Secure, Confidential Blockchains Providing High Throughput and Low Latency

Lausanne, 27-09-2019

Lefteris Kokoris-Kogias

Blockchain, Blockchain, Blockchain

- Bring Transparency in a Digital World \bigcirc
- Minimise the need for globally trusted third parties 0
- Cheeper and faster transactions

Talk Outline

- Introduction \bigcirc
- Scalable, Strongly-Consistent Consensus for Bitcoin \bigcirc
- OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding \bigcirc

Scaling Blockchains is More Important Than Ever ...

CATS RULE THE BLOCKCHAIN, TOO

The ethereum network is getting jammed up because people are rushing to buy cartoon cats on its blockchain

Drawbacks of Bitcoin

- Transaction confirmation delay
 - Bitcoin: Any tx takes >10 mins until being confirmed \bigcirc
- Weak consistency
- Bitcoin: You are not really certain your tx is committed \bigcirc until you wait >1 hour
- Low throughput
 - Bitcoin: ~7 tx/sec \bigcirc

The Promise of Blockchain

The Potential for Blockchain to Transform **Electronic Health** Records

by John D. Halamka, MD, Andrew Lippman, and

MARCH 03, 2017

ADAM ROGERS SCIENCE 02.21.18 07:00 AM

MEET THE MAN WITH A RADICAL PLAN FOR BLOCKCHAIN VOTING

A new movement says that crypto-voting can purify democracy—and eventually eliminate the need for governments altogether.

BY ANDREW LEONARD

IN A CAFÉ on the Upper East Side of Manhattan, a one-time videogame developer turned political theorist named Santiago Siri is trying to explain to me how his nonprofit

startur

world': Insurance Companies start experimenting with Blockchain blockc technology

August 16, 2018

The Promise of Blockchain

Transparent Decentralized Log

Post encryptions, store keys on cloud

This Thesis

Permissioned

Oakland '17,'18 Sec '16, '17 HotPETs '16

Confidentiality

Under Submission

ESORICS '18

This Thesis

Scalability

Permissioned

Oakland '17, '18 Sec '**16**, '17 HotPETs '16

Confidentiality

Under Submission

ESORICS '18

Talk Outline

- Introduction \bigcirc
- Scalable, Strongly-Consistent Consensus for Bitcoin \bigcirc
- OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding \bigcirc

How Bitcoin Works

CRYPTOCURRENCIES

WEEK TONIGHT

1.451 9/104 101

ARE WEEK TONIGE

TONICHT LARY

GHE-LAST WELL

REF WEEK TONI

Traditional Banking

Traditional Banking

Lottery

Proof-of-Work

BLOCK

The Blockchain

The Blockchain

Problem Statement

- In Bitcoin there is no verifiable commitment of the system that a block will persist
 - Clients rely on probabilities to gain confidence \bigcirc

30

Chapter Outline

- Bitcoin and its limitations \bigcirc
- Strawman design: PBFTCoin \bigcirc
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election \bigcirc
- Performance Evaluation

Strawman Design: PBFTCoin

- In Step 3f+1 fixed "trustees" running PBFT* to withstand f failures
- Non-probabilistic strong consistency \bigcirc
 - Low latency
- No forks/inconsistencies
 - No double-spending

*Practical Byzantine Fault Tolerance [Castro/Liskov]

Strawman Design: PBFTCoin

Problem: Needs a static consensus group

Problem: Scalability

- $O(n^2)$ communication complexity
- verification complexity O(n)

Chapter Outline

- Bitcoin and its limitations \bigcirc
- Strawman design: PBFTCoin \bigcirc
- **Opening the consensus group** \bigcirc
- From MACs to Collective Signing
- Decoupling transaction verification from leader election \bigcirc
- Performance Evaluation

Opening the Consensus Group

- PoW against Sybil attacks
- One share per block
 - % of shares ∝ hash-power
- Window mechanism
 - Protect from inactive miners

Chapter Outline

- Bitcoin and its limitations \bigcirc
- Strawman design: PBFTCoin \bigcirc
- Opening the consensus group
- From MACs to Collective Signing \bigcirc
- Decoupling transaction verification from leader election
- Performance Evaluation

From MACs to Signing

- Substitute MACs with public-key cryptography \bigcirc
 - Third-party verifiable \bigcirc
 - Enables sparser communication patterns (ring or star topologies) \bigcirc

From MACs to Collective Signing

- Can we do better than O(n) communication complexity?
 - Multicast protocols transmit information in O(log n) steps
 - Use trees!!
- Can we do better than O(n) complexity to verify?
 - Schnorr multisignatures could be verified in O(1)
 - Use aggregation!!
- Schnorr multisignatures + communication trees
 = Collective Signing [Syta et all, IEEE S&P '16]

Discussion

- CoSi is not a BFT protocol 0
- PBFT can be implemented over two subsequent CoSi rounds \bigcirc
 - Prepare round
 - Commit round \bigcirc

Problem Statement

- \bigcirc will persist
- Throughput is limited by forks \bigcirc
 - Increasing block size increases fork probability 0
 - Liveness exacerbation 0

In Bitcoin ByzCoin there is no a verifiable commitment of the system that a block

Chapter Outline

- Bitcoin and its limitations \bigcirc
- Strawman design: PBFTCoin \bigcirc
- Opening the consensus group
- From MACs to Collective Signing
- **Decoupling transaction verification from leader election** \bigcirc
- Performance Evaluation

Bitcoin-NG [Eyal et all, NSDI '16]

\bigcirc

- Transaction verification \bigcirc
- Leader election \bigcirc

But, Bitcoin-NG inherits many of Bitcoin's problems \bigcirc

- Double-spending
- Leader is checked after his epoch ends \bigcirc

Makes the observation that block mining implement two distinct functionalities

Decoupling Transaction Verification from Leader Election

- Key blocks:
 - PoW & share value
 - Leader election
- Microblocks:
 - Validating client transactions
 - Issued by the leader

Chapter Outline

- Bitcoin and its limitations \bigcirc
- Strawman design: PBFTCoin \bigcirc
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election \bigcirc
- Performance Evaluation

Performance Evaluation

Key questions to evaluate:

 \bigcirc

- What size consensus groups can ByzCoin scale to?
- What transaction throughput can it handle?

ByzCoin scale to? handle?

Consensus Latency

Throughput

Talk Outline

- Introduction \bigcirc
- Scalable, Strongly-Consistent Consensus for Bitcoin \bigcirc
- **OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding** \bigcirc

Bitcoin vs OmniLedger

* Configuration with 1120 validators against a 12.5% adversary

Bitcoin	OmniLedger*
~7 TPS	~20.000 TPS
-10 minutes	~1 second
~60 minutes	~42 second
erformance Gain	Linear Increase in Throughput

Bitcoin vs OmniLedger

* Configuration with 1120 validators agains

Bitcoin	OmniLedger*
~7 TPS	~20.000 TPS
~10 minutes	~1 second
~60 minutes	~42 second
erformance Gain	Linear Increase in Throughput
st a 12.5% adversary	Scale-Out

... But Scaling Blockchains is Not Easy

Distributed Ledger Landscape

L. Luu et al., A Secure Sharding Protocol for Open Blockchains, CCS 2016

G. Danezis and S. Meiklejohn, *Centrally Banked Cryptocurrencies*, NDSS 2016

No Scale-Out (Bitcoin)

Scale-Out (OmniLedger) How do validators choose which blockchain to work on?

How can I pay a yellow vendor with greencoins?

Double Throughput

Random Validator Assignment

choose the same chain

 \bigcirc 104 adequately large

• Let validators choose? \rightarrow All malicious validators can

Public Randomness is Hard

Strawman I

- Idea: Combine random inputs of all participants.
- Problem: Last node controls output.

Strawman II

- Idea: Commit-then-reveal random inputs.
- **Problem:** Dishonest nodes can choose not to reveal.

Public Randomness is Hard

Availability Unpredictability Strawman I Strawman II RandShare

Idea: Verifiable secret sharing (Feldman, 1987) 0

Problems: \bigcirc

- Not publicly verifiable \bigcirc
- 0

RandShare

Not scalable: O(n³) communication / computation complexity

Scale-Out (OmniLedger) How do validators choose which blockchain to work on?

How can I pay a yellow vendor with greencoins?

Double Throughput

Two-Phase Commit

Atomix: Cross-Shard Transactions

Challenge:

- Cross-shard tx commit atomically or abort eventually
- Solution: Atomix
- Client-managed protocol
 - 1. Client sends cross-shard tx to input shards
 - 2. Collect ACK/ERR proofs from input shards

(a) If all input shards accept, commit to output shard, otherwise

(b) abort and reclaim input funds

Chapter Outline

- Motivation
- OmniLedger
- Evaluation

Evaluation: Scale-Out

#validators 70 140 OmniLedger (tx/sec) 439 869 Bitcoin (tx/sec) ~7 ~7

Scale-out throughput for 12.5%adversary and shard size 70 and 1200 validators

280	560	1120
1674	3240	5850
~7	~7	~7

Evaluation: Throughput

Thank you!!

Questions?