
Secure, Confidential Blockchains Providing 
High Throughput and Low Latency

Lefteris Kokoris-Kogias

Lausanne, 03-04-2019



• Bring Transparency in a 
Digital World

• Minimise the need for 
globally trusted third parties

• Cheeper and faster 
transactions

2

Blockchain, Blockchain, Blockchain



This Thesis

3



Part I : Introduction

Part II : Tools for Efficient Decentralization 

Scalable, Strongly-Consistent Consensus for Bitcoin

Decentralized Timeline-Tracking and Long-Term Relationships 
using SKIPCHAINIAC

Scalable Bias-Resistant Distributed Randomness

Part III : OmniLedger: A Secure, Scale-Out, Decentralized Ledger 
via Sharding

Part IV : Conclusion and Future Work

4

Talk Outline



5

Scaling Blockchains is More Important 
Than Ever …



Transaction confirmation delay

Bitcoin: Any tx takes >10 mins until being confirmed

Weak consistency

Bitcoin: You are not really certain your tx is committed until you wait 
>1 hour

Low throughput

Bitcoin: ~7 tx/sec

Proof-of-work mining

Wastes huge amount of energy
6

Drawbacks of Nakamoto Consensus



7

The Promise of Blockchain



8

LogDecentralizedTransparent

Post encryptions, store keys on cloud

The Promise of Blockchain



9

Scalability Confidentiality

Open
Oakland ’17,’18

Sec ’16, ’17 
HotPETs ‘16

Under Submission

Permissioned ESORICS ’18 

This Thesis



Scalability Confidentiality

Open
Oakland ’17,’18

Sec ’16, ’17 
HotPETs ‘16

Under Submission

Permissioned ESORICS ’18 

This Thesis

10

This Talk



Part I : Introduction

Part II : Tools for Efficient Decentralization 

Scalable, Strongly-Consistent Consensus for Bitcoin

Decentralized Timeline-Tracking and Long-Term Relationships 
using SKIPCHAINIAC

Scalable Bias-Resistant Distributed Randomness

Part III : OmniLedger: A Secure, Scale-Out, Decentralized Ledger 
via Sharding

Part IV : Conclusion and Future Work

11

Talk Outline



Bitcoin and its limitations
Strawman design: PBFTCoin 
Opening the consensus group 
From MACs to Collective Signing
Decoupling transaction verification from leader 
election 
Performance Evaluation

12
*Enhancing bitcoin security and performance with strong 
consistency via collective signing, Sec 16’

Chapter Outline

javascript:void(0)
javascript:void(0)
javascript:void(0)


A->B

13

Transaction Verification in Bitcoin



A->B

14

Transaction Verification in Bitcoin



A->B

15

Transaction Verification in Bitcoin



A->B

16

Transaction Verification in Bitcoin



A->B

17

Transaction Verification in Bitcoin



A->B

A->C

18

Transaction Verification in Bitcoin



A->B

A->C

19

Transaction Verification in Bitcoin



A->B

A->C

20

Transaction Verification in Bitcoin



A->B

A->C

21

Transaction Verification in Bitcoin



A->B

A->C

22

Transaction Verification in Bitcoin



A->B

A->C

23

Transaction Verification in Bitcoin



TX TX TX

Hash(Previous Block)

BLOCK 

nonce

H(Block, nonce=0) =abc3426fe31233
H(Block, nonce=1) =fe541200abc229

. 

. 

. 

. 

H(Block, nonce=2) =0bc3429831233

H(Block, nonce=29) =0000fed98312
TX TX TX

24

Proof-of-Work



25

The Blockchain



26

The Blockchain



In Bitcoin there is no verifiable commitment 
of the system that a block will persist

Clients rely on probabilities to gain confidence
Probability of successful fork-attack decreases exponentially

27

Problem Statement



Bitcoin and its limitations
Strawman design: PBFTCoin 
Opening the consensus group 
From MACs to Collective Signing
Decoupling transaction verification from leader 
election 
Performance Evaluation

28
*Enhancing bitcoin security and performance with strong 
consistency via collective signing, Sec 16’

Chapter Outline

javascript:void(0)
javascript:void(0)
javascript:void(0)


3f+1 fixed “trustees” running PBFT* to withstand f 
failures
Non-probabilistic strong consistency

Low latency

No forks/inconsistencies
No double-spending

*Practical Byzantine Fault Tolerance [Castro/Liskov]

29

Strawman Design: PBFTCoin 



Problem: Needs a static consensus group
Problem: Scalability

O(n2)  communication complexity
O(n)    verification complexity
Absence of third-party verifiable proofs (due to MACs)

Client
Primary

Replica 2
Replica 3
Replica 4

Request Pre-Prepare Prepare Commit Reply

30

Strawman Design: PBFTCoin 



Bitcoin and its limitations
Strawman design: PBFTCoin 
Opening the consensus group 
From MACs to Collective Signing
Decoupling transaction verification from leader 
election 
Performance Evaluation

31
*Enhancing bitcoin security and performance with strong 
consistency via collective signing, Sec 16’

Chapter Outline

javascript:void(0)
javascript:void(0)
javascript:void(0)


PoW against Sybil attacks
One share per block 

% of shares ∝ hash-power

Window mechanism
Protect from inactive miners

32

Opening the Consensus Group 



Bitcoin and its limitations
Strawman design: PBFTCoin 
Opening the consensus group 
From MACs to Collective Signing
Decoupling transaction verification from leader 
election 
Performance Evaluation

33
*Enhancing bitcoin security and performance with strong 
consistency via collective signing, Sec 16’

Chapter Outline

javascript:void(0)
javascript:void(0)
javascript:void(0)


Substitute MACs with public-key cryptography
Third-party verifiable
PoW Blockchain as PKI
Enables sparser communication patterns (ring or star topologies)

34

From MACs to Signing



Can we do better than O(n) communication complexity?
Multicast protocols transmit information in O(log n)
Use trees!!

Can we do better than O(n) complexity to verify?
Schnorr multisignatures could be verified in O(1)
Use aggregation!!

Schnorr multisignatures + communication trees                       
= Collective Signing [Syta et all, IEEE S&P ’16]

35

From MACs to Collective Signing



Efficient collective signature, verifiable as a simple signature 
80 bytes instead of 9KB for 144* co-signers (Ed25519)

20

* Number of 
~10-minute 
blocks in 1-day 
time window 

36

CoSi



CoSi is not a BFT protocol
PBFT can be implemented over two subsequent 
CoSi rounds

Prepare round
Commit round

37

Discussion



In Bitcoin ByzCoin there is no a verifiable 
commitment of the system that a block will persist
Throughput is limited by forks

Increasing block size increases fork probability
Liveness exacerbation

38

Problem Statement



Bitcoin and its limitations
Strawman design: PBFTCoin 
Opening the consensus group 
From MACs to Collective Signing
Decoupling transaction verification from 
leader election 
Performance Evaluation

39
*Enhancing bitcoin security and performance with strong 
consistency via collective signing, Sec 16’

Chapter Outline

javascript:void(0)
javascript:void(0)
javascript:void(0)


Makes the observation that block mining implement 
two distinct functionalities

Transaction verification
Leader election

But, Bitcoin-NG inherits many of Bitcoin’s problems
Double-spending
Leader is checked after his epoch ends

40

Bitcoin-NG [Eyal et all, NSDI ’16] 



Key blocks: 
PoW & share value
Leader election 

Microblocks: 
Validating client transactions
Issued by the leader

41

Decoupling Transaction 
Verification from Leader Election



Bitcoin and its limitations
Strawman design: PBFTCoin 
Opening the consensus group 
From MACs to Collective Signing
Decoupling transaction verification from leader 
election 
Performance Evaluation

42
*Enhancing bitcoin security and performance with strong 
consistency via collective signing, Sec 16’

Chapter Outline

javascript:void(0)
javascript:void(0)
javascript:void(0)


Experiments run on DeterLab network testbed
Up to 1,008* miners multiplexed atop 36 
machines
Impose 200 ms roundtrip latencies between all 
servers
Impose 35 Mbps bandwidth per miner

* 1008 = # of ~10-minute key-blocks in 1-week time window

43

Performance Evaluation



Key questions to evaluate:
What size consensus groups can ByzCoin scale 
to?
What transaction throughput can it handle?

44

Performance Evaluation



45

Consensus Latency 



46

Throughput



Part I : Introduction

Part II : Tools for Efficient Decentralization 

Scalable, Strongly-Consistent Consensus for Bitcoin

Decentralized Timeline-Tracking and Long-Term 
Relationships using SKIPCHAINIAC

Scalable Bias-Resistant Distributed Randomness

Part III : OmniLedger: A Secure, Scale-Out, Decentralized Ledger 
via Sharding

Part IV : Conclusion and Future Work

47

Talk Outline



How does a “light” (low-power, mobile) client 
securely confirm a recent (or old) transaction?

Especially after being offline for months, years? 
Without “just trusting” central party (exchange)?

48

?

Problem: Efficient Verification



Standard blockchains traversable only backward 
Via hash back-links from current head

We add traversability forward in time*
Collective signature by prior consensus group

49
*Managing identities using blockchains and CoSi, HotPETs 16’

Backward and Forward Verifiability



50

Cothority Configurations

Skipblock Backward link (hash) Forward link (co-signature)

5050

Skipchains



Enable Offline/P2P verification
Works even if Internet is unavailable, slow, costly

Broad applications
Software/key updates
Blockchain-Attested Degrees, Awards, … 
Chain-of-Custody, Bills of Lading, …

51

Applications of SkipChains



Part I : Introduction

Part II : Tools for Efficient Decentralization 

Scalable, Strongly-Consistent Consensus for Bitcoin

Decentralized Timeline-Tracking and Long-Term Relationships 
using SKIPCHAINIAC

Scalable Bias-Resistant Distributed Randomness

Part III : OmniLedger: A Secure, Scale-Out, Decentralized Ledger 
via Sharding

Part IV : Conclusion and Future Work

52

Talk Outline



Motivation 
The need for public randomness
Strawman examples: Towards unbiasable randomness 

RandHound

Implementation and Experimental Results

53

*Scalable Bias-Resistant Distributed Randomness, Oakland ’17 

Chapter Outline



Collectively used

Unpredictable ahead of time 

Not secret past a certain point in time

Applications
‣ Random selection: lotteries, sweepstakes, jury selection, voting and election audits 
‣ Games: shuffled decks, team assignments 
‣ Protocols: parameters, IVs, nonces, sharding 
‣ Crypto: challenges for NZKP, authentication protocols, cut-and-choose methods, “nothing up 

my sleeves” numbers

54

Public Randomness



Vietnam War Lotteries 

55

Failed / Rigged Randomness



1. Availability
Successful protocol 
termination for up to 

f=t-1 malicious nodes.

2. Unpredictability
Output not 
revealed 

prematurely. 3. Unbiasability
Output distributed 

uniformly at 
random.

4. Verifiability
Output correctness 
can be checked by 

third parties.

5. Scalability
Executable with 

hundreds of 
participants.

Decentralized, 
public 

randomness in 
the (t,n)-

threshold 
security model

Assumptions: n= 3f +1, Byzantine adversary and asynchronous network with eventual 
message delivery

56

Goals



Strawman I
Idea: Combine random inputs 
of all participants.
Problem: Last node controls 
output.

Strawman II
• Idea: Commit-then-reveal 

random inputs. 
• Problem: Dishonest nodes 

can choose not to reveal.

Strawman III
• Idea: Secret-share random 

inputs. 
• Problem: Dishonest nodes 

can send bad shares.

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

57

Public Randomness is Hard



Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandShare
Idea: Strawman III + verifiable secret sharing (Feldman, 1987)
Problems: 

Not publicly verifiable
Not scalable: O(n3) communication / computation complexity

58

Public Randomness is Hard



Motivation 
The need for public randomness

Strawman examples: Towards unbiasable randomness 

RandHound

Implementation and Experimental Results

59

*Scalable Bias-Resistant Distributed Randomness, Oakland ’17 

Chapter Outline



Goals
Verifiability: By third parties
Scalability: Performance better than O(n3)

Client/server randomness 
scavenging protocol

Untrusted client uses a large set of nearly-
stateless servers
On demand (via configuration file)
One-shot approach
Example: lottery authority

Client

Servers

verifiable  
randomness

60

RandHound



Achieving Public Verifiability

Publicly-VSS (Schoenmakers, 
1999)

Shares are encrypted and publicly verifiable 
through zero-knowledge proofs
No communication between servers

Collective signing (Syta, 2016)
Client publicly commits to their choices

Create protocol transcript from all 
sent/received (signed) messages

Client

PVSS-Servers

randomness &  
transcript

61

RandHound



Achieving Scalability

Shard participants into constant size 
groups

Secret sharing with everyone too expensive!
Run secret sharing (only) inside groups
Collective randomness: combination of  
all group outputs

Chicken-and-Egg problem?

How to securely assign participants to 
groups?

PVSS 
group 1

PVSS 
group 2

Client

Servers

randomness &  
transcript

62

RandHound



Solving the Chicken-and-Egg 
Problem

Client selects server grouping

Availability might be affected (self-
DoS)

Security properties through
Pigeonhole principle: at least one group  
is not controlled by the adversary
Collective signing: prevents client equivocation    by 
fixing the secrets that contribute to randomness

Client
randomness &  

transcript

PVSS 
group 1

PVSS 
group 2

Servers

63

RandHound



Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

Communication / computation complexity: O(cn2)

64

Public Randomness is (not so) Hard



Motivation 
The need for public randomness

Strawman examples: Towards unbiasable randomness 

RandHound

Implementation and Experimental 
Results

65

*Scalable Bias-Resistant Distributed Randomness, Oakland ’17 

Chapter Outline



Implementation

Go versions of DLEQ-
proofs, PVSS, RandHound

Based on DEDIS code
Crypto library
Network library
Cothority framework

https://github.com/dedis

DeterLab Setup

• 32 physical machines 
‣ Intel Xeon E5-2650 v4  

(24 cores @ 2.2 GHz) 
‣ 64 GB RAM 
‣ 10 Gbps network link 

• Network restrictions 
‣ 100 Mbps bandwidth 
‣ 200 ms round-trip latency

66

Implementation & Experiments

https://github.com/dedis


Take-away: Gen. / ver. time for 1 RandHound run is 290 sec / 160 sec with 1024 nodes, group size 32.

67

Experimental Results



Part I : Introduction

Part II : Tools for Efficient Decentralization 

Scalable, Strongly-Consistent Consensus for Bitcoin

Decentralized Timeline-Tracking and Long-Term Relationships 
using SKIPCHAINIAC

Scalable Bias-Resistant Distributed Randomness

Part III : OmniLedger: A Secure, Scale-Out, Decentralized 
Ledger via Sharding

Part IV : Conclusion and Future Work

68

Talk Outline



Motivation

OmniLedger

Evaluation

69

*Omniledger: A secure, scale-out, decentralized ledger via sharding, Oakland ‘18

Chapter Outline



Bitcoin OmniLedger*

Throughput ~4 TPS ~20.000 TPS

1-st Confirmation ~10 minutes ~1 second

Full Security ~60 minutes ~42 second

More Available 
Resources No performance Gain Linear Increase in 

Throughput

* Configuration with 1120 validators against a 12.5% adversary

70

Bitcoin vs OmniLedger



Bitcoin OmniLedger*

Throughput ~4 TPS ~20.000 TPS

1-st Confirmation ~10 minutes ~1 second

Full Security ~60 minutes ~42 second

More Available 
Resources No performance Gain Linear Increase in 

Throughput

* Configuration with 1120 validators against a 12.5% adversary Scale-Out

71

Bitcoin vs OmniLedger



72

… But Scaling Blockchains is Not Easy



Ela
sti

co
L. Luu et al., A Secure 
Sharding Protocol for Open 
Blockchains, CCS 2016

Decentralization

Scale-Out Security

ByzCoin
E. Kokoris Kogias et al., Enhancing 
Bitcoin Security and Performance with 
Strong Consistency via Collective 
Signing, USENIX Security 2016

OmniLedger

RSCoin
G. Danezis and S. Meiklejohn, Centrally Banked Cryptocurrencies, 
NDSS 2016

73

Distributed Ledger Landscape



Blockchain

74

No Scale-Out (Bitcoin)



Shard Shard

How do validators choose which blockchain to work on?
How can I pay a yellow vendor with greencoins?

Double Throughput

75

Scale-Out (OmniLedger)



• Let validators choose? —> All malicious validators can 
choose the same chain

• Randomly assign validators? —> Preserve security for 
adequately large shard size

600 Nodes

Random Validator Assignment

76



Trusted randomness 
beacon

Overview

Evolves in epochs e

Trusted randomness beacon 
emits random value rnde

Validators:
Use rnde to compute shard assignment  
(ensures shard security)

Process tx using consensus  
within one shard (ByzCoin)

Shard 1
(ByzCoin group)

Shard 3
(ByzCoin group)

Shard 2
(ByzCoin group)

Shard 
ledgers

Validators

rnde

77

Strawman: SimpleLedger



Security Drawbacks

Randomness beacon: trusted third party

No tx processing during validator re-assignment

No cross-shard tx support

Performance Drawbacks

ByzCoin failure mode

High storage and bootstrapping cost

Throughput vs. latency trade-off

78

Strawman: SimpleLedger



Motivation

OmniLedger

Evaluation

79

*Omniledger: A secure, scale-out, decentralized ledger via sharding, Oakland ‘18 

Chapter Outline



OmniLedger

SimpleLedger
Sharding via distributed randomness

Smooth epoch transitions

Atomix: Atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning

Trust-but-verify validation: Throughput / Latency trade-off

Security

Performance

80

Roadmap



OmniLedger

SimpleLedger
Sharding via distributed randomness

Smooth epoch transitions

Atomix: Atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning

Trust-but-verify validation: Throughput / Latency trade-off

Security

Performance

81

Roadmap



Verifiable 
randomness rnde

1. Temp. leader election  
(Can be biased)

3. Shard assignment 
(using rnde)

2. Randomness generation 
(Output is unbiasable)

Validators Validators
(sharded)

RandHound

Temp. leader

82

Shard Validator Assignment



OmniLedger

SimpleLedger
Sharding via distributed randomness

Smooth epoch transitions

Atomix: Atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning

Trust-but-verify validation: Throughput / Latency trade-off

Security

Performance

83

Roadmap



Coordinator Server

Query to commit

prepare / abort

Commit / Rollback

commit / abort

84

Two-Phase Commit



Challenge:

Cross-shard tx commit atomically or abort  
eventually

Solution: Atomix

Client-managed protocol

1. Client sends cross-shard tx to input 
shards

2. Collect ACK/ERR proofs from input 
shards

(a) If all input shards accept, commit to 
output shard, otherwise                                              
(b) abort and reclaim input funds

The Atomix protocol for secure cross-shard transactions

client

(1) Initialize

tx
tx

client
(2) Lock

accept1

accept2

client
(3a) Unlock to Commit

commit 

tx

client
(2) Lock

accept1

reject2

client
(3b) Unlock to Abort

reclaim

tx inputs

cross-shard transaction tx

inputs output
shard1 shard3
shard2

shard3shard2shard1

shard3shard2shard1

shard3shard2shard1

shard3shard2shard1

shard3shard2shard1

85

Atomix: Cross-Shard Transactions



OmniLedger

SimpleLedger
Sharding via distributed randomness

Smooth epoch transitions

Atomix: Atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning

Trust-but-verify validation: Throughput / Latency trade-off

Security

Performance

86

Roadmap



Challenge:

Latency vs. throughput trade-off

Solution: 

Two-level “trust-but-verify” 
validation

Low latency: 

Optimistically validate 
transactions by “insecure” 
shards 

High throughput: 

Batch optimistically validated 
blocks and audit by “secure” 
shards

core 
validatorsoptimistic 

validators

client

shard ledger 
(with state block)

finalised  

optimistically  
validated 

sbj,e-1

87

Trust-but-Verify Transaction Validation



Motivation

OmniLedger

Evaluation

88

*Omniledger: A secure, scale-out, decentralized ledger via sharding, Oakland ‘18 

Chapter Outline



Implementation

OmniLedger and its subprotocols 
(ByzCoinX, Atomix, etc.) 
implemented in Go

Based on DEDIS code
Kyber crypto library
Onet network library
Cothority framework

https://github.com/dedis

DeterLab Setup

48 physical machines up 
to 1800 clients

Intel Xeon E5-2420 v2  
(6 cores @ 2.2 GHz) 
24 GB RAM 
10 Gbps network link 

Network restrictions (per 
client)

20 Mbps bandwidth 
200 ms round-trip latency

89

Implementation & Experimental Setup

https://github.com/dedis


#validators 
(#shards)

70 (1) 140 
(2)

280 
(4)

560 (8) 1120 
(16)OmniLedger (tx/sec) 439 869 1674 3240 5850

Bitcoin (tx/sec) ~4 ~4 ~4 ~4 ~4

Scale-out throughput for 12.5%-
adversary and shard size 70 and 1200 

validators

90

Evaluation: Scale-Out



Results for 1800 validators

91

Evaluation: Throughput



#shards, adversary 4, 1% 25, 5% 70, 12.5% 600, 25%
regular validation 1,38 5,99 8,04 14,52
1st lvl. validation 1,38 1,38 1,38 4,48
2nd lvl. validation 1,38 55,89 41,89 62,96

Bitcoin 600 600 600 600

Transaction confirmation latency in seconds for regular and mutli-level validation

latency increase since optimistically validated 
blocks are batched into larger blocks for final 

validation to get better throughput

1 MB blocks

500 KB blocks

16 MB blocks

92

Evaluation: Latency



Part I : Introduction

Part II : Tools for Efficient Decentralization 

Scalable, Strongly-Consistent Consensus for Bitcoin

Decentralized Timeline-Tracking and Long-Term Relationships 
using SKIPCHAINIAC

Scalable Bias-Resistant Distributed Randomness

Part III : OmniLedger: A Secure, Scale-Out, Decentralized Ledger 
via Sharding

Part IV : Conclusion and Future Work

93

Talk Outline



RandHoundSkipChainsByzCoin

OmniLedger

Scalable Consensus Efficient Verification Secure Randomness

Scale-Out Blockchains

94

Conclusion



95

*

*Protean:  A modular architecture for general-purpose decentralized computing. 

HotOS XVII

Future Work


