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• Bring Transparency in a 
Digital World

• Minimise the need for 
globally trusted third parties

• Cheeper and faster 
transactions
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Blockchain, Blockchain, Blockchain



This Thesis
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Scaling Blockchains is More Important 
Than Ever …



Transaction confirmation delay

Bitcoin: Any tx takes >10 mins until being confirmed

Weak consistency

Bitcoin: You are not really certain your tx is committed until you wait 
>1 hour

Low throughput

Bitcoin: ~7 tx/sec

Proof-of-work mining

Wastes huge amount of energy
6

Drawbacks of Nakamoto Consensus
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The Promise of Blockchain
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LogDecentralizedTransparent

Post encryptions, store keys on cloud

The Promise of Blockchain
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Bitcoin and its limitations
Strawman design: PBFTCoin 
Opening the consensus group 
From MACs to Collective Signing
Decoupling transaction verification from leader 
election 
Performance Evaluation
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*Enhancing bitcoin security and performance with strong 
consistency via collective signing, Sec 16’
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Transaction Verification in Bitcoin



TX TX TX

Hash(Previous Block)

BLOCK 

nonce

H(Block, nonce=0) =abc3426fe31233
H(Block, nonce=1) =fe541200abc229

. 

. 

. 

. 

H(Block, nonce=2) =0bc3429831233

H(Block, nonce=29) =0000fed98312
TX TX TX
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Proof-of-Work
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The Blockchain
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The Blockchain



In Bitcoin there is no verifiable commitment 
of the system that a block will persist

Clients rely on probabilities to gain confidence
Probability of successful fork-attack decreases exponentially
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Problem Statement
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3f+1 fixed “trustees” running PBFT* to withstand f 
failures
Non-probabilistic strong consistency

Low latency

No forks/inconsistencies
No double-spending

*Practical Byzantine Fault Tolerance [Castro/Liskov]
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Strawman Design: PBFTCoin 



Problem: Needs a static consensus group
Problem: Scalability

O(n2)  communication complexity
O(n)    verification complexity
Absence of third-party verifiable proofs (due to MACs)

Client
Primary

Replica 2
Replica 3
Replica 4

Request Pre-Prepare Prepare Commit Reply
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Strawman Design: PBFTCoin 
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PoW against Sybil attacks
One share per block 

% of shares ∝ hash-power

Window mechanism
Protect from inactive miners
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Opening the Consensus Group 
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Substitute MACs with public-key cryptography
Third-party verifiable
PoW Blockchain as PKI
Enables sparser communication patterns (ring or star topologies)
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From MACs to Signing



Can we do better than O(n) communication complexity?
Multicast protocols transmit information in O(log n)
Use trees!!

Can we do better than O(n) complexity to verify?
Schnorr multisignatures could be verified in O(1)
Use aggregation!!

Schnorr multisignatures + communication trees                       
= Collective Signing [Syta et all, IEEE S&P ’16]
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From MACs to Collective Signing



Efficient collective signature, verifiable as a simple signature 
80 bytes instead of 9KB for 144* co-signers (Ed25519)

20

* Number of 
~10-minute 
blocks in 1-day 
time window 
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CoSi



CoSi is not a BFT protocol
PBFT can be implemented over two subsequent 
CoSi rounds

Prepare round
Commit round
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Discussion



In Bitcoin ByzCoin there is no a verifiable 
commitment of the system that a block will persist
Throughput is limited by forks

Increasing block size increases fork probability
Liveness exacerbation
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Problem Statement



Bitcoin and its limitations
Strawman design: PBFTCoin 
Opening the consensus group 
From MACs to Collective Signing
Decoupling transaction verification from 
leader election 
Performance Evaluation
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*Enhancing bitcoin security and performance with strong 
consistency via collective signing, Sec 16’
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Makes the observation that block mining implement 
two distinct functionalities

Transaction verification
Leader election

But, Bitcoin-NG inherits many of Bitcoin’s problems
Double-spending
Leader is checked after his epoch ends
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Bitcoin-NG [Eyal et all, NSDI ’16] 



Key blocks: 
PoW & share value
Leader election 

Microblocks: 
Validating client transactions
Issued by the leader
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Decoupling Transaction 
Verification from Leader Election



Bitcoin and its limitations
Strawman design: PBFTCoin 
Opening the consensus group 
From MACs to Collective Signing
Decoupling transaction verification from leader 
election 
Performance Evaluation
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Experiments run on DeterLab network testbed
Up to 1,008* miners multiplexed atop 36 
machines
Impose 200 ms roundtrip latencies between all 
servers
Impose 35 Mbps bandwidth per miner

* 1008 = # of ~10-minute key-blocks in 1-week time window
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Performance Evaluation



Key questions to evaluate:
What size consensus groups can ByzCoin scale 
to?
What transaction throughput can it handle?
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Performance Evaluation
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Consensus Latency 
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Throughput
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How does a “light” (low-power, mobile) client 
securely confirm a recent (or old) transaction?

Especially after being offline for months, years? 
Without “just trusting” central party (exchange)?
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?

Problem: Efficient Verification



Standard blockchains traversable only backward 
Via hash back-links from current head

We add traversability forward in time*
Collective signature by prior consensus group
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*Managing identities using blockchains and CoSi, HotPETs 16’

Backward and Forward Verifiability
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Cothority Configurations

Skipblock Backward link (hash) Forward link (co-signature)

5050

Skipchains



Enable Offline/P2P verification
Works even if Internet is unavailable, slow, costly

Broad applications
Software/key updates
Blockchain-Attested Degrees, Awards, … 
Chain-of-Custody, Bills of Lading, …
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Applications of SkipChains
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Motivation 
The need for public randomness
Strawman examples: Towards unbiasable randomness 

RandHound

Implementation and Experimental Results
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*Scalable Bias-Resistant Distributed Randomness, Oakland ’17 

Chapter Outline



Collectively used

Unpredictable ahead of time 

Not secret past a certain point in time

Applications
‣ Random selection: lotteries, sweepstakes, jury selection, voting and election audits 
‣ Games: shuffled decks, team assignments 
‣ Protocols: parameters, IVs, nonces, sharding 
‣ Crypto: challenges for NZKP, authentication protocols, cut-and-choose methods, “nothing up 

my sleeves” numbers
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Public Randomness



Vietnam War Lotteries 
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Failed / Rigged Randomness



1. Availability
Successful protocol 
termination for up to 

f=t-1 malicious nodes.

2. Unpredictability
Output not 
revealed 

prematurely. 3. Unbiasability
Output distributed 

uniformly at 
random.

4. Verifiability
Output correctness 
can be checked by 

third parties.

5. Scalability
Executable with 

hundreds of 
participants.

Decentralized, 
public 

randomness in 
the (t,n)-

threshold 
security model

Assumptions: n= 3f +1, Byzantine adversary and asynchronous network with eventual 
message delivery
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Goals



Strawman I
Idea: Combine random inputs 
of all participants.
Problem: Last node controls 
output.

Strawman II
• Idea: Commit-then-reveal 

random inputs. 
• Problem: Dishonest nodes 

can choose not to reveal.

Strawman III
• Idea: Secret-share random 

inputs. 
• Problem: Dishonest nodes 

can send bad shares.

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III
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Public Randomness is Hard



Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandShare
Idea: Strawman III + verifiable secret sharing (Feldman, 1987)
Problems: 

Not publicly verifiable
Not scalable: O(n3) communication / computation complexity
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Public Randomness is Hard



Motivation 
The need for public randomness

Strawman examples: Towards unbiasable randomness 

RandHound

Implementation and Experimental Results
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*Scalable Bias-Resistant Distributed Randomness, Oakland ’17 
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Goals
Verifiability: By third parties
Scalability: Performance better than O(n3)

Client/server randomness 
scavenging protocol

Untrusted client uses a large set of nearly-
stateless servers
On demand (via configuration file)
One-shot approach
Example: lottery authority

Client

Servers

verifiable  
randomness
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RandHound



Achieving Public Verifiability

Publicly-VSS (Schoenmakers, 
1999)

Shares are encrypted and publicly verifiable 
through zero-knowledge proofs
No communication between servers

Collective signing (Syta, 2016)
Client publicly commits to their choices

Create protocol transcript from all 
sent/received (signed) messages

Client

PVSS-Servers

randomness &  
transcript
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RandHound



Achieving Scalability

Shard participants into constant size 
groups

Secret sharing with everyone too expensive!
Run secret sharing (only) inside groups
Collective randomness: combination of  
all group outputs

Chicken-and-Egg problem?

How to securely assign participants to 
groups?

PVSS 
group 1

PVSS 
group 2

Client

Servers

randomness &  
transcript
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RandHound



Solving the Chicken-and-Egg 
Problem

Client selects server grouping

Availability might be affected (self-
DoS)

Security properties through
Pigeonhole principle: at least one group  
is not controlled by the adversary
Collective signing: prevents client equivocation    by 
fixing the secrets that contribute to randomness

Client
randomness &  

transcript

PVSS 
group 1

PVSS 
group 2

Servers
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RandHound



Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

Communication / computation complexity: O(cn2)
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Public Randomness is (not so) Hard



Motivation 
The need for public randomness

Strawman examples: Towards unbiasable randomness 

RandHound

Implementation and Experimental 
Results
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*Scalable Bias-Resistant Distributed Randomness, Oakland ’17 
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Implementation

Go versions of DLEQ-
proofs, PVSS, RandHound

Based on DEDIS code
Crypto library
Network library
Cothority framework

https://github.com/dedis

DeterLab Setup

• 32 physical machines 
‣ Intel Xeon E5-2650 v4  

(24 cores @ 2.2 GHz) 
‣ 64 GB RAM 
‣ 10 Gbps network link 

• Network restrictions 
‣ 100 Mbps bandwidth 
‣ 200 ms round-trip latency
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Implementation & Experiments

https://github.com/dedis


Take-away: Gen. / ver. time for 1 RandHound run is 290 sec / 160 sec with 1024 nodes, group size 32.
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Experimental Results
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Motivation

OmniLedger

Evaluation
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*Omniledger: A secure, scale-out, decentralized ledger via sharding, Oakland ‘18
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Bitcoin OmniLedger*

Throughput ~4 TPS ~20.000 TPS

1-st Confirmation ~10 minutes ~1 second

Full Security ~60 minutes ~42 second

More Available 
Resources No performance Gain Linear Increase in 

Throughput

* Configuration with 1120 validators against a 12.5% adversary

70

Bitcoin vs OmniLedger



Bitcoin OmniLedger*

Throughput ~4 TPS ~20.000 TPS

1-st Confirmation ~10 minutes ~1 second

Full Security ~60 minutes ~42 second

More Available 
Resources No performance Gain Linear Increase in 

Throughput

* Configuration with 1120 validators against a 12.5% adversary Scale-Out
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Bitcoin vs OmniLedger
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… But Scaling Blockchains is Not Easy



Ela
sti

co
L. Luu et al., A Secure 
Sharding Protocol for Open 
Blockchains, CCS 2016

Decentralization

Scale-Out Security

ByzCoin
E. Kokoris Kogias et al., Enhancing 
Bitcoin Security and Performance with 
Strong Consistency via Collective 
Signing, USENIX Security 2016

OmniLedger

RSCoin
G. Danezis and S. Meiklejohn, Centrally Banked Cryptocurrencies, 
NDSS 2016
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Distributed Ledger Landscape



Blockchain
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No Scale-Out (Bitcoin)



Shard Shard

How do validators choose which blockchain to work on?
How can I pay a yellow vendor with greencoins?

Double Throughput
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Scale-Out (OmniLedger)



• Let validators choose? —> All malicious validators can 
choose the same chain

• Randomly assign validators? —> Preserve security for 
adequately large shard size

600 Nodes

Random Validator Assignment
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Trusted randomness 
beacon

Overview

Evolves in epochs e

Trusted randomness beacon 
emits random value rnde

Validators:
Use rnde to compute shard assignment  
(ensures shard security)

Process tx using consensus  
within one shard (ByzCoin)

Shard 1
(ByzCoin group)

Shard 3
(ByzCoin group)

Shard 2
(ByzCoin group)

Shard 
ledgers

Validators

rnde
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Strawman: SimpleLedger



Security Drawbacks

Randomness beacon: trusted third party

No tx processing during validator re-assignment

No cross-shard tx support

Performance Drawbacks

ByzCoin failure mode

High storage and bootstrapping cost

Throughput vs. latency trade-off
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Strawman: SimpleLedger



Motivation

OmniLedger

Evaluation
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*Omniledger: A secure, scale-out, decentralized ledger via sharding, Oakland ‘18 
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OmniLedger

SimpleLedger
Sharding via distributed randomness

Smooth epoch transitions

Atomix: Atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning

Trust-but-verify validation: Throughput / Latency trade-off

Security

Performance

80

Roadmap
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Security

Performance
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Verifiable 
randomness rnde

1. Temp. leader election  
(Can be biased)

3. Shard assignment 
(using rnde)

2. Randomness generation 
(Output is unbiasable)

Validators Validators
(sharded)

RandHound

Temp. leader
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Shard Validator Assignment



OmniLedger

SimpleLedger
Sharding via distributed randomness

Smooth epoch transitions

Atomix: Atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning

Trust-but-verify validation: Throughput / Latency trade-off

Security

Performance
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Roadmap



Coordinator Server

Query to commit

prepare / abort

Commit / Rollback

commit / abort
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Two-Phase Commit



Challenge:

Cross-shard tx commit atomically or abort  
eventually

Solution: Atomix

Client-managed protocol

1. Client sends cross-shard tx to input 
shards

2. Collect ACK/ERR proofs from input 
shards

(a) If all input shards accept, commit to 
output shard, otherwise                                              
(b) abort and reclaim input funds

The Atomix protocol for secure cross-shard transactions

client

(1) Initialize

tx
tx

client
(2) Lock

accept1

accept2

client
(3a) Unlock to Commit

commit 

tx

client
(2) Lock

accept1

reject2

client
(3b) Unlock to Abort

reclaim

tx inputs

cross-shard transaction tx

inputs output
shard1 shard3
shard2

shard3shard2shard1

shard3shard2shard1

shard3shard2shard1

shard3shard2shard1

shard3shard2shard1
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Atomix: Cross-Shard Transactions



OmniLedger

SimpleLedger
Sharding via distributed randomness

Smooth epoch transitions

Atomix: Atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning

Trust-but-verify validation: Throughput / Latency trade-off

Security

Performance
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Roadmap



Challenge:

Latency vs. throughput trade-off

Solution: 

Two-level “trust-but-verify” 
validation

Low latency: 

Optimistically validate 
transactions by “insecure” 
shards 

High throughput: 

Batch optimistically validated 
blocks and audit by “secure” 
shards

core 
validatorsoptimistic 

validators

client

shard ledger 
(with state block)

finalised  

optimistically  
validated 

sbj,e-1
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Trust-but-Verify Transaction Validation



Motivation

OmniLedger

Evaluation
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*Omniledger: A secure, scale-out, decentralized ledger via sharding, Oakland ‘18 

Chapter Outline



Implementation

OmniLedger and its subprotocols 
(ByzCoinX, Atomix, etc.) 
implemented in Go

Based on DEDIS code
Kyber crypto library
Onet network library
Cothority framework

https://github.com/dedis

DeterLab Setup

48 physical machines up 
to 1800 clients

Intel Xeon E5-2420 v2  
(6 cores @ 2.2 GHz) 
24 GB RAM 
10 Gbps network link 

Network restrictions (per 
client)

20 Mbps bandwidth 
200 ms round-trip latency
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Implementation & Experimental Setup

https://github.com/dedis


#validators 
(#shards)

70 (1) 140 
(2)

280 
(4)

560 (8) 1120 
(16)OmniLedger (tx/sec) 439 869 1674 3240 5850

Bitcoin (tx/sec) ~4 ~4 ~4 ~4 ~4

Scale-out throughput for 12.5%-
adversary and shard size 70 and 1200 

validators
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Evaluation: Scale-Out



Results for 1800 validators
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Evaluation: Throughput



#shards, adversary 4, 1% 25, 5% 70, 12.5% 600, 25%
regular validation 1,38 5,99 8,04 14,52
1st lvl. validation 1,38 1,38 1,38 4,48
2nd lvl. validation 1,38 55,89 41,89 62,96

Bitcoin 600 600 600 600

Transaction confirmation latency in seconds for regular and mutli-level validation

latency increase since optimistically validated 
blocks are batched into larger blocks for final 

validation to get better throughput

1 MB blocks

500 KB blocks

16 MB blocks
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Evaluation: Latency
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RandHoundSkipChainsByzCoin

OmniLedger

Scalable Consensus Efficient Verification Secure Randomness

Scale-Out Blockchains
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Conclusion
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*

*Protean:  A modular architecture for general-purpose decentralized computing. 
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Future Work


