usual network path,
client↔relay↔destination, and does not go through the guards. Some added latency results
from buffering and software processing, but not from additional network hops. As a result,
PriFi’s latency is 2 orders of magnitude lower than the closest related work with the same
setup [233].

We also present a solution for equivocation attacks, i.e., de-anonymization by a malicious relay
sending different information to different clients and analyzing their subsequent behavior.
Previous DC-net systems are vulnerable to this attack, but do not address it [62, 63, 233].
Equivocation attacks can be detected using consensus or gossiping between the clients, at a
high bandwidth and latency cost. We present a new low-latency, low-bandwidth solution that
relies on binding encryption to communication history.
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Figure 4.4.2 – Example of a 1-bit DC-net.

We evaluate PriFi on a topology corresponding to an organizational network. We observe that
the latency overhead caused by PriFi is low enough for VoIP and video conferencing (≈ 100 ms
for 100 users), and that the internal and external bandwidth usage of PriFi is acceptable in an
organizational network (≈ 40 Mbps in a 100 Mbps LAN). In comparison, the latency of the
closest related work, Dissent in Numbers [233], is 14.5 seconds for 100 clients on the same
setup. One part of the evaluation is dedicated to the ICRC scenario; we replay real network
traces recorded at an ICRC delegation and find that the increase in latency is tolerable in
practice (between 20 and 140ms on average).

Our contributions in this section are as follows:

• PriFi, a low-latency, traffic-agnostic, traffic-analysis-resistant anonymous communica-
tion network, building on a new DC-nets architecture optimized for LANs;

• A low-latency method of protecting DC-nets against disruption attacks (i.e., jamming)
by malicious insiders;

• A new low-latency defense against equivocation attacks;
• An analysis of the effect of user mobility on DC-nets.

4.4.2 Background

A Dining Cryptographers network or DC-net [48] is a protocol that provides anonymous
broadcast for a group of users who communicate in lock-step, in successive rounds. In a given
round, each user produces a ciphertext of the same length. One user also embeds a plaintext in
its ciphertext. Combining all users’ ciphertexts reveals the plaintext, without revealing which
user sent it.

Figure 4.4.2 shows an example of a 1-bit DC-net. Each pair of users derives a shared secret (in
red). Each user’s ciphertext is the XOR of his shared secrets (in green). Bob, the anonymous
sender, also XORs in its message (in blue). By XORing all ciphertexts together, all shared secrets
cancel out, revealing the anonymized message. If at least two users are honest, this protocol
achieves unconditional sender anonymity. Every user sends a ciphertext of the same length,
ciphertexts from honest parties are indistinguishable from each other without all shared
secrets, and a single missing ciphertext (from an honest party) prevents the computation of
the output.
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In practice, to produce ciphertexts for multiple rounds, shared secrets are used to seed pseudo-
random generators.

Impact of Topology. The original DC-net design [48] requires key material between every pair
of members. Dissent [233] and subsequent work [63] present a more scalable two-tier topology
made of clients and servers, which reduces the number of keys. However, the client/server
topology has a significant negative impact on latency: It requires several server-to-server
rounds of communication to ensure integrity, accountability, and to handle churn. PriFi
avoids this drawback with a new client/relay/guard architecture.

Disruption Protection. Vanilla DC-nets are vulnerable to disruption attacks from malicious
insiders [48], where a malicious user can corrupt other clients’ messages. Some previous work
uses proactively verifiable constructions that are too slow for low-latency communication [63].
Others use “trap bits” and “blame mechanisms” [234] that require minutes to hours to find dis-
ruptors, mainly due to expensive server-to-server communication. PriFi uses a new retroactive
blame mechanism to detect disruptors in seconds.

Equivocation Protection. Answers to anonymous messages are typically broadcast to all users.
Previous DC-net designs did not address equivocation attacks, where a malicious server sends
each client different, identifiable information to distinguish the anonymous receiver (see
§4.4.7). Equivocation thus represents a practical attack vector against prior systems [62, 63,
233]. Equivocation attacks can be detected using consensus [139] or gossiping [194] between
the clients, at a high bandwidth and latency cost. In PriFi, in contrast, messages from clients
cannot be decrypted if an equivocation attack occurs, and PriFi protects against this threat
without communication among clients.

4.4.3 System Overview

PriFi is similar to a low-latency relay or gateway service within a LAN, like a VPN or SOCKS
proxy, which tunnels traffic between clients and the relay (e.g., a LAN router). Informally, these
tunnels protect honest clients’ traffic from eavesdropping attacks. The traffic is anonymized,
preventing a third party from assigning a packet or flow to a specific device or end-user.
Additionally, unlike traditional proxy services, (1) the relay need not be trusted, i.e., security
properties hold in case of compromise, and (2) the communications provably resist traffic-
analysis attacks.

4.4.3.1 System Model

Consider n clients C1, . . . ,Cn that are part of an organizational network and are connected to a
relay R. The relay is the gateway that connects the LAN to the Internet (e.g., a LAN or WLAN
router, Figure 4.4.1) and typically is already part of the existing infrastructure. The relay can
process regular network traffic, in addition to running the PriFi software.

The system uses a small set S1, . . . ,Sm of m servers, called guards, whose role is to assist the
relay in the anonymization process. These guards could be maintained by independent third
parties, similar to Tor’s volunteer relays, or sold as a “privacy service” by companies. To
maximize diversity and collective trustworthiness, these guards are distributed around the
world, preferably across different jurisdictions. Therefore, the connections between the guards
and the relay are assumed to have a high latency.
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4.4.3.2 Threat Model

Let A be a computationally-bounded global passive adversary who observes all network traffic.
In addition to the passive adversary, as PriFi is a closed-membership system, we consider
and address active attacks from insiders, but not active attacks from outsiders, which are
fairly orthogonal to PriFi and can be addressed via adequate server provisioning [172] or
denial-of-service protection [166].

Most clients may be controlled by the adversary A, but we require at least two honest clients
at all times: otherwise, de-anonymization is trivial. The guards are in the anytrust model [62,
220, 233]: we assume that least one guard is honest, but a client does not need to know which
one, and we assume all guards to be highly available.

Finally, the relay is considered malicious but available: it may actively try to de-anonymize
honest users or perform arbitrary attacks, but it will not perform actions that only affect the
availability of PriFi communications such as delaying, corrupting, or dropping messages.

4.4.3.3 Goals

Anonymity. In PriFi, users can send messages to entities outside of the LAN. Similarly, a
sender outside of the LAN may send a message to a PriFi member (it is then broadcasted to
all members). A sender or recipient external to a PriFi network is not anonymous. Thus, we
model Alice and any message m output by the protocol, without specifying a recipient: Alice
might be the sender of m (Alice →m) or not (Alice 6→m). Given the adversary’s A observations
O, the formulation for anonymity in PriFi is:

Pr[O|Alice →m] = Pr[O|Alice 6→m] (4.2)

That is, the adversary’s observation do not change whether Alice is the sender of a message or
not. The formulation for Alice receiving a message is identical.

The definition is tied to a particular message m because for the sake of efficiency, the goal is not
to hide all metadata: the adversary is allowed to observe whether any user is sending/receiving
a message or not – but not which honest user. PriFi protects one honest user’s traffic among
all honest users’ traffic, but does not hide global/aggregate communication volumes or time-
series of packets. Informally, an eavesdropper could learn that some honest user is browsing
the Web, or using VoIP, but not which honest user.

Accountability. We also informally specify a second goal: Misbehaving parties should be
traceable without affecting the anonymity of honest users.

4.4.3.4 PriFi Solution Overview

PriFi starts with a setup phase where clients authenticate themselves to the relay. Clients
and guards then derive shared secrets. Finally, clients are organized in a schedule (a secret
permutation) to decide when they communicate.

Upstream Traffic. The clients and the guards run a DC-net protocol. Communication occurs
in short time slots. In each time slot, each client and guard sends a ciphertext to the relay.
The slot owner can additionally embed some payload. The relay waits for all ciphertexts,
then computes the anonymized output. This reveals one or more IP packet(s) without source
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address; the relay replaces it with its own IP address (as in a NAT) and forwards it to its
destination.

Due to the construction of the DC-net, this protocol ensures provable anonymity. Ciphertexts
are indistinguishable from each other to the adversary. During a slot, each client sends exactly
the same number of bits. Finally, if the contribution from any honest client is missing, the
output is undecipherable.

Precomputation of Ciphertexts. The ciphertexts from the guards are independent of the
anonymous payloads. Hence, a key optimization is that guards’ ciphertexts are batch com-
puted and sent in advance to the relay. The relay buffers and pre-combines the ciphertexts
from multiple guards, storing a single stream of pseudo-random bits to be later combined with
clients’ ciphertexts. This enables PriFi to have low latency despite the presence of high-latency
links between the guards and the relay.

Latency-Critical Path. Another important advantage of combining locally the ciphertexts is
that clients’ packets remain on their usual network path. The added latency is due mostly to
the relay’s need to wait for all clients. Similar systems that route clients’ traffic between servers
distributed around the Internet incur much higher latency.

Downstream Traffic. When receiving an answer to an anonymous message sent in some time
slot, the relay encrypts it under the (anonymous) slot owner’s public key, then broadcasts
the ciphertext to all clients. As each client receives exactly the same message, this achieves
anonymity goal for downstream traffic.

For broadcasting the downstream message, rather than performing n unicast transmissions,
the relay exploits the LAN topology and uses UDP broadcast, letting layer-2 network equipment
(e.g., switches) replicate the message if needed. In WLANs, such a broadcast requires only
one message, achieving receiver anonymity at no bandwidth or energy cost in the absence of
link-layer retransmissions.

4.4.4 Design

4.4.4.1 Preliminaries.

For convenience, all symbols used are summarised in Appendix B, Table B.1.

Let λ be a standard security parameter, and let G be a cyclic finite group of prime order where
the Decisional Diffie-Hellman (DDH) assumption [35] holds (e.g., an elliptic curve).

Let (KeyGen,S ,V) be a signature scheme, with KeyGen(G,1λ) an algorithm that generates the
private-public key pair (p,P ) usable for signing. We denote as Sp (m) the signature of the
message m with the key p.

Let KDF : G(1λ) → {0,1}λ be a key derivation function that converts a group element into a
bit string that can be used as a symmetric key. Let (E ,D) be a ind$-cca2-secure symmetric
nonce-based encryption scheme [183]. We denote as Ek (m) the encryption of the message m
with the key k.

Let H : {0,1}∗ → {0,1}λ be a standard cryptographic hash function. We use the random oracle
model to model the output of H . Let PRG : {0,1}λ → {0,1}∗ be a standard pseudo-random
generator. Let F1 : {0,1}λ→G be a public, invertible mapping function from binary strings to
G, and let F2 : {0,1}∗ →G be a hash function to G which maps to any point in G with uniform
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probability (e.g., Elligator Squared [211]). Finally, let F3 : {0,1}∗ →N be a public function that
maps bitstrings to non-zero integers.

Identities. Each party has a long-term key pair (denoted with the hat symbol) generated with
KeyGen(G,1λ):

• (p̂i , P̂i ) for client Ci , with i ∈ {1, . . .n}
• (p̂ j , P̂ j ) for guard S j , with i ∈ {1, . . .m}
• (p̂r , P̂r ) for the relay

Let v be the vector notation for v . For each epoch, the group definition G consists of all
long-term public keys G = (P̂i , P̂ j , P̂r ), i ∈ {1, . . .n}, j ∈ {1, . . .m}, and G is known to all parties
(e.g., via a public-key infrastructure). Finally, let T = (P̂1, P̂2, . . .) be a static roster of allowed
clients known to the relay and the clients (e.g., via a configuration file).

4.4.4.2 Protocols

PriFi starts with the protocol Setup (Algorithm 4.1), followed by several runs of the protocol
Anonymize (Algorithm 4.2).

Setup. Each client authenticates itself to the relay using its long-term public key, and generates
a fresh ephemeral key pair. Then, each client Ci runs an authenticated Diffie-Hellman key
exchange protocol with each guard S j , using the fresh key pair to agree on a shared secret ri j .
This secret is used later to compute the DC-net’s ciphertexts.

Then, to produce a permutation π, the guards shuffle the client’s ephemeral public keys Pi by
using a verifiable shuffle (e.g., Neff’s verifiable shuffle [159]). The public keys in π correspond
to the keys in Pi , in a shuffled order, such that no one knows the full permutation. Only a client
holding the private key pi corresponding to an input in Pi can recognize the corresponding
pseudonym key in π.

Anonymize. After Setup, all nodes continuously run Anonymize. In each time slot, clients
and guards participate in a DC-net protocol. All guards compute one `-bit pseudo-random
message from the PRGs seeded with the shared secrets and send it to the relay. All clients
perform likewise, except for the client owning the time slot, who additionally includes its
upstream message(s) mi in the computation. In practice, mi is one or more IP packet(s)
without source address, up to a total length `. If the slot owner has nothing to transmit, it sets
mi = 0`.

Once the relay receives the n +m ciphertexts from all clients and guards, it XORs them to-
gether to obtain mk . If the protocol is executed correctly, mk is equal to mi , as the values of
PRG(ri j ), i ∈ {1 . . . ,n}, j ∈ {1 . . . ,m} cancel out. If mk is a full IP packet, the relay replaces the null
source IP in the header by its own (just like in a NAT) and forwards it to its destination. If it is a
partial packet, the relay buffers it and completes it during the next schedule.

Then, the relay broadcasts one downstream message d to all clients, each d ∈ d being en-
crypted with a public key P̃k ∈π corresponding to an anonymous client. We emphasize that
the relay does not know for which client it encrypts. Additionally, d is of arbitrary length `′,
possibly much larger than `, easily accommodating downstream-intensive scenarios. Finally,
we emphasize that d can contain data for multiple users (from previous rounds). If the relay
has nothing to transmit, it sends a single 0 bit to indicate the end of the round.
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Algorithm 4.1: Setup

Inputs: λ,G,G ,T

Outputs: schedule π, shared secrets ri j between each pair of client/guard (Ci , S j )

1. Client→Relay Auth. Each client Ci generates a fresh key pair (pi ,Pi ) ← KeyGen(G,1λ) and sends
Pi ,Sp̂i (Pi ) to the relay. The relay checks the signature and that P̂i ∈ T , and replies with Sp̂r (Pi ).

2. Client→Guard Auth. Each client Ci sends Pi ,Sp̂r (Pi ),Sp̂i (Pi ) to all guards.

3. Shared Secrets. Each client Ci derives m secrets ri j = KDF(pi ·P̂ j ); similarly, each guard S j derives
n secrets ri j = KDF(p̂ j ·Pi ) for each client with a valid signature Sp̂r (Pi ) from the relay.

4. Verifiable Shuffle. Clients participate in a verifiable shuffle protocol [159] run by the guards, with
the ephemeral keys Pi as input. The public output π consists of n pseudonym keys in permuted
order, such that no one knows which client corresponds to which key except the owner of the
corresponding private key. More formally, we write π= (P̃α(1), . . . , P̃α(n)), where P̃α(i ) = c ·Pi for a
permutation α and some constant c . At the end of this step, clients receive π along with a transcript
signed by all guards.

Safety checks. In step 4, the honest guard checks that each input Pi corresponds to a client with a
valid Sp̂r (Pi ), or aborts.

At the end of Setup, honest clients check that (1) the verifiable shuffle completed correctly, (2) π is
signed by every guard in G , (3) there are at least K = 2 clients in T in the input, and (4) that its own
shuffled pseudonym is included in the permutation; if any test fails, it aborts.

Finally, the relay creates n empty dictionaries bk , indexed by k =α(i ), to keep track of IP sockets
later used for packet forwarding.

Algorithm 4.2: Anonymize

Inputs: ri j ,π, upstream message size `, downstream message size `′

Outputs: per round k: anonymous message mk , downstream traffic d .

For round k ∈ {1, . . .n}:
• Each client Ci sends to the relay ci ← DCNet-Gen(ri j , xi ) with

xi =
{

mi , if α(i ) = k, // Ci is the sender

0, otherwise.

• Each guard S j sends to the relay s j ← DCNet-Gen(ri j ,0).

• The relay computes mk ← DCNet-Reveal(ci , s j ), with mk ∈ {0,1}` an IP message.

• The relay handles mk as follows:

– If mk does not correspond to an active socket in bk , the relay dials the connection and stores
the socket.

– it puts its own IP address in mk , then sends it in the appropriate socket in bk . // NAT

• The relay computes d ← Downstream(b) and sends d to each client. // broadcast

Function DCNet-Gen(ri j , xi):
return

⊕
r∈ri j

PRG(r ) ⊕ xi // XOR of all pseudo-random pads and xi = mi or 0

Function DCNet-Reveal(ci , s j):
return

⊕
i ci ⊕ ⊕

j s j // XOR all values

Function Downstream(b):
d ← array();

for k ∈ {1, . . .n} do
for socket bk containing downstream bytes d , add EP̃k

(d) to d // poll connections, encrypt

end
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4.4.4.3 Limitations of this protocol

Accountability. No mechanism enforces dishonest parties to correctly follow the protocol;
malicious parties can anonymously disrupt the communications. This is a well-known DC-net
issue [48, 62, 233], addressed in Section 4.4.6.

Downstream Anonymity. This notion refers to the clients being indistinguishable when
receiving downstream messages, which is trivially the case if the relay truthfully sends the
same downstream data to all clients. This property is not enforced above, but is addressed
later in Section 4.4.7.

4.4.5 Practical Considerations

End-to-End Confidentiality. A malicious relay can see the upstream message plaintexts. This
is also the case for a VPN server or Tor exit relay; clients should use standard end-to-end
encryption (e.g., TLS) on top of PriFi.

Churn. In the case of churn, e.g., if any client or guard joins or disconnects, the relay broadcasts
a Setup request that signals the start of a new epoch. Upon reception, each node aborts and
re-runs Setup. Churn negatively affects performance; we evaluate its effect in Appendix B.6.

Bandwidth Usage. To reduce idle bandwidth usage, the relay periodically sends a “load
request” in which clients can anonymously open or close their slots. The relay skips a closed
slot, hence saving time and bandwidth. If all slots of a schedule are closed, the relay sleeps for
a predetermined interval, further saving bandwidth at the cost of higher initial latency when
resuming communications. The concrete parameters of this improvement (e.g., frequency
of the load requests, sleep time) are not fully explored in this work; they exhibit a typical
latency-bandwidth usage trade-off.

We emphasize that load tuning does not reduce the anonymity set size; all clients still transmit
ciphertexts exactly at the same time. Load tuning makes global communication volumes and
packet timings more visible to an external eavesdropper, but our threat model considers a
stronger, local eavesdropper (the malicious relay) who has access to this information anyway.

Finally, although this has not been investigated in this work, both up/down-stream sizes ` and
`′ can be dynamically tuned without interrupting the communications. This allows the relay
to better match the sending/receiving rates of the clients and further reduce idle bandwidth
usage.

Synchronicity. The protocol uses message reception events, rather than clocks, to keep the
participants in lock-step.

4.4.6 Disruption Protection

In the basic protocol above, a malicious active insider can modify or jam upstream com-
munications by transmitting arbitrary incorrect bits instead of the ciphertext defined by the
protocol. This is particularly problematic because the attacker is provably anonymous and
untraceable.

In the related work, these attacks can be detected retroactively using “trap bit” protocols [233]
that detect a disruptor with a certain probability but reduce the throughput linearly with
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respect to the number of trap bits. Unfortunately, the probability of detection must be high
enough to detect a single bit-flip, which can effectively corrupt a message. Another technique
is to rely on commitments before every DC-net message [62], which adds latency.

Some DC-nets use group arithmetic instead of binary strings, which enables proving (proac-
tively or retroactively) that computations are correct [63, 101]. These designs do not fit low-
latency requirements, unfortunately, as their computation time is significantly higher: tens
of milliseconds per message for the computation alone, whereas XOR-based DC-nets take
microseconds. A brief analysis of this computational cost is provided in Verdict [63] (Figure 6).

PriFi uses a retroactive, hash-based “blame” mechanism on top of a classic XOR-based DC-net,
which (1) keeps the typical operation (in the absence of jamming) as fast as possible, and
reduces the bandwidth lost due to the protection, and (2) excludes a disruptor with high
probability (1/2 per flipped bit). Exploiting the LAN topology, our exclusion mechanism takes
seconds, which is orders of magnitude faster than the related work [233].

Protocol. In Anonymize-With-Integrity (Appendix B, Algorithm B.1), we modify the previ-
ous Anonymize protocol (Algorithm 4.2) to protect against disruption from malicious insiders.

In short, we add a hash-based detection of corruption and a blame mechanism to exclude a
disruptor. With each downstream message, the relay sends the hash of the previous upstream
message. If the anonymous sender detects an incorrect hash, it requests a copy of its own
disrupted message by setting a flag becho_last to 1.

When receiving a disrupted copy m′
k of a previously-sent message mk , the client searches for a

bit position z such that (mk )z = 0 and (m′
k )

z
= 1. If such z exists, then the client requests to de-

anonymize the zth bit of his own slot k, by sending a NIZKPoKk,z (p̃k : p̃k = log P̃k ) in its next
upstream message, a non-interactive proof of knowledge of the key p̃(k mod n) corresponding
to slot k in π [34]. The proof is bound to the public values k and z. For simplicity, we write
PoKk,z (p̃k : p̃k = log P̃k ) hereafter, thus ignoring (1) the mod n and (2) the acronym for “Non-
Interactive, Zero-Knowledge”.

If no such z exists, the message was disrupted but the disruptor cannot be traced without
simultaneously de-anonymizing a client (see “Remarks” below for more details). In this case,
nothing happens.

Upon reception of the message PoKk,z (p̃k : p̃k = log P̃k ), the relay starts the Blame (Algo-
rithm 4.3) protocol, which iteratively asks all parties to prove their computations to be correct.
The protocol identifies a pair of entities whose computations do not match, and ultimately
excludes the misbehaving entity.

Limitations. The detection relies on the capacity of the jammed client to transmit becho_last

and the PoK; the adversary also can jam these values. In practice, l is fairly large (e.g., 5 kB),
and the client can use redundancy coding over his message to make the task harder for the
adversary. When this probabilistic solution is insufficient, users can use a verifiable DC-
net [63] to transmit without the risk of jamming; in practice, this verifiable DC-net would
run in background with very low bandwidth and high latency, just enough to transmit the
proof-of-knowledge.

Remarks. In step 3 of Blame (Protocol 4.3), we observe why the client starting the blame
checks that (mk )z = 0: otherwise, revealing PRG(ri j )z over a non-anonymous channel would
flag this client as the sender, as

⊕
j PRG(ri j )z 6= (mk )z .
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Algorithm 4.3: Blame

Inputs: PoKk,z (p̃k : p̃k = log P̃k ),ci , s j

1. The relay broadcasts PoKk,z (p̃k : p̃k = log P̃k ) to every client/guard.

2. Each client/guard checks the PoK, and reveals the zth bit of the values PRG(ri j ) for slot k,
∀i ∈ {1, . . .n}, j ∈ {1, . . .m} by sending a non-anonymous, signed message PRG(ri j )z ,Sp̂i (PRG(ri j )z )
to the relay. A non-complying entity is identified as the disruptor.

3. For each client, the relay checks the signature, and that
⊕

j PRG(ri j )z indeed equals (ci )z sent in
slot k; if a mismatch is detected, this client is identified as the disruptor. The relay performs the
same verification for each guard.

4. For each pair of client-guard (Ci ,S j ), the relay compares PRG(ri j )z from the client and PRG(ri j )z

from the guard — they should be equal. If there is a mismatch, at least one of them is lying. The
relay continues by forwarding the signed message PRG(ri j )z from Ci to S j and vice-versa.

5. Ci checks that PRG(ri j )z is signed by S j , and that the bit PRG(ri j )z is in contradiction with its own
bit PRG(ri j )z . Then, he answers with ri j , the secret shared with S j , along with a proof of
correctness for computing ri j . S j proceeds similarly. A non-complying entity is identified as the
disruptor.

6. The relay checks the proofs of correctness, then uses ri j to recompute the correct value for
PRG(ri j ) for slot k, identifying the disruptor.

Once the disruptor identified, the relay excludes it from the group G and the roster T , and then
broadcasts all inputs and messages exchanged in Blame to all clients for accountability.

In step 5 of Blame (Protocol 4.3), we remark that at least one mismatching pair exists, otherwise
the slot would not have been disrupted. If multiple disruptors exist, Blame excludes one
disruptor per disruption event.

4.4.7 Equivocation Protection

In both versions of Anonymize (Algorithm 4.2 and Algorithm B.1), the relay broadcasts the
downstream traffic d to all clients to ensure receiver anonymity. However, no mechanism
enforces truthful broadcast, so a malicious relay can perform equivocation attacks: i.e., send
different messages to each client, hoping that their subsequent behaviors will reveal which
client actually decrypted the message. This attack can be seen as a “poisoning” of downstream
traffic.

Equivocation Example. Assume clients C1 and C2 are both honest. On the first round, the
relay decodes an anonymous DNS request. Instead of broadcasting the same DNS answer to
C1 and C2, the relay sends two different answers containing IP1 and IP2, respectively. Later,
the relay decodes an anonymous IP packet with IP2 as destination. It can guess that C2 made
the request, as C1 has never received IP2.

In practice, a credible scenario for such an attack is a router infected with malware or compro-
mised by the adversary and spying on honest users of a corporate network, possibly colluding
with the endpoints contacted by the clients.

We note that previous DC-net systems do not mention this issue [62, 63, 233]. The attack
is possible because a malicious party relays the information, which can happen in both
Dissent [233] and Verdict [63]. If the traffic is unencrypted, the attack is trivial. The use
of higher-level encryption (e.g., TLS) can offer a mitigation, if we further assume that the
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remote endpoint does not collude with the malicious relay. In practice, having two particular
entities under the control of the adversary (the relay and some interesting external service,
e.g., WikiLeaks) does not seem impossible, however.

On the contrary, we note that due to their different design, mix-nets and onion-router networks
are typically not affected by this attack.

PriFi Solution. Intuitively, to thwart an equivocation attack, clients need to agree on what they
have received before transmitting their next message. In PriFi, this is achieved without adding
extra latency and without synchronization between clients. Clients encrypt their messages
before anonymizing them; the encryption key depends on the history of downstream messages
and also on the shared secrets with the guards. The relay is thus unable to recover a plaintext if
not all clients share the same history.

4.4.7.1 Protocol

We modify the previous Anonymize and Blameprotocols into their final versions (Algorithm 4.4
and Algorithm B.2).

Anonymize. Each client Ci keeps a personal history hi of downstream communications. Upon
receiving a downstream message d , each client updates the history hi ← H (hi ||d). If F2(hi ) = 0,
that is the representation of hi in G is zero, each client performs additional hashing steps
hi ← H(hi ) until F2(hi ) 6= 0.

Each upstream message is then symmetrically-encrypted with a fresh key γ. This value γ is
sent to the relay, blinded by a function of the downstream history hi ; if all clients agree on the
value hi , the relay can unblind γ and decrypt the message.

Blame. The previous Blame protocol finds a disruptor when values ci or s j are not computed
correctly; we now add a way to validate the new values κi and σ j . Since they are group
elements, we apply a standard non-interactive zero-knowledge proof [34]. More precisely, we
use an Or/And type of NIZKPoK which allows the clients to prove either (1) their ownership of
the slot or (2) that κi is computed correctly.

4.4.8 Practical Considerations

Packet Losses. We note that the equivocation protection is decoupled from link-layer re-
transmissions; if one client fails to receive a packet, it will ask the relay again after a timeout,
delaying all clients for this specific round (which is unavoidable for traffic-analysis resistance)
but not invalidating the whole epoch with a wrong hi value.

Remark. Due to the “Or” format of the PoK, we note that a malicious client can jam their
own slot, then send arbitrary Qi values in step 7 of Blame, and still pass the PoK because of
their knowledge of p̃k . However, this has no benefit for the adversary, as mismatching Qi ’s are
simply checked in the following steps of Blame, with no effect on honest parties.
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Algorithm 4.4: Anonymize-Final
The differences with Anonymize-With-Integrity (Algorithm B.1) are highlighted in blue.

Inputs: ri j ,π,`,`′

Outputs: per round k: mk , d .

For round k ∈ {1, . . .n}:
• Each client Ci sends to the relay ci ,κi ← DCNet-Gen-Client(ri j ,mi ,hi )

• Each guard S j sends to the relay s j ,σ j ← DCNet-Gen-Guard(ri j )

• The relay computes mk ← DCNet-Reveal2(ci , s j ,κi ,σ j ) with mk ∈ {0,1}l or ⊥.

• The relay handles mk as follows:

– if mk is a Blame message, it starts the Blame protocol,

– else, it sends mk in the appropriate socket in bk .

• The relay outputs d ← Downstream2(b, H(mk ),k,becho_last)

• The relay updates hr ← H(hr ||d), and sends d ,Sp̂r (hr ) to each client.

• When receiving d , each client checks the signature Sp̂r (hr ) or aborts.
Then, each client Ci updates hi ← H(hi ||d). If F2(hi ) = 0,hi ← H(hi ).

Function DCNet-Gen-Client(ri j ,mi ,hi):

1. compute xi as follows:

• if α(i ) = k:
// Ci is the sender. Upstream message xi is a Blame accusation or Eγ(mi )

– if slot k ′ was disrupted, xi ← PoKk,l (p̃k : p̃k = log P̃k )

– else, pick γ
$← {0,1}λ, compute m′

i = Eγ(mi ), and set xi ← m′
i ||becho_last

• else, xi ← 0

2. compute ci ←⊕
j PRG(ri j ) ⊕ xi // DC-net computation to send xi

3. compute κi as follows: // equivocation-protection tag

• if α(i ) = k: κi ← F1(γ)+F2(hi ) ·∑m
j=1 F3(H(PRG(ri j ))) // sender transmits γ blinded

• else, κi ← F1(γ)+F2(hi ) ·∑m
j=1 F3(H(PRG(ri j )))

return ci ,κi

Function DCNet-Gen-Guard(ri j , xi):
s j ←⊕

i PRG(ri j )

σ j ←−∑n
i=1 F3(H(PRG(ri j ))) // equivocation-protection tag

return s j ,σ j

Function DCNet-Reveal2(ci , s j):
m′

k ←⊕
i ci ⊕ ⊕

j s j

F1(γ) ← F2(hr ) ·∑m
j=1σ j + ∑n

i=1κi // the relay unblinds γ from the κi ,σ j if all hi are equal

mk ←Dγ(m′
k )

return mk

75



Reducing Metadata Leakage from Communications

4.4.9 Security Analysis

Anonymity. Let m be the output of the protocol Anonymize-Final (Algorithm 4.4) on a
particular round k. Then, for an honest user Alice, our security definition requires that:

Pr[O|Alice →m] = Pr[O|Alice 6→m] (4.3)

That is, the adversary’s observations O are indistinguishable whether Alice is sender of m
(Alice →m) or not.

We demonstrate that PriFi meets the security definition in three consecutive steps:

1. If Setup terminates without failing for any of the honest participants, then the schedule
is unknown to A (Property B.3.1).

2. If Setup terminates without failing for any of the honest participants, for any message
m output by Anonymize-Final, then the adversary has no advantage in guessing the
source of any message sent by an honest user. In short, Pr[O|Alice →m] = Pr[O|Alice 6→m

] (Property B.3.2).
3. If Setup terminates without failing for any of the honest participants, and a slot k is

disrupted, resulting in the execution of Blame-Final; then, the additional information
revealed to A through the protocol Blame-Final does not affect the anonymity of
honest clients (Property B.3.3).

Anti-equivocation. We demonstrate the following properties regarding equivocation attacks:

1. If two honest clients received different downstream messages di 6= d j on round k, then
nor the relay, nor A can decrypt mk for any subsequent rounds k ′ > k (Property B.3.4).

2. An honest relay is never accused of an equivocation attack (Property B.3.5).

Availability. We analyze the following properties:

1. If a client (or guard) sends arbitrary values instead of the values specified in the proto-
col, and if Blame-Final is started by the relay, then one malicious client (or guard) is
identified as the disruptor and is excluded from subsequent communications. (Proper-
ties B.3.6, B.3.7).

2. Honest parties are never identified as disruptors (Property B.3.9).

The properties and their proofs are in Appendix B.3.

4.4.10 Evaluation

We implemented PriFi in Go [21]. We evaluate it on a LAN topology typical of a small organiza-
tional network.

Methodology. First, we measure the end-to-end latency via a SOCKS tunnel without data, by
having a client randomly ping the relay. Second, we compare PriFi with the closest related
work, Dissent in Numbers [233]. Third, we replay network traces that correspond to various
workloads on PriFi and we measure the added latency and the bandwidth usage.

Experimental Setup. We use Deterlab [75] as a testbed. The experimental topology consists
of a 100 Mbps LAN with 10 ms latency between the relay and the clients. We run three guards,
each having a 10 Mbps link with 100 ms latency to the relay. We use nine machines, one
dedicated to the relay and one per guard. The clients are simulated on the remaining five
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(a) End-to-end latency of PriFi experienced by one
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Figure 4.4.3 – End-to-end latency and comparison with Dissent in Numbers.

machines, distributed equally. All machines are 3 Ghz Xeon Dual Core with 2 GB of RAM. We
focus our evaluation between 2 and 100 users, which is inspired by the ICRC’s operational sites
(90% of them have less than 100 users).

Security Parameters. We rely on the Kyber cryptographic library [73]. We use λ = 256 bits,
Curve25519 for G, SHA-256 as a hash function, and Schnorr signatures. The DC-net PRG uses
BLAKE2 as an extensible output function.

Figure 4.4.3a shows the latency of the PriFi system, i.e., the time needed for an anonymized
packet to be sent by the client, decoded by the relay, and sent back to this same client. In
this experiment, one random user is responsible for measuring these “pings”, whereas others
only participate in the protocol without sending data (i.e., the number of active users is 1,
anonymous among all users). We observe that the latency increases linearly with the number
of clients, from 58 ms for 20 users (e.g., a small company) to 86 ms for 100 users, and it scales
reasonably well with the number of clients. We also observe that a major component of the
latency is the buffering of messages by the clients; with only one slot per schedule, clients
must wait for this slot before transmitting data. To reduce the time spent waiting on the slot,
we alter the scheduling mechanism and let clients “close” their slot if they have nothing to
send, thus enabling other clients to transmit more frequently. This reservation mechanism
improves the situation where many users are idle.

Comparison with D#. We select two related works for comparison. The closest is Dissent in
Numbers (abbreviated D#) [233]. Like PriFi, D# provides provable traffic-analysis by using
binary-string-based DC-nets, has similar assumptions (M anytrust servers) but with no partic-
ular emphasis on being low-latency. We then compare with a more recent ACN, Riffle [137]: it
has a similar topology but emphasizes on minimizing the download bandwidth for clients. We
do not compare with mix-nets and onion-routing protocols, whose architecture is significantly
different, in that users’ messages are routed sequentially through multiple hops over the Inter-
net. The first major difference between PriFi and both Riffle and D# is in the functionality of
the guards: Both protocols require several server-to-server communications per round before
outputting any anonymized data.
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Figure 4.4.4 – PriFi performance when 5% of the users perform a Skype call (CRAWDAD
dataset). The remaining 95% of the users are idle.

We deploy Riffle and D# on our setup and compare their latency against PriFi in Figure 4.4.3b.
For 100 users, a round-trip message takes ≈14.5 seconds in D# (excluding setup), ≈31 seconds
in Riffle (which includes a one-time setup cost of ≈7.3 seconds), and 137 ms in PriFi (excluding
setup).

Realistic Datasets. We evaluate the performance of PriFi when replaying the dataset ‘app-
trafictraces’ [192] from CRAWDAD [65]. We selected two sub-traces: a ‘Skype’ trace where one
client performs a VoIP (non-video) call for 281 seconds and a ‘Hangouts’ where one client
performs a video call for 720 seconds.

Using the same setup as before, 5% of the clients are randomly assigned packet traces from
a pool and, after a random delay r ∈ [0,30] seconds, they replay the packets through PriFi.
The relay decodes the packets and records the time difference between the decoded packet
and the original trace. Because most endpoints in the traces were not reachable anymore on
today’s Internet, the recorded latency does not include the communication to the Internet
endpoints, but only the latency added by PriFi.

We also replay a dataset recorded at a ICRC delegation from June to July 2018. The capture
contains network-level packet headers only, corresponding to all network traffic for 30 days of
capture. During active periods, corresponding to work days, the mean number of users is 60.9,
with a standard deviation of 5.8. Also during active periods, the mean bitrate of the network is
of 3.1 Mbps, with a standard deviation of 4.7 and a (single) peak at 25 Mbps corresponding to a
bulk file transfer. To evaluate PriFi with this dataset, we first randomly select 10 1-hour periods
from the active periods (i.e., we exclude weekends and nights); we replay those 10 sub-traces
and measure the latency and bandwidth overhead. During this hour, we simulate a varying
number of clients: First, we identify (and only simulate) local clients, identified by an IP
address of the form 10.128.10.x; these clients replay their own packets. Second, when needed,
we add additional clients who represent extra idle users. These clients send no payload data
but increase the anonymity set size. We average the results over the 10 1-hour periods and
over all clients.
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(a) 5% of users performing a Google Hangout video
call (CRAWDAD dataset). The current implemen-
tation performs well with up to 70 users.
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Figure 4.4.5 – PriFi latency with the and ‘Hangouts’ (CRAWDAD) and ICRC dataset. In both
cases, the bandwidth usage (not shown here) is similar to the one observed in Figure 4.4.4b
(except for the payload). In both cases, the baseline is the latency of the LAN (10 ms).

Figures 4.4.4a, 4.4.5a and 4.4.5b show the added latency on the ‘Skype’, ‘Hangouts’ and ICRC
datasets. Figure 4.4.4b shows the bandwidth used; PriFi has similar bandwidth usage for all
three datasets.

We focus first on the latency. In Figures 4.4.4a, 4.4.5a and 4.4.5b, we observe that the latency
increases with the number of clients, which is due to (1) the increasing traffic load going
through PriFi, as more users send data, and (2) to the increasing time needed to collect all
clients’ ciphertexts. We learn the following: First, the mean added latency in the case of a Skype
call (with 5% active users) is below 100ms for up to 80 clients, and below 150ms for 100 clients.
The International Telecommunication Union estimates that the call quality starts degrading
after a 150ms one-way latency increase [121], and users start noticing a degraded quality
after a 250ms one-way latency increase [221]. Hence, the current implementation supports
VoIP calls for 0–80 users and reaches its limits at around 100 clients. Second, the replay of
the ‘Hangouts’ data exhibits similar behavior as the ‘Skype’ dataset; we see that the latency
increases reasonably until 70 users, but then drastically increases: the current implementation
cannot transmit the data fast enough and buffering occurs at the clients.

When replaying the ICRC traces, shown in Figure 4.4.5b, we observe that the added latency
varies between 15 and 147 ms. This experiment was conducted with clients having network
traffic corresponding to the real workload of the ICRC network. In addition, extra idle clients
were simulated to achieve a constant anonymity set size of 100. This result confirms that PriFi
can handle a realistic workload in the case of an ICRC delegation. We emphasize that all traffic
has been anonymized through the same PriFi network, regardless of QoS. In practice, large
file transfer (e.g., backups) would probably either be excluded from a low-latency network,
or anonymized through other means (e.g., PriFi configured to provide higher throughput at
higher latency).

We focus now on the bandwidth usage (Figure 4.4.4b). The bandwidth used by the system is
split into two components: the bandwidth used in the LAN, and in the WAN. We also show
the bitrate of the payload, as an indication of the useful throughput (goodput) of the system.
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We see that the LAN bandwidth usage is typically around 40 Mbps, whereas the WAN usage
varies from 6.9 to 1.3 Mbps. We recall that, in an organizational setting, the bandwidth of the
LAN is typically 100 Mbps or 1 Gbps, and that the bottleneck typically lies on the link towards
the Internet. We also observe that the WAN bandwidth usage decreases with the number of
clients. This is a shortcoming that indicates that PriFi spends more time waiting and less time
transmitting, due to the increased time needed to collect ciphers from more clients. This
means that PriFi cannot fully utilize the available bandwidth to offer minimal latency. This
could be mitigated by increasing the pipelining of rounds for slow clients so that all clients
answer in a timely fashion.

Finally, in Appendix B.4, we briefly evaluate the limits of our implementation in terms of
scalability and the impact of packet loss on the performance. Moreover, we evaluate scenarios
specific to the ICRC in Appendix B.5: Our implementation supports anonymizing a remote
user outside of the organization, at a latency cost of 2−4x the baseline. When a local trusted
guard can be leveraged, the latency of our protocol is reduced by a factor of 2. To conclude our
evaluation, we analyze the impact of client churn in Appendix B.6.

4.4.11 Conclusion

We have presented PriFi, an anonymous communication network that protects organiza-
tional networks from eavesdropping and tracking attacks. PriFi exploits the characteristics of
(W)LANs to provide low-latency, traffic-agnostic communication.

PriFi reduces the high communication latency of prior work via a new client/relay/server
architecture. This new architecture removes costly server-to-server communications, and
allows client’s traffic to be decrypted locally, remaining on its usual network path. This avoids
the latency bottleneck typically seen in other systems.

PriFi also addresses two shortcomings of the related work: First, users are protected against
equivocation attacks without added latency or costly gossiping; second, leveraging the LAN
topology, disruption attacks are detected retroactively and orders of magnitude faster.

We have implemented PriFi and evaluated its performance on a realistic setup, mimicking the
targeted ICRC deployment. Our findings show that various workloads can be handled by PriFi,
including VoIP and videoconferencing, and that restrictions usually imposed by DC-nets in
case of churn when users are mobile are not problematic in PriFi.

4.4.12 Limitations

Scalability. The communication costs of our protocol scales linearly with the number of
participants: N +M bits of ciphertext are needed for each 1 bit of output, where N and M are
the number of clients and guards, respectively. For the definition of security we target, we can
demonstrate that at least N bits are necessary: exactly one contribution per client. As a result,
the protocol’s bandwidth usage is very high, and it would not scale to many more users.

Synchronicity. Each output message requires exactly N +M messages from all participants. A
delayed message from any party delays the output accordingly; a disconnection from any party
implies that the output cannot be decrypted. On the side of the guards, this is partially miti-
gated by the fact that their contribution can be processed in advance and buffered. However,
clients are in lock-step and must send messages in a synchronous and timely fashion. While
our experiments showed that re-performing Setup is cheap, it disrupts communications for a
short duration.
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4.5 Rubato: Large-Scale Asynchronous Anonymous Messaging

The previous section presented an anonymous communication network that targets a small
number of users in the specific setting of organizational networks. The solution provides
cryptographic anonymity and has cost that is too high to scale past a few hundred users. We
now focus on the opposite: achieving large-scale anonymity.

In this section, we present Rubato, a metadata-private messaging system. Rubato is the first
metadata-private messaging system that supports clients on mobile devices and that scales to
millions of users. It provides a differential-privacy guarantee against an attacker who controls
the network, runs clients, and operates some of the system’s servers. Rubato presents two
technical advances that bring metadata-private messaging closer to standard large-scale
mobile messaging apps. First, it supports asynchronous clients: Alice can store a message
for Bob when she comes online, and Bob can later retrieve that message, without exposing
the fact that he is fetching Alice’s message. Second, it enables users to run clients on multiple
devices with different power and bandwidth constraints and ensures safety, even if they get
partitioned and cannot coordinate after an initial setup. In contrast, all prior metadata-private
messaging systems that support Rubato’s scale limit users to a single client that is online all
the time or require each user to operate a semi-trusted server that would send and receive
messages on their behalf.

We implement Rubato and test its performance by using AWS machines and a client running
on a Pixel 4 smartphone. Our evaluation with 100 servers distributed across four data centers
on two continents demonstrates that Rubato can achieve 32s of latency for 1M users, where
each user can message up to 50 buddies in their contact list, and that Rubato can support
metadata-private messaging on a mobile device. The client uses less than 300 MB/month and
increases battery consumption on mobile devices by 60mW (+19% compared to idle).

Acknowledgements. This section is based on a joint work with Moshe Kol, Dr. David Lazar,
Prof. Yossi Gilad, and Prof. Nickolai Zeldovich [25].

4.5.1 Introduction

Recently, there has been significant interest in protecting metadata in large-scale messaging
systems [10, 38, 138, 140, 141, 171, 216, 220], so that an adversary cannot learn which users are
communicating with one another. Systems that offer linear scalability (i.e., can support more
users with the same performance by adding a proportional number of servers) and privacy
guarantees are based on mixnets, a communication architecture where messages are shuffled
to hide a sender’s destination. However, mixnets offer little flexibility: all clients have to submit
their messages at the same time to be mixed together. This mandatory synchronization across
clients makes it difficult for mobile devices to participate in these systems for the following
reasons.

First, mobile devices might go offline—e.g., a user might disconnect on an airplane or because
the battery of their device runs out of energy. Therefore, a messaging service for mobile
devices should support asynchronous clients, where users can exchange messages, even if
their devices are not online at the same time. Second, as mixnets are synchronous, clients have
to constantly communicate with the servers in the form of cover traffic. This communication
is costly in terms of cellular bandwidth and the battery life of the device. Finally, users typically
communicate from multiple devices (e.g., phones, tablets, and laptops). The attacker might
prevent coordination between a user’s devices, which is problematic if two devices contact the
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same person. For example, if Alice’s phone and laptop simultaneously send a message to Bob,
and the adversary observes Bob receiving extra messages, the adversary can infer that Alice
and Bob are buddies (i.e., correspondents on the system).

This section presents Rubato, the first system for metadata-private text messaging on mobile
devices that scales to millions of users. Rubato addresses the above challenges in supporting
mobile devices, and provides a differential-privacy guarantee [81] against attackers that control
the network and some of the system’s servers, and that can run any number of clients. By
supporting mobile devices, Rubato enables a large class of new users to participate, which
increases the degree of privacy that can be provided to everyone [77, 97].

Rubato uses a hybrid design consisting of a core synchronous protocol that hides metadata
based on a mixnet architecture, and an asynchronous protocol by which clients send and
receive messages. The two protocols are mediated by untrusted service providers, whose job is
to queue messages to and from each user. The service providers receive messages on behalf
of different users, without learning the recipients of said messages, and without requiring
chatting users to be online at the same time.

A crucial aspect of Rubato’s design lies in facilitating cover traffic between buddies; this ensures
that everyone receives messages at a fixed rate, regardless of when two buddies exchange
messages. The challenge is to maintain a constant messaging rate when users go offline,
while still enabling users to receive messages and not requiring anyone else to be trusted with
the user’s list of buddies. Rubato addresses this challenge by using primed circuits, which
are reusable paths through a mixnet that enables servers to enforce fixed-rate messaging.
Establishing primed circuits does not require online coordination between buddies. Alice
can submit a circuit-setup message well in advance of when she will use the circuit. To
communicate, Alice and Bob create primed circuits that culminate in the same dead drop,
where messages are swapped. This protects the users’ identities, even if one user does not
manage to create their circuit.

Circuits are long-lived and created periodically in epochs, which last about a day, thus making
it inexpensive to submit circuit-setup messages for several buddies and epochs in advance.
Priming circuits in this manner enables Bob to send Alice messages over these circuits even
if she disconnects for days, thus handling the challenge of clients going offline. But what if
Alice adds a new buddy after submitting circuit-setup messages for future epochs? When
Alice comes online, to support new relationships, her client can replace the circuit-setup
messages queued at the service provider. To replace circuits safely, Rubato introduces a circuit
tagging technique, which ensures that the service provider can use only one version of the
circuit-setup message for each buddy. Otherwise, the provider could learn the dead drops
Alice uses by submitting all setup messages and observing which dead drops correspond to
more than two circuits.

Circuits enable unlinking one user who goes offline from their buddy’s communication pat-
terns. Any server along a circuit’s route can fill in cover traffic if the user does not otherwise
send a message to their buddy. As such, users do not need to send cover traffic at all times.
Rubato also minimizes the data that a client downloads by running a fetch protocol that un-
links the messages at the service provider from the circuits they were received on; this enables
the client to retrieve just a small number of messages belonging to real conversations (rather
than cover traffic). Together, these techniques handle the network and power consumption
challenge.
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Figure 4.5.1 – In every epoch, Alice and Bob establish two primed circuits to each other. Bob
is offline so his service provider submits circuit-setup messages (wavy arrows) on his behalf.
The service provider also stores the user’s messages (straight arrows) so its clients can catch
up when coming online and can synchronize between their devices. The attacker might drop
circuit-setup messages, so Rubato generates noise messages (grey arrows) to hide which dead
drops correspond to real conversations.

Finally, Rubato supports users with multiple devices. It handles the challenge of partitioned
devices by deterministically choosing the circuit path by using a pre-shared key across the
user’s devices. This ensures that, even if the devices cannot communicate with one another,
they will set up circuits along the same path. Rubato’s synchronous mixnet protocol then
ensures that only one of these circuits will be built.

Rubato achieves differential privacy in the presence of partitioned client devices, rogue service
providers, network attackers, and a portion of malicious mixnet servers. To demonstrate
that Rubato’s design achieves its purpose of supporting messaging for many users, we built
a prototype and evaluated its performance on AWS. We also implemented a mobile client
on a Pixel 4 phone and tested Rubato’s applicability to the real world in terms of battery
and network usage. The results show that Rubato can support 1–3 million users who send
and receive messages from 50 buddies every 32–80 seconds. The client uses 220MB–290MB
of network per month, and its battery consumption increases by 19% compared the idle
phone. We recognize that Rubato’s latency is high compared to typical mobile messaging apps;
nonetheless, it enables large-scale metadata-private messaging for an important class of users.

In summary, the contributions of this section are the following:

• the techniques of primed circuits and circuit tagging, which allow clients to asyn-
chronously interact with a synchronous mixnet;

• an implementation of Rubato, the first metadata-private messaging system for mobile
devices that scales linearly and provides formal privacy guarantees;

• an experimental evaluation of Rubato’s performance running on a mobile client.

4.5.2 Overview

Figure 4.5.1 shows an overview of communication through Rubato. It enables users to send
and receive text messages from clients they run across multiple devices. Rubato’s design relies
on two kinds of servers: mixnet servers and service providers. Mixnet servers arrange in a
full-mesh topology and operate in synchronous rounds. They shuffle messages and introduce
noise at every round, which yields differential privacy about which user sent which message.
The service providers serve as a bridge between this synchronous mixnet protocol and their
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asynchronous clients. Each user has a designated service provider (which they choose), and
the service provider’s job is to queue messages, which are sent and received through the mixnet
on the user’s behalf, and to help the user synchronize their clients across all devices. Users
do not need to trust their service provider for privacy. Therefore, they can change service
providers if they suspect their provider is faulty, without worrying about exposing sensitive
information to more parties (e.g., if the user notices that their devices cannot synchronize or
never receive messages).

Clients in Rubato set up circuits to send messages. A circuit is a connection from a service
provider to a dead drop, which persists for many rounds (e.g., a day’s worth). The dead drop
corresponds to a pseudo-random 256-bit virtual address, and the address space is shared
across the mixnet servers. The circuits are routed through the mixnet, which ensures that an
adversary cannot correlate the two ends of the circuit. When two circuits connect to the same
dead drop, the server hosting the dead drop address swaps the messages and sends them back
through the circuits; this is how users exchange messages. Messages are sent over circuits
every round; these rounds are run at a relatively high frequency (e.g., every minute).

4.5.2.1 Client Flexibility

Rubato’s design enables asynchronous clients to send and receive messages, independently
of other clients. We refer to this property as client flexibility. It presents a departure from a
paradigm common to many previous mixnet systems [136, 138, 141, 142, 216, 220], where all
clients run on the same synchronous schedule. In Rubato, clients do not need to be online
at the same round to communicate and do not need to send cover traffic at every round to
hide when they are not communicating. This flexibility is crucial for clients running on mobile
devices that can go offline and require transmissions less frequent than a client on a desktop
machine that can communicate all the time.

To achieve privacy, it is still important that the network communication pattern between a
user’s device and their service provider, which we call the client’s schedule, does not reveal
information about the user’s communication with their buddies. The adversary can potentially
infer any information that goes into deciding the client’s schedule, hence it should be based
only on public information. A simple but safe schedule is to connect to the service provider
to send and receive messages at regular intervals (say, every few minutes). Longer intervals
consume fewer resources on users’ devices but at the cost of increased communication latency.
Different types of devices can safely use different intervals.

Clients can change their communication pattern if the change is independent of the user’s
buddies. For example, Alice can stop sending and receiving messages when she boards a
flight and her phone disconnects from the Internet. Clients can also piggyback on other
device wake-ups (like checking for software updates) to interact with the service provider at
a relatively low cost. However, changes in network patterns that depend on a user’s buddies
are unsafe. For instance, if Bob were to stop sending messages whenever Alice goes offline, it
would signal that Bob is connected to Alice. On the contrary, it is safe for a device to miss a
transmission due to a network outage, for instance.

84



4.5. Rubato: Large-Scale Asynchronous Anonymous Messaging

4.5.3 Goals and Threat Model

4.5.3.1 Threat Model

Rubato aims to hide its users’ communication metadata from a powerful attacker. The system
considers a global active attacker who can tap all network links, and drop, inject, and modify
network packets. This attacker observes, in particular, when clients connect and disconnect
from the network and might partition users’ devices. The attacker can also control all service
providers and a portion of the system’s mixnet servers and run an arbitrary number of clients.
Rubato assumes that the attacker controls each mixnet server with some probability f < 1;
this is provided as an assumption in the system’s configuration. A smaller f enables Rubato
to achieve better performance. An attacker could learn about a user’s communication by
compromising their device or the devices of their buddies [9]; we exclude such attacks from
the threat model.

Rubato assumes that clients and servers know the servers’ public keys, e.g., through a public key
infrastructure. Finally, we assume the attacker is computationally bounded and that standard
cryptographic primitives, such as hash functions and encryption schemes, are secure.

4.5.3.2 Goals

Metadata Privacy. Consider an attacker and their view of the system through the network
links they tap, and the service providers, mixnet servers, the clients that they operate. Rubato
ensures that the attacker’s view is likely to be the same whether two users, call them Alice and
Bob, are buddies or not. More formally, Rubato achieves differential privacy [81]. Consider the
attacker’s observations O and the following two scenarios. In one scenario, Alice and Bob set
up circuits to the same dead drop (and might exchange messages). In the other scenario, Alice
and Bob set up circuits to independent dead drops (and cannot exchange messages). Rubato
ensures the following inequalities for small ε,δ≥ 0:

Pr[O|A ↔ B] ≤ eεPr[O|A 6↔ B]+δ, (4.4)

Pr[O|A 6↔ B] ≤ eεPr[O|A ↔ B]+δ

In Equation 4.4, ↔ denotes that Alice and Bob are buddies (and hence can communicate
with each other), and 6↔ denotes that they are not buddies. That is, the probability for any
observations the attacker could make is close under both scenarios (up to a multiplicative
factor eε and an additive factor δ). Differential privacy quantifies the statistical information
that could leak to the attacker through his observations. It provides a strong formal guarantee
for the level of privacy that Rubato provides its users. Alice could plausibly deny being buddies
with Bob or claim to be buddies with someone else. This privacy guarantee holds even if Alice
or Bob is the single user of a rogue provider, the attacker partitions their devices, and observes
the system for a long time.

Accommodating Mobile Clients. Rubato must not impose strong timing or resource require-
ments on clients. In particular, Rubato must allow Bob to retrieve Alice’s message at any time
after it reaches Bob’s service provider, and accommodate clients with network and battery
constraints that need to minimize communication. At the same time, Rubato must allow other
clients to connect more often and achieve lower message latency.

Scale and Performance. Rubato aims to support millions of users sending and fetching
messages, with latency on the order of minutes. That is, when Alice sends a message, it is
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Figure 4.5.2 – Bob’s client interacts with his account at the service provider. The client submits
circuit-setup messages for future epochs as well as text messages for Bob’s buddies. The service
provider submits messages to the mixnet at the right time and stores messages for Bob so his
clients can catch up when they come online.

available for Bob to retrieve about a minute later. The system must be scalable, i.e., be able to
provide the same performance to a larger user base by deploying more servers.

4.5.4 Design

Rubato supports users running clients on multiple devices. These devices share a secret “multi-
device key” and connect to the mixnet through one service provider, as shown in Figure 4.5.1.
When Alice and Bob add each other as buddies to their contact lists, their clients establish
a fresh shared secret. If Alice adds Bob multiple times on her devices, perhaps because the
service provider partitions them, each time their clients create a new shared secret. This
secret enables Alice and Bob’s clients to authenticate and encrypt messages (end-to-end) and
coordinate dead drops for exchanging messages. Their clients might create this secret out-of-
band (e.g., by scanning QR codes if Alice and Bob meet in person) or via a metadata-private
bootstrapping system such as Alpenhorn [143].

Next, we describe how users communicate through Rubato. Our description flows from the
client’s perspective and its interactions with the service provider. This interaction is depicted
in Figure 4.5.2. Figure shows the client pseudocode and links to the respective figures. For
completeness, Figure C.1 in Appendix C gives the service provider’s API.

4.5.4.1 Primed circuits

Rubato splits time into epochs, which correspond to the lifetime of a circuit through which
users communicate. Periodically and on a global schedule, e.g., once per day, clients call
RefreshCircuits (see Figure 4.5.3) to generate circuit-setup messages and upload them to
their service providers, which submit the messages to the mixnet. The service provider queues
these messages and sends them to the mixnet at the appropriate time (Figure 4.5.2), even if all
of the user’s clients go offline. The more epochs a client covers when callingRefreshCircuits,
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while true {
if oncePerDay {

client.RefreshCircuits() // Upload circuit-setup messages. Detailed in Figure 4.5.4
}
<-client.SendSchedule // Block, waiting for the next wakeup event

buddy, msg := client.OutgoingMessageQueue.Pop()
if buddy == nil {

msg = random.Read(msg) // If the user has nothing to say, send cover traffic
}
client.SendMessage(buddy, msg) // Detailed in §4.5.4.4 and in Figure 4.5.5
client.CheckForMessages() // Detailed in §4.5.4.5 and in Figure 4.5.6

}

Figure 4.5.3 – The client’s main loop. The client refreshes circuits once per day. Otherwise, it sends
and receives messages according to the send schedule, which can configured to balance battery life
with communication rate.

func (c Client) RefreshCircuits() {
addressBook := c.serviceProvider.GetAddressBook() // Merge address book from other devices
prevBuddies := Decrypt(c.MultiDeviceKey, addressBook)
c.buddies = MergeAddressBooks(prevBuddies, c.buddies)

if len(c.buddies) < MaxBuddies { // Reupload padded encrypted address book
c.buddies = append(c.buddies, GenerateFakeBuddies())

}
newAddressBook := Encrypt(c.MultiDeviceKey, c.buddies)
c.serviceProvider.SetAddressBook(newAddressBook)

for epoch := range c.serviceProvider.UpcomingEpochs() { // For the next month...
var onions [MaxBuddies][2][]byte
for i, buddy := range c.buddies { // ... upload two circuits per buddy

rand := PRNG(c.MultiDeviceKey, i, epoch)
onions[i][0] = GenerateCircuitSetupOnion(rand, buddy, 0)
onions[i][1] = GenerateCircuitSetupOnion(rand, buddy, 1)

}
c.serviceProvider.SetCircuitSetup(epoch, onions)

}
}

Figure 4.5.4 – Pseudocode for updating a client’s buddy list and corresponding circuit setup onions for
upcoming epochs, which are stored on the service provider. It is safe for multiple devices to run this
function concurrently.

the longer the user can go offline and keep connections with their buddies. Thus, the duration
of an epoch is a knob that enables trading less client communication for higher latency in
adding buddies.

The pseudocode for RefreshCircuits is in Figure 4.5.4. First, the client synchronizes the
user’s contacts through the service provider, as the user might have added or removed a buddy
through another device while their client was offline. The client retrieves the address book
from the service provider, appends new contacts to the first available slots, and pushes the
new list to the service provider for other clients. To hide when the user adds or removes a
buddy, the number of slots in the address book is fixed (MaxBuddies). Clients pad the address
book to its maximum limit and encrypt it under the multi-device key.

Second, the client primes two circuit-setup messages for each buddy and all upcoming epochs
(e.g., for the next month) and uploads these messages to the service provider. The reason for
creating two circuits per buddy, rather than one circuit, is to enable clients to fake conversa-
tions when the user has less than MaxBuddies. In this case, the client creates two “idle circuits”
to one dead drop (so there are exactly two circuit setup messages to all dead drops a client
uses).
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4.5.4.2 Noisy Circuit Establishment

Circuit Establishment. The circuit-setup message is the dead-drop address that is onion
encrypted with the public keys of the servers in the route (Rubato assumes a public key
infrastructure for distributing the servers’ keys, see §4.5.3.1). At each layer of the onion, the
client includes the next server’s ID, the public half of a Diffie-Hellman handshake that allows
the server to decrypt the next layer of the onion, an authentication code that ensures no
preceding server has modified the onion, and the epoch number for servers to be able to
ensure that circuits are established at the time the client intends. As one epoch nears the end,
the mixnet runs circuit setup for the next epoch, hence circuits are ready at all times to route
messages between buddies.

The servers on the circuit’s route process the setup message similarly to Yodel [142]: Each
server completes the Diffie-Hellman handshake, derives a symmetric key, and uses this key to
verify the authentication code. After receiving the onions from all servers at the previous hop,
the server de-duplicates and shuffles all circuit-setup messages, then forwards them to the
next hop. The servers store the shuffle’s permutation and the symmetric key for the epoch;
later, they will use these records to process messages over the circuit. When the circuit-setup
message reaches the dead drop, the server hosting this dead drop returns the hash of its
address back through the mixnet to the user’s service provider. On the route back, each server
applies the inverse shuffle permutation. This hash gives an acknowledgment to the client;
it means that the circuit-setup message propagated to the dead drop. Therefore, all servers
in the route processed it, including any honest servers en route, which keeps their shuffle
permutation secret.

Noise. Rubato cannot coordinate between clients at circuit-setup time (as users might submit
setup messages for the next month and go offline). Therefore, it must ensure privacy when
one client establishes a circuit and their buddy does not. Rubato mitigates leakage of sensitive
information during circuit setup by noising this step with dummy circuits that its mix servers
create. The dummy circuits ensure that the attacker has a similar chance of making the same
observations (e.g., about the network traffic and dead-drop access patterns), regardless of
whether Alice and Bob are buddies. Rubato applies the message-noising technique from
Karaoke [141] to circuits: For each inter-server mixnet link, each server decides a minimum
number of noise circuits to route over that link by drawing from the noise distribution. Servers
generate two kinds of noise: to obscure the total number of conversations, “doubles” are pairs
of circuits bound to the same dead drop; to obscure the cases in which one of the buddies
does not create their circuit to the shared dead drop, “singles” are lone circuits terminating at
a dead drop without a pair. The servers ensure that noise circuits are established by checking
that downstream servers receive them: at every hop of the circuit setup round, each server
retrieves a Bloom filter from all other servers in the mixnet. A server includes all circuit-setup
messages they receive in this filter. An honest server reports the correct Bloom filter, hence if
noise gets dropped, its sender detects the error at the next honest server in the route. When
a server sees that all its noise appears in all filters, it announces that it approves to continue.
Otherwise, honest servers stop the round at the hop where noise is missing.

4.5.4.3 Safe Circuit Replacement

Priming circuits enables Rubato to support users if they go offline for a long time. However,
users might add buddies after the client has submitted circuit-setup messages. Rubato en-
ables users to update circuit-setup messages stored at the service provider, so that they can
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communicate with new buddies as soon as the next epoch starts. Replacing circuits is done
periodically, following a per-device schedule; if there are no changes in the buddy list, clients
upload fresh circuit-setup messages pointing to the same dead drops. The key challenge in
replacing circuits is that, without coordination across a user’s devices, several of her clients
might establish circuits to the same dead drop. This creates a distinct access pattern (i.e., not
the single- or double- dead drop access patterns covered by noise). An attacker controlling the
dead drop’s hosting server can then associate this dead drop with the user.

Rubato introduces circuit tagging, which enables safe replacement of old setup messages with-
out relying on communication between a user’s devices. In Figure 4.5.4, RefreshCircuits
seeds a pseudorandom generator (PRNG) for each epoch with the multi-device key and the
buddy’s slot number in the address book. The clients include in each layer of the circuit’s setup
message onion a random-looking tag derived from this PRNG. Honest servers on the route
de-duplicate circuit-setup messages according to this tag. To enable circuit de-duplication
across all of a user’s devices, Rubato ensures the following invariant: for each slot in the user’s
address book, their clients submit circuit-setup messages with the same route. With this prop-
erty, even if all Alice’s clients upload circuit-setup messages and a malicious service provider
submits all of them, one honest server along each route suffices to observe the tag and discard
duplicated circuits. Rubato achieves this invariant by decoupling the choice of the circuit’s
route from the dead drop at its end: The clients use the above PRNG to choose the same route
for each buddy-slot across all devices. Although the routes are the same, each client submits
different-looking messages to the service provider, because the onion encryption scheme is
randomized.

4.5.4.4 Sending Messages over Circuits

The synchronous mixnet operates in rounds that compose an epoch, where users exchange
messages over the circuits they set up. We envision rounds being relatively frequent, e.g., on
the order of every 30 seconds to a minute. On every round, a client can contact its service
provider to submit and receive messages (the red flow in Figure 4.5.2), depending on their
schedule. Regardless of what the clients do, each mixnet server processes precisely one
message per round for every circuit that routes through it. To accommodate mobile devices,
Rubato minimizes the client networking overhead.

When Alice types a message for Bob, her client pads or fragments her message to fit Rubato’s
fixed message-length. It encrypts and authenticates the message with the key that Alice shares
with Bob and queues the message for sending. The client sends messages from this queue to
the service provider by calling SendMessage in Figure 4.5.5. As shown in the figure, the client
takes advantage of both circuits to each buddy to send two messages at a time.

The user has 2×MaxBuddies circuits at their provider, hence sending a message on each
circuit might be costly for a mobile device with limited bandwidth. In contrast, sending a
message on only one buddy’s circuits reveals when circuits are active and creates correlations
between chatting buddies. In Rubato, the client always sends two messages to the service
provider but does not reveal which pair of circuits should route them. The service provider
duplicates messages and sends them to all buddies (one on each circuit). As messages are
end-to-end encrypted, only the intended buddy can decrypt them.

The servers process messages similarly to Yodel [142]. The mixnet’s servers shuffle and decrypt
a layer of the onion of messages arriving at them by using the permutation and symmetric
keys they stored at circuit setup. Servers de-duplicate messages on the same circuit, and if a

89



Reducing Metadata Leakage from Communications

func (c Client) SendMessage(buddy, msg string) {
epoch := GetCurrentEpoch()
round := GetNextRound()
rd := c.serviceProvider.GetOutgoingMessage(epoch, round)

prevMsg,prevBuddy:= Decrypt(c.MultiDeviceKey, rd.OutMsg) // Check whether another device already
if IsRealMessage(prevMsg) { // queued a message; if so, re-encrypt

msg, buddy = prevMsg, prevBuddy // the previous message
} else {

msg = MsgHeader(epoch, round, buddy) ++ msg // Compose new message as header ++ msg
}

msg1, msg2 := SplitMessage(msg) // Split and encrypt message over the two
ix := epoch.getBuddyIndex(buddy) // circuits corresponding to the buddy
onion1:= EncryptSymOnion(epoch.circuits[ix][0].keys,msg1)
onion2:= EncryptSymOnion(epoch.circuits[ix][1].keys,msg2)

c.serviceProvider.SetOutgoingMessage(epoch, round, RoundData{
Onion: {onion1, onion2},
OutMsg: Encrypt(c.MultiDeviceKey, {buddy, msg}),

})
}

Figure 4.5.5 – Client pseudocode for sending messages. This code prevents a second device from
accidentally overwriting a user-typed message with cover traffic.

circuit does not have a message, they fill-in a dummy message in its place to ensure all circuits
have one message. The symmetric encryption ensures that any random message that a server
fills-in is indistinguishable from a real message to any server along the route.

When the service provider has no message to send, e.g., if the user is offline, it skips the user’s
circuits. The first honest server on the circuit’s route will later fill in a dummy in its place so
that dead-drop accesses will look the same.

Avoiding Overwrites. Two of the user’s clients might attempt to write messages at the same
mixnet round. There is no privacy risk as each circuit will only route one message per round,
but one client’s message might overwrite the other. Rubato ensures that clients do not over-
write each other’s messages by synchronizing them through the service provider. Clients
submit an encrypted bit under the multi-device key with every message that tells whether
their message is cover traffic or for a buddy. Before a client submits a message, it checks
with the service provider for pending messages. If there is a pending message to a buddy, the
client replaces it with another encryption for the same content. Otherwise, it uploads a new
onion-encrypted message.

4.5.4.5 Retrieving Messages

When a dead drop receives two messages from the mixnet, the server hosting it swaps the two
messages’ content and routes them back to the users’ service providers through the mixnet
(each mixnet server applies the inverse permutation). When a service provider receives a
message from the mixnet, it stores that message for the user (see Figure 4.5.2).

Fetch Protocol. To minimize the client’s bandwidth and energy costs, most messages fetched
by clients should be real messages from their buddies (rather than cover traffic). Rubato’s
fetch protocol enables the client to retrieve a subset of the messages pending at the provider,
without revealing which messages are fetched.

First, Bob’s client receives from the service provider a two-byte header for each message it
has for Bob. The header acts as a pseudorandom flag shared between Alice and Bob: When
Alice sends a message to Bob, her client derives the header’s value from the current round
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func (c Client) CheckForMessages() ([][]byte) {
epoch := GetCurrentEpoch()
round := GetNextRound()
mixers := RandomMixnetPath(length=11)

headers := c.serviceProvider.GetHeaders(epoch, round) // Get 2 byte per message in our inbox

indices = [] // Identify the indices of real messages from buddies
for i, buddy := range c.buddies {

if header[i] == MsgHeader(epoch, round, buddy){
indices += i

}
}

pk, sk := GenerateDHKeypair()
nonces := c.serviceProvider.ShuffleInbox(ShuffleParams{ // Shuffle our inbox with a fresh key

Epoch: epoch,
Round: round,
PublicKey: pk,
Mixers: mixers,

})

shuffledIxs := PredictPositions(sk, mixers, nonces, indices) // Predict the (shuffled) indices
PadWithFakeRequests(shuffledIxs)

onions := c.serviceProvider.FetchInbox(shuffledIxs) // Fetch messages at the (shuffled) indices

msgs := DecryptOnions(onions, sk, mixers, nonces) // Remove encryption added by ShuffleInbox
Unshuffle(msgs, sk, mixers, nonces) // Map the messages back to the correct buddy
return msgs

}

Figure 4.5.6 – Client pseudocode for fetching messages from the service provider.

and the key Alice and Bob share, then her client sends it inside the mixnet’s onion, along
with the message (Figure 4.5.6). Bob’s client derives the same pseudorandom headers and
compares them against the headers from Alice’s circuits. If they match, his client fetches the
corresponding message in the second step (otherwise, it fetches a message at random). It
is crucial that the service provider does not learn from which circuits Bob fetches. Rubato
achieves this by mixing Bob’s messages, as follows.

When the client calls CheckForMessages (with pseudocode in Figure 4.5.6), it triggers the
provider to submit all the messages pending for Bob to a “fetch mixchain”, a sequence of mix
servers chosen by the client. The provider also relays to the first server in the list a fresh public
Diffie-Hellman handshake key that the client chooses independently of other clients. The first
mix uses its secret key to complete the Diffie-Hellman handshake and derives a shared secret
with the client; it then chooses a fresh nonce and hashes it with this shared secret to derive an
ephemeral symmetric key. From this ephemeral key, the server derives the shuffle permutation
and symmetrically-encrypts the messages. The server passes its nonce, the client’s public key,
and the list of the remaining mixers to the following mix, who continues in the same fashion.
The nonces ensure that even if a rogue provider replays a request, the server’s outputs will look
freshly random. The last server gives the shuffled messages back to the provider with the list
of all servers’ nonces.

Bob’s client retrieves the list of nonces from the service provider. It can then derive the
symmetric key for each mix chain server and compute the (shuffled) position of the messages
it should fetch. Finally, the client fetches messages at the shuffled indices directly from
the provider; the freshness of Diffie-Hellman key ensures that it accesses random-looking
locations each time. To maintain privacy, the number of messages a client downloads must be
derived from information that the attacker can safely observe. Specifically, clients download a
small fixed number of messages for every round where they were offline; say, download six
messages to support up to three buddies simultaneously messaging the user. Clients fetch
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a different fixed number of messages to quickly catch up after being offline for an extended
time, for example, fetch 500 messages per offline day.

4.5.5 Privacy Analysis

In our analysis, we first reduce the security of Rubato under partitioned devices and rogue
service providers to the security of the mixnet, which also has formal treatment in prior
work [141, 142]. We then analyze the differential privacy guarantee that Rubato’s mixnet, cou-
pled with the noise, provides in every epoch. The composition theorem from the differential-
privacy literature enables us to compute Rubato’s differential-privacy guarantee after multiple
differentially-private epochs [81, 3.20], as we do in §4.5.6

4.5.5.1 Partitioned Devices

Rubato assumes that the attacker controls the network and can partition the user’s devices.
After circuit setup, partitioned devices might only overwrite each other’s messages, which is
not a privacy risk (§4.5.4.4). Therefore, we focus on circuit setup. The attacker can distribute
old versions of the address book to different devices, or submit circuit-setup messages from
multiple devices. The risk here is that circuits from different devices become established and
create distinct dead-drop access patterns (not covered by noise). Rubato solves this problem
by using circuit tagging and its mechanism for choosing routes and dead drops. Next, we show
that such attacks are equivalent to dropping circuit-setup messages on the network, an attack
that Rubato handles through differential privacy (as we show in §4.5.5.3).

Property 4.5.1. An attacker that partitions a user’s devices can obtain the same view on the
user’s communication by dropping some of the user’s circuit-setup messages.

Proof. Consider two partitioned devices of user Alice, d and d ′, and a circuit they establish for
the buddy at slot i in Alice’s address book. Both devices submit setup messages for circuits
with the same route and tag; they derive them from the buddy’s slot number, the multi-device
key, and the epoch number, which are all the same for d ,d ′ even if their view of Alice’s address
book differs (see Figure 4.5.4). Assume, for now, that an honest mix server exists on this circuit’s
route. The server will de-duplicate the two circuit-setup messages and ensure that only one
circuit will be established (§4.5.4.3).

There are two cases to consider. First, the circuits from d ,d ′ reach the same dead drop. In this
case, although the honest server drops one message, the attacker’s observations will be exactly
the same as if the devices could coordinate and only one device submitted setup messages.
The second case is that d ′ submits a circuit-setup message to a different dead drop than d .
A device-partitioning attacker can cause this, e.g., if it gives one device an old address book
where a now-occupied slot was free. In this case, one of the circuits’ dead drops receives one
less circuit, i.e., becomes a “single”-access dead drop, which is covered by Rubato’s noise. The
attacker could obtain the same view by dropping a circuit-setup message on the network (even
if there are no multiple devices involved).

Finally, there is a chance that there is no honest server on the route of the circuits that d and
d ′ use. In this case, the attacker can anyway trace Alice’s messages through the malicious
mix servers, all the way to the dead drop; as a result, the attacker learns nothing new from
partitioning Alice’s devices. Rubato mitigates this risk by using sufficiently long mixnet routes
(§4.5.5.3).
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4.5.5.2 Rogue Service Providers

In this section, we show that for any view of Rubato an attacker can observe by running service
providers, the attacker can also gain the same view by dropping the messages users send
on the network. The next section shows that Rubato’s mixnet provides privacy in the face of
such attacks. As Rubato does not rely on the providers to shuffle messages, a user’s privacy is
independent of the number of users connected to their provider. Therefore, it is safe to be the
sole user of a bad provider.

Property 4.5.2. Consider an attacker that operates the user’s service provider and their ob-
servations about the user’s communication. A more restricted attacker, which controls only
the network and the same set of mix servers (but not the provider), can obtain the same
observations.

Proof. Let us consider all the ways a user’s devices interact with their service provider. We
show that, at all steps in the protocol, the attacker cannot learn any information that he cannot
also learn by dropping the client’s network messages.

First, clients retrieve the epoch number from their provider so that they can prime circuit-
setup messages (§4.5.4.1). A malicious provider can lie about the epoch number or submit the
circuit-setup messages at the wrong epoch. The client writes the epoch number at every onion
layer of the setup message, and honest mix servers discard onions for the wrong epoch number.
As a result, this provider’s attack is equivalent to the network attacker simply dropping the
user’s circuit-setup messages (if an honest server exists). If there is no honest server on the
route, even the restricted attacker can learn everything about the circuit simply by observing
the setup message route from one malicious mix server to the next.

Second, all of a user’s devices synchronize address books through the service provider. Clients
update the user’s address book before replacing circuits (§4.5.4.3), which happens indepen-
dently of the user’s buddies. On each update, the client uploads their address book under
fresh encryption, padded to a fixed length (MaxBuddies), hence the service provider cannot
tell whether it has changed. The provider can give stale address books to clients or otherwise
break the transactional semantics made for synchronizing between clients; these attacks are
variants of partitioning a user’s devices (see Theorem 4.5.1).

Lastly, the client uses the provider to send and receive messages. When sending a message, the
client submits one onion-encrypted message that does not contain any information about the
intended circuit (the provider then broadcasts it on all circuits, §4.5.4.4). The service provider
also serves the messages to the recipient’s client by routing them through the mixchain that the
client chooses when calling CheckForMessages (§4.5.4.5). The client’s choice of the servers
in this mixchain is independent of the user’s buddy-relationships, hence it leaks nothing about
them. As each mix server chooses a fresh nonce when shuffling messages, each mix server uses
a different ephemeral key for every fetch; hence, the messages output from the fetch mixchain
appear random to the service provider (even if the provider replays old requests). Furthermore,
the client chooses a new key each time it calls CheckForMessages so that it always fetches
messages from random-looking locations (even if the provider replays old headers). Therefore,
the client’s pattern of retrieving messages from the service provider appears random each time
(unless the attacker also controls all of the mixchain servers, in which case it can anyway learn
which messages the client fetches without controlling the user’s provider).
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4.5.5.3 Differential Privacy

All messages that Rubato handles, except circuit setup, route through existing circuits. For
these messages, the attacker observes the same communication pattern as in the circuit-
setup round. Even if the attacker attempts to change the round’s communication pattern by
dropping a message, the first honest downstream server fills in an indistinguishable message
in its place (§4.5.4.4). Therefore, as long as such a server exists, no new information leaks to
the attacker during an epoch (after circuit establishment).

The remainder of this analysis is focused on the circuit-setup round. We split the analysis
into two parts, first reasoning about passive attacks and then about active attacks. Our anal-
ysis resembles Karaoke’s analysis [141], as Rubato’s circuit-setup round resembles Karaoke’s
messaging rounds.

Passive Attacks. A passive attacker only observes network traffic and knows the secrets of
the servers it controls. This attacker sees the number of circuits on every inter-server link
and the number of circuits arriving at each dead drop hosted on the mix servers it controls.
Intuitively, the passive attacker observes the same dead-drop access pattern, regardless of
Alice’s relationship with Bob: Alice and Bob choose message routes by using independent
multi-device keys, and their circuits reach a dead drop that is accessed exactly twice (regardless
of whether they are buddies). As long as the two circuits that Alice and Bob create route through
sufficiently many honest servers, the mixnet unlinks these messages from Alice and Bob’s
identities. Property 4.5.3 formalizes this intuition.

Property 4.5.3. The passive attacker has the same probability of observing event O, regardless
of whether Alice and Bob are buddies, except for a small error probability, δp that diminishes
exponentially with the route length.

Proof. Rubato clients uniformly choose a server for each hop. Consider a route length l such
that each circuit-setup message routes through at least two honest servers with probability

at least 1− δp

4 . Karaoke’s analysis shows that in this case, the passive attacker has an equal
chance to observe the message volumes on network links regardless of whether Alice and Bob
are buddies [141, §5.2]. Since there are four circuit-setup messages, potentially coordinated
between Alice and Bob (two from Alice and two from Bob), then by the union bound, the

chance the premise for this analysis does not hold is less than 4
δp

4 = δp . Since each mix server

is malicious with probability at most f (§4.5.3.1), we need 1− δp

4 ≥ 1− f l − l (1− f ) f l−1. Thus,
δp ≤ 4 f l +4l (1− f ) f l−1.

As in Karaoke [141], to resist passive attacks, Rubato requires two honest mix servers on the
route of the circuit connecting Alice to the dead drop where she exchanges messages with Bob.
The error probability δp captures the chance that there are no such honest servers.

Active Attacks. Consider an active attacker that disrupts circuit setup by dropping messages.
In case the attacker controls the servers hosting the dead drops that Alice and Bob use, then
dropping some of their circuit-setup messages shows different dead-drop access patterns
(depending on whether Alice and Bob are buddies). For example, if Alice and Bob were buddies,
then dropping Alice’s messages would result in two dead drops being accessed by only one
circuit (from Bob). But if they were not buddies, then there will be just one dead drop accessed
by both of Bob’s circuits. The noise that honest servers inject obscures these observations (the
attacker cannot drop the noise due to the Bloom filter checks, §4.5.4.2).
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Property 4.5.4. Rubato is differentially private. There are ε and δa such that the inequalities
from Equation 4.4 hold.

Proof. Karaoke’s analysis shows the differential privacy guarantees for a mixnet with Rubato’s
topology [141, Thm.8]. We apply it here in the context of circuit-setup messages: for every pair
of circuits, whose dead drops Alice might change depending on her communication with Bob,
the attacker’s observations are (ε,δa)-differentially private. Since Alice’s client sets up multiple
circuits, and might use any of them to communicate with Bob, we need to generalize Karaoke’s
analysis. Consider the two scenarios that Rubato obfuscates:

If Alice is buddies with Bob and wants to claim they are not buddies, then only the two dead
drops of the circuits coordinated with Bob would change, so [141, Thm.8] applies directly:

Pr[O|A ↔ B] ≤ eεPr[O|A 6↔ B]+δa

Else, Alice and Bob are not buddies, but she should be able to claim they are buddies. Alice’s
client sets up MaxBuddies pairs of circuits (Figure 4.5.4) and could use any pair to commu-
nicate with Bob. Let pi be the probability that Alice’s client uses pair i to communicate with
Bob:

Pr[O|A 6↔ B] =∑
i

Pr[O|A 6↔ B∧ i ]pi

Applying [141, Thm.8] on the two circuits in pair i for each element in the sum, we get:

≤∑
i

(eεPr[O|A ↔ B∧ i ]+δa)pi = eεPr[O|A ↔ B]+δa

4.5.6 Implementation

We implemented a prototype of Rubato in Go, on top of Yodel’s mixnet framework [142], in 20k
lines of code. The prototype uses ChaCha20 for symmetric onion encryption, the NaCl box
primitive to generate circuit setup onions, and the Blake2b hash function. Communication
between clients to service providers and between Rubato’s mixnet servers uses gRPC with TLS
1.3 for transport security. The service provider uses BadgerDB to implement transactions and
manage user state.

Our implementation includes two types of clients, one for desktops and one for mobile devices.
The desktop client is a command-line program, and the mobile client is built for Android by
using the gomobile tool.

Memory Usage. One prominent challenge in implementing Rubato has been minimizing its
memory footprint. With 3M users and 100 mix servers, each server needs to keep track of at
least 42 million pieces of cryptographic state per epoch:

100 circuits×3000000 users× 1

100 servers
×14 hops = 42M.

Initially, we used AES-GCM to implement Rubato’s circuits, but its state is 512B, thus resulting
in at least 20GB of memory usage per mixnet server. To reduce memory, we replaced AES-GCM
with ChaCha20, which requires only 32B per state, reducing this memory usage to 1.3GB per
server but increasing CPU usage, due to lack of hardware acceleration.
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Figure 4.5.7 – Privacy vs. noise for different deployment sizes after 245 epochs with active
attacks and 9,600 epochs of passive observations. We assume f = 20% malicious servers, and
fix δ= 10−4 and the route length to be 14 hops.

4.5.7 Parameter Selection

We set Rubato to resist f = 20% malicious servers and the mixnet path length to be 14 hops
(similarly to previous works with the same mixnet topology [141, 142], that require two honest
servers in a route). We also set the fetch mixchain length (§4.5.4.5) to be 11, which provides
a smaller chance of error of the routes via the mixnet (the fetch mixchain requires only one
honest server hence is shorter). A conversation between two users requires a pair of circuits,
each carrying a payload of 64 bytes each round. Out of the 128-byte payload, 2 bytes are
reserved by the pseudorandom header indicating whether the message is real or cover traffic
(see §4.5.4.5), 12 bytes are reserved for the end to end authentication code, and 12 bytes are
reserved for a nonce. As a result, recipients receive a 102-byte encrypted text message per
conversation.

Noise in Practice. To decide the actual noise volume that Rubato mix servers need to induce,
we set a goal for differential privacy δ and fix the number of epochs the system would support.
Given the number of layers in Rubato’s deployment, we compute the passive analysis’s δp

(Theorem 4.5.3). We set the remainder, δa = δ−δp , to be the target error probability for
differential privacy under active attacks (Theorem 4.5.4). We then compute the mean amount
of noise in the system following [141, Thm.8], and we compose over the number of active
attacks on a user that the system needs to sustain (by using differential privacy’s composition
theorem [81, 3.20]). As dishonest servers do not contribute to the noise, we have each server
generate 1

1− f × noise of their relative portion (so we obtain sufficient noise from the honest
servers).

Clients detect active attacks because they never receive an acknowledgment when the attacker
drops their circuit-setup message (the hash of the dead-drop address, revealed at the last mix
server §4.5.4.2). This enable clients to alert users who can take measures to counter the user-
privacy risk (similar to those proposed by Lazar et al. [141], such as ceasing communication or
switching service providers). Therefore, we target resisting many more passive attacks than
active attacks.

Figure 4.5.7 illustrates Rubato’s differential privacy guarantee (ε,δ) as a function of the number
of noise circuits that each server creates. It shows the composition over 245 epochs of active
attacks and 9 600 epochs of passive observations. These parameters provide a comparable
privacy analysis to Karaoke [141], as it is configured to resist the same number of active attacks
and to sustain passive attacks for about a year (we assume Rubato’s epochs are at least 1-hour
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long). With 100 servers, each honest mix server needs to create 88 000 noise circuits in every
epoch to provide (ε = ln2,δ = 10−4)-differential privacy (the same ε,δ as Vuvuzela and an
improvement over Karaoke’s ε= ln4,δ= 10−4 [141, 220]).

4.5.8 Evaluation

We use the prototype to evaluate Rubato’s performance and costs. Our experiments answer
the following questions:

1. What are the throughput and latency Rubato can achieve?
2. How does Rubato scale with the number of servers?
3. What are the system’s deployment costs?
4. What are the costs for a mobile client in terms of battery consumption and network

usage?
5. What is the cost for a client catching up to old messages after having been offline?

Our evaluation has two parts: first, we focus on the system’s back-end, i.e., the service providers
and mixnet, and then on the mobile client.

4.5.8.1 Back-End Performance and Costs

Setup. We deploy mixnet servers evenly split across 3 EC2 regions across the U.S. and one in
Europe: us-east-1, us-east-2, us-west-2, eu-west-1. Each server is an r5.8xlarge VM
with an Intel Platinum 8000 3.1 Ghz CPU with 32 cores, 256 GB of memory, and a 10 Gbit/s
network link. We test Rubato with 25-150 mixnet servers. We evaluate with a single service
provider on us-east-1: As service providers only buffer and relay messages, and do not
participate in processing messages through the mixnet, the performance of Rubato’s back-end
does not depend on the number of service providers. Only clients connected through an
overloaded provider will experience performance issues.

We simulate hundreds of millions of circuits by having mixes create extra circuits during
circuit setups. Assuming each user has up to 50 buddies, and hence requires 100 circuits, this
corresponds to relationships between millions of users. Although clients do not use these
circuits, they correspond to a real conversation load on the back-end. We set Rubato’s system
parameters as described in §4.5.6.

Throughput and latency. We measure back-end latency for a given circuit load in deployment
of 100 mixnet servers. To measure the latency on the back-end, we measure the time since the
service provider submits a message until the mixnet round completes and returns the result
to the provider, plus the time needed for the fetch protocol (§4.5.4.5). Users will experience
additional latency depending on their schedules and the network round-trip times to their
service providers.

In Figure 4.5.8a, we observe that the Rubato’s messaging round latency is 32.4s, 55.9s and
79.83s for 100M, 200M and 300M circuits, respectively. The measured latencies have two
components: The first, larger, component mixes the users’ messages and routes them from
the source to the destination service provider; this represents the majority of the duration of
Rubato’s messaging round (28.7s, 50.8s and 71.3s for 100M, 200M and 300M circuits). The
second, smaller, component (≈ 11% of the total duration) is the time spent on running Rubato’s
fetch protocol (§4.5.4.5). For this second part, we model an average load of clients running the
fetch protocol: We simulate fetches at the end of each round, and we wait for all messages of a
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Figure 4.5.8 – Evaluation of the back-end

round to be fetched before moving on to the next round. Finally, assuming the average user
sets up 100 circuits (to communicate with up to 50 buddies), Rubato could support 1M-3M
users with these latencies.

We compare this latency to Yodel [142] that also relies on symmetrically-encrypted onions to
deliver messages through a mixnet. However, in Yodel, the receiver gets messages directly from
the dead drop (at the cost of requiring synchronicity between clients). Rubato and Yodel also
differ in the number of circuits a user would need and the message size: In Rubato, users can
operate asynchronous conversations with many buddies in parallel, and the system delivers
102B text messages to a buddy (on two circuits) at every round. In contrast, Yodel targets
voice calls; it allows just one conversation at a time and uses 64 byte messages from the voice
encoder. Yodel’s latency for 2M users is 1.6s, whereas Rubato’s latency is 55.9 seconds, a 35×
increase. We attribute Rubato’s performance gap from Yodel to the 50× increase in the number
of circuits and to the additional latency from delivering messages from the dead drop to the
recipient’s service provider via the mixnet.

The duration for setting up the circuits in Rubato is 13.3 minutes for 300 million circuits
(Figure 4.5.8a). As circuit setup is relatively infrequent (e.g., once a day), it can run in the
background and stretch up to an epoch’s duration. Rubato’s circuit setup is similar to a
messaging round in Karaoke [141], though there is a difference in the payload size (Rubato’s
payload is about 200 bytes smaller than Karaoke). For the same setup, where each of 3M users
has 50 buddies, a communication round in Karaoke takes 14 minutes (Figure 4.5.8a).

Scalability. We test how Rubato scales with the number of users by measuring the latency for
varying deployment sizes of 25-150 mixnet servers and by keeping the number of circuits per
server constant at 1M (so the load on the system increases proportionally to the number of
servers). Figure 4.5.8b shows that Rubato scales well: it can support additional users at almost
the same latency by proportionally increasing the number of servers. We attribute the slight
latency increase to the fact that shuffling messages together requires each server, in every hop
along the mixnet route, to wait for inputs from all other servers that processed messages at the
previous hop.

Deployment costs. With 300 million circuits, each of the 100 mixnet servers sends at about
2 Gbps at peak usage, for a network usage of 13.4 GB per messaging round. In this deployment,
setting up circuits for one epoch uses 47.5 GB of network data per mixnet server.

Service providers buffer messages for the users connected to them. For a user who generates
circuit-setup messages for the next 30 epochs (i.e., the next month if epochs last a day), the
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storage requirement for circuit setup is 2.1MB. Furthermore, if messaging rounds occur every
minute, then storing a month’s worth of messages amounts to 264MB per user.

4.5.8.2 Mobile clients

We turn to evaluate running Rubato’s mobile client. We focus on two metrics: the effect on
battery life and on network usage. We evaluate the mobile client on a Pixel 4 mobile device
that runs the stock Android 10 operating system. Our tests include cellular (3G with HSDPA)
and Wi-Fi networks.

Battery usage. We explore the effect of different schedules on battery life. To evaluate battery
consumption, we connected the mobile device to a USB power meter (UM25C) and, roughly
every 1 second, we collected energy consumption.

We force enabled the doze mode to reduce noise from apps running in the background; this is
the battery-saving optimization that typically runs when the device’s USB port is unplugged.
Running Rubato’s app in this mode means that the client’s transmissions can change with-
out adhering to the schedule. Therefore, we excluded our app from doze mode (Android’s
AlarmManager provides APIs to avoid it).

First, we measure the baseline energy consumption when the phone is fully charged and
idle, with the screen turned off, and without Rubato’s client. We observe that, after one hour,
the idle phone consumes about 310mWh of energy, both when the phone uses Wi-Fi and
cellular networks. Then, we run Rubato’s client with different schedules. At the beginning of
the experiment, the client uploads circuit-setup messages for the next epoch. Then, each time
the schedule triggers, the client sends a message and downloads pending messages (following
Figure 4.5.3).

Figure 4.5.9 shows the energy consumption over an hour for different schedules compared
to the baseline. The results for the 1-minute and 5-minute schedules were collected for a
1-minute mixnet round interval. To accommodate the 30-second schedules, we run these
measurements with a 30-second mixnet round interval. It is apparent from the figure that as
the schedule becomes more frequent, the energy consumption increases, especially when
using cellular networks. A 1-minute schedule on the cellular network uses an extra 60mWh
compared to the baseline; this is a 19% increase. For comparison, the Pixel 4 battery capacity
is 14000 mWh.

We observe that energy cost from running Rubato is substantially reduced when the client
runs on a five-minute schedule. We hypothesize that this enables the phone to hibernate
and save power. The energy consumption is more modest when using Wi-Fi, which is more
energy-efficient [127].

Network usage.

To quantify the client’s network usage, we monitored the link between the client and the
service provider. Every time the schedule trigger, the client (1) uploads one message (split
into two) to the service provider and (2) downloads two messages per round (corresponding
to 1 buddy, see Figure 4.5.5). Consequently, different schedules affect the message upload
volume, which ranges from 25KB/h with a 5 minute send schedule to 130KB/h with a 1 minute
schedule (and 1 minute mixnet round time). The download volume is about 140KB/h on the
two schedules (as our client fetches 2 messages per round). The client also sends about 110KB
for the circuit setup per epoch. For a month’s worth of primed circuits, this phase costs 3.3MB.
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Figure 4.5.9 – Energy consumption of Rubato’s client on a Pixel 4 phone for different schedules
and network types. The graph shows how much more energy is spent running a schedule
compared to leaving the phone idle.

We estimate that clients use a total of 220MB to 290MB of bandwidth per month, depending
on the schedule. This is over two orders of magnitude less than Vuvuzela’s and Alpenhorn’s
dialing protocols, which require about 7MB per round or 300GB per month [143, 220] for a
primitive form of asynchronous messaging on the same schedule. We believe that Rubato’s
network usage is moderate and compatible with mobile data packages.

4.5.9 Limitations

For the sake of performance, Rubato provides a differential-privacy guarantee, which is weaker
than that of some related works [138]. In Rubato, when users communicate, they might reveal
small, quantified statistical information to an adversary. Over time, users can deplete a privacy
budget. Once it reaches zero, users must stop using the system the system or risk revealing to
the adversary whether they are in an active communication or not. Although we designed the
system to work for a long time (§4.5.5), this approach can be unsatisfactory.

Furthermore, in Rubato, users must communicate following a personal “safe schedule” (§4.5.2.1).
Safe schedules, however, can still be unpractical; the safe schedule that we provide as an exam-
ple is a fixed schedule. Even when we hint that other safe schedules are possible (§4.5.2.1),
further study is needed to propose practical safe schedules.

4.5.10 Conclusion

In this subsection, we have presented Rubato, a metadata-private communication system
based on a mixnet. This system provides a differential privacy guarantee and can scale to
support a large user base. The major advance in Rubato is that it supports mobile devices
that can go offline, have power and network constraints, and that complement other devices
a user has. Rubato achieves this by introducing the primed circuits and via circuit tagging
techniques that enable bridging asynchronous clients with a synchronous mixnet through
untrusted service providers. Much like standard messaging applications, Rubato enables users
to run clients on multiple devices. We implement a prototype of Rubato and show that it can
support a large user-base, with latency on the order of a minute. Experiments with a Pixel 4
smartphone demonstrate that Rubato can accommodate mobile clients’ network and power
constraints.
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4.6 Conclusion

In this chapter, we have proposed two novel systems: PriFi and Rubato.

PriFi is an ACN tailored for organizational networks: it protects users from eavesdropping
and tracking attacks. PriFi exploits the characteristics of (W)LANs to provide low-latency,
traffic-agnostic communication against a strong adversary. Unlike most other ACNs, the user
traffic remains on its usual path; the added latency is due to software processing and not due
to additional network links. We have also presented novel low-latency techniques for protect-
ing against malicious insider attacks and equivocation attacks. Due to the anonymization
technique used, PriFi has a high network cost and does not scale to more than a few hundred
users.

Rubato is an ACN for instant messaging that can scale to millions of users. Unlike the related
work, it supports multiple uncoordinated and asynchronous clients per user. By respecting
their power and network constraints, this enables mobile devices to participate in the system.
Rubato achieves this by introducing the primed circuits and circuit tagging techniques, which
enable bridging asynchronous clients with a synchronous mixnet through untrusted service
providers. Due to the use of dummy circuits to hide real conversations, the system has a high
bandwidth usage on the back-end.
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In this thesis, we have explored problems on the topic of communication metadata. We have
focused on two complementary approaches: raising awareness by demonstrating attacks, and
presenting novel solutions.

In Chapter 2, we have presented an inference attack on the communications of Bluetooth
wearable devices. We demonstrated that a passive adversary, for instance a nosy neighbor or a
local advertiser, can infer personal and health-related data from encrypted communications.
This adversary is able to recognize devices and hence track users, to identify application
openings on smartwatches, and even to recognize fine-grained actions within applications.
More fundamentally, we have shown how all the wearable devices that we analyzed were
insufficiently protected against the threat of traffic analysis. This confirms that the analysis
of communication metadata can pose a threat to user privacy, even in domains where traffic
analysis was not previously considered an immediate threat.

In Chapter 3, we have presented a ciphertext format (PURBs) and a padding function (Padmé)
for reducing metadata leakage. In particular, we have demonstrated that, with appropriate
trial-decryption steps and specific header structure, a ciphertext format can be made indis-
tinguishable from random bits hence not leak any metadata, except for its length. Then, we
have proposed a padding function for reducing the information leakage through the length.
We have shown how it reduces the number of bits leaked, compared to traditional padding
functions, and that it maintains a reasonable cost in practice.

In Chapter 4, we built communication systems that protect some communication metadata.
More precisely, we developed Anonymous Communication Networks (ACNs) to hide the
communicating entities.

First, we have focused on the setting of organizational networks: LANs and WLANs in non-
governmental organizations, companies, and universities. We realized that current ACNs are
poorly suited to protect communication metadata in this context: Most rely on an anytrust
chain of server that must be spread across different jurisdictions in order to maximize collective
trustworthiness. This topology adds latency to communications, limits the applications that
can communicate over the network, and adds friction for users. We developed PriFi, an ACN
for the setting of local-area networks. PriFi uses a new DC-net topology to protects the identity
of users. It enables packets from the users to remain on their usual network path and conserves
the desirable property of having servers geographically spread in different jurisdictions. As a
result, PriFi achieves low latency and can support applications such as VoIP.

Finally, we have focused on the problem of metadata in instant mobile messaging (similar
to WhatsApp). The state of the art in scalable anonymous communication require users to
follow a fixed global schedule to defend against intersection attacks. This requirement might
be acceptable for servers that are always online and available, but it excludes mobile users:
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first, because such devices cannot be expected to be always online; second, because a unique
global schedule cannot accommodate the diverse constraints (e.g., in terms of battery life)
that mobile users have. We developed Rubato: an ACN for “instant” messaging that can
scale to millions of users, has a moderate latency, and that enables users to follow their own
schedule. Rubato provides a unique anonymity set and resists intersection attacks, even if
users disconnect. This work enables mobile devices to participate in large-scale Anonymous
Communication Networks, hence enables protecting the communication metadata of a new
important class of users.

Limitations

Technical Limitations

In Chapter 2, we have presented a traffic-analysis attack that enables an adversary to infer
sensitive information from the encrypted communications of Bluetooth wearable devices.
This experimental work has several limitations, listed in Section 2.8.2. We highlight two
important points: First, due to practical constraints, our analysis is limited to 13 devices and
80 applications. Although we performed a preliminary experiment to validate that our results
generalize (§2.6.2.2), we cannot definitely answer on the generalizability of our results. We
recall that it was not our primary goal; we sought to demonstrate a privacy problem with a
common set of wearable devices. When choosing the set of devices used in our experiments,
we made a best-effort approach to cover different vendors and device types, as discussed in
§2.4. We acknowledge, however, that the success rate and practicality of the attack depends on
the choice and number of devices. The second limitation stems from the powerful adversary
used. This adversary is able to eavesdrop on Bluetooth communications, with a high capture
rate. By using hardware available today, this implicitly assumes a near-by eavesdropper with
expensive equipment. However, there is a trend towards less expensive Bluetooth sniffers
(§2.8.1). The choice of adversary also has an effect on the defenses (§2.7): their success rates
should be taken as an upper-bound, given our set of features. In the same vein, if a weaker
adversary were to be considered, the simple defenses we propose might provide sufficient
protection.

In Chapter 3, we have presented a ciphertext format and a padding function to reduce meta-
data leakage. Our design is a generic approach that is likely to be outperformed by solutions
tailored for their application domain. In particular, Padmé is a generic approach that, ac-
cording to our observation, provides a good trade-off in some domains (§3.5), while having
better theoretical properties than trivial solutions. Our goal with PURBs was to demonstrate
the feasibility of a ciphertext format that leaks “almost nothing”. Due to time constraints, the
evaluation of the uses-cases of Padmé and PURBs is not extensive.

PriFi (§4.4) has high bandwidth costs and requires clients to be synchronous. With the require-
ment of low latency and due to the protocol design, our implementation does not scale to
more than a few hundred participants (§4.4.10). Malicious clients who blatantly cheat on the
protocol can be detected at a cost (stopping all communications and running an additional
protocol, §4.4.6). Hence, PriFi is best suited to be a close-membership system. A slow client
can degrade the overall network throughput, but it might be difficult to determine if such
client is maliciously degrading the network. Therefore, PriFi is best suited for small-scale
high-performance communications in settings with spare bandwidth. An example of such
setting is a governmental or non-governmental organization with a local-area network on
which devices are authenticated, but loosely trusted.
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Rubato (§4.5) provides a differential-privacy guarantee (§4.5.3.2). Over time, users can deplete
a privacy budget. Once it reaches zero, users must stop using the system altogether to avoid
revealing statistically significant observations to the adversary. Although we designed the
system to work for a long time (§4.5.6), this approach can be unsatisfactory. Furthermore,
in Rubato, users must communicate following a “safe schedule” (§4.5.2.1). Unlike in related
works, this schedule is not global and can be chosen by each user. Safe schedules, however,
can still be impractical; the safe schedule that we provide as an example is a fixed schedule.
Even when we hint that other safe schedules are possible (§4.5.2.1), further study is needed to
propose practical safe schedules.

Societal Limitations

Law enforcement agencies often use lawful interception techniques on communications as
part of their mandate to fight crime. Communication systems that protect contents and
metadata from third parties could hamper the legitimate operations of these agencies.

The purpose of the systems we propose is not to evade lawful surveillance: It is to protect
user privacy from unauthorized third parties (e.g., hackers, advertisers) by removing sensitive
metadata from communications. We deem the presence of such metadata to be incompatible
with the respect of user privacy, which is a fundamental right in many democratic societies [59].
If the lawful surveillance operations rely on the same sensitive metadata, we believe that such
operations must evolve.

For instance, we believe that an open, auditable process could be created to enable law en-
forcement to lawfully access specific data. An example of such system in the context of mobile
phone data collected at cell towers is presented by Segal et al. [190, 191]; the requirements
of such a process are further discussed by Feigenbaum et al. [87]. Yet, at the time of writing
this thesis, we believe that some prerequisites are missing in today’s societies: For instance,
if a court should be able to order a lawful surveillance and have the technical means to de-
crypt some encrypted data, an auditable infrastructure to manage the court’s cryptographic
identities must exist.

Currently, there is no practical system that protects all communication metadata while sup-
porting low-latency traffic at a large scale. Thus, we focus our research towards this technical
problem. We acknowledge that the interaction with law enforcement is left to be defined.

Impact outside of research

We have conducted responsible disclosure regarding the traffic-analysis attack on wearable
devices (§2). We contacted all relevant device manufacturers and app developers with our
findings. This generated interest, notably around potential solutions to the problem. One
manufacturer awarded us a bug bounty. This supports the hypothesis that our objective to
raise awareness has been achieved. We have also made available the datasets and attacks in
order to facilitate the development of defenses [24].

Regarding PURBs and Padmé (§3), the developers of Sequoia PGP, a modern OpenPGP library
coded in Rust, integrated Padmé as one option to pad their ciphertexts [193].

Part of the development of PriFi was done in collaboration with the ICRC, in particular the
fine-tuning and benchmarking of performance with data from real ICRC sites. A demo of
the working prototype was presented at the ICRC Headquarters in Geneva on the 10th of
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September 2018. Two internal demonstrations took place during two EPFL events (EPFL
Summer Research Institute 2017 and EPFL IC Research Days 2018). The latter demo was
awarded a prize. The research around PriFi also led to a patent [89].

PURBs (§3), PriFi (§4.4) and Rubato (§4.5) are systems that can be reused; we open-source
them to facilitate further software development and research [21, 22, 162]. PURBs and Ru-
bato are research prototypes, whereas PriFi has been pushed to be a slightly more mature
product [21].

Reproducibility

In order to ensure full reproducibility, we have made available all datasets and tools used in
this thesis1: [24] for Chapter 2, [162] for Chapter 3, and [21, 22] for Chapter 4.
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the AXA Research Fund, Handshake, and the Swiss Data Science Center.
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Closing Words

The problem of communication metadata is pervasive and difficult to solve with a holistic ap-
proach. Hiding communication metadata is fundamentally costly. When developing practical
systems, these high costs raise the question about the necessity of protecting metadata. In
particular, should all metadata be hidden, or only some of them (e.g., the traffic patterns, or
the communicating entities) ? What is an ambitious, privacy-preserving but practical goal for
the next mainstream communication system willing to protect communication metadata, e.g.,
the next Signal?

These remain open questions. We hope that the contributions in this thesis promote and help
build systems that carefully consider the privacy threats stemming from their communication
metadata.

1With the exception of one private dataset used in the evaluation of PriFi.
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A. Appendix: Wearable Devices (Chapter 2)

A.1 Chipset Fingerprinting
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Figure A.1 – Chipset identification (Classic & LE)

The classifier used for device identification (§2.5) fingerprints a combination of the hard-
ware, the firmware, the OS, and the applications installed. To specifically target the hardware
(i.e., chipset manufacturer), we reproduce the same experiment, this time using the Blue-
tooth chipset manufacturer as the classifier’s label. Our goal is to investigate if our classifier
learns common patterns from the encrypted traffic recorded by devices that have the same
chipset manufacturer, e.g., Samsung Galaxy Watch and Huawei Watch 2, which both have
a Broadcom Bluetooth chip or Mi Band 2, 3 and 4 all equipped with a Dialog Semiconductor
chip. Once again, we find that the classifier’s performance is high (96% precision/recall/F1
score, Figure A.1a, Table A.3), which indicates that there exist stable communication patterns
across chipsets. We remark that the limited sample size (i.e., 1−3 devices per chipset manu-
facturer) limits the generalization of our conclusions; further analysis is needed in this specific
direction. Nonetheless, this result demonstrates the robustness of our methodology, as our
earlier results show that our device-identification classifier can distinguish between devices
from the same vendor.

A.2 Dataset Aging

We now evaluate the effect of dataset aging, that is, the loss of accuracy incurred as the
adversary uses older datasets. We perform an experiment in which we collect data from
applications over 32 days; then, we measure the classifier accuracy when classifying each day’s
samples with the model trained on the data collected at day 0. We use the 39 high-volume
applications presented in Section 2.6.2, from which we exclude 6 applications that were not
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(a) Evolution of the F1 score per class, averaged
over 32 days.
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(b) Evolution of the F1 score per class, averaged
over 29 days, training over the initial three days.

Figure A.2 – Effect of dataset aging on accuracy.

successfully automated and did not produce traces over the multiple days of this experiment.
We also exclude 3 applications that stopped communicating data after an update over the
month. Figure A.1 shows a box-plot of the F1 score per application over the duration of the
experiment. First, we observe that the median F1 score is stable through the month, with
small variations between 90% and 95%. The overall performance of the classifier did not vary
significantly, even when using traces that are a month old. We do observe that the F1 score of
some classes varies through the month (e.g., on days 12 and 16, the lower whiskers indicate
that some apps were misclassified more than usual). We investigate the F1 score per class,
averaged over the month (Figure A.2a). We see that the different classes have variable F1 scores,
in particular with one application being harder to classify: DCLMRadio. This a web radio that
loads a large amount of content updated daily. It is unsurprising that training on a single day
is not representative of the whole month. Nonetheless, other applications are still classified
with high accuracy after 32 days.

Finally, to improve the classification, we also experiment with training the classifier using
the data of several days. We use the data collected during the initial three days (instead of
just the first), while keeping the same amount of training data (corresponding to a single
day). We observe that training on just a few days leads to a performance increase of 3% mean
accuracy (from 92% to 95%) over the month. The F1 score of DCLMRadio, the worst class, also
increases by 14 percentage point (from 68% to 82%; Appendix, Figure A.2b). This suggests that
an adversary does not need a fresh dataset to perform the attack. Thus, this lowers the cost of
the attack by reducing the amount of training needed and by facilitating dataset reuse.
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Figure A.1 – Packet loss rate versus classifier accuracy for application identification (“deep”
experiment).

A.3 Impact of Packet Loss on the Attacks

In our experiments, we use a high-end sniffer that is co-located with the target devices. In this
configuration, the sniffer has close to 100% packet capture rate. In practice, lower-end sniffers
will suffer packet loss. Collisions from other devices and the distance between the target and
the eavesdropper also increase loss. We briefly investigate how the attack accuracy varies with
degraded capture conditions.

First, we decouple the attacker accuracy, the packet loss and the capture conditions, and we
explore the attack accuracy versus the loss rate only. This loss can stem from many real-life
parameters (distance, noise, multipath interference, the quality of the eavesdropping device,
etc.). As a generic approach, we study the effect of uniform packet loss on our dataset. We
simulate packet loss on the captured traces and re-run the application identification (“deep”)
experiment (§2.6.2). We apply a uniform packet loss by dropping individual packets with a
given probability. We then use the methodology already presented (we split the traces into
train/test and compute the average classification accuracy). The experiment is repeated 10
times per loss rate. We observe (Appendix, Figure A.1) that even with 50% packet loss, the
loss in accuracy is only 10 percentage points, with the mean accuracy dropping from 64% to
54%. For high-volume apps, the mean accuracy drops from 90% to 77%. This experiment
indicates that the approach is robust to packet losses: even when missing every other packet,
the attacker is able to classify with significant accuracy.

Due to the difficulty of relating the various capture conditions to the loss rate, we only discuss
experimental results generated by Albazrqaoe et al. with the most common inexpensive
Bluetooth sniffers: The authors describe how a single Ubertooth, when placed 10m away from
the target device and in the presence of significant 802.11 interference [4], has between 25%
and 50% packet loss. In similar conditions, a BlueEar sniffer (composed of two synchronized
Ubertooth) maintains packet losses below 10% [4]. This observation suggests that the attack
could also be performed with inexpensive Bluetooth sniffers.
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A.4 Additional Figures
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(a) Number of trees, device identification (§2.5).
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Feature Elimination (RFE), device identification
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(c) Number of samples per class, application iden-
tification (“deep” experiment, §2.6.2).

Figure A.1 – Choice of parameters versus mean classifier accuracy.
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Figure A.2 – Parameter choices for add_dummies, illustrated here with the samples for applica-
tion identification (“deep” experiment). We select W = 6s and N = 300

118



A.4. Additional Figures

0.0 0.1 0.2 0.3
Feature importance

max incoming size
number of Δtime

avgΔPT of incoming pkts
min Δtime

std dev. sizes≠0
mean Δtime

mean sizes≠0
avgΔPT of outgoing pkts

max sizes≠0
max Δtime

number of incoming pkts
number of packets≠0

number of outgoing pkts
std dev. Δtime

Fe
at
ur
e 
na

m
e

(a) Feature importance when attacking pad-
defended traces, device identification, Bluetooth
LE.

0.0 0.1 0.2
Feature importance

max sizes 0
number of outgoing pkts>46B

number of Δtime >46B
max outgoing size

std dev. outgoing sizes>46B
max ΔtimeΔ0

std dev. sizes 0
std dev. outgoing sizes
max outgoing size>46B

mean outgoing size
max Δtime >46B
mean sizes 0

mean outgoing size>46B
min ΔtimeΔ0

std dev. ΔtimeΔ0
std dev. Δtime >46B

min Δtime >46B

Fe
at
ur
e 
na
m
e

(b) Feature importance for action identification
against delay_group-defended traces,
DiabetesM.

Figure A.3 – Feature importance when attacking defended traces, two scenarios.
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Figure A.4 – Normalized confusion matrices per true label, device identification against
add_dummies-defended traces.
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A.5 Tables

Classifier performance for Device identification.

Table A.1 – Bluetooth Classic.

Label Precision Recall F1-score
Airpods 0.83 0.9 0.87
AppleWatch 0.98 0.93 0.96
FitbitVersa2 1.0 1.0 1.0
FossilExploristHR 0.96 0.98 0.97
HuaweiWatch2 0.98 0.98 0.98
SamsungGWatch 1.0 0.98 0.99
Sony MDR 0.9 0.86 0.88
Average 0.96 0.96 0.96

Table A.2 – Bluetooth LE.

Label Precision Recall F1-score
AppleWatch 0.99 1.0 1.0
FitbitCharge2 1.0 1.0 1.0
FitbitCharge3 1.0 0.95 0.97
HuaweiBand3 1.0 1.0 1.0
MiBand2 0.93 0.94 0.93
MiBand3 0.88 0.98 0.92
MiBand4 0.99 0.86 0.92
Average 0.97 0.97 0.97

Classifier performances.

Table A.3 – Chipset identification.

Label Precision Recall F1-score
Apple 0.9 0.94 0.92
Broadcomm 0.95 0.98 0.96
Cypress 0.98 0.98 0.98
Dialog 0.98 0.98 0.98
MicroElectronics 1.0 1.0 1.0
Qualcomm 0.97 0.88 0.92
RivieraWaves 0.98 1.0 0.99
Average 0.96 0.96 0.96

Table A.4 – Action identification within
DiabetesM.

Label Precision Recall F1-score
Add Calorie 0.44 0.46 0.45
Add Carbs 0.87 0.9 0.89
Add Fat 0.77 0.81 0.79
Add Glucose 0.85 0.91 0.88
Add Insulin 0.9 0.95 0.92
Add Proteins 0.37 0.28 0.32
Average 0.7 0.7 0.7

Table A.5 – 34 “high-volume” applications common between the two pairs of device Huawei
Watch 2 - Pixel 2 and Fossil Q Explorist HR - Nexus 5.

Bring, Calm, ChinaDaily, Citymapper, DCLMRadio, DiabetesM, Endomondo, FITIVPlus, FindMyPhone,
Fit, FitBreathe, FitWorkout, FoursquareCityGuide, Glide, KeepNotes, Krone, Lifesum, MapMyRun,
Maps, Meduza, Mobills, Outlook, PlayStore, Running, SalatTime, Shazam, SleepTracking, SmokingLog,
Spotify, Strava, Telegram, Translate, WashPost, Weather

Table A.6 – Applications and Actions used for the long-run captures.

Applications AppInTheAir, Bring, Calm, ChinaDaily, Citymapper, DCLMRadio, DiabetesM, Endomondo,
FITIVPlus, FindMyPhone, FoursquareCityGuide, Glide, KeepNotes, Krone, Lifesum,
MapMyRun, Maps, Meduza, Mobills, Outlook, PlayStore, Qardio, Running, SalatTime,
Shazam, SleepTracking, SmokingLog, Spotify, Strava, Telegram, Translate, WashPost,
Weather.

Actions DiabetesM_AddCalorie, DiabetesM_AddCarbs, DiabetesM_AddFat,
DiabetesM_AddGlucose, DiabetesM_AddInsulin, DiabetesM_AddProteins,
Endomondo_BrowseMap, Endomondo_Running, FoursquareCityGuide_Coffees,
FoursquareCityGuide_Leisure, FoursquareCityGuide_NightLife,
FoursquareCityGuide_Restaurants, FoursquareCityGuide_Shopping,
HealthyRecipes_SearchRecipe, Lifesum_AddFood, Lifesum_AddWater,
PlayStore_Browse.
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Table A.7 – Classifier performance for Action identification, “Wide” experiment on all wear-
ables.

Label Precision Recall F1-score
Airpods_GooglePlayMusic_Play 0.87 0.96 0.91
AppleWatch_ECG_Sync 0.83 1.0 0.91
AppleWatch_Kaia_Workout 1.0 1.0 1.0
AppleWatch_MapMyRun_Workout 0.79 0.75 0.77
AppleWatch_Map_Browse 0.83 0.85 0.84
AppleWatch_Music_Skip 1.0 1.0 1.0
AppleWatch_PhotoApp_LiveStream 0.98 1.0 0.99
FitbitCharge2_Fitbit_Sync 0.98 1.0 0.99
FitbitCharge3_Fitbit_Sync 1.0 0.98 0.99
FossilExploristHR_EndomondoApp_Running 0.66 0.68 0.67
FossilExploristHR_EndomondoApp_Walking 0.74 0.78 0.76
FossilExploristHR_FITIVApp_Running 0.71 0.75 0.73
FossilExploristHR_FITIVApp_Walking 0.71 0.75 0.73
FossilExploristHR_MapMyRun_Running 0.76 0.8 0.78
FossilExploristHR_MapMyRun_Walking 0.77 0.75 0.76
FossilExploristHR_NoApp_EmailReceived 0.83 0.85 0.84
FossilExploristHR_NoApp_PhoneCallMissed 0.98 1.0 0.99
FossilExploristHR_NoApp_SmsReceived 0.95 0.98 0.96
GalaxyWatch_EndomondoApp_Running 0.42 0.45 0.43
GalaxyWatch_EndomondoApp_Walking 0.32 0.32 0.32
GalaxyWatch_FITIVApp_Running 0.61 0.57 0.59
GalaxyWatch_FITIVApp_Walking 0.65 0.65 0.65
GalaxyWatch_MapMyRun_Running 0.47 0.57 0.52
GalaxyWatch_MapMyRun_Walking 0.31 0.35 0.33
GalaxyWatch_MyFitnessPalApp_CaloriesAdd 0.84 0.78 0.81
GalaxyWatch_MyFitnessPalApp_WaterAdd 0.73 0.82 0.78
GalaxyWatch_NoApp_EmailReceived 0.83 0.6 0.7
GalaxyWatch_NoApp_PhoneCallMissed 1.0 0.9 0.95
GalaxyWatch_NoApp_PhotoTransfer 0.79 0.92 0.85
GalaxyWatch_NoApp_SmsReceived 0.85 0.82 0.84
GalaxyWatch_PearApp_Running 0.47 0.35 0.4
GalaxyWatch_PearApp_Walking 0.58 0.52 0.55
GalaxyWatch_SamsungHealthApp_Running 0.58 0.55 0.56
GalaxyWatch_SamsungHealthApp_Walking 0.67 0.55 0.6
HuaweiBand3_HuaweiApp_Sync 1.0 1.0 1.0
HuaweiWatch2_Endomondo_BrowseMap 0.94 0.92 0.93
HuaweiWatch2_Endomondo_Running 0.98 0.97 0.97
HuaweiWatch2_HealthyRecipes_SearchRecipe 0.92 0.93 0.93
HuaweiWatch2_Lifesum_AddFood 0.93 0.95 0.94
HuaweiWatch2_Lifesum_AddWater 0.93 1.0 0.96
HuaweiWatch2_NoApp_NoAction 0.81 0.79 0.8
HuaweiWatch2_PlayStore_Browse 0.94 0.85 0.89
MDR_GooglePlayMusic_Play 0.96 0.88 0.92
MiBand2_MiApp_Sync 1.0 0.95 0.97
MiBand2_MiApp_Walking 0.88 0.95 0.92
MiBand3_MiApp_Sync 1.0 1.0 1.0
MiBand3_MiApp_Walking 0.91 0.78 0.84
MiBand4_MiApp_Sync 0.93 0.98 0.95
MiBand4_MiApp_Walking 0.88 0.9 0.89
Average 0.82 0.82 0.82
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Table A.8 – Details of transmitted volumes for
the 18 “low-volume” apps over 40 recorded
samples. NoApp corresponds to OS communi-
cations.

App Median [B] Std dev. [B]
Reminders 0.0 23660.5
Battery 0.0 239.6
DuaKhatqmAlQuran 11.0 43168.3
WearCasts 37.0 398149.0
DailyTracking 44.0 326.9
ASB 75.0 3511.6
NoApp 96.5 3949.5
HeartRate 104.0 21824.4
Workout 119.0 5108.4
AthkarOfPrayer 120.0 4835.5
Alarm 122.5 8891.4
GooglePay 127.0 2762.1
Flashlight 152.5 4176.7
Phone 154.5 2319.2
PlayMusic 156.0 16294.5
HealthyRecipes 167.5 3104.7
Sleep 171.5 14460.4
Medisafe 194.0 8802.6

Table A.9 – Details of transmitted volumes for
the 38 “high-volume” apps over 40 samples.

App Median [kB] Std dev. [kB]
SalatTime 0.6 5.5
MapMyFitness 0.6 2.6
Citymapper 1.1 3.4
Calm 1.2 8.3
Outlook 1.4 3.4
DiabetesM 1.4 2.5
SmokingLog 1.5 46.7
MapMyRun 1.8 8.1
SleepTracking 1.9 4.4
Mobills 2.1 1.5
Fit 2.1 8.4
Weather 2.6 9.4
Running 2.9 8.0
FitWorkout 3.3 144.6
FitBreathe 3.3 3.4
FoursquareCityGuide 3.8 7.0
Glide 4.8 5.2
Translate 5.8 5.9
Shazam 6.2 41.9
Qardio 6.5 7.1
Krone 6.8 13.2
KeepNotes 7.0 4.8
FindMyPhone 8.0 12.2
Telegram 8.7 3.7
Strava 10.6 4.7
DCLMRadio 16.6 15.6
Lifesum 17.8 11.0
Endomondo 17.9 9.7
PlayStore 18.5 24.3
Maps 18.7 62.8
AppInTheAir 26.4 14.4
Bring 34.5 7.9
Spotify 38.8 9.8
Meduza 40.9 13.9
FITIVPlus 48.9 11.7
ChinaDaily 55.1 8.3
WashPost 120.1 14.2
Camera 598.0 141.5
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Classifier performance for App identification, Huawei Watch.

Table A.10 – 18 “low-volume” applications.

Label Precision Recall F1-score
Battery 0.21 0.31 0.25
Reminders 0.14 0.25 0.18
DuaKhatqmAl. 0.08 0.06 0.07
WearCasts 0.26 0.18 0.21
DailyTracking 0.2 0.15 0.17
ASB 0.25 0.28 0.26
NoApp 0.06 0.02 0.04
HeartRate 0.17 0.15 0.16
Workout 0.11 0.1 0.11
AthkarOfPrayer 0.09 0.09 0.09
Alarm 0.06 0.05 0.05
GooglePay 0.08 0.09 0.08
Flashlight 0.13 0.14 0.13
Phone 0.34 0.34 0.34
PlayMusic 0.2 0.2 0.2
HealthyRecipes 0.11 0.12 0.12
Sleep 0.21 0.24 0.22
Medisafe 0.32 0.32 0.32
Average 0.17 0.17 0.17

Table A.11 – 38 “high-volume” applications

Label Precision Recall F1-score
SalatTime 1.0 1.0 1.0
MapMyFitness 1.0 0.96 0.98
Calm 0.94 0.96 0.95
Citymapper 0.94 0.96 0.95
DiabetesM 0.94 0.95 0.94
Outlook 0.96 0.92 0.94
SmokingLog 0.91 0.79 0.85
Fit 0.82 0.88 0.85
Running 0.78 0.72 0.75
MapMyRun 1.0 0.94 0.97
SleepTracking 0.99 0.92 0.95
Weather 0.76 0.69 0.72
Mobills 0.95 0.92 0.94
FitBreathe 0.96 0.99 0.98
Foursquare 0.91 0.94 0.93
FitWorkout 0.84 0.8 0.82
Glide 0.88 0.94 0.91
Translate 0.94 0.91 0.92
Qardio 0.95 0.95 0.95
Krone 0.91 0.84 0.87
FindMyPhone 0.81 0.84 0.82
KeepNotes 0.95 0.88 0.91
Shazam 0.95 0.86 0.9
Strava 0.86 0.79 0.82
Telegram 0.95 0.92 0.94
Maps 0.74 0.79 0.76
Endomondo 0.78 0.84 0.81
DCLMRadio 0.96 0.95 0.96
Lifesum 0.8 0.88 0.84
PlayStore 0.8 0.88 0.83
AppInTheAir 0.82 0.94 0.88
Bring 0.82 0.94 0.88
Spotify 0.96 0.99 0.98
Meduza 0.9 0.91 0.91
FITIVPlus 0.99 0.99 0.99
ChinaDaily 0.96 0.91 0.94
WashPost 0.9 1.0 0.95
Camera 1.0 1.0 1.0
Average 0.9 0.9 0.9
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Classifier performance when transferring the model between pairs of devices.

Table A.12 – Train on Huawei-Pixel. Test
on Fossil-Nexus.

Label Precision Recall F1-score
Bring 1.0 1.0 1.0
Calm 0.96 0.86 0.91
ChinaDaily 0.96 0.89 0.93
Citymapper 0.74 1.0 0.85
DCLMRadio 0.91 0.71 0.8
DiabetesM 0.97 1.0 0.98
Endomondo 0.78 1.0 0.88
FITIVPlus 0.88 1.0 0.93
FindMyPhone 0.71 0.17 0.28
Fit 0.0 0.0 0.0
FitBreathe 0.3 0.93 0.46
FitWorkout 0.0 0.0 0.0
Foursquare 1.0 0.86 0.92
Glide 0.85 1.0 0.92
KeepNotes 0.71 0.96 0.82
Krone 1.0 0.62 0.77
Lifesum 0.84 0.96 0.9
MapMyRun 1.0 1.0 1.0
Maps 0.95 0.62 0.75
Meduza 0.85 0.97 0.9
Mobills 1.0 0.79 0.88
Outlook 1.0 0.96 0.98
PlayStore 0.33 0.11 0.16
Running 0.96 0.89 0.93
SalatTime 0.57 0.96 0.72
Shazam 1.0 0.82 0.9
SleepTracking 0.96 0.86 0.91
SmokingLog 0.96 0.89 0.93
Spotify 1.0 1.0 1.0
Strava 1.0 0.86 0.92
Telegram 1.0 0.97 0.98
Translate 0.72 0.93 0.81
WashPost 0.57 1.0 0.73
Weather 0.93 0.93 0.93
Average 0.81 0.81 0.81

Table A.13 – Train on Fossil-Nexus. Test on
Huawei-Pixel.

Label Precision Recall F1-score
Bring 1.0 1.0 1.0
Calm 1.0 0.97 0.98
ChinaDaily 0.92 0.79 0.85
Citymapper 1.0 0.93 0.96
DCLMRadio 0.93 0.86 0.89
DiabetesM 1.0 1.0 1.0
Endomondo 0.83 0.86 0.84
FITIVPlus 0.87 0.96 0.92
FindMyPhone 0.67 0.07 0.13
Fit 0.21 0.14 0.17
FitBreathe 0.3 0.57 0.39
FitWorkout 0.5 0.04 0.07
Foursquare 0.93 0.96 0.95
Glide 1.0 1.0 1.0
KeepNotes 0.93 0.96 0.95
Krone 0.96 0.93 0.95
Lifesum 0.96 0.96 0.96
MapMyRun 0.88 1.0 0.93
Maps 0.92 0.82 0.87
Meduza 1.0 1.0 1.0
Mobills 0.74 0.97 0.84
Outlook 0.85 1.0 0.92
PlayStore 0.95 0.71 0.82
Running 0.86 0.89 0.88
SalatTime 0.96 0.96 0.96
Shazam 0.9 0.93 0.91
SleepTracking 0.78 1.0 0.88
SmokingLog 0.97 0.97 0.97
Spotify 1.0 1.0 1.0
Strava 0.81 0.93 0.87
Telegram 0.76 1.0 0.86
Translate 0.8 0.97 0.88
WashPost 0.93 0.96 0.95
Weather 0.96 0.96 0.96
Average 0.86 0.86 0.86
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B. Appendix: PriFi (§4.4)

B.1 Table of Symbols

Let λ be a standard security parameter, and let G be a cyclic finite group of prime order where
the Decisional Diffie-Hellman (DDH) assumption [35] holds (e.g., an elliptic curve).

Let (KeyGen,S ,V) be a signature scheme, with KeyGen(G,1λ) an algorithm that generates the
private-public key pair (p,P ) usable for signing. We denote as Sp (m) the signature of the
message m with the key p.

Let KDF : G(1λ) → {0,1}λ be a key derivation function that converts a group element into a
bit string that can be used as a symmetric key. Let (E ,D) be a ind$-cca2-secure symmetric
nonce-based encryption scheme [183]. We denote as Ek (m) the encryption of the message m
with the key k.

Let H : {0,1}∗ → {0,1}λ be a standard cryptographic hash function. We use the random oracle
model to model the output of H . Let PRG : {0,1}λ → {0,1}∗ be a standard pseudo-random
generator. Let F1 : {0,1}λ→G be a public, invertible mapping function from binary strings to
G, and let F2 : {0,1}∗ →G be a hash function to G which maps to any point in G with uniform
probability (e.g., Elligator Squared [211]). Finally, let F3 : {0,1}∗ →N be a public function that
maps bitstrings to non-zero integers.

Identities. Each party has a long-term key pair (denoted with the hat symbol) generated with
KeyGen(G,1λ):

• (p̂i , P̂i ) for client Ci , with i ∈ {1, . . .n}
• (p̂ j , P̂ j ) for guard S j , with i ∈ {1, . . .m}
• (p̂r , P̂r ) for the relay
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Table B.1 – Table of Symbols for PriFi (Section 4.4)

Entities
Ci client i .
S j guard j .
A the adversary.
O the adversary’s observations.

Public Parameters
n number of clients.
m number of guards.
bk relay’s buffer for round k.

Keys
(p,P ) a (private, Public) key usable for signing.
(p̂, P̂ ) a long-term key pair.
(p̃, P̃ ) a shuffled key pair (output of the Neff shuffle in Setup (Algorithm 4.1))
G = (P̂i , . . . , P̂ j , . . . , P̂r ) the group definition for an epoch.
T = (P̂1, P̂2, . . . ) the long-term roster of allowed public keys for the clients.

Security
λ the standard security parameter.
G a cyclic finite group of prime order (e.g., an elliptic curve).
P a point in G.
H : {0,1}∗ → {0,1}λ a cryptographic hash function.
KDF :G(1λ) → {0,1}λ a key derivation function.
PRG : {0,1}λ→ {0,1}∗ a pseudo-random generator.
F1 : {0,1}λ→G a public, invertible mapping.
F2 : {0,1}∗ →G a hash function that maps uniformly to G.
F3 : {0,1}∗ →N+ a public mapping from bitstrings to non-zero integers.
(KeyGen,S ,V) a signature scheme.
(E ,D) a symmetric encryption scheme.

DC-net
π= (P̃α(1), . . . , P̃α(n)) the shuffled public keys.
α the permutation of the shuffle π. The final position of key at index i is α(i ).
ri j the secret shared between client i and server j
mk the (intended) upstream message for round k.
m′

k the upstream message for round k. In the absence of disruption, mk = m′
k .

d a downstream message.
ci ,γi contributions from client i .
s j ,σ j contributions from server j .
xi input to DC-net function. xi = 0, or xi = mi , etc.
z denotes a bit position. mz is the zth bit of message m
hi history of client i .
becho_last the flag that instructs the relay to echo the last upstream message.
Qi contribution from client i in Blame-Final
l , l ′ upstream, downstream message sizes.
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B.2 Protocols

Algorithm B.1: Anonymize-With-Integrity
The differences with Anonymize (Protocol 4.2) are highlighted in blue.

Inputs: ri j ,π,`,`′

Outputs: per round k: mk , d .

For round k ∈ {1, . . .n}:
• Each client Ci sends to the relay ci ← DCNet-Gen(ri j , xi ) with

xi =


0, if α(i ) 6= k,

PoKk ′,z (p̃k ′ : p̃k ′ = log P̃k ′ ), if slot k ′ was disrupted,

mi ||becho_last, otherwise.

• Each server S j sends to the relay s j ← DCNet-Gen(ri j ,0).

• The relay computes mk ← DCNet-Reveal(ci , s j )

• The relay handles mk as follows:

– if mk is a Blame message, starts the Blame(PoKk ′,z (p̃k ′ : p̃k ′ = log P̃k ′ ),ci , s j ) protocol,

– else, sends mk in the appropriate socket in bk .

• The relay computes and sends to each client d ← Downstream2(b,mk ,k,becho_last)

Function Downstream2(b,mk ,k,becho_last):
d ← array();

for k ′ ∈ {1, . . .n} do

1. if k ′ = k: // for the anonymous sender:
(a) add H(mk ) to d , // hash of upstream message
(b) if becho_last = 1: add EP̃k

(mk−n) to d . // echo last upstream message
2. for each socket ∈ bk ′ containing downstream

bytes d , add EP̃k′ (d) to d .

end

Remark. In Algorithm B.2, due to the “Or” format of the PoK, we note that a malicious client
can jam their own slot, then send arbitrary Qi values in step 7 of Blame, and still pass the
PoK because of their knowledge of p̃k . However, this has no benefit for the adversary, as
mismatching Qi ’s are simply checked in the following steps of Blame, with no effect on honest
parties (Property B.3.5).
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Algorithm B.2: Blame-Final
The differences with Blame (Algorithm 4.3) are highlighted in blue.

Inputs: PoKk,z (p̃k : p̃k = log P̃k ),ci , s j

1. The relay broadcasts PoKk,z (p̃k : p̃k = log P̃k ) to every client/guard

2. Each client/guard checks the PoK and sends to the relay PRG(ri j )z ,Sp̂i (PRG(ri j )z ) for slot k,
∀i ∈ {1, . . .n}, j ∈ {1, . . .m}.

3. For each client/guard, the relay checks the signature, and that
⊕

j PRG(ri j )z indeed equals (ci )z

sent in slot k.

4. For each pair of client-guard (Ci ,S j ), the relay compares PRG(ri j )z from the client and PRG(ri j )z

from the guard. If there is a mismatch, the relay forwards the signed message PRG(ri j )z from Ci

to S j and vice-versa.

5. Ci verifies the signature and checks that the bit PRG(ri j )z mismatches with its own bit PRG(ri j )z .
Then, he answers with ri j along with a proof of correctness. S j proceeds similarly.

6. The relay checks the proofs, then uses ri j to recompute the correct value for PRG(ri j ) for slot k. If
no disruptor is identified, the relay continues.

7. Each client Ci computes m values Qi = P ·F3(H(PRG(ri j ))), ∀ j ∈ {1, . . .m}, where P is the base
point of G. Then, each client computes a PoK as follows:

PoK
{

p̃k , q, q1 . . . qm : p̃k = log P̃k ∨ {q = log κi ∧
q1 := log Q1 ∧
...
qm := log Qm ∧
q := q1 + . . .+qm }

}
Each client sends a message Qi ,PoK,Sp̂i (Qi ,PoK) to R. A non-complying entity is identified as
the disruptor. Each server performs similarly, minus the first clause of the PoK which is never
true.

8. The relay checks all signatures and PoKs, and potentially identifies a disruptor. If not, for each
pair of client-guard (Ci ,S j ), the relay compares the two values Q j ,Qi — they should be equal. If
there is a mismatch, at least one of them is lying.
The relay continues by sending the signed message Qi ,PoK,Sp̂i (Qi ,PoK) from Ci to S j and
vice-versa.

9. Ci checks the signature and the PoK, and that a value Qi is in contradiction with some value of its
own. Then, he answers with ri j , the secret shared with S j , along with a proof of correctness for
computing ri j . S j proceeds similarly. A non-complying entity is identified as the disruptor.

10. The relay checks the proofs of correctness, then uses ri j to recompute the correct values for
PRG(ri j ) and H(PRG(ri j )) for slot k, identifying the disruptor.

Once the disruptor is identified, the relay excludes it from the group G and the roster T , and then
broadcasts all inputs and messages exchanged in Blame-Final to all clients for accountability.

128



B.3. Security Analysis

B.3 Security Analysis

Property B.3.1. Let C0, C1 be two honest clients who ran Setup (Algorithm 4.1) without
aborting, and α(0),α(1) the position their respective shuffled key in π. Let b ∈ {0,1} be the
value for which the mappings client → position (b →α(0), (1−b) →α(1)) are in π. Then, the
adversary A cannot guess b with significant advantage.

Proof. This property stems from the direct application of the Verifiable Shuffle used [159].

If Setup terminates without aborting for an honest client Ci , then, as a consequence of the
checks done by Ci , it means that: (1) the verifiable shuffle π completed correctly, (2) π is signed
by every guard in G , including the honest guard, (3) there are at least K = 2 clients in π, and (4)
their own pseudonym is included in π.

Since both C1 and C2 ran Setup without aborting, both their shuffled public keys P̃1, P̃2 are
included in π. Since both are honest, the corresponding private keys p1, p2 are unknown to A.
Let α(0),α(1) be the position of C1 and C2’s respective shuffled keys in π. Due to the hardness
of the discrete logarithm in G, A is unable to differentiate between P̃α(0) and P̃α(1), and can do
no better than random guessing.

Property B.3.2. Consider one execution of Anonymize-Final (Algorithm 4.4). Let m1, . . . ,mk

be the k output messages. Let Ci1 ,Ci2 be two honest clients, let k1 = α(i1),k2 = α(i2) be
the time slots in which they communicated, and let mk1 ,mk2 be the anonymous upstream
messages for those slots. Then, A has negligible advantage in guessing b ∈ {1,2} such that mkb

is the message sent by i1.

Proof. A tries to distinguish between (Ci1 → mk1 ,Ci2 → mk2 ) and (Ci1 → mk2 ,Ci2 → mk1 ). For
simplicity, we define the following equivalent game: for the slot k ∈ {k1,k2}, A guesses b ∈ {1,2}
such that Cib is the anonymous sender of the message mk .

To ease notation, let Ci1 be C1 , and Ci2 be C2. Without loss of generality, let S1 be an honest
guard, and let C1 be the anonymous sender of m1 during slot k1. The proof for C2 as the
anonymous sender is analogous.

On the slot k1, the two clients C1 and C2 send the following values:c1 ←⊕m
j=1 PRG(r1, j ) ⊕ x1

κ1 ← F1(γ)+F2(h1) ·∑m
j=1 F3(H(PRG(r1, j )))

(B.1)

c2 ←⊕m
j=1 PRG(r2, j )

κ2 ← F2(h2) ·∑m
j=1 F3(H(PRG(r2, j )))

(B.2)

... with x1 ← Eγ(m1) || becho_last.

Since S1,C1 and C2 are honest, the values PRG(r1,1) and PRG(r2,1) are unknown to A. We isolate
the contribution of S1:c1 ←⊕m

j=2 PRG(r1, j ) ⊕ PRG(r1,1) ⊕ x1

κ1 ← F1(γ)+F2(h1) ·F3(H(PRG(r1,1)))+F2(h1) ·∑m
j=2 F3(H(PRG(r1, j )))

(B.3)
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c2 ←⊕m
j=2 PRG(r2, j ) ⊕ PRG(r2,1)

κ2 F2(h2) ·F3(H(PRG(r2,1)))+F2(h1) ·∑m
j=2 F3(H(PRG(r2, j )))

(B.4)

We rewrite the terms known to the adversary as cst1, . . . ,cst4:{
c1 ← cst1 ⊕ PRG(r1,1) ⊕ x1

κ1 ← F1(γ)+F2(h1) ·F3(H(PRG(r1,1)))+cst2
(B.5)

{
c2 ← cst3 ⊕ PRG(r2,1)

κ2 ← F2(h2) ·F3(H(PRG(r2,1)))+cst4
(B.6)

The adversary must output b ∈ {1,2}; he wins if Cb is the anonymous sender on slot k1, or
equivalently, if α(ib) = k1. The observations of the adversary are O = (π, (c1,κ1), (c2,κ2)). We
analyze the observations component by component:

• If Setup was done correctly, the Neff shuffle π (with permutation α) does not give A any
advantage in guessing b (Property B.3.1).

• Both c1,c2 have the same length, and both PRG(r1,1) and PRG(r2,1) are indistinguishable
from random bits to A. Thus, c1 and c2 are indistinguishable from each other.

• Both terms F3(H(PRG(r1,1))) and F3(H(PRG(r2,1))) are non-zero integers due to F3. They
are unknown to A. Both terms F2(h1),F2(h2) are non-zero points in G. Finally, F1(γ) is
a point uniformly distributed in G. Due to the hardness of the logarithm in G (which
is implied by the hardness of the Decisional Diffie-Hellman problem), the adversary
cannot distinguish Pγ+a ·P1 from b ·P2, with a,b,Pγ unknown.

Hence, with C1 as the anonymous sender, the adversary cannot distinguish the pairs (c1,κ1), (c2,κ2):
it can only guess b with probability 1/2 and advantage 0. As desired, we have that the observa-
tions O of the adversary are indistinguishable whether a particular honest user is the sender
or not.

Property B.3.3. The anonymity of any honest client is unaffected by the information revealed
to A during the execution of Blame-Final: PRG(ri j )l in step 2, ri j made public in step 5 and
9, and finally, Qi and PoK sent in step 7 of Blame-Final (Algorithm B.2).

Proof. The proof is performed in four steps:

1. Revealing the z−th bit of the values PRG(ri j ) does not affect the anonymity of honest
clients: all sent a 0 in this position.

2. Revealing the shared secret ri j between a client Ci and a server S j only happens if either
Ci or S j is malicious, in which case ri j is already known to A.

3. The values Qi do not reveal any information except the correctness of F3(H(PRG(ri , j )))
due to the hardness of the discrete logarithm in G.

4. Trivially, the zero-knowledge PoK reveals no information.

Proof of point 1. The values PRG(ri j )z for slot k de-anonymize precisely the zth-bit of the slot
k, by revealing the composition of the messages ci and s j at position z.
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Let Ci be the honest owner of slot k. Only Ci can generate the proof of knowledge PoKk,z (p̃k :
p̃k = log P̃k ), and honest clients verify the PoK before revealing any information, hence honest
clients do not reveal information about a slot without the owner’s consent.

In slot k, all non-sender, honest clients transmitted a 0 on bit z, since k 6=α(i ) and the protocol
forces them to transmit 0. Additionally, the slot owner Ci only sends PoK for z such that
(mk )z = 0. Therefore, on slot k, at position z, all honest clients transmitted a 0. The values
revealed match the (ci )z values previously sent, and the (ci )z are composed solely of the
output of the PRGs seeded by the secrets, which are indistinguishable from a random string;
the knowledge of one given bit reveals nothing about other parts of the PRG output.

Proof of point 2. By revealing ri j , a pair of client-guard (Ci ,S j ) completely reveal their con-
tributions to the DC-net. However, an honest client and an honest guard never contradict
each other, as the protocol ensures that their values PRG(ri j )l are correctly computed from the
common shared secret ri j . Since in step 5, an honest client Ci only reveals ri j when seeing (1)
a signed message from a guard, (2) for which there is a contradiction, he never reveals ri j for
an honest guard S j . The same argument can be made for S j about any honest client.

Therefore, those values are revealed only when Ci or S j is malicious (or both); in this case, A
already had knowledge of ri j .

Proof of point 3 and 4. The Qi are independent from the communicated content and the slot
owner. Both senders and non-senders compute Qi in the same way. Due to the hardness of the
discrete logarithm problem in G, A cannot recover H(PRG(ri j )) from Qi = P ·F2(H(PRG(ri j ))).
Finally, the zero-knowledge proof of knowledge PoK trivially reveals no information.

Property B.3.4. If ∃i , j two honest clients who received di 6= d j on round k, then nor the relay,
nor A can decrypt mk for any subsequent rounds k ′ > k.

Proof. Without loss of generality, let C1,C2 be two honest clients who received d1 6= d2 at
the end of round k. Then, with overwhelming probability, h1 6= h2 due to the use of the
cryptographic hash function H , and it follows that F2(h1) 6= F2(h2) with high probability.

The message mk is encrypted with γ using E , an ind$-cca2-secure symmetric encryption
scheme. The honest sender transmits γ blinded as follows:

κ1 = F1(γ)+F2(h1) ·
m∑

j=1
F3(H(PRG(r1, j )))

Consider a unique honest guard S1. As done in the previous proofs, we isolate the contribution
from honest parties and replace the remainder with a constant:

κ1 = F1(γ)+F2(h1) ·F3(H(PRG(r1,1)))+cst1

Since he is not the sender, C2 sends κ2 = F2(h2) ·F3(H(PRG(r1,1)))+cst2.

The guard S sends σ1 =−∑
i=1,2 F3(H(PRG(ri ,1)))+cst3.

In the absence of equivocation, the relay is able to compute F1(γ) ← κ1 +κ2 +F2(hr )σ1 +cst,
with hr = h1. However, the values κ1 and κ2 have been blinded with a different factor F2(h1)
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and F2(h2).

γ′ = γ+ (F2(hr )−F2(h1)) ·F3(H(PRG(r1,1)))

+ (F2(hr )−F2(h2)) ·F3(H(PRG(r2,1)))

+cst

If A sets hr = h1, then γ′ = γ+ (F2(h2)−F2(h1)) ·F3(H(PRG(r2,1)))+cst.
If A sets hr = h2, then γ′ = γ+ (F2(h1)−F2(h2)) ·F3(H(PRG(r1,1)))+cst.

In both cases, γ′ 6= γ and the adversary cannot recover γ.

Property B.3.5. An honest relay is never accused of an equivocation attack.

Proof. Since the downstream messages d are signed by the honest relay, the adversary is
unable to forge a message sent by the honest relay. Since an honest relay never equivocates,
a malicious client attempting to frame the relay is equivalent to a malicious client sending
wrong ci ,κi values.

When this happens during an honest client slot, it will eventually start a Blame procedure. The
Blame procedure verifies the correctness of the ci ,κi values since, for a correct hi , the ci ,κi of
all parties but the honest sender are fully determined by the shared secrets ri j . The honest
sender trivially sends the correct values.

When this happens during the slot of a malicious client, the client may wrongly compute κi

and still pass the Blame due to the first “Or” of the PoK. In this case, no party is identified as a
disruptor.

Property B.3.6. Let Ci be the owner of a slot k, and let Cd , d 6= i be another client (or guard).
If Cd sends an arbitrary value c ′i instead of the value ci (or s j ) as specified in the protocol, and
if Blame-Final is started by the relay, then, one malicious client (or guard) is identified as the
disruptor and is excluded from subsequent communications.

Proof. The proof assumes a disrupting client; the argument for a disrupting guard is analogous.

Let c ′i be the value sent instead of ci . Then, we can write c ′i = ci ⊕ q for some value q , and
we observe that mk = mi ⊕ q . Let u be the number of 0 bits in m′

i . The adversary disrupts
stealthily (i.e., is not detected) if no 0 in mi is flipped to a 1: in this case, the honest client does
not start Blame-Final.

Since m′
i = Eγ(mi ) and E is ind$-cca2-secure, mi is uniformly distributed in {0,1}|mi |. The

probability that no 0-bit is flipped follows ( 1
2 )

u
, with E[u] = |mi |

2 . Thus, a malicious client is
excluded with probability exponentially decreasing in the message length |mi |.

Property B.3.7. If a client Ci sends an arbitrary value κ′i instead of the value κi as specified in
the protocol, then, with acceptable probability, Ci is identified as the disruptor and is excluded
from subsequent communications.
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Proof. The argument is analogous to the proof of Property B.3.6: if the honest client whose slot
was disrupted can start a blame, then the Blameprotocol ultimately excludes one disruptor.

Property B.3.8. An honest client is never excluded as a disruptor.

Proof. The end of Blame (Algorithm 4.3) describes more precisely what it means for a client
Ci to be “excluded as a disruptor”: the relay broadcasts a new group G ′ and roster T ′ without
the public key of Ci . The process for a server is analogous, except that T ′ = T .

The proof is done for an honest client, and is analogous for an honest server.

Trivially, an honest client always produces correct values. During a Blame procedure, every
message is signed. The honest client first sends PRG(ri j ) for slot k, which matches what he
sends in round k. Then, if he is not in contradiction with some server, the honest client stops
taking part in Blame (and is not excluded); let us assume he is in contradiction with S j . Then,
upon reception of the signed message from S j , he reveals ri j along with a proof of correctness.

To exclude a client (by broadcasting a new group G ′ and roster T ), the relay also have to
reveal all inputs of Blame for accountability. To exclude an honest client without blatantly
cheating, the relay would have to forge one signature, which contradicts our adversarial model
(Section 4.4.3.2).

We note that in practice the malicious relay could update G and T without justification;
however, this is analogous to a simple denial-of-service and contradicts the system model
(Section 4.4.3.1). In practice, this would prompt clients to take administrative actions against
the relay. Finally, even when that is the case, the honest client has not been “framed as a
disruptor”.

Property B.3.9. An honest entity is never identified as a disruptor.

Proof. Trivially, honest clients follow the protocol. Each step of the Blame protocol consists
of revealing some already-performed step of Setup and Anonymize protocol; by definition,
honest entities performed these steps correctly.

B.4 Scalability
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Loss Rates. We briefly explore the impact of various loss rates in Figure B.1a. While an
imperfect representation, this experiment could sketch the performance in a real WLAN. The
results show that the current implementation requires “good” link quality (loss rates ≤ 10%,
see [195] Figure 3a) to maintain low latency, that then degrades rather quickly with increasing
loss rates. We note that current WLANs typically have good resilience to message drops; noise
and collisions result in increased jitter rather than losses [131]. Implementing PriFi directly on
Network Interface Cards (NIC) could give better control and performance. Finally, we note that
WLANs have a less expensive broadcast than LANs, a factor not reflected in this experiment.

Scalability. Figure B.1b shows the performance for larger anonymity sets and with more guards.
While the number of guards has almost no impact on performance due to the buffering at the
relay, our implementation would not be low-latency for more than a few hundred clients.

B.5 Different Scenarios

Local Trusted Guard. The ICRC benefits from the particular situation of Privileges and Immu-
nities (P&I) [72], legal agreements with governments that provide a layer of defense in order
to operate in environments of armed conflicts and other situations of violence. In practice,
P&I notably grants the delegations with inviolability of premises and assets. Together with the
strong physical security deployed at their server rooms, each delegation essentially has a local
trusted server. Aside from the ICRC, P&I can apply to embassies and diplomatic missions [217].

We simulate this new deployment with one guard in the LAN instead of three remote guards.
The latency between the relay and the unique guard is 10 ms. In this case, we observe that the
latency experienced by clients is roughly cut in half, shown in Figure B.1, purple dotted curve
versus blue solid curve. An additional benefit is that the only WAN bandwidth usage is the
anonymized goodput.

VPN. When a member of an organization is accessing the network remotely (e.g., when travel-
ing), it can benefit from PriFi’s protection from outside the organizational LAN. The cost is in
performance, as the relay waits upon the slowest client to decode an anonymous message.

We simulate this alternative deployment scenario by having all clients outside the LAN. This is
modeled by setting the latency between clients and relay to 100 ms instead of 10 ms. In this
case, the baseline for latency is 200 ms. We observe that in this scenario, end-to-end latency
varies from 280 ms to 498 ms as shown in Figure B.1, red solid curve versus blue solid curve.
While this latency is too high to support VoIP and videoconferencing, it might be acceptable
for web browsing. We note that all users are slowed down. Although not explored in this work,
this slowdown could be mitigated by having two PriFi networks, one reserved for local users,
the other accepting remote users. Local users would participate in both networks, ensuring a
sufficiently large anonymity set, and would communicate only using the fastest PriFi network.
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Figure B.1 – Latencies observed in the standard scenario (3 remote guards with high-latency
towards the relay), when having one trusted guard in the LAN, and in the VPN scenario (all
users are in the WAN setting, with 100 ms latency to the relay). The baseline for the VPN
scenario is 200 ms, and 20 ms in the two other scenarios.

B.6 Client Churn

In DC-nets, churn invalidates the current communications and leads to data re-transmissions
and global downtime where no one can communicate. Although re-transmissions are ac-
ceptable with PriFi’s small and frequent rounds (e.g., a few 100KB of payload each 10ms),
frequent churn could prevent delay-sensitive applications from running on top of PriFi. To
our knowledge, our contribution here is the first analysis of the impact of churn on DC-nets in
a realistic scenario where nodes are mobile (e.g., wireless devices).

Dataset. To characterize node mobility, we use a standard dataset [170] from CRAWDAD. The
dataset contains 4 hours of traffic recorded in a cafeteria, and includes the devices’ association
and disassociation requests. It has 254 occurrences of churn consisting of 222 associations (33
unique devices) and 32 disconnections (12 unique devices).

Dataset Analysis. Each device (dis)connection induces a re-synchronization time of D mil-
liseconds (for Setup), where D is dominated by the number of guards m and clients n and the
latency between them. A typical value for D would be a few seconds (Figure B.1a). We analyze
two strategies to handle churn:

We analyze two strategies to handle churn:

• The naïve approach stops communication for D seconds unconditionally at every churn
event.

• An abrupt disconnection stops communication for D seconds at each disconnection
only. Devices connect using a graceful approach where Setup is done in the background,
keeping the previous Anonymize protocol running until the new set of clients is ready.
This strategy can be enforced by the relay.

Table B.2 – Effect of different churn handling strategies on PriFi.

Strategy # Interrupt. Availability [%] Max Downtime [s]
Naïve 254 98.72792 1.55147
Abrupt 32 99.81778 0.82
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how many users a PriFi client is anonymous.

Figure B.1 – Pipelining and ICRC.

In Table B.2, we show (1) the raw number of communication interruptions, which directly
comes from the node mobility in the dataset, (2) the network availability percentage, com-
puted as 1−downtime

total time , and (3) the maximum continuous downtime, i.e., the longest network
interruption.

Analysis. Using PriFi in the cafeteria scenario represented by the dataset [170] would naturally
decrease network availability, as churn induces global downtime. Over 4h, between 0 and 32
global losses of communication occur, and the network availability ranges between 99.82% and
100%, depending on the disconnection types. The longest disconnection period is 0.82s in the
worst case, which might be noticeable as a slight lag by users of time-sensitive applications (e.g.,
VoIP). If we extrapolate the worst-case availability 99.82% over 10 minutes, the total expected
downtime is below 1.1 second. We note that the metric does not directly compare with the
classical “five 9’s” in Service Level Agreements, for which in the worst case all downtime can
be continuous (e.g., a server is down for a few minutes); in our model, downtime is likely to be
spread over many short events over time, following user mobility.

Anonymity Metrics. We now analyze the size of the anonymity set with respect to time, i.e.,
among how many participants a PriFi user is anonymous at any point in time (Figure B.1b). In
particular, we are interested in the variations, which are due to user mobility in this case.

We display the difference, in percentage, between the actual anonymity set size and the
baseline tendency. We see that size of the anonymity set does not vary more than ±8%, and
the mean number of users is 50. Hence, our estimation for the worst-case of “anonymity loss”
in this scenario is of 4 users, which seems acceptable in an anonymity set of 50 users.
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C. Appendix: Rubato (§4.5)

C.1 Service provider API

type Onion = [MessageSize + SymmetricOnionOverhead]byte

type RoundData struct {
Onion [2]Onion // Messages are split into two, one for each buddy circuit
OutboundMsg []byte // Previously sent message for this round

}

rpc (t *Txn) GetAddressBook() []byte // RPCs for the Address Book
rpc (t *Txn) SetAddressBook(data []byte)

rpc (t *Txn) SetCircuitSetup(epoch int, onions [MaxBuddies][2][]byte) // Circuit Setup RPCs
rpc (t *Txn) GetCircuitSetupAck(epoch int) [MaxBuddies][2][]byte // each buddy has 2 circuits

rpc (t *Txn) GetOutgoingMessage(epoch int, round int) RoundData // RPCs to send messages
rpc (t *Txn) SetOutgoingMessage(epoch int, round int, rd RoundData)

rpc (t *Txn) GetHeaders(epoch int, round int) [MaxBuddies][2]byte // RPCs to get messages
rpc (t *Txn) ShuffleInbox(ShuffleParams) [][]byte
rpc (t *Txn) FetchInbox(DHkey []byte, indices []int) [][]byte

Figure C.1 – Service provider client API. Clients use these RPCs asynchronously to setup circuits to
their buddies and send/receive messages through them.
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