
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Eleftherios KOKORIS KOGIAS

Présentée le 27 septembre 2019

Thèse N° 7101

Secure, Confidential Blockchains Providing High Throughput and
Low Latency

Prof. C. González Troncoso, présidente du jury
Prof. B. A. Ford, directeur de thèse
Prof. C. Cachin, rapporteur
Prof. G. Danezis, rapporteur
Prof. J.-P. Hubaux, rapporteur

à la Faculté informatique et communications
Unité du Professeur Ford
Programme doctoral en informatique et communications

Any fool can criticize, complain, and condemn –and most fools do.

But it takes character and self-control to be understanding and forgiving.

– Dale Carnegie

To those who believed in me. . . , especially my family.

Acknowledgments
First, I would like to thank my advisor, Prof. Bryan Ford. Bryan allowed me to work indepen-

dently without ever feeling pressure to deliver results, nevertheless being willing to give me

feedback when I asked for it. He taught me a lot including what good research is, how it should

be done and especially how to present it in a convincing way. Without his support and advice,

this journey would not have been possible.

I also want to thank Prof. Christian Cachin, Prof. George Danezis and Prof. Jean-Pierre Hubaux

for their feedback on this dissertation, and Prof. Carmela Troncoso for presiding over my

thesis committee.

Many thanks for all our discussions to all the members of the Decentralized and Distributed

Systems Laboratory: Jeff Allen, Ludovic Barman, Cristina Basescu, Gaylor Bosson, Simone

Colombo, Kelong Cong, Georgia Fragkouli, David Froelicher, Noemien Kocher, and Stevens

Le Blond. A big thanks to Linus Gasser and Nicolas Gailly for helping with the translation of

my abstract too. During my Ph.D., I was also lucky enough to meet some special people at

DEDIS, whom I consider good friends. Cey, Kirill, Philipp, and Ewa made the days and nights

of the Ph.D. much more enjoyable and for that, I am deeply grateful. I would also like to thank

them for being great collaborators, and for contributing to the research in this thesis. Finally,

a big thanks to Holly Cogliati-Bauereis, Angela Devenonge, Maggy Escandari, Anouk Hein,

and Patricia Hjelt, for making my life significantly easier by helping with everything related to

(among other things) administrative tasks and English editing.

Many people outside the lab were also very important in these four years. A special thanks

to George, with whom we’ve been good friends and collaborators since our undergraduate

school, to my “cousin” Marios, and to my neighbor Lana. You were the people that would put

up with my complaining and be available for a quick beer or “one last slope” run. I would

also like to thank Irene, Dusan, Hermina, Helena and the rest that are already mentioned

that started the Ph.D. trip with me and surprisingly managed to stay close and travel together

despite our crazy schedules. Also, a big thanks to my friends in Zurich: Maria, Dimitris, Marios,

Zeta, Chrysa, Patrica, and Stelios who made it a second home during my stay and visits there.

I would also like to thank all of my friends in Greece and abroad, who make me feel like there

is always a friend around the corner, especially when I travel to conferences. There are too

v

Acknowledgments

many of them to thank and too much to write for each one, but they all know who they are

and how much they have done for me, being there for me for many years now, and enduring

my unpredictable schedule and rare visits back home.

Last, but in no way least, I would like to thank my family, my parents Yianni and Katerina, my

sister Marita, and my brother George, for shaping the person I am today and for supporting

me unconditionally in my every step. They have always made the time I spend in Greece

relaxing and memorable and although I feel like I have a lot of homes, the home of my heart is

wherever they are.

My Ph.D. work has been supported by the EDIC Ph.D. Fellowship and the IBM Ph.D. Fellowship.

Lausanne, April 10th 2019 Eleftherios Kokoris-Kogias

vi

Abstract
One of the core promises of blockchain technology is that of enabling trustworthy data dis-

semination in a trustless environment. What current blockchain systems deliver, however,

is slow dissemination of public data, rendering blockchain technology unusable in settings

where latency, transaction capacity or data confidentiality is important. In this thesis, we focus

on providing solutions on two of the most pressing problems blockchain technology currently

faces: scalability and data confidentiality.

To address the scalability issue, we present OMNILEDGER, a novel scale-out distributed ledger

that preserves long-term security under permissionless operation. It ensures security and cor-

rectness by using a bias-resistant public-randomness protocol for choosing large, statistically

representative shards that process transactions, and by introducing an efficient cross-shard

commit protocol that atomically handles transactions affecting multiple shards.

To enable the secure sharing of confidential data we present CALYPSO, the first fully decen-

tralized auditable access-control framework for secure blockchain-based data sharing which

builds upon two abstractions. First, on-chain secrets enable collective management of (verifi-

ably shared) secrets under a Byzantine adversary where an access-control blockchain enforces

user-specific access rules and a secret-management cothority administers encrypted data.

Second, skipchain-based identity and access management enables efficient administration

of dynamic, sovereign identities and access policies and, in particular, permits clients to

maintain long-term relationships with respect to the evolving user identities thanks to the

trust-delegating forward links of skipchains.

In order to build OMNILEDGER and CALYPSO, we first build a set of tools for efficient decen-

tralization, which are presented in Part II of this dissertation. These tools can be used in

decentralized and distributed systems to achieve (1) scalable consensus (BYZCOIN), (2) bias-

resistant distributed randomness creations (RANDHOUND), and (3) relationship-keeping

between independently updating communication endpoints (SKIPPER). Although we use

these tools in the scope of this thesis, they can be (and already have been) used in a far wider

scope.

Keywords: Blockchain, Scalability, Privacy, Scale-Out, Secure permissionless Distributed

Ledger, Consensus, Atomic Commit, Confidentiality, Decentralization.

vii

Résumé
L’une des principales promesses de la technologie blockchain est de permettre la diffusion de

données de confiance dans un environnement sans confiance. Cependant, les systèmes de

blockchain actuels fournissent une diffusion lente des données publiques, rendant la tech-

nologie inutilisable dans les environnements où la latence, la capacité de transaction, où la

confidentialité des données sont d’une importance primordiale. Dans cette thèse, nous nous

concentrons sur deux problèmes que la technologie blockchain rencontre actuellement : le

déploiement à grande échelle et la confidentialité des données.

Pour permettre le déploiement à grande échelle de la blockchain, nous presentons une nou-

velle, scale-out, blockchain, qui guarantie la sécurité à long terme dans un environnement

libre et ouvert. OMNILEDGER assure la sécurité et l’integrité des données en utilisant deux

mechanismes complementaires. Le premier est un protocole generant des nombres aléatoires

et qui est resistant a la manipulation en utilisant de grandes partition de l’ensemble des

participants représentatifs sur le plan statistique. Le deuxieme est un protocole efficace de

validation des données entre partitions qui gère atomiquement les transactions affectant

plusieurs partitions.

Pour permettre le partage sécurisé de données confidentielles, nous présentons CALYPSO,

le premier système de contrôle d’accès entièrement décentralisé et vérifiable pour le par-

tage sécurisé de données basé sur une blockchain. CALYPSO repose sur deux abstractions :

Tout d’abord, on-chain secrets permet la gestion collective de secrets (partagés de manière

vérifiable), dans un environnement byzantin. Dans cet environnement, nous utilisons une

blockchain de gestion d’accès qui applique des règles d’accès spécifiques aux utilisateurs

qui souhaitent acceder aux données stockées, et une autorité de gestion de secret qui admi-

nistre des données cryptées. Deuxièmement, skipchain-based identity and access management

permet d’administrer efficacement un systeme d’identités dynamiques et souveraines et les

politiques d’accès aux données. skipchain-based identity and access management permet no-

tamment aux clients de maintenir des relations à long terme en ce qui concerne l’identité des

utilisateurs en constante évolution, grâce à la délégation de confiance en utilisant les liens en

avance des skipchains. skipchain-based identity and access management permet notamment

d’imposer des droits d’accès et de délégations sur des identités dont l’évolution est gérée grâce

aux liens cryptographiques présents dans la skipchain.

Afin de construire OMNILEDGER et CALYPSO, nous avons d’abord créé un ensemble d’outils

présentés dans la deuxième partie de cette thèse permettant de developper des systemes

decentralisés éfficaces à grande échelle. Nous utilisons ensuite ces outils pour réaliser (1)

ix

Acknowledgments

un protocole de consensus à grande échelle (BYZCOIN), (2) une protocole de generation de

nombres aléatoires publiquement verifiable, et résistant aux manipulations (RANDHOUND),

et (3) un protocole maintien des relations entre les systèmes de mise à jour de manière indé-

pendante (SKIPPER). Bien que nous utilisions ces outils dans le cadre de la blockchain pour

cette thèse, ils peuvent être (et ont déjà été) utilisés dans d’autres cadres.

Mots-clés : Blockchain, Confidentialité, Registre Distribué en mode “sans permission”, Consen-

sus, Atomic Commit, Décentralisation.

x

Contents

Acknowledgments v

Abstract (English/Français) vii

List of figures xvi

List of tables xix

I Introduction and Background 1

1 Introduction 3

1.1 Motivation . 3

1.1.1 The Scalability Challenge . 4

1.1.2 The Data Privacy Challenge . 4

1.2 Contributions and Publications . 5

1.3 Organization and Structure . 6

2 Background 9

2.1 Committee-based Agreement Protocols . 9

2.1.1 Scalable Agreement via Collective Signing 9

2.1.2 Practical Byzantine Fault Tolerance . 10

2.2 Blockchain Systems . 11

2.2.1 Bitcoin . 11

2.2.2 Bitcoin-NG . 13

2.3 Threshold Cryptosystems . 14

2.3.1 Secret Sharing . 14

2.3.2 Verifiable Secret Sharing . 14

2.3.3 Threshold Signing . 14

2.3.4 Distributed Key Generation . 15

2.3.5 Threshold ElGamal Encryption . 16

2.3.6 Publicly Verifiable Secret Sharing . 18

xi

Contents

II Tools for Efficient Decentralization 21

3 Scalable, Strongly-Consistent Consensus for Bitcoin 23

3.1 Introduction . 23

3.2 ByzCoin Design . 25

3.2.1 System Model . 25

3.2.2 Strawman Design: PBFTCoin . 25

3.2.3 Opening the Consensus Group . 26

3.2.4 Replacing MACs by Digital Signatures . 28

3.2.5 Scalable Collective Signing . 28

3.2.6 Decoupling Transaction Verification from Leader Election 29

3.2.7 Tolerating Churn and Byzantine Faults . 33

3.3 Performance Evaluation . 34

3.3.1 Prototype Implementation . 35

3.3.2 Evaluation . 36

3.3.3 Consensus Latency . 36

3.3.4 Transaction Throughput . 39

3.4 Security Analysis . 40

3.4.1 Transaction Safety . 40

3.4.2 Proof-of-Membership Security . 41

3.4.3 Defense Against Bitcoin Attacks . 43

3.5 Limitations and Future Work . 44

3.6 Conclusion . 46

4 Scalable Bias-Resistant Distributed Randomness 47

4.1 Introduction . 47

4.2 How (not) to Generate Randomness . 50

4.2.1 Insecure Approaches to Public Randomness 50

4.2.2 RandShare: Small-Scale Unbiasable Randomness Protocol 51

4.3 RandHound: Scalable, Verifiable Randomness Scavenging 53

4.3.1 Protocol Overview . 54

4.3.2 Description . 55

4.3.3 Security Properties . 59

4.3.4 Extensions . 62

4.4 RandHerd: A Scalable Randomness Cothority . 62

4.4.1 Overview . 63

4.4.2 Description . 63

4.4.3 Security Properties . 66

4.4.4 Addressing Leader Availability Issues . 68

4.4.5 Extensions . 69

4.5 Evaluation . 70

4.5.1 Implementation . 70

4.5.2 Performance Measurements . 71

xii

Contents

4.5.3 Availability Failure Analysis . 75

4.6 Conclusions . 76

5 Decentralized Tracking and Long-Term Relationships using SKIPPER 77

5.1 Introduction . 77

5.2 Motivation . 79

5.2.1 The Relationship Problem . 79

5.2.2 Motivating Examples . 80

5.3 Overview . 82

5.3.1 Security Goals and Threat Model . 82

5.3.2 Architectural Model and Roles . 82

5.3.3 Timelines and Tracking . 84

5.4 Design of SKIPPER . 84

5.4.1 Centrally Managed Tamper-Evident Logs 85

5.4.2 Anti-Equivocation via Collective Witnessing 85

5.4.3 Evolution of Authoritative Keys . 86

5.4.4 Skipchains . 86

5.4.5 Useful Properties and Applications . 88

5.4.6 Security Considerations for Skipchains . 88

5.5 Multi-level Relationships . 89

5.5.1 Multi-level Service Timelines . 89

5.5.2 Multi-Layer Trust Delegation in SKIPPER 91

5.6 Prototype Implementation . 91

5.6.1 SKIPPER Implementation . 92

5.6.2 Software Updates with SKIPPER . 92

5.6.3 SSH-based Distributed User Identities . 93

5.7 Experimental Evaluation . 94

5.7.1 Experimental Methodology . 94

5.7.2 Skipchain Effect on PyPI Communication Cost 94

5.7.3 SSH-based User Identities . 95

5.8 Conclusion . 96

III Private and Horizontally Scalable Distributed Ledgers 97

6 OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding 99

6.1 Introduction . 99

6.2 Preliminaries . 101

6.2.1 Transaction Processing and the UTXO model 101

6.2.2 Prior Sharded Ledgers: Elastico . 102

6.2.3 Sybil-Resistant Identities . 102

6.3 System Overview . 103

6.3.1 System Model . 103

xiii

Contents

6.3.2 Network Model . 103

6.3.3 Threat Model . 104

6.3.4 System Goals . 104

6.3.5 Design Roadmap . 104

6.4 OMNILEDGER: Security Design . 106

6.4.1 Sharding via Bias-Resistant Distributed Randomness 106

6.4.2 Maintaining Operability During Epoch Transitions 108

6.4.3 Cross-Shard Transactions . 109

6.5 Design Refinements for Performance . 112

6.5.1 Fault Tolerance under Byzantine Faults . 112

6.5.2 Parallelizing Block Commitments . 112

6.5.3 Shard Ledger Pruning . 113

6.5.4 Optional Trust-but-Verify Validation . 114

6.6 Security Analysis . 115

6.6.1 Randomness Creation . 115

6.6.2 Shard-Size Security . 116

6.6.3 Epoch Security . 117

6.6.4 Group Communication . 118

6.6.5 Censorship Resistance Protocol . 118

6.7 Implementation . 119

6.8 Evaluation . 120

6.8.1 Experimental Setup . 120

6.8.2 OMNILEDGER Performance . 120

6.8.3 Epoch-Transition Costs . 122

6.8.4 Client-Perceived End-to-End Latency with Atomix 122

6.8.5 ByzCoinX Performance . 123

6.8.6 Bandwidth Costs for State Block Bootstrapping 124

6.9 Limitation and Future Work . 126

6.9.1 Atomix for State-full Objects . 126

6.10 Conclusion . 127

7 CALYPSO: Verifiable Management of Private Data over Blockchains 129

7.1 Introduction . 129

7.2 Motivating Applications . 132

7.2.1 Auditable Data Sharing. 132

7.2.2 Data Life-Cycle Management. 132

7.2.3 Atomic Data Publication. 133

7.3 CALYPSO Overview . 134

7.3.1 Strawman Data Management Solution . 134

7.3.2 System Goals . 134

7.3.3 System Model . 135

7.3.4 Threat Model . 135

xiv

Contents

7.3.5 Architecture Overview . 136

7.4 On-Chain Secrets . 137

7.4.1 One-Time Secrets . 138

7.4.2 Long-Term Secrets . 142

7.4.3 On-chain Blinded Key Exchange . 146

7.4.4 Post-Quantum On-chain Secrets . 147

7.5 Skipchain Identity and Access Management . 148

7.5.1 Architecture . 149

7.5.2 Integration Into CALYPSO . 150

7.5.3 Achieving SIAM Goals . 151

7.6 Further Security Consideration . 151

7.7 Experience Using CALYPSO . 152

7.7.1 Auditable Online Invoice Issuing . 152

7.7.2 Clearance-enforcing Document Sharing 153

7.7.3 Patient-centric Medical Data Sharing . 154

7.7.4 Decentralized Lottery . 155

7.8 Implementation . 155

7.8.1 Access Requests and Verification . 156

7.8.2 JSON Access-Control Language . 157

7.9 Evaluation . 157

7.9.1 Mirco-benchmarks . 158

7.9.2 Clearance-Enforcing Document Sharing 161

7.9.3 Decentralized Lottery . 162

7.10 Conclusion . 163

8 Horizontal Scaling and Confidentiality on Permissioned Blockchains 165

8.1 Introduction . 165

8.2 Preliminaries . 165

8.2.1 Channels . 166

8.2.2 Threat Model . 167

8.2.3 System Goals . 167

8.3 Asset Management in a Single Channel . 167

8.3.1 Assets in Transactions . 167

8.3.2 UTXO Pool . 168

8.3.3 Asset or Output Definition . 168

8.3.4 UTXO operations . 169

8.3.5 Protocol . 170

8.4 Atomic Cross-Channel Transactions . 172

8.4.1 Asset Transfer across Channels . 173

8.4.2 Cross-Channel Trade with a Trusted Channel 174

8.4.3 Cross-Channel Trade without a Trusted Channel 175

8.5 Using Channels for Confidentiality . 178

xv

Contents

8.5.1 Deploying Group Key Agreement . 178

8.5.2 Enabling Cross-Shard Transactions among Confidential Channels 179

8.6 Case Study: Cross-Shard Transactions on Hyperledger Fabric 181

8.7 Conclusion . 183

IV Related Work and Concluding Remarks 185

9 Related Work 187

9.1 Scaling Blockchains . 187

9.2 Comparison of OMNILEDGER with Prior Work . 188

9.3 Consensus Group Membership and Stake . 189

9.4 Randomness Generation and Beacons . 189

9.5 Confidential Blockchains . 190

9.6 Decentralized Identity & Certificate Management 191

10 Conclusion and Future Work 193

10.1 Summary and Implications . 193

10.2 Future Work . 194

10.2.1 Sharding for Smart Contracts . 194

10.2.2 Heterogeneous Sharding . 194

10.2.3 Locality Preserving Sharding . 195

10.2.4 Alternatives to Proof-of-Work . 196

Bibliography 216

Curriculum Vitae 219

xvi

List of Figures
2.1 CoSi protocol architecture . 10

2.2 PBFT Communication Pattern. D is the client and Ri are replicas 11

2.3 Bitcoin’s Blockchain network data . 12

2.4 Bitcoin-NG’s Blockchain. Slow keyblocks include the keys of the miners who

produce fast microblocks that include transactions 13

3.1 Valid shares for mined blocks in the blockchain are credited to miners 27

3.2 BYZCOIN blockchain: Two parallel chains store information about the leaders

(keyblocks) and the transactions (microblocks) 30

3.3 Overview of the full BYZCOIN design . 31

3.4 Deterministic fork resolution in BYZCOIN . 32

3.5 Influence of the consensus group size on the consensus latency 37

3.6 Keyblock signing latency . 38

3.7 Influence of the block size on the consensus latency 39

3.8 Influence of the consensus group size on the block signing latency 40

3.9 Throughput of BYZCOIN . 41

3.10 Successful double-spending attack probability . 41

3.11 Client-perceived secure transaction latency . 42

4.1 An overview of the RANDHOUND design. 55

4.2 An overview of the RANDHOUND randomness generation process 56

4.3 An overview on the RANDHERD design . 64

4.4 Overall CPU cost of a RANDHOUND protocol run 72

4.5 Total wall clock time of a RANDHOUND protocol run 72

4.6 Total CPU usage of RANDHERD setup . 73

4.7 Wall clock time per randomness creation round in RANDHERD 73

4.8 Comparison of communication bandwidth costs between RANDHERD, RAND-

HOUND, and CoSi for fixed group size c = 32 . 74

4.9 Comparison of randomness generation times for RANDSHARE and RANDHERD

(group size c = 32 for RANDHERD and c = n for RANDSHARE) 74

4.10 System failure probability for varying group sizes 75

4.11 System failure probability for varying adversarial power 76

5.1 Architectural Roles in SKIPPER . 83

xvii

List of Figures

5.2 A deterministic skipchain S 3
2 . 87

5.3 Trust delegation in SKIPPER . 91

5.4 SSH Management with SKIPPER. System Architecture 93

5.5 Communication cost for different frameworks . 94

6.1 Trade-offs in current DL systems. 100

6.2 OMNILEDGER architecture overview: At the beginning of an epoch e, all val-

idators (shard membership is visualized through the different colors) (1) run

RandHound to re-assign randomly a certain threshold of validators to new shards

and assign new validators who registered to the identity blockchain in epoch

e −1. Validators ensure (2) consistency of the shards’ ledgers via ByzCoinX while

clients ensure (3) consistency of their cross-shard transactions via Atomix (here

the client spends inputs from shards 1 and 2 and outputs to shard 3). 103

6.3 Atomix protocol in OMNILEDGER. 110

6.4 Trust-but-Verify Validation Architecture . 114

6.5 Left: Shard size required for 10−6 system failure probability under different

adversarial models. Right: Security of an optimistic validation group for 12.5%

and 25% adversaries. 117

6.6 Anti-censorship mechanism OMNILEDGER . 119

6.7 OMNILEDGER throughput for 1800 hosts, varying shard sizes s, and adversarial

power f /n. 121

6.8 Epoch transition latency. 122

6.9 Client-perceived, end-to-end latency for cross-shard transactions via Atomix. . 123

6.10 ByzCoinX throughput in transactions per second for different levels of concurrency.124

6.11 ByzCoinX communication pattern latency. 125

6.12 Bootstrap bandwidth consumption with state blocks. 125

6.13 State-Machine for the UTXO model. No locking is necessary 126

6.14 State-Machine for the account model. Pessimistic locking is necessary 127

7.1 Auditable data sharing in CALYPSO: (1) Wanda encrypts data under the secret-

management cothority’s key, specifying the intended reader (e.g., Ron) and the

access policy, and then sends it to the access-control cothority which verifies and

logs it. (2) Ron downloads the encrypted secret from the blockchain and then

requests access to it by contacting the access-control cothority which logs the

query if valid, effectively authorizing Ron’s access to the secret. (3) Ron asks the

secret-management cothority for the secret shares of the key needed to decrypt

the secret by proving that the previous authorization by access-control cothority

was successful. (4) Ron decrypts the secret. If a specific application requires

fairness, the data can be atomically disclosed on-chain. 130

7.2 On-chain secrets protocol steps: (1) Write transaction, (2) Read transaction, (3)

Share retrieval, (4) Secret reconstruction. 137

xviii

List of Figures

7.3 Skipchain-based identity and access management (SIAM): First, Ron updates

his personal identity skipchain idRon to include pkssh. Afterwards, he uses sklab

to extend the federated identity skipchain idlab to add idAna as a member. Finally,

he adds idAna as an administrator and idlab as authorized readers to the resource

policy skipchain idpaper by using skdoc. 149

7.4 Verifier’s path checking for multi-signature requests. 156

7.5 Sample Policy in JSON access-control language. 156

7.6 Latency of one-time secrets protocol for varying sizes of the secret-management

(SM) and access-control (AC) cothorities. 158

7.7 Latency of long-term secrets protocol for varying sizes of secret-management

(SM) and access-control (AC) cothorities. 159

7.8 Single-signature request verification. 161

7.9 Multi-signature request verification throughput. 161

7.10 Write transaction latency for different loads in clearance-enforcing document

sharing. 161

7.11 Read transaction latency for different loads in clearance-enforcing document

sharing. 161

7.12 Average write and read transaction latencies replaying the real-world data traces

from the clearance-enforcing document sharing deployment 162

7.13 CALYPSO vs Tournament lottery using Fire Lotto workloads. 163

7.14 CALYPSO vs Tournament lottery using simulated workloads. 164

8.1 Cross-channel transaction architecture overview with (8.4.2) and without (8.4.3)

a trusted channel . 175

8.2 Privacy-Preserving Cross-Channel Transaction structure 179

xix

List of Tables
3.1 BYZCOIN pipelining for maximum transaction-throughput; Bk denotes the

microblock signed in round k, An/Co the Announce-Commit and Ch/Re the

Challenge-Response round-trips of CoSi . 36

3.2 Expected proof-of-membership security levels . 42

4.1 Lines of code per module . 71

4.2 System failure probabilities q (given as − log2(q)) for concrete configurations of

adversarial power p and group size c . 76

6.1 OMNILEDGER transaction confirmation latency in seconds for different configu-

rations with respect to the shard size s, adversarial power f /n, and validation

types. 120

6.2 OMNILEDGER scale-out throughput in transactions per second (tps) for a adver-

sarial power of f /n = 12.5% shard size of s = 70, and a varying number of shards

m. 121

6.3 ByzCoinX latency in seconds for different concurrency levels and data sizes. . . 123

7.1 txw size for varying secret-management cothority sizes 160

8.1 Atomic Commit Protocol on Fabric Channels . 183

9.1 Comparison of Distributed Ledger Systems . 188

xxi

Part IIntroduction and Background

1

1 Introduction

1.1 Motivation

Blockchain technology has emerged a decade ago with Bitcoin [191], an open, self-regulating

cryptocurrency build on top of the idea of decentralization. A blockchain can be defined

as an append-only distributed log that stores an ordered set of log-entries, also known as

transactions. Transactions are grouped into batches or blocks that form a cryptographic hash-

chain, hence the name blockchain. These transactions typically encode valid updates to the

state of the blockchain. Given that (i) a blockchain is an ordered set of transactions, (ii) these

transactions cause the state to change, and (iii) the state is stored among a distributes set

of servers, we can say that blockchains are concrete implementations of the state-machine

replication abstraction [220].

The most widely adopted blockchain application is cryptocurrencies that provide an alter-

native to fiat currencies and traditional banking and promise to become the infrastructure

for a new generation of Internet interactions, including anonymous online payments [218],

remittance [239], and transacting of digital assets [11]. Currently, there are thousands of cryp-

tocurrencies with a market capitalization exceeding $260B. Blockchain technology, however,

has outgrown the initial application of cryptocurrencies and is currently promising to disrupt

whole industries such as finance [251], insurance [239], healthcare [170], logistics [239], and

governments [203]. Claims that are backed by more than $15B of funding.

This “hype” and abundance of funding, has lead to a frenzy of “white” papers (i.e., non-

peer-reviewed design documents for blockchain start-ups) claiming to have a solution for

almost any problem humanity has, but usually ignoring most prior work. Although blockchain

technology made decentralization mainstream, the idea of decentralization existed decades

before. The decentralization concept was already part of how the Internet was supposed to

function and it was concretely introduced by David Chaum in 1981 [57] in order to propose

an alternative to centralized systems that inherently have single points of failure or com-

promise. In this thesis we also go back in time, before the inception of Bitcoin and study

decentralized systems such as Practical Byzantine Fault Tolerance (PBFT) [55], threshold

3

Chapter 1. Introduction

cryptosystems [110, 135, 222, 227, 229], and multi-signatures [221, 39] in order to use them as

fundamental building blocks to providing solutions for two of the most pressing problems of

the blockchain ecosystem [42]: scalability and data privacy.

1.1.1 The Scalability Challenge

Currently, all open blockchain consensus protocols deployed have two challenging limitations

as far as scalability is concerned: confirmation latency and transaction throughput. First,

the core consensus used in open blockchains requires synchronous communication [199] to

guarantee persistence of the blocks. As a result, clients may need to wait up to 60 minutes [191],

before accepting a transaction as valid, in order to be confident that they have the same view

as the rest of the network.

Second, every fully participating node in the network must process every transaction in order

for the system to be really decentralized. There should be no central party that guarantees the

security (and more specifically the consistency) of the blockchain, and instead every single

participating node is responsible for securing the system. In principle, this means that every

single participating node needs to see, process, and store a copy of every transaction and of

the entire state. As a result, the throughput of Bitcoin is limited to 7 transactions per second,

3-4 orders of magnitude lower than traditional payment networks such as VISA.

1.1.2 The Data Privacy Challenge

The second major challenge this thesis studies stems from non cryptocurrency-based blockchain

applications in sectors such as finance [251], (personalized) healthcare [170], insurance [239]

or e-democracy [203]. These applications regularly tend to assume shared access to sensitive

data between independent, mutually distrustful parties. However, current blockchains fail to

manage confidential data securely and efficiently on-chain.

Most blockchain systems ignore this problem [253, 139] whereas others implement naive

solutions such as encrypting the information with the public keys of the intended recipients

and publishing the ciphertexts on Bitcoin [109]. The problem here is that once these cipher-

texts are public the application no longer has control over who can access them and when,

because the access control is enforced statically during encryption. To prevent these issues,

many systems [138, 256, 15] fall back to semi-centralized solutions that record access requests,

permissions, and hashes of the data on-chain, but manage the secret data off-chain keeping

the encryptions and the decryption keys in a centralized or distributed storage. This approach

makes the storage provider a single point of failure, as it can deny access, even for legitimate

requests, or decrypt the confidential data using the untrusted keys undetected.

4

1.2. Contributions and Publications

1.2 Contributions and Publications

This thesis addresses the two challenges above by first building the necessary tools for efficient

decentralization and then proposing scalable and private blockchains both in the permission-

less setting, where the set of participants is unknown and in the permissioned setting, where

the set of participants is well-defined.

More specifically, the contributions of this thesis are the following:

• We introduce BYZCOIN, the first open (permissionless) blockchain system that provides

non-probabilistic consensus by forming rolling Proof-of-Work committees that main-

tain a Bitcoin-like blockchain. As part of BYZCOIN, we design a strongly-consistent

consensus algorithms that can be run efficiently by hundreds of servers and provides

high throughput and low confirmation latency.

• We show how to generate bias-resistant distributed randomness in a large scale by

leveraging our scalable consensus and verifiable secret sharing. The core idea is to

collect randomness from many highly-available, but not always honest clusters of

nodes and combine it to one randomness output. Given that at least one cluster is

collectively honest, we can guarantee that the combined randomness is unpredictable

and unbiasable.

• We introduce skipchains, a doubly-linked blockchain that can be used to track long-term

relationships in decentralized and distributed systems. The core idea behind skipchains

is that of forward links. Forward links are generated by an authoritative committee

that manages some service by signing the membership of succeeding committees. This

forward link effectively delegates trust from the authoritative committee to its successor

and enables clients to securely and efficiently obtain authoritative data without always

needing to be online.

• We combine the three tools of decentralization mentioned above (i.e., consensus, ran-

domness, and relationship-tracking) to introduce OMNILEDGER, the first fully decen-

tralized and long-term secure sharded blockchain. The core idea behind OMNILEDGER

is to let participants validate only a subset of the transactions, while still having all

transactions validated by a big enough set of validators to prevent inconsistencies. As a

result, validation can be done in parallel and the system scales out, meaning that the

more popular the system becomes the higher the throughput it can provide.

• We design CALYPSO, an extension that enables confidential data sharing over pro-

grammable blockchains. More specifically, we enable a writer to shares confidential

data with a set of readers (e.g., a company) and guarantee that if any reader accesses

the data, the writer will hold proof-of-access (i.e., forensics) and that if a reader has the

right to access the data, then the data will be delivered upon request. Furthermore, we

enable the dynamic evolution of the readers’ identities and of the data access-policies

with the deployment of skipchains for sovereign, decentralized identity management.

5

Chapter 1. Introduction

• Finally, we study the same problems of horizontal scalability (scale-out) and confidential

data sharing in the permissioned setting where weaker trust assumptions enable us to

design simpler protocols. We map this new design on top of HyperLedger Fabric [10],

the most widely used permissioned blockchain until the moment of writing.

Most of the work presented in this thesis is based on the following co-authored publications:

• Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,

and Bryan Ford. “Enhancing Bitcoin Security and Performance with Strong Consistency

via Collective Signing”.

In the 25th USENIX Security Symposium, 2016

• Eleftherios Kokoris-Kogias, Linus Gasser, Ismail Khoffi, Philipp Jovanovic, Nicolas Gailly,

and Bryan Ford. “Managing Identities Using Blockchains and CoSi”.

In Hot Topics in Privacy Enhancing Technologies (HotPETs), 2016

• Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser,

Ismail Khoffi, Michael J. Fischer, and Bryan Ford. “Scalable Bias-Resistant Distributed

Randomness”.

In the 38th IEEE Symposium on Security and Privacy, 2017

• Bryan Ford, Linus Gasser, Eleftherios Kokoris Kogias, Philipp Jovanovic “Cryptograph-

ically Verifiable Data Structure Having Multi-Hop Forward and Backwards Links and

Associated Systems and Methods”.

US Patent App. 15/618,653, 20181

• Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta and

Bryan Ford. “OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding”.

In the 39th IEEE Symposium on Security and Privacy, 2018

• Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas Gailly, Linus

Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford. “CALYPSO: Auditable Sharing of

Private Data over Blockchains.”

Under Submission

• Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias.

“Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains”.

In the 23rd European Symposium on Research in Computer Security, 2018

1.3 Organization and Structure

This thesis is organized into four parts and ten chapters.

1The paper “CHAINIAC: Proactive Software-Update Transparency via Collectively Signed Skipchains and Verified
Builds” [195] used skipchains as part of general software update framework and is not part of this thesis.

6

1.3. Organization and Structure

Chapter 2 introduces the systems we use as building blocks for this thesis. First, we cover

committee-based (or quorum-based) agreement protocols necessary for building our scalable

consensus algorithm. Then we introduce Bitcoin and one of its improvements, Bitcoin-NG,

that define the problem and the environment we set this thesis. Finally, we introduce threshold

cryptosystems, that help remove single points of failure or compromise from the systems we

build and enable full decentralization.

Chapter 3 commences the second part, where we introduce our constructions that enable

efficient and secure decentralization. More specifically, in this chapter, we built a scalable

consensus in an open and adversarial environment and show that it provides a faster and

more secure alternative to Bitcoin, albeit under a different but realistic adversarial model.

Chapter 4 describes our second tool; randomness. More specifically, we show how hard it can

be to build a fully-decentralized randomness beacon whose randomness is unpredictable and

unbiasable. Then we provide two different implementations of such a randomness beacon

who scale to hundreds of participating servers.

Chapter 5 provides the last tool necessary to build our fully decentralized solutions, Skipchains.

With skipchains, we enable clients to maintain long-term relationships with dynamically

changing sets of servers (who provide some service) without the need to trust a third-party for

indirection.

Part 3 of this dissertation describes three different systems that solve the two challenges

described earlier.

First, in Chapter 6, we see OMNILEDGER. OMNILEDGER is the first horizontally scalable, secure

and fully decentralized blockchain system. We achieve this by leveraging the tools of Part 2

and combining them with a 20-year old idea from database systems: sharding.

Then, in Chapter 7, we switch gears and focus on the data privacy challenge. We tackle this

challenge by using threshold secret sharing in order to create a highly available vault for

storing encryption keys, which can be coupled with blockchain systems in order to provide

fully decentralized access-control on confidential data.

Finally, in Chapter 8, we look into the above problem from the angle of permissioned blockchains

and formalize an asset management application, which concurrently scales horizontally and

provides confidentiality among the different state-spaces of the full system.

The last part of this thesis surveys the related work in Chapter 9 and provides concluding

remarks and directions for future work in Chapter 10.

7

2 Background

2.1 Committee-based Agreement Protocols

2.1.1 Scalable Agreement via Collective Signing

CoSi [243] is a protocol for scalable collective signing, which enables an authority or leader

to request that statements be publicly validated and (co-)signed by a decentralized group of

witnesses. Each protocol run yields a collective signature having size and verification cost

comparable to an individual signature, but which compactly attests that both the leader and

its (perhaps many) witnesses observed and agreed to sign the statement.

To achieve scalability, CoSi combines Schnorr multi-signatures [221] with communication

trees that are long used in multicast protocols [54]. Initially, the protocol assumes that signa-

ture verifiers know the public keys of the leader and those of its witnesses, all of which combine

to form a well-known aggregate public key. For each message to be collectively signed, the

leader then initiates a CoSi four-phase protocol round that requires two round-trips over the

communication tree between the leader and its witnesses:

1. Announcement: The leader broadcasts an announcement of a new round down the

communication tree. The announcement can optionally include the message M to be

signed, otherwise M is sent in phase three.

2. Commitment: Each node picks a random secret and uses it to compute a Schnorr com-

mitment. In a bottom-up process, each node obtains an aggregate Schnorr commitment

from its immediate children, combines those with its own commitment, and passes a

further-aggregated commitment up the tree.

3. Challenge: The leader computes a collective Schnorr challenge using a cryptographic

hash function and broadcasts it down the communication tree, along with the message

M to sign, if the latter has not already been sent in phase one.

9

Chapter 2. Background

Figure 2.1 – CoSi protocol architecture

4. Response: Using the collective challenge, all nodes compute an aggregate response in a

bottom-up fashion that mirrors the commitment phase.

The result of this four-phase protocol is the production of a standard Schnorr signature

that requires about 64 bytes, using the Ed25519 elliptic curve [27], and that anyone can

verify against the aggregate public key nearly as efficiently as the verification of an individual

signature. Practical caveats apply if some witnesses are offline during the collective signing

process: in this case, the CoSi protocol may proceed, but the resulting signature grows to

include metadata verifiably documenting which witnesses did and did not co-sign. We refer

to the CoSi paper for details [243]. Drijvers et al. [85] has shown a subtle attack on the Schnorr

version of CoSi and for this reason we suggest the use of BLS [39] signatures instead.

2.1.2 Practical Byzantine Fault Tolerance

The Byzantine Generals’ Problem [162, 200] refers to the situation where the malfunctioning

of one or several components of a distributed system prevents the latter from reaching an

agreement. Pease et al. [200] show that 3 f +1 participants are necessary to be able to tolerate f

faults and still reach consensus. The Practical Byzantine Fault Tolerance (PBFT) algorithm [55]

was the first efficient solution to the Byzantine Generals’ Problem that works in weakly syn-

chronous environments such as the Internet. PBFT offers both safety and liveness provided

that the above bound applies, i.e., that at most f faults among 3 f +1 participants, hold.

PBFT triggered a surge of research on Byzantine state-machine replication algorithms with

various optimizations and trade-offs [1, 154]. Every round of PBFT has three distinct phases

as illustrated in Figure 2.2. In the first, pre-prepare phase, the current primary node or leader

announces the next record that the system should agree upon. On receiving this pre-prepare,

10

2.2. Blockchain Systems

Figure 2.2 – PBFT Communication Pattern. D is the client and Ri are replicas

every node validates the correctness of the proposal and multicasts a prepare message to the

group. The nodes wait until they collect a quorum of (2 f +1) prepare messages and publish

this observation with a commit message. Finally, they wait for a quorum of (2 f +1) commit

messages to make sure that enough nodes have recorded the decision.

PBFT relies upon a correct leader to begin each round and proceeds if a two-thirds quorum

exists; consequently, the leader is an attack target. For this reason, PBFT has a view-change

protocol that ensures liveness in the face of a faulty leader. All nodes monitor the leader’s

actions and if they detect either malicious behavior or a lack of progress, initiate a view-change.

Each node independently announces its desire to change leaders and stops validating the

leader’s actions. If a quorum of (2 f +1) nodes decides that the leader is faulty, then the next

leader in a well-known schedule takes over.

PBFT has its limitations, which make it unsuitable for permissionless blockchains. First, it

assumes a fixed, well-defined group of replicas, thus contradicting Bitcoin’s basic principle of

being decentralized and open for anyone to participate. Second, each PBFT replica normally

communicates directly with every other replica during each consensus round, resulting in

O(n2) communication complexity: This is acceptable when n is typically 4 or not much more,

but becomes impractical if n represents hundreds or thousands of Bitcoin nodes. Third,

after submitting a transaction to a PBFT service, a client must communicate with a super-

majority of the replicas in order to confirm the transaction has been committed and to learn

its outcome, making secure transaction verification unscalable.

2.2 Blockchain Systems

2.2.1 Bitcoin

At the core of Bitcoin [191] rests the so-called blockchain, a public, append-only database

maintained by miners and serving as a global ledger of all transactions ever issued. Transac-

11

Chapter 2. Background

Figure 2.3 – Bitcoin’s Blockchain network data

tions are bundled into blocks and validated by a proof-of-work. A valid Proof-of-Work block

is one whose cryptographic hash has d leading zero bits, where the difficulty parameter d is

adjusted periodically such that new blocks are mined about every ten minutes on average.

Each block in a blockchain includes a Merkle tree [179] of new transactions to be committed,

and a cryptographic hash chaining to the last valid block, thereby forming the blockchain.

Upon successfully forming a new block with a valid proof-of-work, a miner broadcasts the

new block to the rest of the miners, who (when behaving properly) accept the new block

if it extends a valid chain strictly longer than any other chain they have already seen. An

illustration of Bitcoin’s blockchain data model can be seen in Figure 2.3.

Bitcoin’s decentralized consensus and security derive from an assumption that a majority of

the miners, measured in terms of hash power or ability to solve hash-based proof-of-work

puzzles, follows these rules and always attempts to extend the longest existing chain. As soon

as a set of miners controlling the majority of the network’s hash power approves a given block

by mining on top of it, the block remains embedded in any future chain [191]. Bitcoin’s security

is guaranteed by the fact that this majority will be extending the legitimate chain faster than

any corrupt minority that might try to rewrite history or double-spend currency. However,

Bitcoin’s consistency guarantee is only probabilistic and synchrony dependent, which leads to

two fundamental problems.

First, multiple miners might find distinct blocks with the same parent before the network has

reached consensus. Such a conflict is called a fork, an inconsistency that is temporarily allowed

until one of the chains is extended yet again. Subsequently, all well-behaved miners on the

shorter chain(s) switch to the new longest one. All transactions appearing only in the rejected

block(s) are invalid and must be resubmitted for inclusion into the winning blockchain. This

means that Bitcoin clients who want high certainty that a transaction persists (e.g., that they

12

2.2. Blockchain Systems

Figure 2.4 – Bitcoin-NG’s Blockchain. Slow keyblocks include the keys of the miners who
produce fast microblocks that include transactions

have irrevocably received a payment) must wait not only for the next block but for several

blocks thereafter, thus increasing the transaction latency. As a rule of thumb [191], a block

is considered as permanently added to the blockchain after about 6 new blocks have been

mined on top of it, for a confirmation latency of 60 minutes on average.

Second, the Bitcoin block size is currently limited to 1 MB. This limitation in turn results in

an upper bound on the number of transactions per second (TPS) the Bitcoin network can

handle, estimated to be an average of 7 TPS. For comparison, Paypal handles 500 TPS and

VISA even 4000 TPS. An obvious solution to enlarge Bitcoin’s throughput is to increase the

size of its blocks. Unfortunately, this solution also increases the probability of forks due to

higher propagation delays and the risk of double-spending attacks [112]. Bitcoin’s liveness and

security properties depend on forks being relatively rare. Otherwise, the miners would spend

much of their effort trying to resolve multiple forks [113], or in the extreme case, completely

centralize Bitcoin [95]

2.2.2 Bitcoin-NG

Bitcoin-NG [95] makes the important observation that Bitcoin blocks serve two different

purposes: (1) election of a leader who decides how to resolve potential inconsistencies, and (2)

verification of transactions. Due to this observation, Bitcoin-NG proposes two different block

types (see Figure 2.4): Keyblocks are generated through mining with proof-of-work and are

used to securely elect leaders, at a moderate frequency, such as every 10 minutes as in Bitcoin.

Microblocks contain transactions, require no proof-of-work, and are generated and signed by

the elected leader. This separation enables Bitcoin-NG to process many microblocks between

the mining of two keyblocks, enabling transaction throughput to increase.

Bitcoin-NG, however, retains many drawbacks of Bitcoin’s consistency model. Temporary

forks due to near-simultaneous keyblock mining, or deliberately introduced by selfish or

malicious miners, can still throw the system into an inconsistent state for 10 minutes or more.

Further, within any 10-minute window, the current leader could still intentionally fork or

rewrite history and invalidate transactions. If a client does not wait several tens of minutes

(as in Bitcoin) for transaction confirmation, he is vulnerable to double-spend attacks by the

current leader or by another miner who forks the blockchain. Although Bitcoin-NG includes

disincentives for such behavior, these disincentives amount at most to the “mining value” of

13

Chapter 2. Background

the keyblock (coinbase rewards and transaction fees): Thus, leaders are both able and have

incentives to double-spend on higher-value transactions.

Consequently, although Bitcoin-NG permits higher transaction throughput, it does not solve

Bitcoin’s consistency weaknesses. Nevertheless, Bitcoin-NG’s decoupling of keyblocks from

microblocks is an important idea that we build on in Chapter 3 to support high-throughput

and low-latency transactions in BYZCOIN.

2.3 Threshold Cryptosystems

2.3.1 Secret Sharing

The notion of secret sharing was introduced independently by Blakely [33] and Shamir [227]

in 1979. An (t ,n)-secret sharing scheme, with 1 ≤ t ≤ n, enables a dealer to share a secret a

among n trustees such that any subset of t honest trustees can reconstruct a whereas smaller

subsets cannot. This means in other words that the sharing scheme can withstand up to t −1

malicious participants.

In the case of Shamir’s scheme, the dealer evaluates a degree t −1 polynomial s at positions

i > 0 and each share s(i) is handed out to a trustee. The important observation here is that

only if a threshold of t honest trustees works together then the shared secret a = s(0) can be

recovered (through polynomial interpolation).

2.3.2 Verifiable Secret Sharing

The downside of these simple secret sharing schemes is that they assume an honest dealer

which might not be realistic in some scenarios. Verifiable secret sharing (VSS) [59, 99] adds

verifiability to those simple schemes and thus enables trustees to verify if shares distributed

by a dealer are consistent, that is, if any subset of a certain threshold of shares reconstructs

the same secret. VSS has a wide range of applications such as distributed key generation,

threshold signatures, and threshold encryption schemes. We describe these schemes below

and use them at multiple protocols of this thesis. For all the systems below we assume the

existence of a cyclic group G of prime order p and of a generator G of G .

2.3.3 Threshold Signing

TSS [235] is a distributed (t ,n)-threshold Schnorr signature scheme. TSS allows any subset of t

signers to produce a valid signature. During setup, all n trustees use VSS to create a long-term

shared secret key x and a public key X = Gx . To sign a statement S, the n trustees first use

VSS to create a short-term shared secret v and a commitment V = Gv and then compute

the challenge c = H(V ∥ S). Afterwards, each trustee i uses his shares vi and xi of v and

x, respectively, to create a partial response ri = vi − cxi . Finally, when t out of n trustees

14

2.3. Threshold Cryptosystems

collaborate they can reconstruct the response r through Lagrange interpolation. The tuple

(c,r) forms a regular Schnorr signature on S, which can be verified against the public key X .

2.3.4 Distributed Key Generation

A Distributed Key Generation (DKG) protocol removes the dependency on a trusted dealer

from the secret sharing scheme by having every trustee run a secret sharing round. In essence,

a (n, t) DKG [141] protocol allows a set of n servers to produce a secret whose shares are spread

over the nodes such that any subset of servers of size greater than t can reveal or use the

shared secret, while smaller subsets do not have any knowledge about the secret. Pedersen

has offered the first DKG scheme [201] based upon the regular discrete logarithm problem

without any trusted party.

We provide here a summery of how Pedersen DKG works. We assume the existence of n servers

participating in the DKG and each of them is in possession of a private-public key pair. The

list of public keys is publicly known. The Pedersen DKG assume the existence of a private

channel between any pairs of participants and a broadcast channel available to all participants.

Furthermore, this DKG scheme works in a synchronous setting where an upper bound on

the communication delay is fixed and known in advance. While this may be restrictive in

today’s global Internet era, a sufficient large timeout can simulate such synchrony. If such a

synchrony assumption is too strong, Aniket et al. [141] have provided a partially synchronous

DKG variant, that can substitute the one described below.

Key Generation The protocol follows several steps in order to securely generate a distributed

key:

1. Each party Pi chooses a random polynomial fi (z) over Z∗
p of degree t :

fi (z) = ai 0 +ai 1 ∗ z +·· ·+ai t ∗ z t

2. Each Pi computes the individual secret shares si j = fi (j) mod p for all j ∈ {1, . . . ,n} and

sends si j to party P j using a confidential point-to-point channel. We denote ai 0 by xi ,

the individual secret contribution to the distributed private key.

3. Each Pi broadcasts the commitment to the coefficients Ai k =Gai k for all k ∈ {0, . . . ,k} to

all other participants. We denote Ai 0 by Xi , the individual public contribution to the

distributed public key.

4. Each P j verifies the share received from the other parties by checking, for all i ∈ {1, . . . ,n}:

G si j =
t∏

k=0
(Ai k) j k

mod p (2.1)

15

Chapter 2. Background

If the check fails for an index i , P j broadcasts a complaint against Pi .

5. For each complaining party P j , party Pi reveals the corresponding share si j matching

(2.1). If any of the revealed shares fails this equation, Pi is disqualified. We define the

set QUAL to be the set of non-disqualified parties.

6. The public key is defined as X = ∏
i∈QU AL Xi . Each party P j sets his share of the

secret to x j = ∑
i∈QU AL si j mod p. The public verification values are computed as

Ak =∏
i∈QU AL Ai k . The distributed secret key is defined as x =∑t

i∈QU AL x j ∗λi where λi

is the i -th Lagrange coefficient.

2.3.5 Threshold ElGamal Encryption

The ElGamal cryptosystem [89] is an asymmetric cryptographic system enabling one to en-

crypt a message without any interactions needed from the destination. In this thesis, we focus

on the CCA-2 (Adaptive chosen-ciphertext adversary) secure decentralized variant introduced

by Shoup et al [229], Specifically, we focus on the TDH2 scheme from [229] as a chosen cipher-

text secure threshold encryption system, which relies on the decisional Diffie Hellman problem

(DDH). We briefly recap the TDH2 system here.

To be at all useful, the key-holding (decryption) servers should not decrypt everything that

comes its way and give it to just anybody, but should implement some kind of useful decryp-

tion policy. To implement such a policy securely, in addition to chosen-ciphertext security,

one needs an additional property: the ability to attach a label to the ciphertext during the

encryption process. Such a label L is a bit-string that contains information that can be used by

the decryption servers to determine if the decryption request is authorized. One can think of

the label as being a part of the ciphertext so that changing the label changes the ciphertext;

security against chosen ciphertext attack would then imply, in particular, that one cannot

subvert the third party’s policy by simply swapping labels.

For simplicity of describing the scheme, we assume the message and labels are l-bit strings.

TDH2 requires the existence of three distinct hash functions:

H1 : G → {0,1}l ,

H2 : {0,1}l × {0,1}l ×G 4 →Zp ,

H3 : G 3 →Zp

1. Key Generation: The set of participating servers collectively run a DKG protocol and

16

2.3. Threshold Cryptosystems

each server ends up with having one share xi of the distributed secret. The participating

server also decides on a random additional generator Ḡ (Ḡ is the same for all servers).

2. Encryption: The algorithm to encrypt a message m ∈ {0,1}l and a label L runs as follow.

The encryptor chooses r, s ∈Zp at random.

c = H1(X r)⊕m,u =Gr , w =G s , ū = Ḡr , w̄ = Ḡ s ,

e = H2(c,L,u, w, ū, w̄), f = s + r e

The ciphertext is ψ= (c,L,u, ū,e, f).

3. Label Extraction: Given an appropriately encoded ciphertext (c,L,u, ū,e, f), the label

extraction algorithm simply outputs L.

4. Decryption: Decryption server i checks the following equation given the ciphertext

ψ= (c,L,u, ū,e, f):

e
?= H2(c,L,u, w, ū, w̄) (2.2)

wi th w =G f /ue , and w̄ = Ḡ f /ūe

If the check fails, the server i refuses to decrypt the ciphertext. Otherwise, the server i

chooses a si ∈Zp at random and computes the following:

ui = uxi , ûi = usi ,hi =G si ,

ei = H3(ui , ûi , ĥi), fi = si +xi ∗ei

The server i outputs its decryption share (i ,ui ,ei , fi).

5. Share Verification: This step verifies if a decryption share from a server i is valid or not

given the distributed public key and the ciphertext ψ. First, the ciphertext must pass the

equation 2.2. If it does not, then the share i is invalid. Otherwise, the share is considered

valid if and only if it is of the form (i ,ui ,ei , fi) and

ei
?= H3(ui , ûi , ĥi),

wher e ûi = u fi /uei

i , ĥi =G fi /hei

6. Combining shares: The share combining algorithm takes as input the verification key

VK, a ciphertext c, and a full set of valid decryption shares of c. If the test 2.2 does not

hold, then the algorithm outputs “?” (all the decryption shares are considered invalid).

So we can assume that the set of decryption shares is of the form:

(i ,ui ,ei , fi) : i ∈ S

17

Chapter 2. Background

where S has cardinality k. Then the message m can be recovered using Lagrange inter-

polation

m = H1(
∏
i∈S

uδ0i

i)⊕ c

with δ being the Lagrange coefficients.

2.3.6 Publicly Verifiable Secret Sharing

PVSS [222] is a (t ,n)-secret sharing scheme that enables third-party verifiability of secret shares

without revealing any information on the shares or the secret. To obtain this property, PVSS

uses non-interactive zero-knowledge (NIZK) proofs for equality of discrete logarithms [56, 100,

106].

Let H 6=G be another generator of G . Unless stated otherwise, we assume that i ∈ {1, . . . ,n}

and j ∈ {0, . . . , t −1}. PVSS runs in three steps:

1. Share Distribution (Dealer). To distribute a secret among the trustees, the dealer exe-

cutes the following steps:

(a) Select coefficients a j ∈R Z
∗
q of a t −1 degree secret sharing polynomial

s(x) =
t−1∑
j=0

a j x j .

The secret to-be-shared is S0 =G s(0) =Ga0 .

(b) Compute share commitments H s(i), encrypted shares Ŝi = X s(i)
i = G s(i)xi , and

polynomial commitments A j = H a j . Note that H s(i) can be recovered from A j as

follows:
t−1∏
j=0

A(i j)
j = H

∑t−1
j=0 a j i j = H s(i) .

(c) Create encryption consistency proofs P̂i which enable to publicly verify that

logH H s(i) = logXi
Ŝi . Therefore, pick vi ∈R Zq , compute Vi 1 = H vi , Vi 2 = X vi

i ,

c = H((H s(i))i∈M , (Ŝi)i∈M , (Vi 1,Vi 2)i∈M), and ri = vi − s(i)c mod q , and set P̂i =
(c,ri ,Vi 1,Vi 2).

(d) Publish Ŝi , P̂i , and A j .

2. Share Decryption (Trustee). To decrypt his share, trustee i executes the following steps:

18

2.3. Threshold Cryptosystems

(a) Verify Ŝi against P̂i by reconstructing H s(i) from A j and by checking that

Vi 1
?= H ri (H s(i))c = H vi−s(i)c H s(i)c = H vi

Vi 2
?= X ri

i (Ŝi)c = X vi−s(i)c
i X s(i)c

i = X vi

i .

(b) If the previous step fails, abort. Otherwise, decrypt Ŝi using xi and obtain Si =
(Ŝi)x−1

i .

(c) Create a decryption consistency proof Pi which enables to publicly verify that

logG Xi = logSi
Ŝi . Therefore, pick v ′

i ∈R Zq , compute V ′
i 1 = Gv ′

i , V ′
i 2 = (Si)v ′

i , c ′i =
H(Xi , Ŝi ,V ′

i 1,V ′
i 2), r ′

i = v ′
i −xi c ′i , and set Pi = (c ′i ,r ′

i ,V ′
i 1,V ′

i 2).

(d) Publish Si and Pi .

3. Secret Recovery (Dealer). To reconstruct the secret S0, the dealer executes the following

steps:

(a) Verify Si against Pi by checking that

V ′
i 1

?=Gr ′
i X

c ′
i

i =Gv ′
i−xi c ′

i Gxi c ′
i =Gv ′

i

V ′
i 2

?= (Si)r ′
i (Ŝi)c ′

i = (Si)v ′
i−xi c ′

i (Si)xi c ′
i = (Si)u′

i

and discard Si if the verification fails.

(b) Suppose w.l.o.g, for 1 ≤ i ≤ t , that shares Si are valid. Reconstruct secret S0 by

Lagrange interpolation

t∏
i=1

(Si)λi =
t∏

i=1
(G s(i))λi =G

∑t
i=1 s(i)λi =G s(0) = S0

where λi =∏
j 6=i

j
j−i is a Lagrange coefficient.

19

Part IITools for Efficient Decentralization

21

3 Scalable, Strongly-Consistent Consen-
sus for Bitcoin

3.1 Introduction

The original Bitcoin paper argues that transaction processing is secure and irreversible, as long

as the largest colluding group of miners represents less than 50% of total computing capacity

and at least about one hour has elapsed. This high transaction-confirmation latency limits

Bitcoin’s suitability for real-time transactions. Later work revealed additional vulnerabilities to

transaction reversibility, double-spending, and strategic mining attacks [96, 113, 128, 140, 194,

13].

The key problem is that Bitcoin’s consensus algorithm provides only probabilistic consistency

guarantees. Strong consistency could offer cryptocurrencies three important benefits. First,

all miners instantly agree on the validity of blocks, without wasting computational power

resolving inconsistencies (forks). Second, clients need not wait for extended periods to be

certain that a submitted transaction is committed; as soon as it appears in the blockchain,

the transaction can be considered confirmed. Third, strong consistency provides forward

security: as soon as a block has been appended to the blockchain, it stays there forever.

Although increasing the consistency of cryptocurrencies has been suggested before [70, 77,

176, 224, 246], existing proposals give up Bitcoin’s decentralization, and/or introduce new and

non-intuitive security assumptions, and/or lack experimental evidence of performance and

scalability.

This chapter introduces BYZCOIN, a Bitcoin-like cryptocurrency enhanced with strong con-

sistency, based on the principles of the well-studied Practical Byzantine Fault Tolerance

(PBFT) [55] algorithm. BYZCOIN addresses four key challenges in bringing PBFT’s strong

consistency to cryptocurrencies: (1) open membership, (2) scalability to hundreds of replicas,

(3) proof-of-work block conflicts, and (4) transaction commitment rate.

PBFT was not designed for scalability to large consensus groups: deployments and experi-

ments often employ the minimum of four replicas [154], and generally, have not explored

scalability levels beyond 7 [55] or 16 replicas [69, 122, 1]. BYZCOIN builds PBFT atop CoSi [243],

23

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

a collective signing protocol that efficiently aggregates hundreds or thousands of signatures.

Collective signing reduces both the costs of PBFT rounds and the costs for “light” clients to

verify transaction commitment. Although CoSi is not a consensus protocol, BYZCOIN imple-

ments Byzantine consensus using CoSi signing rounds to make PBFT’s prepare and commit

phases scalable.

PBFT normally assumes a well-defined, closed group of replicas, conflicting with Bitcoin’s

open membership and use of proof-of-work to resist Sybil attacks [84]. BYZCOIN addresses this

conflict by forming consensus groups dynamically from windows of recently mined blocks,

giving recent miners shares or voting power proportional to their recent commitment of hash

power. Lastly, to reduce transaction processing latency we adopt the idea from Bitcoin-NG [95]

to decouple transaction verification from block mining.

Experiments with a prototype implementation of BYZCOIN show that a consensus group

formed from approximately the past 24 hours of successful miners (144 miners) can reach

consensus in less than 20 seconds, on blocks of Bitcoin’s current maximum size (1MB). A larger

consensus group formed from one week of successful miners (1008) reached consensus on an

8MB block in 90 seconds, showing that the system scales both with the number of participants

and with the block size. For the 144-participant consensus group, with a block size of 32MB,

the system handles 974 transactions per second (TPS) with a 68-second confirmation latency.

These experiments suggest that BYZCOIN can handle loads higher than PayPal and comparable

with Visa.

BYZCOIN is still a proof-of-concept with several limitations. First, BYZCOIN does not improve

on Bitcoin’s proof-of-work mechanism; finding a suitable replacement [14, 105, 147, 254, 43]

is an important but orthogonal area for future work. Like many BFT protocols in practice [62,

122], BYZCOIN is vulnerable to slowdown or temporary DoS attacks that Byzantine nodes can

trigger. Although a malicious leader cannot violate or permanently block consensus, he might

temporarily exclude minority sets (< 1
3) of victims from the consensus process, depriving them

of rewards, and/or attempt to censor transactions. BYZCOIN guarantees security only against

attackers who consistently control less than a third (not 50%) of consensus group shares –

though Bitcoin has analogous weaknesses accounting for. Finally, BYZCOIN’s security is at

present analyzed only informally (Section 3.4).

BYZCOIN makes the following key contributions:

• We use Collective Signing [243] to scale BFT protocols to large consensus groups and

enable clients to verify operation commitments efficiently.

• We present the first demonstrably practical Byzantine consensus protocol supporting

not only static consensus groups but also dynamic membership proportional to proof-

of-work as in Bitcoin.

• We demonstrate experimentally that a strongly-consistent cryptocurrency can increase

24

3.2. ByzCoin Design

Bitcoin’s throughput by two orders of magnitude, with a transaction confirmation-

latency under one minute.

• We find through security analysis (Section 3.4) that BYZCOIN can mitigate several known

attacks on Bitcoin provided no attacker controls more than 1
4 of hash power.

The remainder of the chapter is organized as follows. Section 3.2 details the BYZCOIN protocol.

Section 3.3 describes an evaluation of our prototype implementation of BYZCOIN. Section 3.4

informally analyzes BYZCOIN’s security and Section 3.6 concludes.

3.2 ByzCoin Design

This section presents BYZCOIN with a step-by-step approach, starting from a simple “straw-

man” combination of PBFT and Bitcoin. From this strawman, we progressively address the

challenges of determining consensus group membership, adapting Bitcoin incentives and

mining rewards, making the PBFT protocol scale to large groups and handling block conflicts

and selfish mining.

3.2.1 System Model

BYZCOIN is designed for untrustworthy networks that can arbitrarily delay, drop, re-order or

duplicate messages. To avoid the Fischer-Lynch-Paterson impossibility [102], we assume the

network has a weak synchronyproperty [55]. The BYZCOIN system is comprised of a set of N

block miners that can generate key-pairs, but there is no trusted public-key infrastructure.

Each node i has a limited amount of hash power that corresponds to the maximum number of

block-header hashes the node can perform per second.

At any time t a subset of miners controlled by a malicious attacker that are considered faulty.

Byzantine miners can behave arbitrarily, diverting from the protocol and colluding to attack

the system. The remaining honest miners follow the prescribed protocol. We assume that

the total hash power of all Byzantine nodes is less than 1
4 of the system’s total hash power at

any time, since proof-of-work-based cryptocurrencies become vulnerable to selfish mining

attacks by stronger adversaries [96].

3.2.2 Strawman Design: PBFTCoin

For simplicity, we begin with PBFTCoin, an unrealistically simple protocol that naively com-

bines PBFT with Bitcoin, then gradually refine it into BYZCOIN.

For now, we simply assume that a group of n = 3 f +1 PBFT replicas, which we call trustees, has

been fixed and globally agreed upon upfront, and that at most f of these trustees are faulty. As

in PBFT, at any given time, one of these trustees is the leader, who proposes transactions and

25

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

drives the consensus process. These trustees collectively maintain a Bitcoin-like blockchain,

collecting transactions from clients and appending them via new blocks, while guaranteeing

that only one blockchain history ever exists and that it can never be rolled back or rewritten.

Prior work has suggested essentially such a design [70, 77], though without addressing the

scalability challenges it creates.

Under these simplifying assumptions, PBFTCoin guarantees safety and liveness, as at most f

nodes are faulty and thus the usual BFT security bounds apply. However, the assumption of a

fixed group of trustees is unrealistic for Bitcoin-like decentralized cryptocurrencies that permit

open membership. Moreover, as PBFT trustees authenticate each other via non-transferable

symmetric-key MACs, each trustee must communicate directly with most other trustees in

every round, thus yielding O(n2) communication complexity.

Subsequent sections address these restrictions, transforming PBFTCoin into BYZCOIN in four

main steps:

1. We use Bitcoin’s proof-of-work mechanism to determine consensus groups dynamically

while preserving Bitcoin’s defense against Sybil attacks.

2. We replace MAC-authenticated direct communication with digital signatures to make

authentication transferable and thereby enabling sparser communication patterns that

can reduce the normal case communication latency from O(n2) to O(n).

3. We employ scalable collective signing to reduce per-round communication complexity

further to O(logn) and reduce typical signature verification complexity from O(n) to

O(1).

4. We decouple transaction verification from leader election to achieve a higher transaction

throughput.

3.2.3 Opening the Consensus Group

Removing PBFTCoin’s assumption of a closed consensus group of trustees presents two

conflicting challenges. On the one hand, conventional BFT schemes rely on a well-defined

consensus group to guarantee safety and liveness. On the other hand, Sybil attacks [84] can

trivially break any open-membership protocol involving security thresholds, such as PBFT’s

assumption that at most f out of 3 f +1 members are honest.

Bitcoin and many of its variations employ a mechanism already suited to this problem: proof-

of-work mining. Only miners who have dedicated resources are allowed to become a member

of the consensus group. In refining PBFTCoin, we adapt Bitcoin’s proof-of-work mining into a

proof-of-membership mechanism. This mechanism maintains the “balance of power” within

the BFT consensus group over a given fixed-size sliding share window. Each time a miner

finds a new block, it receives a consensus group share, which proves the miner’s membership

26

3.2. ByzCoin Design

L

blockchain

share window of size w

trustees

L

block

share

miner

leader

Figure 3.1 – Valid shares for mined blocks in the blockchain are credited to miners

in the group of trustees and moves the share window one step forward. Old shares beyond

the current window expire and become useless for purposes of consensus group membership.

Miners holding no more valid shares in the current window lose their membership in the

consensus group, hence they are no longer allowed to participate in the decision-making.

At a given moment in time, each miner wields “voting power” of a number of shares equal to

the number of blocks the miner has successfully mined within the current window. Assuming

collective hash power is relatively stable, this implies that within a window, each active miner

wields a number of shares statistically proportionate to the amount of hash power that the

miner has contributed during this time period.

The size w of the share window is defined by the average block-mining rate over a given time

frame and influences certain properties such as the resilience of the protocol to faults. For

example, if we assume an average block-mining rate of 10 minutes and set the duration of

the time frame to one day (or one week), then w = 144 (w = 1008). This mechanism limits

the membership of miners to recently active ones, which prevents the system from becoming

unavailable due to too many trustees becoming inactive over time, or from miners aggregating

many shares over an extended period and threatening the balance in the consensus group.

The relationship between blocks, miners, and shares is illustrated in Figure 3.1.

Mining Rewards and Transaction Fees As we can no longer assume voluntary participation

as in PBFTCoin’s closed group of trustees, we need an incentive for nodes to obtain shares

in the consensus group and to remain active. For this purpose, we adopt Bitcoin’s existing

incentives of mining rewards and transaction fees. But instead of these rewards all going to

the miner of the most recent block we split a new block’s rewards and fees across all members

of the current consensus group, in proportion to the number of shares each miner holds. As a

consequence, the more hash power a miner has devoted within the current window, hence

the more shares the miner holds, the more revenue the miner receives during payouts in the

current window. This division of rewards also creates incentives for consensus group members

to remain live and participate, because they receive their share of the rewards for new blocks

27

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

only if they continually participate, in particular, contributing to the prepare and commit

phases of each BFT consensus round.

3.2.4 Replacing MACs by Digital Signatures

In our next refinement step towards BYZCOIN, we tackle the scalability challenge resulting from

PBFT’s typical communication complexity of O(n2), where n is the group size. PBFT’s choice of

MAC-authenticated all-to-all communication was motivated by the desire to avoid public-key

operations on the critical transaction path. However, the cost of public-key operations has

decreased due to well-optimized asymmetric cryptosystems [27], making those costs less of

an issue.

By adopting digital signatures for authentication, we are able to use sparser and more scalable

communication topologies, thus enabling the current leader to collect and distribute third-

party verifiable evidence that certain steps in PBFT have succeeded. This removes the necessity

for all trustees to communicate directly with each other. With this measure we can either

enable the leader to collect and distribute the digital signatures or let nodes communicate in a

chain [122], reducing the normal-case number of messages from O(n2) to O(n).

3.2.5 Scalable Collective Signing

Even with signatures providing transferable authentication, the need for the leader to collect

and distribute – and for all nodes to verify – many individual signatures per round can still

present a scalability bottleneck. Distributing and verifying tens or even a hundred individual

signatures per round might be practical. If we, however, want consensus groups with a

thousand or more nodes (e.g., representing all blocks successfully mined in the past week),

it is costly for the leader to distribute 1000 digital signatures and wait for everyone to verify

them. To tackle this challenge, we build on the CoSi protocol [243] for collective signing. CoSi

does not directly implement consensus or BFT, but it offers a primitive that the leader in a BFT

protocol can use to collect and aggregate prepare and commit messages during PBFT rounds.

We implement a single BYZCOIN round by using two sequential CoSi rounds initiated by

the current leader (i.e., the owner of the current view). The leader’s announcement of the

first CoSi round (phase 1 in Section 2.1.1) implements the pre-prepare phase in the standard

PBFT protocol (Section 2.1.2). The collective signature resulting from this first CoSi round

implements the PBFT protocol’s prepare phase, in which the leader obtains attestations from

a two-thirds super-majority quorum of consensus group members that the leader’s proposal

is safe and consistent with all previously-committed history.

As in PBFT, this prepare phase ensures that a proposal can be committed consistently, but

by itself, it is insufficient to ensure that the proposal will be committed. The leader and/or

some number of other members could fail before a super-majority of nodes learn about the

successful prepare phase. The BYZCOIN leader, therefore, initiates a second CoSi round to

28

3.2. ByzCoin Design

implement the PBFT protocol’s commit phase, in which the leader obtains attestations from a

two-thirds super-majority that all the signing members witnessed the successful result of the

prepare phase and made a positive commitment to remember the decision. This collective

signature, resulting from this second CoSi round, effectively attests that a two-thirds super-

majority of members not only considers the leader’s proposal “safe” but promises to remember

it, indicating that the leader’s proposal is fully committed.

In cryptocurrency terms, the collective signature resulting from the prepare phase provides

a proof-of-acceptance of a proposed block of transactions. This block is not yet committed,

however, since a Byzantine leader that does not publish the accepted block could double-

spend by proposing a conflicting block in the next round. In the second CoSi commit round,

the leader announces the proof-of-acceptance to all members, who then validate it and

collectively sign the block’s hash to produce a collective commit signature on the block.

This way, a Byzantine leader cannot rewrite history or double-spend, because by counting

arguments at least one honest node would have to sign the commit phase of both histories,

which an honest node by definition would not do.

The use of CoSi does not affect the fundamental principles or semantics of PBFT but improves

its scalability and efficiency in two main ways. First, during the commit round where each

consensus group member must verify that a super-majority of members have signed the prior

prepare phase, each participant generally needs to receive only an O(1)-size rather than O(n)-

size message, and to expend only O(1) rather than O(n) computation effort by verifying a single

collective signature instead of n individual ones. This benefit directly increases the scalability

and reduces the bandwidth and computation costs of consensus rounds themselves.

A second benefit is that after the final CoSi commit round has completed, the final resulting

collective commit signature serves as a typically O(1)-size proof, which anyone can verify in

O(1) computation time that a given block – hence any transaction within that block – has

been irreversibly committed. This secondary scalability-benefit might in practice be more

important than the first, because it enables “light clients” who neither mine blocks nor store

the entire blockchain history to verify quickly and efficiently that a transaction has committed,

without requiring active communication with or having to trust any particular full node.

3.2.6 Decoupling Transaction Verification from Leader Election

Although BYZCOIN so far provides a scalable guarantee of strong consistency, thus ensuring

that clients need to wait only for the next block rather than the next several blocks to verify that

a transaction has committed, the time they still have to wait between blocks can, nevertheless,

be significant: up to 10 minutes using Bitcoin’s difficulty tuning scheme. Whereas BYZCOIN’s

strong consistency might in principle make it “safe” from a consistency perspective to increase

block mining rate, doing so could still exacerbate liveness and other performance issues, as

in Bitcoin [191]. To enable lower client-perceived transaction latency, therefore, we build on

the idea of Bitcoin-NG [95] to decouple the functions of transaction verification from block

29

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

1 2

1 2 3 4 5

Keyblock Microblock Collective Signature

Figure 3.2 – BYZCOIN blockchain: Two parallel chains store information about the leaders
(keyblocks) and the transactions (microblocks)

mining for leader election and consensus group membership.

As in Bitcoin-NG, we use two different kinds of blocks. The first, microblocks or transaction

blocks, represent transactions to be stored and committed. The current leader creates a new

microblock every few seconds, depending on the size of the block, and uses the CoSi-based

PBFT protocol above to commit and collectively sign it. The other type of block, keyblocks,

are mined via proof-of-work as in Bitcoin and serve to elect leaders and create shares in

BYZCOIN’s group membership protocol as discussed earlier in Section 3.2.3. As in Bitcoin-

NG, this decoupling allows the current leader to propose and commit many microblocks that

contain many smaller batches of transactions, within one≈ 10-minute keyblock mining period.

Unlike Bitcoin-NG, in which a malicious leader could rewrite history or double-spend within

this period until the next keyblock, BYZCOIN ensures that each microblock is irreversibly

committed regardless of the current leader’s behavior.

In Bitcoin-NG one blockchain includes both types of blocks, which introduces a race condition

for miners. As microblocks are created, the miners have to change the header of their keyblocks

to mine on top of the latest microblock. In BYZCOIN, in contrast, the blockchain becomes two

separate parallel blockchains, as shown in Figure 3.2. The main blockchain is the keyblock

chain, consisting of all mined blocks. The microblock chain is a secondary blockchain that

depends on the primary to identify the era in which every microblock belongs to, i.e., which

miners are authoritative to sign it and who is the leader of the era.

Microblocks A microblock is a simple block that the current consensus group produces

every few seconds to represent newly-committed transactions. Each microblock includes a

set of transactions and a collective signature. Each microblock also includes hashes referring

to the previous microblock and keyblock: the former to ensure total ordering, and the latter

indicating which consensus group window and leader created the microblock’s signature. The

microblock’s hash is collectively signed by the corresponding consensus group.

30

3.2. ByzCoin Design

L

share window of size w

L

keyblock (co-signed)

microblock (co-signed)

share

miner (co-signer)

leader

Figure 3.3 – Overview of the full BYZCOIN design

Keyblocks Each keyblock contains a proof-of-work, which is used to determine consensus

group membership via the sliding-window mechanism discussed earlier, and to pay signers

their rewards. Each newly-mined keyblock defines a new consensus group, and hence a new

set of public keys with which the next era’s microblocks will be collectively signed. Since each

successive consensus group differs from the last in at most one member, PBFT ensures the

microblock chain’s consistency and continuity across this group membership change provided

at most f out of 3 f +2 members are faulty.

Bitcoin-NG relies on incentives to discourage the next leader from accidentally or maliciously

“forgetting” a prior leader’s microblocks. In contrast, the honest super-majority in a BYZCOIN

consensus group will refuse to allow a malicious or amnesiac leader to extend any but the

most recently-committed microblock, regardless of which (current or previous) consensus

group committed it. Thus, although competing keyblock conflicts may still appear, these

“forks” cannot yield an inconsistent microblock chain. Instead, a keyblock conflict can at

worst temporarily interrupt the PBFT protocol’s liveness, until it is resolved as mentioned in

Section 3.2.6.

Decoupling transaction verification from leader election and consensus group evolution in

this way brings the overall BYZCOIN architecture to completion, as illustrated in Figure 3.3.

Subsequent sections discuss further implications and challenges this architecture presents.

Keyblock Conflicts and Selfish Mining

PBFT’s strong consistency by definition does not permit inconsistencies such as forks in the

microblock chain. The way the miners collectively decide how to resolve keyblock conflicts,

however, can still allow selfish mining [96] to occur as in Bitcoin. Worse, if the miners decide

randomly to follow one of the two blocks, then keyblock forks might frequently lead to PBFT

liveness interruptions as discussed above, by splitting miners “too evenly” between competing

keyblocks. Another approach to deciding between competing keyblocks is to impose a deter-

ministic priority function on their hash values, such as “smallest hash wins.” Unfortunately,

this practice can encourage selfish mining.

31

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

H0 H1
... Hn−2 null

0 1 n − 2 n − 1

Hash

h

i = h mod (n − 1)
se
le
ct

it
h
en
tr
y

Figure 3.4 – Deterministic fork resolution in BYZCOIN

One way to break a tie without helping selfish miners is to increase the entropy of the output

of the deterministic prioritization function. We implement this idea using the following

algorithm. When a miner detects a keyblock fork, it places all competing blocks’ header hashes

into a sorted array, from low to high hash values. The array itself is then hashed, and the final

bit(s) of this hash determine which keyblock wins the fork.

This solution, shown in Figure 3.4, also uses the idea of a deterministic function applied to

the blocks, thus requiring no voting. Its advantage is that the input of the hash function is

partially unknown before the fork occurs, thus the entropy of the output is high and difficult

for an attacker to be able to optimize. Given that the search space for possible conflict is as big

as the search space for a new block, trying to decide if a block has better than 50% probability

of winning the fork is as hard as finding a new block.

Leader Election and PBFT View Changes

Decoupling transaction verification from the block-mining process comes at a cost. So far we

have assumed, as in PBFT, that the leader remains fixed unless he crashes or misbehaves. If

we keep this assumption, then this leader gains the power of deciding which transactions are

verified, hence we forfeit the fairness-enforcing benefit of Bitcoin’s leader election. To resolve

this issue, every time a keyblock is signed, BYZCOIN forces a mandatory PBFT view-change to

the keyblock’s miner. This way the power of verifying transactions in blocks is assigned to the

rightful miner, who has an era of microblock creation from the moment his keyblock is signed

until the next keyblock is signed.

When a keyblock conflict occurs, more than one such “mandatory” view-change occurs, with

the successful miners trying to convince other participants to adopt their keyblock and its asso-

ciated consensus group. For example, in a keyblock fork, one of the two competing keyblocks

wins the resolution algorithm described above. However, if the miner of the “losing” block

races to broadcast its keyblock and more than 33% honest miners have already committed to

it before learning about the competing keyblock, then the “winning” miner is too late and the

system either commits to the first block or (in the worst case) loses liveness temporarily as

32

3.2. ByzCoin Design

discussed above. This occurs because already-committed miners will not accept a mandatory

view-change except to a keyblock that represents their committed state and whose microblock

chain extends all previously-committed microblocks. Further analysis of how linearizability is

preserved across view-changes may be found in the original PBFT paper [55].

Tree Creation in BYZCOIN

Once a miner successfully creates a new keyblock, he needs to form a CoSi communication

tree for collective signing, with himself as the leader. If all miners individually acknowledge this

keyblock to transition to the next view, this coordination normally requires O (N) messages.

To avoid this overhead at the beginning of each keyblock round, the miners autonomously

create the next round’s tree bottom-up during the previous keyblock round. This can be done

in O (1) by using the blockchain as an array that represents a full tree.

This tree-building process has three useful side-effects. First, the previous leader is the first to

get the new block, hence he stops creating microblocks and wasting resources by trying to

sign them. Second, in the case of a keyblock conflict, potential leaders use the same tree, and

the propagation pattern is the same; this means that all nodes will learn and decide on the

conflict quickly. Finally, in the case of a view change, the new view will be the last view that

worked correctly. So if the leader of the keyblock i fails, the next leader will again be the miner

of keyblock i −1.

3.2.7 Tolerating Churn and Byzantine Faults

In this section, we discuss the challenges of fault tolerance in BYZCOIN, particularly tree

failures and maximum tolerance for Byzantine faults.

Tree Fault Tolerance

In CoSi, there are multiple different mechanisms that allow substantial fault-tolerance. Fur-

thermore, the strict membership requirements and the frequent tree changes of BYZCOIN

increase the difficulty for a malicious attacker with less than around 25% of the total hash

power to compromise the system. A security analysis, however, must assume that a Byzantine

adversary is able to get the correct nodes of the BYZCOIN signing tree so that it can compromise

the liveness of the system by a simple DoS.

To mitigate this risk, we focus on recent Byzantine fault tolerance results [122], modifying

BYZCOIN so that the tree communication pattern is a normal-case performance optimization

that can withstand most malicious attacks. But when the liveness of the tree-based BYZCOIN

is compromised, the leader can return to non-tree-based communication until the end of his

era.

33

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

The leader detects that the tree has failed with the following mechanism: After sending the

block to his children, the leader starts a timer that expires before the view-change timer. Then

he broadcasts the hash of the block he proposed and waits. When the nodes receive this

message they check if they have seen the block and either send an ACK or wait until they see

the block and then send the ACK. The leader collects and counts the ACKs, to detect if his

block is rejected simply because it never reaches the witnesses. If the timer expires or a block

rejection arrives before he receives two-thirds of the ACKs, the leader knows that the tree has

failed and reverts to a flat BYZCOIN structure before the witnesses assume that he is faulty.

As we show in Section 3.3, the flat BYZCOIN structure can still quickly sign keyblocks for

the day-long window (144 witnesses) while maintaining a throughput higher than Bitcoin

currently supports. Flat BYZCOIN is more robust to faults, but increases the communication

latency back to O(n). Furthermore, if all faults (bN
3 c) are consecutive leaders, this can lead

back to a worst case O(n2) communication latency.

Membership Churn and BFT

After a new leader is elected, the system needs to ensure that the first microblock of the new

leader points to the last microblock of the previous leader. Having 2 f +1 supporting votes is not

enough. This occurs because there is the possibility that an honest node lost its membership

when the new era started. Now in the worst case, the system has f Byzantine nodes, f honest

nodes that are up to date, f slow nodes that have a stale view of the blockchain, and the

new leader that might also have a stale view. This can lead to the leader proposing a new

microblock, ignoring some signed microblocks and getting 2 f +1 support (stale+Byzantine+his

own). For this reason, the first microblock of an era needs 2 f +2 supporting signatures. If

the leader is unable to obtain them, this means that he needs to synchronize with the system,

i.e., he needs to find the latest signed microblock from the previous roster. He asks all the

nodes in his roster, plus the node that lost its membership, to sign a latest-checkpoint message

containing the hash of the last microblock. At this point in time, the system has 3 f +2 (3 f +1

of the previous roster plus the leader) members and needs 2 f +1 honest nodes to verify the

checkpoint, plus an honest leader to accept it (a Byzantine leader will be the f +1 fault and

compromise liveness). Thus, BYZCOIN can tolerate f fails in a total of 3 f +2 nodes.

3.3 Performance Evaluation

In this section, we discuss the evaluation of the BYZCOIN prototype and our experimental setup.

The main question we want to evaluate is whether BYZCOIN is usable in practice without

incurring large overheads. In particular, we focus on consensus latency and transaction

throughput for different parameter combinations.

34

3.3. Performance Evaluation

3.3.1 Prototype Implementation

We implemented BYZCOIN in Go and made it publicly available on GitHub.1 BYZCOIN’s

consensus mechanism is based on the CoSi protocol with Ed25519 signatures [27] and im-

plements both flat- and tree-based collective signing layouts as described in Section 3.2. For

comparison, we also implemented a conventional PBFT consensus algorithm with the same

communication patterns as above and a consensus algorithm that uses individual signatures

and tree-based communication.

To simulate consensus groups of up to 1008 nodes, we oversubscribed the available 36 physical

machines (see below) and ran up to 28 separate BYZCOIN processes on each server. Realistic

wide-area network conditions are mimicked by imposing a round-trip latency of 200 ms

between any two machines and a link bandwidth of 35 Mbps per simulated host. Note that

this simulates only the connections between miners of the consensus group and not the full

Bitcoin network. Full nodes and clients are not part of the consensus process and can retrieve

signed blocks only after consensus is reached. Since Bitcoin currently is rather centralized and

has only a few dozen mining pools [13], we assume that if/when decentralization happens, all

miners will be able to support these rather constrained network requirements.

The experimental data to form microblocks was taken by BYZCOIN clients from the actual

Bitcoin blockchain. Both micro- and keyblocks are fully transmitted and collectively signed

through the tree and are returned to the clients upon request together with the proof. Ver-

ification of block headers is implemented but transaction verification is only emulated to

avoid further measurement distortion through oversubscribed servers. A similar practice is

used in Shadow Bitcoin [184]. We base our emulation both on measurements [113] of the

average block-verification delays (around 200 ms for 500 MB blocks) and on the claims of

Bitcoin developers [31] that as far as hardware is concerned Bitcoin can easily verify 4000 TPS.

We simulate a linear increase of this delay proportional to the number of transactions included

in the block. Because of the communication pattern of BYZCOIN, the transaction-verification

cost delays only the leaf nodes. By the time the leaf nodes finish the block verification and

send their vote back to their parents, all other tree nodes should have already finished the

verification and can immediately proceed. For this reason, the primary delay factor is the

transmission of the blocks that needs to be done log N sequential times.

We ran all our experiments on DeterLab [80] using 36 physical machines, each having four

Intel E5-2420 v2 CPUs and 24 GB RAM and being arranged in a star-shaped virtual topology.

CoSi Pipelining Collective signing [243] is done in four different phases per round, namely

announce, response, challenge, and commit. In BYZCOIN the announce and commit phases

of CoSi can be performed in advance before the block to be committed is available, since

the proposed block can be sent to the signers in the challenge phase. This enables us to

1https://github.com/dedis/cothority

35

https://github.com/dedis/cothority

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

ti ti+1 ti+2 ti+3 ti+4

Bk
prepare An/Co Ch/Re
commit An/Co Ch/Re

Bk+1
prepare An/Co Ch/Re
commit An/Co Ch/Re

Bk+2
prepare An/Co Ch/Re
commit An/Co Ch/Re

Table 3.1 – BYZCOIN pipelining for maximum transaction-throughput; Bk denotes the mi-
croblock signed in round k, An/Co the Announce-Commit and Ch/Re the Challenge-Response
round-trips of CoSi

pipeline two rounds so that the announce/commit phases of BYZCOIN’s commit round are

piggybacked on the challenge and response messages of the prepare round. This pipelining

reduces latency by one round-trip over the communication tree. Looking into the normal

execution of BYZCOIN, this pipeline can be extended so that an optimal throughput of one

signed microblock per round-trip is produced. A sample execution can be seen in Table 3.1.

3.3.2 Evaluation

The main question we want to evaluate is whether BYZCOIN is usable in practice without

incurring large overhead. We evaluated keyblock and microblock signing for an increasing

number of consensus group members. Further, we evaluated BYZCOIN’s latency for an in-

creasing microblock size and an increasing number of consensus group members, for all

implemented consensus algorithms. We then compare Bitcoin with the flat and tree-based

versions of BYZCOIN to investigate the maximum throughput that each variant can achieve.

In another experiment, we investigate the latency of signing single transactions and larger

blocks. Finally, we demonstrate the practicality of BYZCOIN, as far as latency for securing

transactions is concerned, from a client’s point of view.

3.3.3 Consensus Latency

The first two experiments focus on how microblock commitment latency scales with the

consensus group size and with the number of transactions per block.

Consensus Group Size Comparison

This experiment focuses on the scalability of BYZCOIN’s BFT protocol in terms of the consensus

group size. The number of unique miners participating in a consensus group is limited by

the number of membership shares in the window (Section 3.2.3), but can be smaller if some

miners hold multiple shares (i.e., successfully mined several blocks) within the same window.

We ran experiments for Bitcoin’s maximum block size (1 MB) with a variable number of

36

3.3. Performance Evaluation

100 101 102 103

Number of Miners

100

101

102

La
te

n
cy

 (
se

c)

Flat/MAC 0.25MB (PBFT)

Flat/CoSi 1MB

Tree/Individual

Tree/CoSi (ByzCoin)

Figure 3.5 – Influence of the consensus group size on the consensus latency

participating hosts. Every time we increased the number of hosts, we also increased the

servers’ bandwidth so that the available bandwidth per simulated host remained constant

(35 Mbps). For the PBFT simulation, the 1 MB block was too big to handle, thus the PBFT line

corresponds to a 250 KB block size.

As Figure 3.5 shows, the simple version of BYZCOIN achieves acceptable latency, as long as the

consensus group size is less than 200. After this point the cost for the leader to broadcast the

block to everyone incurs large overheads. On the contrary, the tree-based BYZCOIN scales well,

since the same 1 MB block for 1008 nodes suffers signing latency less than the flat approach

for 36 nodes. Adding 28 times more nodes (from 36 to 1008) causes a latency increase close to

a factor 2 (from 6.5 to 14 seconds). The basic PBFT implementation is quite fast for 2 nodes

but scales poorly (40 seconds for 100 nodes), whereas the tree-based implementation with

individual signatures performs the same as BYZCOIN for up to 200 hosts. If we aim for the

higher security level of 1008 nodes, however, then BYZCOIN is 3 times faster.

Figure 3.6 shows the performance cost of keyblock signing. The flat variant outperforms

the tree-based version when the number of hosts is small since the blocks have as many

transactions as there are hosts and thus are small themselves. This leads to a fast transmission

even in the flat case and the main overhead comes from the block propagation latency, which

scales with O(log N) in the tree-based BYZCOIN variant.

Block Size Comparison

The next experiment analyzes how different block sizes affect the scalability of BYZCOIN. We

used a constant number of 144 hosts for all implementations. Once again, PBFT was unable to

achieve acceptable latency with 144 nodes, thus we ran it with 100 nodes only.

37

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

100 101 102 103

Number of Miners

100

101

102

La
te

n
cy

 (
se

c)

Flat/CoSi

Tree/CoSi (ByzCoin)

Figure 3.6 – Keyblock signing latency

Figure 3.7 shows the average latency of the consensus mechanism, determined over 10 blocks

when their respective sizes increase. As in the previous section we see that the flat imple-

mentation is acceptable for a 1 MB block, but when the block increases to 2 MB the latency

quadruples. This outcome is expected as the leader’s link saturates when he tries to send 2 MB

messages to every participating node. In contrast BYZCOIN scales well because the leader

outsources the transmission of the blocks to other nodes and contacts only his children. The

same behavior is observed for the algorithm that uses individual signatures and tree-based

communication, which shows that the block size has no negative effect on scalability when a

tree is used. Finally, we find that PBFT is fast for small blocks, but the latency rapidly increases

to 40 seconds for 250 KB blocks.

BYZCOIN’s signing latency for a 1 MB block is close to 10 seconds, which should be small

enough to make the need for 0-confirmation transactions almost disappear. Even for a 32 MB

block (≈ 66000 transactions) the delay is much lower (around 90 seconds) than the ≈ 10

minutes required by Bitcoin.

Figure 3.8 demonstrates the signing latency of various blocks sizes on tree-based BYZCOIN.

Signing one-transaction blocks takes only 3 seconds even when 1008 miners co-sign it. For

bigger blocks, we have included Bitcoin’s current maximum block size of 1 MB along with the

proposed limits of 2 MB in Bitcoin Classic and 8 MB in Bitcoin Unlimited [9]. As the graph

shows, 1 MB and 2 MB blocks scale linearly in the number of nodes at first but after 200 nodes,

the propagation latency is higher than the transmission of the block, hence the latency is close

to constant. For 8 MB blocks, even with 1008 the signing latency increases only linearly.

38

3.3. Performance Evaluation

0.05 0.1 0.25 0.5 1.0 2.0 4.0 8.0 16.0 32.0
Block Size (MB)

100

101

102

La
te

n
cy

 (
se

c)

Flat/MAC (PBFT)

Flat/CoSi

Tree/Individual

Tree/CoSi (ByzCoin)

Figure 3.7 – Influence of the block size on the consensus latency

3.3.4 Transaction Throughput

In this experiment, we investigate the maximum throughput in terms of transactions per

second (TPS) that BYZCOIN can achieve and show how Bitcoin could improve its throughput

by adopting a BYZCOIN-like deployment model. We tested BYZCOIN versions with consensus

group sizes of 144 and 1008 nodes, respectively. Note that performance-wise this resembles the

worst case scenario since the miner-share ratio is usually not 1:1 as miners in the consensus

group are allowed to hold multiple shares, as described in Section 3.2.3.

Analyzing Figure 3.9 shows that Bitcoin can increase its overall throughput by more than one

order of magnitude through the adoption of a flat BYZCOIN-like model, which separates trans-

action verification and block mining and deals with forks via strong consistency. Furthermore,

the 144 node configuration can achieve close to 1000 TPS, which is double the throughput of

Paypal, and even the 1008-node roster achieves close to 700 TPS. Even when the tree fails, the

system can revert back to 1 MB microblocks on the flat and more robust variant of BYZCOIN

and still have a throughput of ten times higher than the current maximum throughput of

Bitcoin.

In both Figure 3.7 and Figure 3.9, the usual trade-off between throughput and latency appears.

The system can work with 1–2 MB microblocks when the load is normal and then has a latency

of 10–20 seconds. If an overload occurs, the system adaptively changes the block size to

enable higher throughput. We note that this is not the case in the simple BYZCOIN where 1 MB

microblocks have optimal throughput and acceptable latency.

39

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

100 101 102 103

Number of Miners

10-1

100

101

102

La
te

n
cy

 (
se

c)

Block Size
1tx

1MB

2MB

8MB

Figure 3.8 – Influence of the consensus group size on the block signing latency

3.4 Security Analysis

In this section, we conduct a preliminary, informal security analysis of BYZCOIN, and discuss

how its consensus mechanism can mitigate or eliminate some known attacks against Bitcoin.

3.4.1 Transaction Safety

In the original Bitcoin paper [191], Nakamoto models Bitcoin’s security against transaction

double spending attacks as in a Gambler’s Ruin Problem. Furthermore, he models the progress

an attacker can make as a Poisson distribution and combines these two models to reach

Equation 3.1. This equation calculates the probability of a successful double spend after z

blocks when the adversary controls q computing power.

P = 1−
z∑

k=0

λk e−λ

k !

(
1−

(
q

p

)(z−k)
)

(3.1)

In Figure 3.10 and Figure 3.11 we compare the relative safety of a transaction over time in

Bitcoin2 versus BYZCOIN. Figure 3.10 shows that BYZCOIN can secure a transaction in less

than a minute, because the collective signature guarantees forward security. On the contrary,

Bitcoin’s transactions need hours to be considered fully secured from a double-spending

attempt. Figure 3.11 illustrates the required time from transaction creation to the point

where a double spending attack has less than 0.1% chance of success. BYZCOIN incurs a

latency of below one minute to achieve the above security, which boils down to the time the

systems needs to produce a collectively signed microblock. Bitcoin, on the other hand, needs

2Based on data from https://blockchain.info.

40

https://blockchain.info

3.4. Security Analysis

0.5 1.0 2.0 4.0 8.0 16.0 32.0
Block Size (MB)

100

101

102

103

104

T
ra

n
sa

ct
io

n
s

p
e
r
S
e
co

n
d

Bitcoin

Flat/CoSi 144 miners

Tree/CoSi 144 miners (ByzCoin)

Tree/CoSi 1008 miners (ByzCoin)

Figure 3.9 – Throughput of BYZCOIN

10−1 100 101 102 103
Time since Transacti n Creati n (min)

0

20

40

60

80

100

120

Su
cc
es
s o

f D
ou

bl
e-
Sp

en
di
ng

 A
tta

ck
 (%

)

Attacker-Controlled
 Computing Power

 10% (Bitcoin)
 30% (Bitcoin)
< 30% (Byzcoin)

Figure 3.10 – Successful double-spending attack probability

several hours to reach the same guarantees. Note that this graph does not consider other

advanced attacks, such as eclipse attacks [128], where Bitcoin offers no security for the victim’s

transactions.

3.4.2 Proof-of-Membership Security

The security of BYZCOIN’s proof-of-membership mechanism can be modeled as a random

sampling problem with two possible independent outcomes (honest, Byzantine). The prob-

ability of picking a Byzantine node (in the worst case) is p = 0.25 and the number of tries

corresponds to the share window size w . In this setting, we are interested in the probability

that the system picks less than c = bw
3 c Byzantine nodes as consensus group members and

hence guarantees safety. To calculate this probability, we use the cumulative binomial distribu-

tion where X is the random variable that represents the number of times we pick a Byzantine

41

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

0 10 20 30 40 50 60
Attacker-Controlled Computing Power (%)

100

101

102

103

104

S
e
cu

ri
n
g
 T

ra
n
sa

ct
io

n
 L

a
te

n
cy

 (
m

in
) ∞∞ ∞

Bitcoin

Byzcoin (w=144)

Byzcoin (w=1008)

Figure 3.11 – Client-perceived secure transaction latency

node:

P [X ≤ c] =
c∑

k=0

(
w

k

)
pk (

1−p
)w−k (3.2)

Table 3.2 displays the results for the evaluation of Equation 3.2 for various window sizes w

both in the common threat model where an adversary controls up to 25% hash power and in

the situation where the system faces a stronger adversary with up to 30% computing power.

The latter might temporarily occur due to hash power variations and resource churn.

Table 3.2 – Expected proof-of-membership security levels

p | w 12 100 144 288 1008 2016

0.25 0.842 0.972 0.990 0.999 0.999 1.000
0.30 0.723 0.779 0.832 0.902 0.989 0.999

At this point, recall that w specifies the number of available shares and not necessarily the

number of actual miners as each member of the consensus group is allowed to hold multiple

shares. This means that the number of available shares gives an upper bound on the latency

of the consensus mechanism with the worst case being that each member holds exactly one

share.

In order to choose a value for w appropriately one must take into account not only consensus

latency and the desired security level (ideally ≥ 99%) but also the increased chance for resource

churn when values of w become large. From a security perspective, the results of Table 3.2

suggest that the share window size should not be set to values lower than w = 144. Ideally,

42

3.4. Security Analysis

values of w = 288 and above should be chosen to obtain a reasonable security margin and, as

demonstrated in Section 5.7, values up to w = 1008 provide excellent performance numbers.

Finally, care should be taken when bootstrapping the protocol, as for small values of w there

is a high probability that a malicious adversary is able to take over control. For this reason, we

suggest that BYZCOIN starts with vanilla Nakamoto consensus and only after w keyblocks are

mined the BYZCOIN consensus is activated.

3.4.3 Defense Against Bitcoin Attacks

0-confirmation Double-Spend Attacks Race [140] and Finney [101] attacks belong to the

family of 0-confirmation double-spend attacks which might affect traders that provide real-

time services to their clients. In such scenarios the time between exchange of currency and

goods is usually short because traders often cannot afford to wait an extended period of time

(10 or more minutes) until a transaction they received can be considered indeed confirmed.

BYZCOIN can mitigate both attacks by putting the merchant’s transaction in a collectively

signed microblock whose verification latency is in the order of a few seconds up to a minute.

If this latency is also unacceptable, then he can send a single transaction for signing, which

will cost more, but is secured in less than 4 seconds.

N -confirmation Double-Spend Attacks The assumption underlying this family of attacks [30]

is that, after receiving a transaction for a trade, a merchant waits for N −1 additional blocks

until he concludes the interaction with his client. At this point, a malicious client creates a

new double-spending transaction and tries to fork the blockchain, which has a non-negligible

success-probability if the adversary has enough hash power. For example, if N = 3 then an

adversary holding 10% of the network’s hash power has a 5% success-chance to mount the

above attack [191].

In BYZCOIN, the merchant would simply check the collective signature of the microblock that

includes the transaction, which allows him to verify that it was accepted by a super-majority

of the network. Afterward, the attacker cannot succeed in forking the blockchain as the rest

of the signers will not accept his new block. Even if the attacker is the leader, the proposed

microblock will be rejected, and a view change will occur.

Eclipse and Delivery-Tampering Attacks In an eclipse attack [128] it is assumed that an

adversary controls a sufficiently large number of connections between the victim and the

Bitcoin network. This enables the attacker to mount attacks such as 0- and N-confirmation

double-spends with an ever increasing chance of success the longer the adversary manages to

keep his control over the network. Delivery-tampering attacks [113] exploit Bitcoin’s scalability

measures to delay propagation of blocks without causing a network partition. This allows

an adversary to control information that the victim receives and simplifies to mount 0- and

43

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

1-confirmation double-spend attacks as well as selfish-mining.

While BYZCOIN does not prevent an attacker from eclipsing a victim or delaying messages in

the peer-to-peer network, its use of collective signatures in transaction commitment ensure

that a victim cannot be tricked into accepting an alternate attacker-controlled transaction

history produced in a partitioned network fragment.

Selfish and Stubborn Mining Attacks Selfish mining [96] allows a miner to increase his

profit by adding newly mined blocks to a hidden blockchain instead of instantly broadcasting

them. This effect can be further amplified if the malicious miner has good connectivity to the

Bitcoin network. The authors of selfish mining propose a countermeasure that thwarts the

attack if a miner has less than 25% hash power under normal circumstances or less than 33% in

case of an optimal network. Stubborn mining [194] further generalizes the ideas behind selfish

mining and combines it with eclipse attacks in order to increase the adversary’s revenue.

In BYZCOIN, these strategies are ineffective as (1) forks are instantly resolved in a deterministic

manner and (2) the back-link of a key-block is derived by hashing the collectively-signed block

header of the previous key-block, which is impossible to generate without the cooperation of

honest miners. Hence, building a valid hidden blockchain is impossible.

Transaction Censorship In Bitcoin-NG, a malicious leader can censor transactions for the

duration of his epoch(s). The same applies to BYZCOIN. However, as not every leader is

malicious, the censored transactions are only delayed and will be processed eventually by the

next honest leader. BYZCOIN can improve on this, as the leader’s actions are double-checked

by all the other miners in the consensus group. A client can announce his censored transaction

just like in classic PBFT; this will indicate a potential leader fault and will either stop censorship

efforts or lead to a view-change to remove the malicious leader. Finally, in Bitcoin(-NG) a

miner can announce his intention to fork over a block that includes a transaction, giving an

incentive to other miners to exclude this transaction. In BYZCOIN using fork-based attacks

to censor transactions is no longer possible due to BYZCOIN’s deterministic fork resolution

mechanism. An attacker can therefore only vote down a leader’s proposals by refusing to

co-sign. This is also a limitation, however, as an adversary who controls more than 33% of the

shares (Section 3.5) deny service and can censor transactions for as long as he wants.

3.5 Limitations and Future Work

This section briefly outlines several of BYZCOIN’s important remaining limitations, and areas

for future work.

44

3.5. Limitations and Future Work

Consensus-Group Exclusion A malicious BYZCOIN leader can potentially exclude nodes

from the consensus process. This is easier in the flat variant, where the leader is responsible

for contacting every participating miner, but it is also possible in the tree-based version if the

leader “reorganizes” the tree and puts nodes targeted for exclusion in subtrees where the roots

are colluding nodes. A malicious leader faces a dilemma, though: excluded nodes lose their

share of newly minted coins which increases the overall value per coin and thus the leader’s

reward. The victims, however, will quickly broadcast view-change messages in an attempt to

remove the Byzantine leader.

As an additional countermeasure to mitigate such an attack, miners could run a peer-to-peer

network on top of the tree to communicate protocol details. Thus each node potentially

receives information from multiple sources. If the parent of a node fails to deliver the an-

nouncement message of a new round, this node could then choose to attach itself (together

with its entire subtree) to another participating (honest) miner. This self-adapting tree could

mitigate the leader’s effort to exclude miners. As a last resort, the malicious leader could

exclude the commitments of the victims from the aggregate commitment, but as parts of the

tree have witnessed these commitments, the risk of triggering a view-change is high.

In summary, the above attack seems irrational as the drawbacks of trying to exclude miners

seem to outweigh the benefits. We leave a more thorough analysis of this situation for future

work.

Defenses Against 33%+ Attacks An attacker powerful enough to control more than 1
3 of

the consensus shares can, in the Byzantine threat model, trivially censor transactions by

withholding votes, and double-spend by splitting honest nodes into two disjoint groups and

collecting enough signatures for two conflicting microblocks. Figure 3.11 shows how the safety

of BYZCOIN fails at 30%, whereas Bitcoin remains safe even for 48%, if a client can wait long

enough.

However, the assumption that an attacker completely controls the network is rather unrealistic,

especially if messages are authenticated and spoofing is impossible [13]. The existence of the

peer-to-peer network on top of the tree, mentioned in the previous paragraph, enables the

detection of equivocation attacks such as microblock forks and mitigates the double-spending

efforts, as honest nodes will stop following the leader. Thus, double-spending and history

rewriting attacks in BYZCOIN become trivial only after the attacker has 66% of the shares,

effectively increasing the threshold from 51% to 66%. This assumption is realistic, as an

attacker controlling the complete network can actually split Bitcoin’s network into two halves

and trivially double-spend on the weaker side. This is possible because the weak side creates

blocks that will be orphaned once the partition heals. We again leave a more thorough analysis

of this situation for future work.

45

Chapter 3. Scalable, Strongly-Consistent Consensus for Bitcoin

Proof-of-Work Alternatives Bitcoin’s hash-based proof-of-work has many drawbacks, such

as energy waste and the efficiency advantages of custom ASICs that have made mining by

“normal users” impractical. Many promising alternatives are available, such as memory-

intensive puzzles [14], or proof-of-stake designs [147]. Consensus group membership might

in principle also be based on other Sybil attack-resistant methods, such as those based on

social trust networks [254, 151] or Proof-of-Personhood [43]. A more democratic alternative

might be to apportion mining power on a “1 person, 1 vote” principle, based on anonymous

proof-of-personhood tokens distributed at pseudonym parties [105]. Regardless, we treat the

ideal choice of Sybil attack-resistance mechanism as an issue for future work, orthogonal to

the focus of this thesis.

Other Directions Besides the issues outlined above, there are many more interesting open

questions worth considering: Sharding [70] presents a promising approach to scale distributed

protocols and was already studied for private blockchains [74]. A sharded variant of BYZCOIN

might thus achieve even better scalability and performance numbers. A key obstacle that

needs to be analyzed in that context before though is the generation of bias-resistant public

randomness [165] which would enable to pick members of a shard in a distributed and secure

manner. Yet another challenge is to find ways to increase incentives of rational miners to

remain honest, like binding coins and destroying them when misbehavior is detected [46].

Finally, asynchronous BFT [49, 48] is another interesting class of protocols, which only recently

started to be analyzed in the context of blockchains [185].

3.6 Conclusion

BYZCOIN is a scalable Byzantine fault tolerant consensus algorithm for open decentralized

blockchain systems such as Bitcoin. BYZCOIN’s strong consistency increases Bitcoin’s core

security guarantees—shielding against attacks on the consensus and mining system such as

N -confirmation double-spending, intentional blockchain forks, and selfish mining—and also

enables high scalability and low transaction latency. BYZCOIN’s application to Bitcoin is just

one example, though: theoretically, it can be deployed to any blockchain-based system and

the proof-of-work-based leader election mechanism might be changed to another approach

such as proof-of-stake. If open membership is not an objective, the consensus group could be

static, though still potentially large. We developed a wide-scale prototype implementation

of BYZCOIN, validated its efficiency with measurements and experiments, and have shown

that Bitcoin can increase the capacity of transactions it handles by more than two orders of

magnitude.

46

4 Scalable Bias-Resistant Distributed
Randomness

4.1 Introduction

A reliable source of randomness that provides high-entropy output is a critical component in

many protocols [37, 68]. The reliability of the source, however, is often not the only criterion

that matters. In many high-stakes protocols, the unbiasability and public-verifiability of the

randomness generation process are as important as ensuring that the produced randomness

is good in terms of the entropy it provides [115].

More concretely, Tor hidden services [82] depend on the generation of a fresh random value

each day for protection against popularity estimations and DoS attacks [119]. Anytrust-

based systems, such as Herbivore [117], Dissent [249], and Vuvuzela [245], as well as sharded

blockchains [70], use bias-resistant public randomness for scalability by sharding participants

into smaller groups. TorPath [114] critically depends on public randomness for setting up

the consensus groups. Public randomness can be used to transparently select parameters

for cryptographic protocols or standards, such as in the generation of elliptic curves [18,

165], where adversaries should not be able to steer the process to select curves with weak

security parameters [26]. Other use-cases for public randomness include voting systems [4] for

sampling ballots for manual recounts, lotteries for choosing winning numbers, and Byzantine

agreement algorithms [49, 196] for achieving scalability.

The process of generating public randomness is nontrivial, because obtaining access to sources

of good randomness, even in terms of entropy alone, is often difficult and error-prone [58, 123].

One approach is to rely on randomness beacons, which were introduced by Rabin [210] in the

context of contract signing, where a trusted third party regularly emits randomly chosen inte-

gers to the public. The NIST beacon [193] provides hardware-generated random output from

quantum-mechanical effects, but it requires trust in their centralized beacon—a problematic

assumption, especially after the Dual EC DRBG debacle [29, 230].

This work is concerned primarily with the trustworthiness, rather than the entropy, of public

randomness sources. Generating public randomness without a trusted party is often desirable,

47

Chapter 4. Scalable Bias-Resistant Distributed Randomness

especially in decentralized settings such as blockchains, where many mutually-distrustful

users may wish to participate. Producing and using randomness in a distributed setting

presents many issues and challenges, however, such as how to choose a subset of available

beacons, or how to combine random outputs from multiple beacons without permitting bias

by an active adversary. Prior approaches to randomness without trusted parties [206] employ

Bitcoin [41], slow cryptographic hash functions [165], lotteries [18], or financial data [60] as

sources for public randomness.

Our goal is to provide bias-resistant public randomness in the familiar (t ,n)-threshold security

model already widely-used both in threshold cryptography [202] and Byzantine consensus

protocols [49]. Generating public randomness is hard, however, as active adversaries can

behave dishonestly in order to bias public random choices toward their advantage, e.g., by

manipulating their own explicit inputs or by selectively injecting failures. Although addressing

those issues is relatively straightforward for small values of n ≈ 10 [49, 141], we address

scalability challenges of using larger values of n, in the hundreds or thousands, for enhanced

security in real-world scenarios. For example, scalable randomness is relevant for public

cryptocurrencies [149, 191] which tend to have hundreds to thousands of distinct miners or for

countries with thousands of national banks that might want to form a national permissioned

blockchain with secure random sharding.

This work’s contributions are mainly pragmatic rather than theoretical, building on existing

cryptographic primitives to produce more scalable and efficient distributed randomness

protocols. We introduce two scalable public-randomness generation protocols: RANDHOUND

is a “one-shot” protocol to generate a single random output on demand, while RANDHERD is a

randomness beacon protocol that produces a regular series of random outputs. Both protocols

provide the same key security properties of unbiasability, unpredictability, availability, and

third-party verifiability of their random outputs.

RANDHOUND is a client-server randomness scavenging protocol enabling a client to gather

fresh randomness on demand from a potentially large set of nearly-stateless randomness

servers, preferably run by independent parties. A party that occasionally requires trustworthy

public randomness, such as a lottery association, can use RandHound to produce a random

output that includes contributions of – and trustworthiness attestations from – all participating

servers. The RandHound client (e.g., the lottery association) first publicly commits to the

parameters of a unique RandHound protocol run, such as the time and date of the lottery and

the set of servers involved, so a malicious client cannot bias the result by secretly rerunning

the protocol. The client then splits the servers into balanced subgroups for scalability. Each

subgroup uses publicly verifiable secret sharing (PVSS) [222, 234] to produce secret inputs

such that an honest threshold of participants can later recover them and form a third-party-

verifiable proof of their validity. To tolerate server failures, the client selects a subset of secret

inputs from each group. Application of the pigeonhole principle ensures the integrity of

RANDHOUND’s final output even if some subgroups are compromised, e.g., due to biased

grouping. The client commits to his choice of secrets, to prevent equivocation, by obtaining

48

4.1. Introduction

a collective signature [243] from participating servers. After the servers release the selected

secrets, the client combines and publishes the collective random output along with a third-

party verifiable transcript of the protocol run. Anyone can subsequently check this transcript

to verify that the random output is trustworthy and unbiased, provided not too many servers

were compromised.

RANDHERD is a complementary protocol enabling a potentially large collection of servers to

form a distributed public randomness beacon, which proactively generates a regular series

of public random outputs. RandHerd runs continually and need not be initiated by any

client, but requires stateful servers. No single or sub-threshold group of failing or malicious

servers can halt the protocol, or predict or significantly bias its output. Clients can check the

trustworthiness of any published beacon output with a single, efficient check of one collective

signature [243]. RandHerd first invokes RANDHOUND once, at setup or reconfiguration time,

to divide the set of servers securely into uniformly random groups, and to generate a short-

term aggregate public key used to produce and verify individual beacon outputs. RANDHERD

subsequently uses a threshold collective signing protocol based on Shamir secret sharing [33,

227], to generate random outputs at regular intervals. Each of RANDHERD’s random outputs

doubles as a collective Schnorr signature [235, 243], which clients can validate efficiently

against the group’s aggregate public key.

The dominant cost in both protocols is publicly verifiable secret sharing (PVSS), which nor-

mally incurs O(n3) communication and computation costs on each of n participants. RAND-

HOUND and RANDHERD run PVSS only among smaller groups, however, whose configured

size c serves as a security parameter. RANDHOUND, therefore, reduces the asymptotic cost

to O(n) if c is constant. By leveraging efficient tree-structured communication, RANDHERD

further reduces the cost of producing successive beacon outputs to O(logn) per server.

We implemented the RANDHOUND and RANDHERD protocols in Go, and made these imple-

mentations freely available as part of the EPFL DEDIS lab’s Cothority framework.1 Experiments

with our prototype implementations show that, among a collective of 512 globally-distributed

servers divided into groups of 32, RANDHERD can produce a new 32-byte collective random

output every 6 seconds, following a one-time setup process using RANDHOUND that takes ap-

proximately 260 seconds. The randomness verification overhead of RANDHERD is equivalent

to verifying a single Schnorr multisignature [221], typically less than 100 bytes in size, which

clients can check in constant time. Using RANDHOUND alone to produce a random output on

demand, it takes approximately 240 seconds to produce randomness and approximately 76

seconds to verify it using the produced 4 MByte transcript. In this configuration, a Byzantine

adversary can compromise the availability of either protocol with a probability of at most

0.08%.

Contributions. In this work we introduce three protocols to aid public-randomness genera-

tion in an unbiasable, and fully distributed way. In particular, we propose:

1https://github.com/dedis/cothority

49

https://golang.org/
http://dedis.epfl.ch/
https://github.com/dedis/cothority
https://github.com/dedis/cothority

Chapter 4. Scalable Bias-Resistant Distributed Randomness

1. RANDSHARE: A Small-Scale Unbiasable Randomness Protocol. (Section 4.2.2)

2. RANDHOUND: A Verifiable Randomness Scavenging Protocol. (Section 4.3)

3. RANDHERD: A Scalable Randomness Cothority. (Section 4.4)

All three protocols provide three main properties: unbiasability, unpredictability, and avail-

ability. Unbiasability ensures that an adversary cannot influence the random output, unpre-

dictability prevents the adversary from prematurely learning the output even if he cannot

affect it, and availability enables honest participants to successfully obtain randomness.

RANDSHARE serves as a motivational example on how to achieve these properties in a scenario

when there is a small number of highly-available participants. RANDHOUND and RANDHERD

add third-party verifiability to the randomness they produce. RANDHOUND is a client/server

protocol that enables the client to obtain randomness with the cooperation of a potentially

large set of servers. Finally, RANDHERD balances security and performance trade-offs by

using RANDHOUND to set up a large-scale randomness cothority that efficiently produces

randomness at frequent intervals. Further, we provide proof-of-concept prototypes for RAND-

HOUND and RANDHERD to demonstrate that we can achieve these properties as well as good

performance.

This chapter is organized as follows. First, Section 4.2 introduces some naive approaches

to generate distributed randomness and a correct but non-scalable way. Then, Sections 4.3

and 4.4 introduce the design and security properties of RANDHOUND and RANDHERD, respec-

tively. Finally, Section 4.5 evaluates the prototype implementations of both protocols and

Section 4.6 concludes.

4.2 How (not) to Generate Randomness

We first introduce notation which RANDHOUND and RANDHERD build on. We then consider a

series of strawman protocols illustrating the key challenges in distributed randomness genera-

tion of commitment, selective aborts, and malicious secret shares. We end with RANDSHARE,

a protocol that offers the desired properties, but unlike RANDHOUND and RANDHERD is not

third-party verifiable and does not scale well.

For the rest of the work, we denote by G a multiplicatively written cyclic group of order q

with generator G , where the set of non-identity elements in G is written as G∗. We denote by

(xi)i∈I a vector of length |I | with elements xi , for i ∈ I . Unless stated otherwise, we denote the

private key of a node i by xi and the corresponding public key by Xi =Gxi .

4.2.1 Insecure Approaches to Public Randomness

For expositional clarity, we summarize a series of inadequate strawman designs: (I) a naive,

trivially insecure design, (II) one that uses a commit-then-reveal process to ensure unpre-

50

4.2. How (not) to Generate Randomness

dictability but fails to be unbiasable, and (III) one that uses secret sharing to ensure unbi-

asability in an honest-but-curious setting, but is breakable by malicious participants.

Strawman I. The simplest protocol for producing a random output r =⊕n−1
i=0 ri requires each

peer i to contribute their secret input ri under the (false) assumption that a random input

from any honest peer would ensure unbiasability of r . However, a dishonest peer j can force

the output value to be r̂ by choosing r j = r̂
⊕

i :i 6= j ri upon seeing all other inputs.

Strawman II. To prevent the above attack, we want to force each peer to commit to their

chosen input before seeing other inputs by using a simple commit-then-reveal approach.

Although the output becomes unpredictable as it is fixed during the commitment phase, it

is not unbiasable because a dishonest peer can choose not to reveal his input upon seeing

all other openings of committed inputs. By repeatedly forcing the protocol to restart, the

dishonest peer can obtain an output that is beneficial for him, even though he cannot choose

its exact value. The above scenario shows an important yet subtle difference between an

output that is unbiased when a single, successful run of the protocol is considered, and an

output that is unbiasable in a more realistic scenario, when the protocol repeats until some

output is produced. An attacker’s ability to re-toss otherwise-random coins he does not like is

central to the reason peer-to-peer networks that use cryptographic hashes as participant IDs

are vulnerable to clustering attacks [166].

Strawman III. To address this issue, we wish to ensure that a dishonest peer either cannot

force the protocol to abort by refusing to participate, or cannot benefit from doing so. Using a

(t ,n)-secret sharing scheme, we can force the adversary to commit to his action before knowing

which action is favorable to him. First, all n peers, where at most f are dishonest, distribute

secret shares of their inputs using a t = f +1 recovery threshold. Only after each peer receives

n shares will they reconstruct their inputs and generate r . The threshold t = f +1 prevents

a dishonest peer from learning anything about the output value. Therefore, he must blindly

choose to abort the protocol or to distribute his share. Honest peers can then complete the

protocol even if he stops participating upon seeing the recovered inputs. Unfortunately, a

dishonest peer can still misbehave by producing bad shares, preventing honest peers from

successfully recovering identical secrets.

4.2.2 RandShare: Small-Scale Unbiasable Randomness Protocol

RANDSHARE is an unbiasable randomness protocol that ensures unbiasability , unpredictabil-

ity, and availability, but is practical only at small scale due to O(n3) communication overhead.

RANDSHARE introduces key concepts that we will re-use in the more scalable RANDHOUND

protocol (Section 4.3).

RANDSHARE extends the approach for distributed key-generation in a synchronous model

of Gennaro et al. [111] by adopting a point-of-no-return strategy implemented through the

concept of a barrier, a specific point in the protocol execution after which the protocol always

51

Chapter 4. Scalable Bias-Resistant Distributed Randomness

completes successfully, and by extending it to the asynchronous setting, where the adversary

can break timing assumptions [48, 49].

In RANDSHARE, the protocol output is unknown but fixed as a function of f +1 inputs. After

the barrier point, the protocol output cannot be changed and all honest peers eventually

output the previously fixed value, regardless of the adversary’s behavior. In RANDSHARE, we

define the barrier at the point where the first honest member reveals the shares he holds.

We assume a Byzantine adversary and an asynchronous network where messages are even-

tually delivered. Let N = {1, . . . ,n} denote the list of peers that participate in RANDSHARE and

n = 3 f +1, where f is the number of dishonest peers. Let t = f +1 be the VSS threshold. We as-

sume every peer has a copy of a public key X j for all j 6= i , and that only valid, properly-signed

messages are accepted.

Each RANDSHARE peer i ∈ N executes the following steps:

1. Share Distribution.

1. Select coefficients ai k ∈R Z
∗
q of a degree t−1 secret sharing polynomial si (x) =∑t−1

k=0 ai k xk .

The secret to be shared is si (0) = ai 0.

2. Compute polynomial commitments Ai k = Gai k , for all k ∈ {0, . . . , t −1}, and calculate

secret shares si (j) for all j ∈ N.

3. Securely send si (j) to peer j 6= i and start a Byzantine agreement (BA) run on si (0), by

broadcasting Âi = (Ai k)k∈{0,...,t−1}.

2. Share Verification.

1. Initialize a bit-vector Vi = (vi 1, . . . , vi n) to zero, to keep track of valid secrets s j (0) received.

Then wait until a message with share s j (i) from each j 6= i has arrived.

2. Verify that each s j (i) is valid using Â j . This may be done by checking that S j (i) =G s j (i)

where:

S j (x) =
t−1∏
k=0

Axk

j k =G
∑t−1

k=0 a j k xk =G s j (x)

3. If verification succeeds, confirm s j (i) by broadcasting the prepare message (p, i , j ,1)

as a positive vote on the BA instance of s j (0). Otherwise, broadcast (p, i , j , s j (i)) as a

negative vote. This also includes the scenario when Â j was never received.

4. If there are at least 2 f +1 positive votes for secret s j (0), broadcast (c, i , j ,1) as a positive

commitment. If there are at least f +1 negative votes for secret s j (0), broadcast (c, i , j ,0)

as a negative commitment.

52

4.3. RandHound: Scalable, Verifiable Randomness Scavenging

5. If there are at least 2 f +1 commits (c, i , j , x) for secret s j (0), set vi j = x. If x = 1, consider

the secret recoverable else consider secret s j (0) invalid.

3. Share Disclosure.

1. Wait until a decision has been taken for all entries of Vi and determine the number of

1-entries n′ in Vi .

2. If n′ > f , broadcast for each 1-entry j in Vi the share s j (i) and abort otherwise.

4. Randomness Recovery.

1. Wait until at least t shares for each j 6= i have arrived, recover the secret sharing polyno-

mial s j (x) through Lagrange interpolation, and compute the secret s j (0).

2. Compute and publish the collective random string as:

Z =
n′⊕

j=1
s j (0)

RANDSHARE achieves unbiasability, because the secret sharing threshold t = f +1 prevents

dishonest peers from recovering the honest peers’ secrets before the barrier. The Byzantine

agreement procedures ensure that all honest peers have a consistent copy of Vi and therefore

know which n′ > f secrets will be recovered after the barrier or if the protocol run has already

failed as n′ ≤ f . Furthermore, if at least f +1 honest members sent a success message for each

share, and thus Byzantine agreement (with at least 2 f +1 prepares) has been achieved on

the validity of these shares, each honest peer will be able to recover every other peer’s secret

value. Unpredictability follows from the fact that the final random string Z contains n′ ≥ f +1

secrets; there are at most f malicious peers, and no honest peer will release his shares before

the barrier. Availability is ensured because f +1 honest nodes out of the total 2 f +1 positive

voters are able to recover the secrets, given the secret-sharing threshold t = f +1, without the

collaboration of the dishonest nodes.

4.3 RandHound: Scalable, Verifiable Randomness Scavenging

This section presents RANDHOUND, a scalable client/server protocol for producing public,

verifiable, unbiasable randomness. RANDHOUND enables a client, who initiates the protocol,

to “scavenge” public randomness from an arbitrary collection of servers. RANDHOUND uses a

commit-then-reveal approach to generate randomness, implemented via publicly verifiable

secret sharing (PVSS) [222], and it uses CoSi [243] as a witnessing mechanism to fix the

protocol output and prevent client equivocation. We first provide an overview of RANDHOUND

53

Chapter 4. Scalable Bias-Resistant Distributed Randomness

and introduce the notation and threat model. We then describe randomness generation

and verification in detail, analyze the protocol’s security properties, and discuss protocol

extensions.

4.3.1 Protocol Overview

RANDHOUND employs a client/server model, in which a client invokes the services of a set

of RandHound servers to produce a random value. RANDHOUND assumes the same threat

model as RandShare, i.e., that at most f out of at least 3 f +1 participants are dishonest. If the

client is honest, we allow at most f servers to be malicious and if the adversary controls the

client then we allow at most f −1 malicious servers. We assume that dishonest participants

can send different but correctly signed messages to honest participants in stages where they

are supposed to broadcast the same message to all. Furthermore, we assume that the goal of

the adversary is to bias or DoS-attack the protocol run in the honest-client scenario, and to

bias the output in the malicious-client scenario.

We assume the client gets only one attempt to run RANDHOUND. A dishonest client might try

to run the protocol many times until he obtains a favorable output. However, each protocol

run uses a session configuration file C that uniquely identifies a protocol run and binds it to

the intended purpose of the random output. To illustrate RANDHOUND’s deployment model,

the client might be a lottery authority, which must commit ahead of time to all lottery param-

eters including the time and date of the lottery. A cryptographic hash of the configuration

parameters in C uniquely identifies the RANDHOUND protocol instance. If that protocol run

fails to produce an output, this failure triggers an alarm and an investigation, and not a silent

re-run of the protocol.

Honest RandHound servers enforce this “one-shot” rule by remembering and refusing to par-

ticipate in a second protocol run with session configuration C until the time-window defined

by C has passed. This memory of having recently participated in a session for configuration

C is the only state RandHound servers need to store for a significant time; the servers are

otherwise largely stateless.

RANDHOUND improves on RANDSHARE’s lack of scalability by sharing secrets not directly

among all other servers but only within smaller groups of servers. RANDHOUND servers share

their secrets only with their respective group members, decreasing the number of shares

they create and transmit. This reduces the communication and computational overhead

from O(n3) to O(nc2), where c is the average (constant) size of a group. The client arranges

the servers into disjoint groups. The protocol remains secure even if the client chooses a

non-random adversarial grouping, however, because the client must employ all groups and

the pigeonhole principle ensures that at least one group is secure.

Each server chooses its random input value and creates shares only for other members of

the same group using PVSS. The server sends the encrypted shares to the client together

54

4.3. RandHound: Scalable, Verifiable Randomness Scavenging

C

S

S S

S

S S

Client

PVSS Group 1 PVSS Group 2

Servers Servers

Figure 4.1 – An overview of the RANDHOUND design.

with the NIZK proofs. The client chooses a subset of server inputs from each group, omitting

servers that did not respond on time or with proper values, thus fixing each group’s secret

and consequently the output of the protocol. After the client receives a sign-off on his choice

of inputs in a global run of CoSi, the servers decrypt and send their shares to the client. The

client, in turn, combines the recovered group secrets to produce the final random output

Z . The client documents the run of the protocol in a log L, or transcript, by recording the

messages he sends and receives. The transcript serves as a third party verifiable proof of the

produced randomness. Figure 4.1 gives an overview on the RANDHOUND design.

4.3.2 Description

Let G be a group of large prime order q with generator G . Let N = {0, . . . ,n−1} denote the list of

nodes, let S = N \ {0} denote the list of servers and let f be the maximum number of permitted

Byzantine nodes. We require that n = 3 f +1. We set (x0, X0) as the key pair of the client and

(xi , Xi) as the one of server i > 0. Further let Tl ⊂ S, with l ∈ {0, . . . ,m −1}, be pairwise disjoint

trustee groups and let tl = b|Tl |/3c+1 be the secret sharing threshold for group Tl .

The publicly available session configuration is denoted by C = (X ,T, f ,u, w), where X =
(X0, . . . , Xn−1) is the list of public keys, T = (T0, . . . ,Tm−1) is the server grouping, u is a purpose

string, and w is a timestamp. We call H(C) the session identifier. The session configuration

and consequently the session identifier have to be unique for each protocol run. We assume

that all nodes know the list of public keys X .

The output of RANDHOUND is a random string Z which is publicly verifiable through a tran-

script L.

Randomness Generation

RANDHOUND’s randomness-generation protocol has seven steps and requires three round

trips between the client and the servers; see Figure 4.2 for an overview. All exchanged messages

55

Chapter 4. Scalable Bias-Resistant Distributed Randomness

Client Server iMessages

〈I1〉x0 = 〈H(C), T, u, w〉x0

〈R1i〉xi = 〈H(I1), (Ŝij , P̂ij)j∈Tl , (Aik)k∈{0,...,tl−1}, Vi〉xi

〈I2i〉x0 = 〈H(C), c, T ′, (Ŝji, P̂ji, Hsj (i))j∈T ′
l
〉x0

〈R2i〉xi = 〈H(I2i), ri〉xi

〈I3〉x0 = 〈H(C), r, E〉x0

〈R3i〉xi = 〈H(I3), (Sji, Pji)j∈T ′
l
〉xi

P
ha

se
1

P
ha

se
2

P
ha

se
3

1. Initialization

2. Share-Distribution

3. Secret-Commitment

4. Secret-Acknowledgement

5. Decryption-Request

6. Share-Decryption

7. Randomness-Recovery: Z, L

(x0, X0) / (xi, Xi) Private and public key of client / server i

C Session configuration
T Group configuration
u, w Purpose string, time stamp
Ŝij / Sij Encrypted / decrypted share
P̂ij / Pij Encryption / decryption consistency proof
Aik Polynomial commitment

Hsi(j) Share commitment
Vi, c, r, E Schnorr commitment, challenge, response, exceptions
T ′ / T ′

l Chosen secrets overall / of group l

Z Collective randomness
L Transcript (protocol log)

Figure 4.2 – An overview of the RANDHOUND randomness generation process

are signed by the sending party, messages from the client to servers include the session

identifier, and messages from servers to the client contain a reply identifier that is the hash

of the previous client message. We implicitly assume that client and servers always verify

message signatures and session and reply identifiers and that they mark non-authentic or

replayed messages and ignore them from the rest of the protocol run.

RANDHOUND consists of three inquiry-response phases between the client and the servers

followed by the client’s randomness recovery.

1. Initialization (Client). The client initializes a protocol run by executing the following

steps:

(a) Set the values in C and choose a random integer rT ∈R Zq as a seed to pseudoran-

domly create a balanced grouping T of S. Record C in L.

(b) Prepare the message

〈I1〉x0 = 〈H(C),T,u, w〉x0 ,

record it in L, and broadcast it to all servers.

2. Share Distribution (Server). To distribute shares, each trustee i ∈ Tl executes step 1 of

PVSS:

(a) Map H(C) to a group element H ∈G∗, set tl = b|Tl |/3c+1, and (randomly) choose a

degree tl −1 secret sharing polynomial si (x). The secret to-be-shared is Si 0 =G si (0).

(b) Create polynomial commitments Ai k , for all k ∈ {0, . . . , tl −1}, and compute en-

crypted shares Ŝi j = X si (j)
j and consistency proofs P̂i j for all j ∈ Tl .

(c) Choose vi ∈R Zq and compute Vi =Gvi as a Schnorr commitment.

(d) Prepare the message

〈R1i 〉xi = 〈H(I1), (Ŝi j , P̂i j) j∈Tl , (Ai k)k∈{0,...,tl−1},Vi 〉xi

and send it back to the client.

56

4.3. RandHound: Scalable, Verifiable Randomness Scavenging

3. Secret Commitment (Client). The client commits to the set of shared secrets that

contribute to the final random string, and asks servers to co-sign his choice:

(a) Record each received 〈R1i 〉xi message in L.

(b) Verify all Ŝi j against P̂i j using Xi and Ai k . Buffer each (correct) H si (j) created in

the process. Mark each share that does not pass the verification as invalid, and do

not forward the corresponding tuple (Ŝi j , P̂i j , H si (j)) to the respective trustee.

(c) Create the commitment to the final list of secrets T ′ = (T ′
0, . . . ,T ′

m−1) by randomly

selecting T ′
l ⊂ Tl such that |T ′

l | = tl for all l ∈ {0, . . . ,m −1}.

(d) Compute the aggregate Schnorr commit V = ∏
i Vi and the Schnorr challenge

c =H(V ∥H(C) ∥ T ′).

(e) Prepare the message

〈I2i 〉x0 = 〈H(C),c,T ′, (Ŝ j i , P̂ j i , H s j (i)) j∈T ′
l
〉x0 ,

record it in L, and send it to trustee i ∈ Tl .

4. Secret Acknowledgment (Server). Each trustee i ∈ Tl acknowledges the client’s com-

mitment by executing the following steps:

(a) Check that |T ′
l | = tl for each T ′

l in T ′ and that f +1 ≤∑m−1
l=0 tl . Abort if any of those

conditions does not hold.

(b) Compute the Schnorr response ri = vi − cxi .

(c) Prepare the message

〈R2i 〉xi = 〈H(I2i),ri 〉xi

and send it back to the client.

5. Decryption Request (Client). The client requests the decryption of the secrets from the

trustees by presenting a valid Schnorr signature on his commitment:

(a) Record each received 〈R2i 〉xi message in L.

(b) Compute the aggregate Schnorr response r =∑
i ri and create a list of exceptions

E that contains information on missing server commits and/or responses.

(c) Prepare the message

〈I3〉x0 = 〈H(C),r,E〉x0 ,

record it in L, and broadcast it to all servers.

6. Share Decryption (Server). To decrypt received shares, each trustee i ∈ Tl performs

step 2 of PVSS:

57

Chapter 4. Scalable Bias-Resistant Distributed Randomness

(a) Check that (c,r) forms a valid Schnorr signature on T ′ taking exceptions recorded

in E into account and verify that at least 2 f +1 servers signed. Abort if any of those

conditions do not hold.

(b) Check for all j ∈ T ′
l that Ŝ j i verifies against P̂ j i using H s j (i) and public key Xi .

(c) If the verification fails, mark Ŝ j i as invalid and do not decrypt it. Otherwise, decrypt

Ŝ j i by computing S j i = (Ŝ j i)x−1
i =G s j (i) and create a decryption consistency proof

P j i .

(d) Prepare the message

〈R3i 〉xi = 〈H(I3), (S j i ,P j i) j∈T ′
l
〉xi

and send it back to the client.

7. Randomness Recovery (Client). To construct the collective randomness, the client

performs step 3 of PVSS:

(a) Record all received 〈R3i 〉xi messages in L.

(b) Check each share S j i against P j i and mark invalid ones.

(c) Use Lagrange interpolation to recover the individual Si 0 that have enough valid

shares Si j and abort if even a single one of the secrets previously committed to in

T ′ cannot be reconstructed.

(d) Compute the collective random value as

Z = ∏
i∈⋃

T ′
l

Si 0 ,

and publish Z and L.

Randomness Verification

A verifier who wants to check the validity of the collective randomness Z against the transcript

L = (C ,〈I1〉x0 ,〈R1i 〉xi ,〈I2i 〉x0 ,〈R2i 〉xi ,〈I3〉x0 ,〈R3i 〉xi)

has to perform the following steps:

1. Verify the values of arguments included in the session configuration C = (X ,T, f ,u, w).

Specifically, check that |X | = n = 3 f +1, that groups Tl defined in T are non-overlapping

and balanced, that |X | = ∑m−1
l=0 |Tl |, that each group threshold satisfies tl = |Tl |/3+1,

that u and w match the intended use of Z , and that the hash of C matches H(C) as

recorded in the messages.

2. Verify all signatures of 〈I1〉x0 , 〈R1i 〉xi , 〈I2i 〉x0 , 〈R2i 〉xi 〈I3〉x0 , and 〈R3i 〉xi . Ignore invalid

messages for the rest of the verification.

58

4.3. RandHound: Scalable, Verifiable Randomness Scavenging

3. Verify that H(I1) matches the hash recorded in R1i . Repeat for I2i and R2i , and I3 and R3i .

Ignore messages that do not include the correct hash.

4. Check that T ′ contains at least f +1 secrets, that the collective signature on T ′ is valid

and that at least 2 f +1 servers contributed to the signature (taking into account the

exceptions in E).

5. Verify each recorded encrypted share Ŝi j , whose secret was chosen in T ′, against the

proof P̂i j using Xi and Ai k . Abort if there are not enough shares for any secret chosen in

T ′.

6. Verify each recorded decrypted share Si j against the proof Pi j where the corresponding

Ŝi j was found to be valid. Abort if there are not enough shares for any secret chosen in

T ′.

7. Verify Z by recovering Z ′ from the recovered individual secrets Si 0 and by checking that

Z = Z ′. If the values are equal, then the collective randomness Z is valid. Otherwise,

reject Z .

4.3.3 Security Properties

RANDHOUND provides the following security properties:

1. Availability. For an honest client, the protocol successfully completes and produces the

final random output Z with high probability.

2. Unpredictability. No party learns anything about the final random output Z , except

with negligible probability, until the secret shares are revealed.

3. Unbiasability. The final random output Z represents an unbiased, uniformly random

value, except with negligible probability.

4. Verifiability. The collective randomness Z is third-party verifiable against the transcript

L, that serves as an unforgeable attestation that the documented set of participants

ran the protocol to produce the one-and-only random output Z , except with negligible

probability.

In the discussion below, we assume that each honest node follows the protocol and that

all cryptographic primitives RANDHOUND uses, provide their intended security properties.

Specifically, the (t ,n)-PVSS scheme ensures that a secret can be recovered only by using a

minimum of t shares and that the shares do not leak information about the secret.

Availability. Our goal is to ensure that an honest client can successfully complete the protocol,

even in the presence of adversarial servers that misbehave arbitrarily, including by refusing

59

Chapter 4. Scalable Bias-Resistant Distributed Randomness

to participate. A dishonest client can always abort the protocol, or simply not run it, so we

do not consider a “self-DoS” by the client to be an attack on availability. In the remaining

security properties, we can thus restrict our concern to attacks in which a dishonest client

might corrupt (e.g., bias) the output without affecting the output’s availability.

According to the protocol specification, an honest client randomly assigns (honest and dis-

honest) nodes to their groups. Therefore, each group’s ratio of honest to dishonest nodes will

closely resemble the overall ratio of honest to dishonest nodes in the entire set. Given that

n = 3 f +1, the expected number of nodes in a group Tl is about 3 f /m. The secret-sharing

threshold of tl = |Tl |/3+ 1 = (3 f /m)/3+ 1 = f /m + 1 enables 2 f /m honest nodes in each

group to recover its group secret without the collaboration of malicious nodes. This ensures

availability, with high probability, when the client is honest. Section 4.5.3 analyzes of the

failure probability of a RANDHOUND run for different parameter configurations.

Unpredictability. We want to ensure that output Z remains unknown to the adversary until

step 7 of the protocol, when honest nodes decrypt and reveal the secret shares they hold.

The random output Z is a function of m group secrets, where each group contributes exactly

one secret that depends on tl inputs from group members. Further, each input is recoverable

using PVSS with tl shares. In order to achieve unpredictability, there must be at least one

group secret that remains unknown to the adversary until step 7.

We will show that there exists at least one group for which the adversary cannot prematurely

recover the group’s secret. An adversary who controls the dishonest client can deviate from

the protocol description and arbitrarily assign nodes to groups. Assuming that there are h

honest nodes in total and m groups, then by the generalized pigeonhole principle, regardless

of how the dishonest client assigns the groups, there will be at least one group which contains

at least dh/me nodes. In other words, there must be at least one group with at least an average

number of honest nodes. Therefore, we set the threshold for secret recovery for each group

l such that the number of nodes needed to recover the group secret contains at least one

honest node, that is, |Tl | −h/m + 1 = f /m + 1. In RANDHOUND, we have n = 3 f + 1 and

tl = |Tl |/3+1 = (3 f /m)/3+1 = f /m +1 as needed.

Consequently, the adversary will control at most m −1 groups and obtain at most m −1 group

secrets. Based on the properties of PVSS, and the fact that Z is a function of all m group secrets,

the adversary cannot reconstruct Z without the shares held by honest nodes that are only

revealed in step 7.

Unbiasability. We want to ensure that an adversary cannot influence the value of the random

output Z .

In order to prevent the adversary from controlling the output Z , we need to ensure that there

exists at least one group for which the adversary does not control the group’s secret. If, for

each group, the adversary can prematurely recover honest nodes’ inputs to the group secret

60

4.3. RandHound: Scalable, Verifiable Randomness Scavenging

and therefore be able to prematurely recover all groups’ secrets, then the adversary can try

many different valid subsets of the groups’ commits to find the one that produces the Z most

beneficial to him. If for each group, the adversary can exclude honest nodes from contributing

inputs to the group secret, then the adversary has full control over all group secrets, hence Z .

As argued in the discussion of unpredictability, there exists at least one group for which the

adversary does not control its group secret. Furthermore, the requirement that the client

has to select tl inputs from each group in his commitment T ′ ensures that at least
∑m−1

l=0 tl =∑m−1
l=0 f /m +1 = f +m inputs contribute to the group secrets, and consequently to the output

Z . Combining these two arguments, we know that there is at least one group that is not

controlled by the adversary and at least one honest input from that group contributes to Z .

As a result, the honest member’s input randomizes the group’s secret and Z , regardless of the

adversary’s actions.

Lastly, the condition that at least 2 f +1 servers must sign off on the client’s commitment T ′

ensures that a malicious client cannot arrange malicious nodes in such a way that would

enable him to mount a view-splitting attack. Without that last condition, the adversary could

use different arrangements of honest and dishonest inputs that contribute to Z and generate

multiple collective random values with valid transcripts from which he could choose and

release his preferred one.

Verifiability. In RANDHOUND, only the client obtains the final random output Z . In order

for Z to be usable in other contexts and by other parties, any third party must be able to

independently verify that Z was properly generated. Therefore, the output of RANDHOUND

consists of Z and a transcript L, which serves as third-party verifiable proof of Z . The transcript

L must (a) enable the third party to replay the protocol execution and (b) be unforgeable.

L contains all messages sent and received during the protocol execution, as well as the session

configuration C . If the verifying party finds C acceptable, specifically the identities of partici-

pating servers, he can replay the protocol execution and verify the behavior of the client and

the servers, as outlined in Section 4.3.2. After a successful protocol run completes, the only

relevant protocol inputs that remain secret are the private keys of the client and the servers.

Therefore, any third party on its own can verify L and decide on its validity since the private

keys are only used to produce signatures and the signatures are verified using the public keys.

For the adversary to forge the transcript (produce a different valid transcript without an actual

run of the protocol), he must be in possession of the secret keys of all participant listed in C ,

violating the assumption that at most f nodes are controlled by the adversary.

Therefore, under the assumption that all cryptographic primitives used in RANDHOUND offer

their intended security properties, it is infeasible for any party to produce a valid transcript,

except by legitimately running the protocol to completion with the willing participation of the

at least
∑m−1

l=0 |T ′
l | servers listed in the client’s commitment vector T ′ (step 3).

Further Considerations. In each protocol run, the group element H is derived from the

61

Chapter 4. Scalable Bias-Resistant Distributed Randomness

session identifier H(C), which mitigates replay attacks. A malicious server that tries to replay

an old message is immediately detected by the client, as the replayed PVSS proofs will not verify

against the new H . It is also crucial for RANDHOUND’s security that none of the participants

knows a logarithm a with G = H a . Otherwise the participant can prematurely recover secret

shares since (H si (j))a = H asi (j) =G si (j) = Si j , which violates RANDHOUND’s unpredictability

property and might even enable a malicious node to bias the output. This has to be taken into

account when deriving H from H(C). The naive way to map H(C) to a scalar a and then set

H =Ga is obviously insecure as G = H 1/a . The Elligator mappings [28] provide a secure option

for elliptic curves.

4.3.4 Extensions

Each Lagrange interpolation that the client has to perform to recover a server’s secret can be

replaced by the evaluation of a hash function as follows: Each server i sends, alongside his

encrypted shares, the value H(si (0)) as a commitment to the client in step 2. After the client’s

request to decrypt the shares, each server, whose secret was chosen in T ′, replies directly

with si (0). The client checks the received value against the server’s commitment and, if valid,

integrates it into Z .

Note that the verification of the commitment is necessary, as a malicious server could oth-

erwise just send an arbitrary value as his secret that would be integrated into the collective

randomness thereby making it unverifiable against the transcript L. The client can still recover

the secret as usual from the decrypted shares with Lagrange interpolation if the above check

fails or if the respective server is unavailable.

Finally, SCRAPE [53] provides a new approach to decentralized randomness that builds upon

an improved version of PVSS. While this approach is orthogonal to ours, the improved PVSS

scheme has a lower verification complexity and can be used to reduce the complexity of

RANDHOUND from O(c2n) to O(cn), making it more scalable.

4.4 RandHerd: A Scalable Randomness Cothority

This section introduces RANDHERD, a protocol that builds a collective authority or cothor-

ity [243] to produce unbiasable and verifiable randomness. RANDHERD serves as a decentral-

ized randomness beacon [193, 210], efficiently generating a regular stream of random outputs.

RANDHERD builds on RANDHOUND, but requires no distinguished client to initiate it, and

significantly improves repeat-execution performance.

We first outline RANDHERD, then detail the protocol, analyze its security properties, and

explore protocol extensions.

62

4.4. RandHerd: A Scalable Randomness Cothority

4.4.1 Overview

RANDHERD provides a continually-running decentralized service that can generate publicly

verifiable and unbiasable randomness on demand, at regular intervals, or both. RANDHERD’s

goal is to reduce communication and computational overhead of the randomness generation

further from RANDHOUND’s O(c2n) to O(c2 logn) given a group size c. To achieve this, RAND-

HERD requires a one-time setup phase that securely shards cothority nodes into subgroups,

then leverages aggregation and communication trees to generate subsequent random outputs.

As before, the random output r̂ of RANDHERD is unbiasable and can be verified, together

with the corresponding challenge ĉ, as a collective Schnorr signature against RANDHERD’s

collective public key. Section 4.3 illustrates RANDHERD’s design.

RANDHERD’s design builds on RANDHOUND, CoSi [243], and a (t ,n)-threshold Schnorr signa-

ture (TSS) scheme [235] that implements threshold-based witness cosigning (TSS-CoSi).

A cothority configuration C defines a given RANDHERD instance, listing the public keys of

participating servers and their collective public key X . The RANDHERD protocol consists of

RandHerd-Setup, which performs one-time setup, and RandHerd-Round, which produces

successive random outputs.

The setup protocol uses RANDHOUND to select a RANDHERD leader at random and arrange

nodes into verifiably unbiased random groups. Each group runs the key generation phase

of TSS to establish a public group key X̂l , such that each group member holds a share of the

corresponding private key x̂l . Each group can issue a collective signature with the cooperation

of tl of nodes. All public group keys contribute to the collective RANDHERD public key X̂ ,

which is endorsed by individual servers in a run of CoSi.

Once operational, to produce each random output, RANDHERD generates a collective Schnorr

signature (ĉ, r̂) on some input w using TSS-CoSi and outputs r̂ as randomness. TSS-CoSi

modifies CoSi to use threshold secret sharing (TSS) rather than CoSi’s usual exception mecha-

nism to handle node failures, as required to ensure bias-resistance despite node failures. All

m RANDHERD groups contribute to each output, but each group’s contribution requires the

participation of only tl members. Using TSS-CoSi to generate and collectively certify random

outputs allows clients to verify any RANDHERD output via a simple Schnorr signature check

against public key X̂ .

4.4.2 Description

Let N = {0, . . . ,n −1} denote the list of all nodes, and let f denote the maximum number of

permitted Byzantine nodes. We assume that n = 3 f +1. The private and public key of a node

i ∈ N is xi and Xi =Gxi , respectively. Let C denote the cothority configuration file listing the

public keys of all nodes, the cothority’s collective public key X̂ =∏n−1
j=0 X̂ j , contact information

such as IP address and port number, default group sizes for secret sharing, and a timestamp

on when C was created. Each node has a copy of C .

63

Chapter 4. Scalable Bias-Resistant Distributed Randomness

CL

GL GL

TSS Group 1

TSS Group 2 TSS Group 3

Cothority Leader

Group Leaders

CoSi-Tree Server-to-Server

Figure 4.3 – An overview on the RANDHERD design

RandHerd-Setup

The setup phase of RANDHERD consists of the following four steps:

1. Leader Election. When RANDHERD starts, each node generates a lottery ticket ti =H(C ∥
Xi) for every i ∈ N and sorts them in an ascending order. The ticket ti with the lowest

value wins the lottery and the corresponding node i becomes the tentative RANDHERD

leader. If this leader is or becomes unavailable, leadership passes to the next node in

ascending order. A standard view-change protocol [149, 55] manages the transition

between successive leaders. In summary, any server who is dissatisfied with the current

leader’s progress broadcasts a view-change message for the next leader. Such messages

from at least f +1 nodes force a view change, and the new leader begins operation

upon receiving at least 2 f +1 such “votes of confidence.” Section 4.4.5 discusses an

improvement to leader election to make successive leaders unpredictable.

2. Seed Generation. The leader assumes the role of the RANDHOUND client and runs

the protocol, with all other nodes acting as RANDHOUND servers. Each leader has

only one chance to complete this step. If he fails, the next node, as determined by the

above lottery, steps in and attempts to execute RANDHOUND. After a successful run of

RANDHOUND, the leader obtains the tuple (Z ,L), where Z is a collective random string

and L is the publicly verifiable transcript that proves the validity of Z . Lastly, the current

leader broadcasts (Z ,L) to all nodes.

3. Group Setup. Once the nodes receive (Z ,L), they use L to verify Z , and then use Z as a

seed to compute a random permutation of N resulting in N′. Afterwards N′ is sharded

into m groups Tl of the same size as in RANDHOUND, for l ∈ {0, . . . ,m −1}. The node at

index 0 of each group becomes the group leader and the group leader of the first group

64

4.4. RandHerd: A Scalable Randomness Cothority

takes up the role of the temporary RANDHERD leader. If any of the leaders is unavailable,

the next one, as specified by the order in N′, steps in. After this step, all nodes know their

group assignments and the respective group leaders run a TSS-setup to establish the

long-term group secret x̂l using a secret sharing threshold of tl = |Tl |/3+1. All group

leaders report back to the current RANDHERD leader with the public group key X̂l .

4. Key Certification. As soon as the RANDHERD leader has received all X̂ j , he combines

them to get the collective RANDHERD public key X̂ =∏m−1
j=0 X̂ j and starts a run of the CoSi

protocol to certify X̂ by requesting a signature from each individual node. Therefore, the

leader sends X̂ together with all X̂ j and each individual node checks that X̂ j corresponds

to its public group key and that X̂ is well-formed. Only if both checks succeed, the node

participates in the co-signing request, otherwise, it refuses. The collective signature on

X̂ is valid if there are least f /m +1 signatures from each group and the total number of

individual signatures across the groups is at least 2 f +1. Once a valid signature on X̂ is

established, the setup of RANDHERD is completed. The validity of X̂ can be verified by

anyone by using the collective public key X , as specified in the configuration C .

After a successful setup, RANDHERD switches to the operational randomness generation mode.

Below we describe how the protocol works with an honest and available leader. A dishonest or

failed leader can halt progress at any time, but RandHerd-Round uses a view-change protocol

as in RandHerd-Setup to recover from leader failures.

RandHerd-Round

In this mode, we distinguish between communications from the RANDHERD leader to group

leaders, from group leaders to individual nodes, and communications between all nodes

within their respective group. Each randomness generation run consists of the following seven

steps and can be executed periodically:

1. Initialization (Leader). The RANDHERD leader initializes a protocol run by broadcasting

an announcement message containing a timestamp w to all group leaders. All groups

will cooperate to produce a signature (ĉ, r̂) on w .

2. Group Secret Setup / Commitment (Groups / Servers). Upon the receipt of the an-

nouncement, each group creates a short-term secret v̂l , using a secret sharing threshold

tl , to produce a group commitment V̂l =G v̂l that will be used towards a signature of w .

Furthermore, each individual node randomly chooses vi ∈R Zq , creates a commitment

Vi = Gvi that will be used to globally witness, hence validate the round challenge ĉ,

and sends it to the group leader. The group leader aggregates the received individual

commitments into Ṽl =
∏

i∈Tl
Vi and sends (V̂l ,Ṽl) back to the RANDHERD leader.

3. Challenge (Leader). The RANDHERD leader aggregates the respective commitments

into V̂ = ∏m−1
l=0 V̂l and Ṽ = ∏m−1

l=0 Ṽl , and creates two challenges ĉ = H(V̂ ∥ w) and c̃ =

65

Chapter 4. Scalable Bias-Resistant Distributed Randomness

H(Ṽ ∥ V̂). Afterwards, the leader sends (ĉ, c̃) to all group leaders that in turn re-broadcast

them to the individual servers of their group.

4. Response (Servers). Server i stores the round group challenge ĉ for later usage, creates

its individual response ri = vi − c̃xi , and sends it back to the group leader. The latter

aggregates all responses into r̃l =
∑

i∈Tl
ri and creates an exception list Ẽl of servers in

his group that did not respond or sent bad responses. Finally, each group leader sends

(r̃l , Ẽl) to the RANDHERD leader.

5. Secret Recovery Request (Leader). The RANDHERD leader gathers all exceptions Ẽl

into a list Ẽ , and aggregates the responses into r̃ = ∑m−1
l=0 r̃l taking Ẽ into account. If

at least 2 f +1 servers contributed to r̃ , the RANDHERD leader sends the global group

commitment V̂ and the signature (c̃, r̃ , Ẽ) to all group leaders thereby requesting the

recovery of the group secrets.

6. Group Secret Recovery (Groups / Servers). The group leaders re-broadcast the received

message. Each group member individually checks that (c̃, r̃ , Ẽ) is a valid signature on

V̂ and only if it is the case and at least 2 f +1 individual servers signed off, they start

reconstructing the short-term secret v̂l . The group leader creates the group response

r̂l = v̂l − ĉ x̂l and sends it to the RANDHERD leader.

7. Randomness Recovery (Leader). The RANDHERD leader aggregates all responses r̂ =∑m−1
l=0 r̂l and, only if he received a reply from all groups, he releases (ĉ, r̂) as the collective

randomness of RANDHERD.

Randomness Verification

The collective randomness (ĉ, r̂) of RANDHERD is a collective Schnorr signature on the times-

tamp w , which is efficiently verifiable against the aggregate group key X̂ .

4.4.3 Security Properties

RANDHERD provides the following security properties:

1. Availability. Given an honest leader, the protocol successfully completes and produces

the final random output Z with high probability.

2. Unpredictability. No party learns anything about the final random output Z , except

with negligible probability, until the group responses are revealed.

3. Unbiasability. The final random output Z represents an unbiased, uniformly random

value, except with negligible probability.

4. Verifiability. The collective randomness Z is third-party verifiable as a collective Schnorr

signature under X̂ .

66

4.4. RandHerd: A Scalable Randomness Cothority

We make the same assumptions as in the case of RANDHOUND (Section 4.3.3) on the behavior

of the honest nodes and the cryptographic primitives RANDHERD employs.

RANDHERD uses a simple and predictable ahead-of-time election mechanism to choose the

temporary RANDHERD leader in the setup phase. This approach is sufficient because the

group assignments and the RANDHERD leader for the randomness phase of the protocol are

chosen based on the output of RANDHOUND. RANDHOUND’s properties of unbiasability and

unpredictability hold for honest and dishonest clients. Therefore, the resulting group setup

has the same properties in both cases.

Availability. Our goal is to ensure that with high probability the protocol successfully com-

pletes, even in the presence of an active adversary.

As discussed above, the use of RANDHOUND in the setup phase ensures that all groups are

randomly assigned. If the RANDHERD leader makes satisfactory progress, the secret sharing

threshold tl = f /m +1 enables 2 f /m honest nodes in each group to reconstruct the short-

term secret v̂l , hence produce the group response r̂l without requiring the collaboration of

malicious nodes. An honest leader will make satisfactory progress and eventually, output r̂ at

the end of step 7. This setup corresponds to a run of RANDHOUND by an honest client. There-

fore, the analysis of the failure probability of a RANDHOUND run described in Section 4.5.3 is

applicable to RANDHERD in the honest leader scenario.

In RANDHERD, however, with a probability f /n, a dishonest client will be selected as the

RANDHERD leader. Although the choice of a dishonest leader does not affect the group

assignments, he might arbitrarily decide to stop making progress at any point of the protocol.

We need to ensure RANDHERD’s availability over time, and if the current leader stops making

adequate progress, we move to the next leader indicated by the random output of RANDHOUND

and, as with common BFT protocols, we rely on view change [55, 149] to continue operations.

Unpredictability. We want to ensure that the random output of RANDHERD remains unknown

until the group responses r̂l are revealed in step 6.

The high-level design of RANDHERD closely resembles that of RANDHOUND. Both protocols

use the same thresholds, assign n nodes into m groups, and each group contributes exactly

one secret towards the final random output of the protocol. Therefore, as in RANDHOUND,

there will similarly be at least one RANDHERD group with at least an average number of honest

nodes. Furthermore, the secret-sharing and required group inputs threshold of tl = f +1

guarantees that for at least one group, the adversary cannot prematurely recover v̂l and

reconstruct the group’s response r̂l . Therefore, before step 6, the adversary will control at most

m −1 groups and obtain at most m −1 out of m responses that contribute to r̂ .

Unbiasability. Our goal is to prevent the adversary from biasing the value of the random

output r̂ .

As in RANDHOUND, we know that for at least one group the adversary cannot prematurely

67

Chapter 4. Scalable Bias-Resistant Distributed Randomness

recover r̂l and that r̂l contains a contribution from at least one honest group member. Further,

the requirement that the leader must obtain a sign-off from 2 f +1 individual nodes in step 4

on his commitment V̂ , fixes the output value r̂ before any group secrets r̂l are produced. This

effectively commits the leader to a single output r̂ .

The main difference between RANDHOUND and RANDHERD is the fact that an adversary who

controls the leader can affect unbiasability by withholding the protocol output r̂ in step 7,

if r̂ is not beneficial to him. A failure of a leader would force a view change and therefore a

new run of RANDHERD, giving the adversary at least one alternative value of r̂ , if the next

selected leader is honest, or several tries if multiple successive leaders are dishonest or the

adversary can successfully DoS them. The adversary cannot freely choose the next value

of r̂ , nor go back to the previous value if the next one is not preferable, the fact that he can

sacrifice a leadership role to try for an alternate outcome constitutes bias. This bias is limited,

as the view-change schedule must eventually appoint an honest leader, at which point the

adversary has no further bias opportunity. Section 4.4.4 further addresses this issue with an

improvement ensuring that an adversary can hope to hold leadership for at most O(logn)

such events before permanently losing leadership and hence bias opportunity.

Verifiability. The random output r̂ generated in RANDHERD is obtained from a TSS-CoSi

Schnorr signature (ĉ, r̂) on input w against a public key X̂ . Any third-party can verify r̂ by

simply checking the validity of (ĉ, r̂) as a standard Schnorr signature on input w using X̂ .

4.4.4 Addressing Leader Availability Issues

Each run of RANDHERD is coordinated by a RANDHERD leader who is responsible for ensuring

satisfactory progress of the protocol. Although a (honest or dishonest) leader might fail and

cause the protocol failure, we are specifically concerned with intentional failures that benefit

the adversary and enable him to affect the protocol’s output.

As discussed above, once a dishonest RANDHERD leader receives responses from group leaders

in step 7, he is the first one to know r̂ and can act accordingly, including failing the protocol.

However, the failure of the RANDHERD leader does not necessarily have to cause the failure of

the protocol. Even without the dishonest leader’s participation, f /m +1 of honest nodes in

each group are capable of recovering the protocol output. They need, however, a consistent

view of the protocol and the output value that was committed to.

Instead of requiring a CoSi round to get 2 f +1 signatures on V̂ , we use a Byzantine Fault

Tolerance (BFT) protocol to reach consensus on V̂ and consequently on the global challenge

ĉ =H(V̂ ∥ w). Upon a successful completion of BFT, at least f +1 honest nodes have witnessed

that we have consensus on the V̂ . Consequently, the ĉ that is required to produce each group’s

response r̂l = v̂l − ĉ x̂l is “set in stone” at this point. If a leader fails, instead of restarting

RANDHERD, we can select a new leader, whose only allowed action is to continue the protocol

from the existing commitment. This design removes the opportunity for a dishonest leader

68

4.4. RandHerd: A Scalable Randomness Cothority

biasing the output even a few times before losing leadership.

Using a traditional BFT protocol (e.g., PBFT [55]) would yield poor scalability for RANDHERD

because of the large number of servers that participate in the protocol. To overcome this

challenge, we use BFT-CoSi from ByzCoin [149], a Byzantine consensus protocol that uses

scalable collective signing, to agree on successfully delivering the commitment V̂ . Due to

the BFT guarantees RANDHERD crosses the point-of-no-return when consensus is reached.

Even if the dishonest leader, tries to bias output by failing the protocol, the new (eventually

honest) leader will be able to recover r̂ , allowing all honest servers to successfully complete

the protocol.

The downside of this BFT-commitment approach is that once consensus is reached and the

point-of-no-return is crossed, then in the rare event that an adversary controls two-thirds

of any group, the attacker can halt the protocol forever by preventing honest nodes from

recovering the committed secret. This risk may necessitate a more conservative choice of

group size, such that the chance of an adversary ever controlling any group is not merely

unlikely but truly negligible.

4.4.5 Extensions

Randomizing Temporary-Leader Election

The current set-up phase of RANDHERD uses a simple leader election mechanism. Because

the ticket generation uses only values known to all nodes, it is efficient as it does not require

any communication between the nodes but makes the outcome of the election predicable

as soon as the cothority configuration file C is available. We use this mechanism to elect a

temporary RANDHERD leader whose only responsibility is to run and provide the output of

RANDHOUND to other servers. RANDHOUND’s unbiasability property prevents the dishonest

leader from biasing its output. However, an adversary can force f restarts of RANDHOUND

and can, therefore, delay the setup by compromising the first (or next) f successive leaders in

a well-known schedule.

To address this issue, we can use a lottery mechanism that depends on verifiable random

functions (VRFs) [180], which ensures that each participant obtains an unpredictable “fair-

share” chance of getting to be the leader in each round. Each node produces its lottery ticket

as ti = H(C ∥ j)xi , where C is the group configuration, j is a round number, and xi is node

i ’s secret key, along with a NIZK consistency proof showing that ti is well-formed. Since an

adversary has at least a constant and unpredictable chance of losing the leadership to some

honest node in each lottery, this refinement ensures with high probability that an adversary

can induce at most O(logn) successive view changes before losing leadership.

69

Chapter 4. Scalable Bias-Resistant Distributed Randomness

BLS Signatures

Through the use of CoSi and TSS, RANDHERD utilizes collective Schnorr signatures in a thresh-

old setting. Other alternatives are possible. Specifically, Boneh-Lynn-Shacham (BLS) [39]

signatures require pairing-based curves, but offer even shorter signatures (a single elliptic

curve point) and a simpler signing protocol. In the simplified design using BLS signatures,

there is no need to form a fresh Schnorr commitment collectively, and the process does not

need to be coordinated by a group leader. Instead, a member of each subgroup, whenever

it has decided that the next round has arrived, produces and releases its share for a BLS

signature of the message for the appropriate time (based on a hash of view information and

the wall-clock time or sequence number). Each member of a given subgroup waits until a

threshold number of BLS signature shares are available for that subgroup, and then forms

the BLS signature for this subgroup. The first member to do so can then simply announce or

gossip it with members of other subgroups, combining subgroup signatures until a global BLS

signature is available (based on a simple combination of the signatures of all subgroups). This

activity can be unstructured and leaderless, since no “arbitrary choices” need to be made per-

transaction: the output of each time-step is completely deterministic but cryptographically

random and unpredictable before the designated time.

4.5 Evaluation

This section experimentally evaluates our prototype implementations of RANDHOUND and

RANDHERD. The primary questions we wish to evaluate are whether architectures of the two

protocols are practical and scalable to large numbers, e.g., hundreds or thousands of servers,

in realistic scenarios. Important secondary questions are what the important costs are, such

as randomness generation latencies and computation costs. We start with some details on the

implementation itself, followed by our experimental results, and finally, describe our analysis

of the failure probability for both protocols.

4.5.1 Implementation

We implemented PVSS, TSS, RANDHOUND, and RANDHERD in Go [118] and made these

implementations available on GitHub as part of the EPFL DEDIS lab’s Cothority framework.2

We reused existing cothority framework code for CoSi and network communication, and built

on the DEDIS advanced crypto library3 for cryptographic operations such as Shamir secret

sharing, zero-knowledge proofs, and optimized arithmetic on the popular Curve25519 elliptic

curve [25]. As a rough indicator of implementation complexity, Table 4.1 shows approximate

lines of code (LoC) of the new modules. Line counts were measured with GoLoC.4

2https://github.com/dedis/cothority
3https://github.com/dedis/crypto
4https://github.com/gengo/goloc

70

https://golang.org/
https://golang.org/
http://dedis.epfl.ch/
https://github.com/dedis/cothority
https://github.com/dedis/cothority
https://github.com/dedis/crypto
https://github.com/dedis/cothority
https://github.com/dedis/crypto

4.5. Evaluation

Table 4.1 – Lines of code per module

PVSS TSS RANDHOUND RANDHERD

300 700 1300 1000

4.5.2 Performance Measurements

Experimental Setup

We ran all our experiments on DeterLab5 using 32 physical machines, each equipped with

an Intel Xeon E5-2650 v4 (24 cores at 2.2 GHz), 64 GBytes of RAM, and a 10 Gbps network

link. To simulate a globally-distributed deployment realistically, we restricted the bandwidth

of all intern-node connections to 100 Mbps and imposed 200 ms round-trip latencies on all

communication links.

To scale our experiments up to 1024 participants given limited physical resources, we over-

subscribed the DeterLab servers by up to a factor of 32, arranging the nodes such that most

messages had to go through the network. To test the influence of oversubscription on our

experiments, we reran the same simulations with 16 servers only. This resulted in an over-

head increase of about 20%, indicating that our experiments are already CPU-bound and not

network-bound at this scale. We, therefore, consider these simulation results to be pessimistic:

real-world deployments on servers that are not oversubscribed in this way may yield better

performance.

RANDHOUND

Figure 4.4 shows the CPU-usage costs of a complete RANDHOUND run that generates a random

value from N servers. We measured the total costs across all servers, plus the costs of the client

that coordinates RANDHOUND and generates the Transcript. With 1024 nodes divided into

groups of 32 nodes, for example, the complete RANDHOUND run to generate randomness

requires less than 10 CPU minutes total, corresponding to a cost of about $0.02 on Amazon

EC2. This cost breaks down to about 0.3 CPU seconds per server, representing negligible

per-transaction costs to the servers. The client that initiates RANDHOUND spends about 3 CPU

minutes, costing less than $0.01 on Amazon EC2. These results suggest that RANDHOUND is

quite economical on today’s hardware.

Figure 4.5 shows the wall clock time of a complete RANDHOUND run for different configura-

tions. This test measures total time elapsed from when the client initiates RANDHOUND until

the client has computed and verified the random output. Our measurements show that the

wall clock time used by the servers to process client messages is negligible in comparison, and

hence not depicted in Figure 4.5. In the 1024-node configuration with groups of 32 nodes,

5http://isi.deterlab.net/

71

http://isi.deterlab.net/
http://isi.deterlab.net/

Chapter 4. Scalable Bias-Resistant Distributed Randomness

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

100

101

102

103

C
P
U
 U

sa
g
e
 (
se

c)

Randomness Generation Cost to Client

Randomness Generation Cost to Servers

128 256 512 768 1024
Number of Nodes

Figure 4.4 – Overall CPU cost of a RANDHOUND protocol run

randomness generation and verification take roughly 290 and 160 seconds, respectively.

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

100

101

102

103

W
a
ll

C
lo

ck
 T

im
e
 (
se
c)

Transcript Verification (External)

Randomness Generation (RandHound)

128 256 512 768 1024
Number of Nodes

Figure 4.5 – Total wall clock time of a RANDHOUND protocol run

RANDHERD

The RANDHERD protocol requires a setup phase, which uses RANDHOUND to form random

groups and CoSi to sign the RANDHERD collective key. The measured CPU usage of RANDHERD

setup is depicted in Figure 4.6. For 1024 nodes and a group size of 32, RANDHERD setup

requires roughly 40 CPU-hours total (2.3 CPU-minutes per node), corresponding to a cost

of $4.00 total on Amazon EC2 (0.3 cents per participant). The associated wall clock time we

measured, not depicted in the graphs, amounts to about 10 minutes.

After this setup, RANDHERD produces random numbers much more efficiently. Figure 4.7

72

4.5. Evaluation

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

100

101

102

103

104

105

106

C
P
U
 U
sa
g
e
 (
se
c)

RandHound

TSS Key Setup

CoSi

128 256 512 768 1024
Number of Nodes

Figure 4.6 – Total CPU usage of RANDHERD setup

illustrates measured wall clock time for a single RANDHERD round to generate a 32-byte

random value. With 1024 nodes in groups of 32, RANDHERD takes about 6 seconds per round.

The corresponding CPU usage across the entire system, not shown in the graphs, amounts to

roughly 30 seconds total (or about 29 CPU-milliseconds per node).

A clear sign of the server-oversubscription with regard to the network-traffic can be seen in

Figure 4.7, where the wall clock time for 1024 nodes and a group size of 32 is lower than the

one for a group size of 24. This is due to the fact that nodes running on the same server do not

have any network-delay. We did a verification run without server oversubscription for up to

512 nodes and could verify that the wall clock time increases with higher group-size.

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

0

2

4

6

8

10

W
a
ll
C
lo
ck
 T
im
e
 (
se
c)

128 256 512 768 1024
Number of Nodes

Figure 4.7 – Wall clock time per randomness creation round in RANDHERD

Figure 4.8 compares communication bandwidth costs for CoSi, RANDHOUND, and RANDHERD,

with varying number of participants and a fixed group size of 32 nodes. The straight lines

73

Chapter 4. Scalable Bias-Resistant Distributed Randomness

depict total costs, while the dashed lines depict the average cost per participating server. For

the case of 1024 nodes, CoSi and RANDHOUND require about 15 and 25 MB, respectively. After

the initial setup, one round of RANDHERD among 1024 nodes requires about 400 MB (excluding

any setup costs) due to the higher in-group communication. These values correspond to the

sum of the communication costs of the entire system and, considering the number of servers

involved, are still fairly moderate. This can be also seen as the average per server cost is less

than 300 KB for RANDHERD and around 20 KB for CoSi and RANDHOUND.

128 256 512 768 1024
Number of Nodes

10-2

10-1

100

101

102

103

104

C
o
m

m
u
n
ic

a
ti
o
n
 C

o
st

 (
M

B
y
te

)

RandHerd all Servers

RandHound all Servers

CoSi all Servers

RandHerd per Server

RandHound per Server

CoSi per Server

Figure 4.8 – Comparison of communication bandwidth costs between RANDHERD, RAND-
HOUND, and CoSi for fixed group size c = 32

Finally, Figure 4.9 compares RANDHERD, configured to use only one group, against a non-

scalable baseline protocol similar to RANDSHARE. Because RANDSHARE performs verifiable

secret sharing among all n nodes, it has computation and communication complexity of

O(n3). In comparison, RANDHERD has sublinear per-round complexity of O(logn) when the

group size is constant.

128 256 512 768 1024
Number of Nodes

100

101

102

103

W
a
ll

C
lo

ck
 T

im
e
 (
se

c)

RandShare

RandHerd

Figure 4.9 – Comparison of randomness generation times for RANDSHARE and RANDHERD

(group size c = 32 for RANDHERD and c = n for RANDSHARE)

74

4.5. Evaluation

4.5.3 Availability Failure Analysis

An adversary who controls too many nodes in any group can compromise the availability

of both RANDHOUND and RANDHERD. We can analyze the probability of availability failure

assuming that nodes are assigned randomly to groups, which is the case in RANDHOUND

when the client assigns groups honestly, and is always the case in RANDHERD. As discussed in

Figure 4.3.3, dishonest grouping in RANDHOUND amounts to self-DoS by the client and is thus

outside the threat model.

To get an upper bound for the failure probability of the entire system, we first bound the failure

probability of a single group, that can be modeled as a random variable X that follows the

hypergeometric distribution, followed by the application of Boole’s inequality, also known as

the union bound. For a single group we start with Chvátal’s formula [232]

P [X ≥ E [X]+ cd] ≤ e−2cd 2

where d ≥ 0 is a constant and c is the number of draws or in our case the group size. The

event of having a disproportionate number of malicious nodes in a given group is modeled

by X ≥ c − t +1, where t is the secret sharing threshold. In our case we use t = cp +1 since

E [X] = cp, where p ≤ 0.33 is the adversary’s power. Plugging everything into Chvátal’s formula

and doing some simplifications, we obtain

P [X ≥ c(1−p)] ≤ e−2c(1−2p)2

10 20 30 40 50 60 70
Group Size c

0

10

20

30

40

50

60

S
y
st

e
m

 F
a
ilu

re
 P

ro
b
a
b
ili

ty
 [

-l
o
g
2
(q
)]

Percentage p of Compromised Nodes

0.33
0.32

0.28
0.23

Figure 4.10 – System failure probability for varying group sizes

Applying the union bound on this result, we obtain Figure 4.10 and and Figure 4.11, which

show average system failure probabilities q for varying group sizes (c = 16, . . . ,64) and varying

adversarial power (p = 0.01, . . . ,0.33), respectively. Note that q on the y-axis is plotted in

“security parameter” form as − log2(q): thus, higher points in the graph indicate exponentially

lower failure probability. Finally, Figure 4.2 lists failure probabilities for some concrete config-

urations. There we see, for example, that both RANDHOUND and RANDHERD have a failure

75

Chapter 4. Scalable Bias-Resistant Distributed Randomness

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage p of Compromised Nodes

0

20

40

60

80

100

120

S
y
st
e
m
 F
a
ilu
re
 P
ro
b
a
b
ili
ty
 [
-l
o
g
2
(q
)]

Group Size c

16
24

32
40

Figure 4.11 – System failure probability for varying adversarial power

probability of at most 2−10.25 ≈ 0.08% for p = 0.33 and c = 32. Moreover, assuming p = 0.33,

we identified the point where the system’s failure probability falls below 1% for a group size of

c = 21.

Table 4.2 – System failure probabilities q (given as − log2(q)) for concrete configurations of
adversarial power p and group size c

p | c 16 24 32 40

0.23 13.13 19.69 26.26 32.82
0.28 8.66 15.17 17.33 21.67
0.33 5.12 7.69 10.25 12.82

4.6 Conclusions

Although many distributed protocols critically depend on public bias-resistant randomness

for security, current solutions that are secure against active adversaries only work for small

(n ≈ 10) numbers of participants [49, 141]. In this work, we have focused on the important

issue of scalability and addressed this challenge by adapting well-known cryptographic primi-

tives. We have proposed two different approaches to generating public randomness in a secure

manner in the presence of a Byzantine adversary. RANDHOUND uses PVSS and depends on

the pigeonhole principle for output integrity. RANDHERD relies on RANDHOUND for secure

setup and then uses TSS and CoSi to produce random output as a Schnorr signature verifiable

under a collective RANDHERD key. RANDHOUND and RANDHERD provide unbiasability, unpre-

dictability, availability and third-party verifiability while retaining good performance and low

failure probabilities. Our working prototype demonstrates that both protocols, in principle,

can scale even to thousands of participants. By carefully choosing protocols parameters,

however, we achieve a balance of performance, security, and availability. While retaining a

failure probability of at most 0.08% against a Byzantine adversary, a set of 512 nodes divided

into groups of 32 can produce fresh random output every 240 seconds in RANDHOUND, and

every 6 seconds in RANDHERD after initial setup.

76

5 Decentralized Tracking and Long-
Term Relationships using SKIPPER

5.1 Introduction

Today’s network services and applications commonly maintain long-term relationships with

users and their devices through centralized account databases and login credentials (e.g.,

username/password). Users’ devices, in turn, rely on many other centralized services each

time they access such a network application: e.g., using centralized DNS [188] or DNSSEC [87]

servers to look up the server’s IP address, using digital certificates signed by central Certificate

Authorities (CA) [66] to authenticate the server, and using centralized storage such as iCloud

keychains [238] to cache login credentials to the user’s network applications. Centralized

network applications and their user databases have become prime targets enabling hackers to

compromise the security and privacy of millions of users at once [20, 244]. Further, centralized

authorities required to connect to these applications, such as Certificate Authorities, have

become a regular target for nation-state attackers [65]. Users cannot even rely on the software

they run locally, because they use centralized software update services “secured” with code-

signing keys that are readily available to malware authors on the black market [143] – and have

even been accidentally published [186].

Less-common decentralized application architectures, such as peer-to-peer file-sharing [61,

24] and cryptocurrencies [191, 250], enable users to participate anonymously or pseudony-

mously without relying on centralized authorities or accounts. However, a key technical

challenge that has limited the security and privacy benefits of decentralized architectures

in practice is the problem of maintaining long-term relationships between a decentralized

application and its users’ many client devices. Clients must be able to track the decentral-

ized application’s state securely over the short-term, e.g., as transactions are committed to a

blockchain; over the medium-term, e.g., as the set of available servers or active blockchain

miners change dynamically; and over the long-term, e.g., as client- and server-side software

and cryptographic keys evolve independently or are replaced due to security incidents.

Existing solutions to this decentralized relationship problem impose on clients either the

high resource costs of “first-class” participation in a heavyweight decentralized protocol, or

77

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

the security cost of “re-centralization” by delegating critical functions to, and hence trusting,

centralized servers. As a classic example of this tradeoff, the originally “flat” peer-to-peer

topology of Freenet [61] gave way for efficiency reasons to designs in which clients delegated

search and other functions to more powerful supernodes, which lightened clients’ loads but

could also potentially censor or poison content forwarded to clients. Similarly, to avoid relying

on central authorities entirely, a Bitcoin [191] client must follow the blockchain itself, incurring

the high bandwidth cost of downloading blocks and the high CPU costs of verifying them,

just to check that a payment transaction has committed. In practice “light” clients simply

trust centralized Bitcoin “full nodes” to tell them if a transaction has committed – or even just

trust a Bitcoin exchange for complete management of the user’s Bitcoin wallet much like a

traditional bank.

We address the decentralized relationship challenge with SKIPPER, a blockchain-inspired

architecture enabling decentralized or partly-decentralized services to adapt and evolve at

diverse time-scales, while ensuring that resource-constrained clients can efficiently and se-

curely track the service’s evolution. SKIPPER enables a resource-constrained client device to

find and authenticate the service’s latest configuration even after being offline for weeks or

months and to verify that the set of servers (configuration) he trusts is fresh (not vulnerable to

replay attacks).

These capabilities make SKIPPER the first architecture we are aware of enabling a decentralized

service to maintain secure long-term relationships efficiently with a large number of clients,

without clients needing either to trust central authorities or to participate continually in

heavyweight protocols. While designed with highly decentralized systems in mind, SKIPPER’s

decentralized relationship management may also be useful to centrally-managed services

wishing to reduce the need to trust widely-distributed client-facing infrastructure, such as in

mirrored software distribution/update systems [75, 255, 132], Web content delivery networks

(CDNs) [5], or centrally-banked cryptocurrencies [74].

SKIPPER’s key technical contribution is Skipchains, a blockchain-like structure enabling clients

to follow and efficiently navigate arbitrarily-long service configuration timelines, both forward

(e.g., to validate a newer service configuration than the last one the client has seen) and

backward (e.g., to verify that a particular transaction was committed at some historical time).

Skipchains are naturally inspired by skip lists [207, 190], but efficiently support traversal both

backward and forward in time by using hash-links to represent pointers into the past, and

using multisignatures [221, 38] to create pointers into the future. By building on the CoSi

protocol for scalable collective signing [243], many independent participants implementing

a SKIPPER service (e.g., blockchain miners) can separately validate and “sign off” on each

forward link, contributing to a compressed multisignature that is almost as compact and cheap

to verify as a single conventional digital signature. Because these collective signatures are

offline-verifiable, resource-constrained clients need not track a blockchain continuously like

a Bitcoin full node, but can privately exchange, gossip, and independently validate arbitrary

newer or older blocks or transactions on-demand. While multisignatures and collective

78

5.2. Motivation

signing protocols are pre-existing techniques, this chapter’s contribution is their use to create

the efficiently navigable Skipchain data-structure.

Second, skipchains can represent not only application timelines that users track, but also user-

controlled identity timelines that applications track in order to authenticate users and maintain

per-user state, thus providing a more decentralized and user-controlled alternative to centrally-

managed and frequently-hacked login/password databases. Finally, SKIPPER explores the use

of skipchains in multiple roles, e.g., using a root-of-trust skipchain secured using offline keys

for long-term service evolution or to validate more rapidly-changing configuration and/or

transaction skipchains secured using online keys.

Our prototype implementation of SKIPPER demonstrates the use and benefits of skipchains in

a simple proof-of-concept application of a software update service. For example, skipchains

can increase the security of PyPI updates with minimal overhead, whereas a strawman ap-

proach would incur the increase of 500%. Further, our prototype uses skipchains to represent

distributed user-identities as sets of per-device SSH [252] key-pairs, enabling users to manage

per-device keys more easily and enabling applications to track their users’ key-configuration

changes securely and seamlessly without relying on username/password databases.

In summary, the key contributions SKIPPER makes are (a) skipchains, a novel timeline-tracking

structure enabling users to track applications and vice versa without trusting centralized

intermediaries, (b) use of skipchains “in reverse” to allow applications to authenticate users

via distributed user identities.

5.2 Motivation

In this Section, we summarize the systems that motivated the development of SKIPPER.

5.2.1 The Relationship Problem

A fundamental problem of distributed architectures may be summarized as relationship-

keeping : enabling client devices, representing users, to connect securely with servers else-

where in the network that can satisfy the clients’ requests, and similarly allowing applications

to authenticate their users and maintain per-user state. Relationship-keeping in today’s hostile

Internet is challenging because (a) attackers in the network might control some of the end-

points and be able to compromise these interactions, e.g., by impersonating clients to servers

and vice versa; (b) client software (whether web browsers or downloaded applications) is often

only loosely synchronized with evolving server software and their security configurations (e.g.,

certificates); and (c) services must scale gracefully to handle the client-imposed load, bal-

ancing requests across a dynamically varying set of available servers, without compromising

security.

Today’s widely-deployed infrastructure addresses this relationship challenge by relying perva-

79

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

sively on indirection through centralized authorities, thereby creating many single points of

failure and high-value attack targets.

“All problems in computer science can be solved by another level of indirection”

— David Wheeler

Clients download software and updates signed by software vendors and repositories, which

may be compromised [52], coerced [195, 103], or lose their keys [186]. This software then uses

centralized directories [188, 87] to find and connect with a service, and uses centralized certifi-

cate authorities to secure these connections [81], but both directory and certificate authorities

are prone to security failures [44, 45]. Finally, typical cloud-based services just push the prob-

lem deeper without solving it, by excessively relying on the “indirection principle” to scale.

They pass connections through centralized load-balancing front-ends [189] and/or delegate

authentication mechanisms to centralized servers within the provider’s infrastructure [136],

each of which represents single points of failure and prime attack targets [19].

Decentralized architectures attempt to avoid such centralization and associated single points

of failure, but have not yet proven sufficiently general, secure, or scalable in practice. Cer-

tificate Transparency (CT) [163] proposes a solution of forcing certificates to be publicly

logged and audited. This approach, however, can only offer weak security in the absence of

network partition and eclipse attacks as it can only retroactively detect misbehavior. Unstruc-

tured peer-to-peer systems [61, 131] and distributed hash tables [236, 216] attempted to offer

decentralized search and connectivity protocols, but became widely deployed only in centrally-

managed contexts [161, 76] due to persistent weaknesses in decentralized operation [231]

such as Sybil attacks [84] and content poisoning attacks [169]

Bitcoin [191] reinvigorated interest in decentralized architectures, mitigating the Sybil attack

problem via competitive proof-of-work “mining.” While groundbreaking and inspiring excit-

ing new directions such as smart contracts [250, 153], decentralized blockchain architectures

face major efficiency and scalability challenges [70], and are currently nowhere near efficient

or scalable enough to replace current centralized network service architectures. Further, the

incentive structure for mining has caused Bitcoin and other currencies to re-centralize in

practice, until only two or three miners (sometimes just one) could effectively control the

blockchain. Finally, current blockchain architectures fail to extend security guarantees effi-

ciently to resource-constrained “light” clients, which must either suffer inordinate bandwidth

and resource costs to track the blockchain directly, or sacrifice decentralization by placing

trust in centralized full nodes or exchange services.

5.2.2 Motivating Examples

In this section, we mention some systems that can increase their security and usability with

SKIPPER.

80

5.2. Motivation

Software Updates The automatic detection and installation of software updates is one of

the most common tasks of every computer. There are multiple agents implementing this

functionality, like package managers [75, 255, 132], and library managers [209], however these

are proven to be insecure [158]. This happens due to the infrequent key rotation, that leads

to long attack windows. Furthermore, the lack of transparency in the whole process and the

existence of few centrally controlled signing keys, allows the existence of forgery request from

state level adversaries [103].

To show that it is possible to use SKIPPER with low overhead we want to focus on a particular

system and increases its security. TUF [217, 158] is built to secure software updates, by using

delegations and is considered the state-of-the-art. TUF decouples the multiple roles that a

software repository has to serve into multiple trust domains, each of which has a specific key

or set of keys. This way there can be different trade-offs between security and usability. Keys

that need to be used often, are kept online but their compromise can do little damage. On the

other hand, security-critical keys are kept offline and rarely used because the attacker could

fully impersonate the software repository upon compromise.

Both online and offline keys need to rotate periodically in order to remain secure, but there are

many clients that update infrequently. These clients need a way to get securely up-to-date in a

trustless environment assuming that an attacker has compromised some of the keys they used

to trust. Additionally, there is no anti-equivocation mechanism, which means that a dishonest

or coerced repository can create multiple versions of the same software, for specific clients

without being detected. Finally, in TUF the updates are not linked together which means that

a victim cannot detect that he was attacked even after recovery, which allows an attacker to

install malware in the victim’s system and then activate it whenever he wants.

User Identities One of the problems that emerged by the spurt of the Internet of Things and

cloud computing, is that every user owns multiple identities with which she wants to access

multiple remote locations. These accounts are not static or eternally secure, meaning that the

user needs to take care of correct access control and manage all her digital identities.

As a motivation to this work, we look into handling user identities and specifically tracking the

development of a user’s accounts and connected public keys. The goal is to enable tracking of

changes in the identity of the user like email addresses and public keys. This is applicable in

multiple systems like PGP [90] or SSH [252], but we specifically focused on SSH.

SSH has a trade-off between usability and security, with usability being almost always preferred.

The average user creates SSH keys at her laptop (frequently without a pass-phrase) and

copies the private key to every other device she uses. Then she uploads the public key in the

authorized_keys configuration file of servers she wants to remotely access, granting root

privileges to it. Although this is easy since the user copies the private key to her new laptop

and everything works, it doesn’t do much for security. If an attacker steals a device, he has

physical access to the SSH key. Furthermore, since a change of the SSH key would impose

81

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

a big overhead, the first SSH key is eternal, providing the attacker with eternal, unbounded

access. This unbounded root access means that the attacker has write privileges to the

authorized_keys, giving him the ability to lock out the legitimate user.

On the other hand, the recommended practice [192] is to create one key per host and limit

the damage an attacker can do when compromising one of the user’s devices, by configuring

the key’s privileges to be a subset of the root privileges. If this is combined with the frequent

rotation of keys, it can already guarantee a higher level of security. However, this practice

requires a user to update the access lists of numerous servers. Finally, if a highly trusted

key (e.g., laptop’s) is compromised, the attacker can still get root access and update the

authorized_keys to exclude the actual user.

5.3 Overview

In this section, we introduce SKIPPER, a framework for secure and efficient decentralized

relationship-keeping. First, we give an overview of the architecture and then introduce the

notion of timelines and tracking.

5.3.1 Security Goals and Threat Model

The goal of SKIPPER is to enable secure tracking of an evolving server-side timeline, in a de-

centralized environment, without the need to trust centralized intermediaries such as lookup

services or certificate authorities. The server side can change, partially or completely, its

representative public keys, in arbitrary timings without jeopardizing the security of the clients.

After bootstrapping, the client should be able to autonomously retrieve and verify the full

timeline (or the useful parts), without needing to trust a “special supernode”. Furthermore, a

client that has stopped tracking the timeline updates should be able to securely, autonomously

and efficiently retrieve the last version of the system. Finally, SKIPPER enables a client to be

certain before accepting any update that many independent observers have witnessed and

logged the update and have verified that there is no equivocation (no other valid timeline) If

an attempt to fork the timeline is detected, this will signify a compromised key and SKIPPER

should provide means to defend or recover quickly, whistleblowing the problem to any affected

clients and protecting everybody else.

The threat model of the system considers an adversary that is able to compromise only online

keys and can respond to client requests. Furthermore, any given group of “trustees” has a

maximum number of 1
3 of Byzantine Faults.

5.3.2 Architectural Model and Roles

Figure 5.1 illustrates SKIPPER’s abstract architectural model, which is conceptually indepen-

dent of particular applications. We explore later how SKIPPER maps to particular example

82

5.3. Overview

Servers

Users

Managers
(e.g., developers, trustees)

Control

Tracking, Access

Figure 5.1 – Architectural Roles in SKIPPER

application domains.

Participants in a SKIPPER service play three logical roles, which we term client, server, and

manager. Clients represent users of the service, who need to track the service’s state and

maintain a relationship with the servers representing it. The servers actually implement

the critical functions of the service, producing a timeline that the clients follow to track

configuration changes and submit requests. The managers represent whatever authority has

(perhaps collective) power to decide and authorize changes to the service’s configuration,

such as by adding or removing participants, revoking or updating cryptographic keys, and

rolling out new software or protocol versions either incrementally or en masse. Some SKIPPER

participants may play multiple roles: e.g., a server may also be a client, and a client may also

be a manager.

This simple three-role model is compatible with many types of decentralized systems. For

example, in Bitcoin [191] and related cryptocurrencies [250, 74, 149], the clients are user

devices wishing to send and receive payments, the servers are the miners who extend the

blockchain and enforce its consistency, and the managers are the developers who decide what

protocol and software changes to roll out at which times. In the Tor anonymity system [82],

the clients are users that request and use anonymous communication circuits, the servers are

the public Tor relays that accept these requests and forward traffic over these circuits, and the

managers are the ten semi-trusted directory authorities who control the list of relays and the

bandwidth-capacity information that clients use to pick relays when creating circuits.

We also intend SKIPPER to be usable by – and potentially useful to – services that are centrally

managed, but wish to have a decentralized client-facing “service cloud” for security, privacy,

scalability, or other reasons. In this case, we still apply the model in Figure 5.1, but with

only one entity (or its representatives) serving the manager role. One example is software

update services, in which a single company or tight-knit group of developers serves as the

manager who creates a timeline of versions of a software package or repository, which must

83

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

be distributed to and validated by a large number of clients through a network of preferably

untrusted mirror sites. Web CDNs [5, 63] offer a related example, where one (centralized)

owner of a website desires the CDN’s help in offloading content distribution load and attack

protection. While current CDNs themselves are centralized and must be trusted by the website

owners using them, some website owners might prefer to decentralize the client-facing CDN

role and reduce the trust that must be placed in any one entity [181, 155].

5.3.3 Timelines and Tracking

We refer to timeline as a list of updates to the state of a system. These updates can be the

evolution of the roster of agents ensuring the correctness of the application (configurations),

or updates of the application state (data) as the service operates.

Tracking is the action of following a timeline. Both servers and clients track configuration and

data timelines for different purposes. Servers are defined by the configuration timeline and

rather create it than track it, so that the system remains correct. A subset of servers is also the

group that allows for the append of new updates at the data timeline securely, and the full set

of servers opportunistically track the data timeline to verify the correctness. Contrary, clients

track the data timeline to retrieve the latest application state and track the configuration

timeline to verify that the data they retrieved are verified by the correct agents.

For tracking to be secure, timelines need to be created, so that a client can crawl and verify

the timeline without needing to trust centralized authorities or other intermediaries. Given a

secure reference to (e.g., a cryptographic hash of) anyone correct point in the timeline, the

client should be able to find the latest correct point securely – e.g., the latest official version

of a software package or CDN-mirrored website – without having to trust any intermediary.

Further, given a secure reference to any point in the timeline, the client should efficiently be

able to verify the existence of any other point in the timeline proposed by another client: e.g.,

to verify a committed transaction representing a payment in a cryptocurrency blockchain.

5.4 Design of SKIPPER

In this section, we introduce the concept of skipchains, the core components of SKIPPER. We

start from a base case that is composed of a tamper-evident log managed by a central authority.

Afterwards, we transform this construction into skipchains step-by-step by addressing the

following challenges:

1. Key Evolution We add forward linking to enable key rotation and trust delegation [137]

in a secure manner.

2. Decentralization We introduce decentralization via cothorities [243] which allows to

audit the actions of cothority members and eliminates forking.

84

5.4. Design of SKIPPER

3. Efficiency We utilize techniques from skiplists [207, 190] to be able to skip multiple

steps in either direction of the chain enabling logarithmic instead of linear timeline

traversal.

5.4.1 Centrally Managed Tamper-Evident Logs

The simplest way to implement a timeline is in the form of a log. Every new update is logged

and anyone tracking the head of the log becomes immediately aware of any changes. By

using tamper-evident logs [71, 163, 168] one can provide some protection in case of a key

compromise of the log-managing authority. We implement our tamper-evident log as a

blockchain [191] where every update is put into a block together with a back-link in the form

of a cryptographic hash of the previous block. As a result, each new block depends on every

previous one and there is no way to tamper with past blocks. A client which wants to catch

up with the latest updates can request missing blocks from the authority and then crawl

through the back-links until it finds the last known block. This way the client can verify that

the authority provided a linear history.

5.4.2 Anti-Equivocation via Collective Witnessing

One of the problems of trusting a centralized authority to maintain SKIPPER’s timeline is that it

can equivocate, i.e., present alternate logs to the public and to some selected targets. CT [163]

and CONIKS [178] propose the use of auditors that try to detect such equivocations. In these

systems, the authorities maintaining tamper-evident logs post a summary of their log in the

form of a Merkle Tree Root (MTR). Auditors collect these MTRs and gossip them trying to

retroactively detect inconsistencies. Although this approach may work when auditors are

well connected with the targeted users, there is no guarantee that an equivocated MTR will

propagate from the target user to the auditors and even if it does, it might still be too late for

the targeted user.

In our next step towards SKIPPER, we tackle the problem of such stealthy equivocation, by

employing collective witnessing via a cothority. This approach provides pro-active security as

no client will trust the claims of an authority maintaining a timeline, unless this timeline is

collectively signed and approved by a diverse set of witnesses. Specifically, we make SKIPPER’s

log cothority-controlled hash chains that create a public history of each timeline. When

a timeline update is announced by an authority, the cothority checks that the update is

semantically correct depending on the application (e.g., the software update is signed by the

authoritative developers [195]) and that there is no fork in the hash-chain (i.e., that the parent

hash-block is the last one publicly logged and that there is no other hash-block with the same

parent) and runs BFT-CoSi [149] to create a new collective signature. This approach provides

an efficient and secure mechanism for timeline extension and moreover allows auditing the

actions of all cothority members since malicious nodes can be detected and excluded quickly.

The only way to convince the client to accept an equivocated update is to submit it to the

85

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

cothority for approval and public logging. Hence, it is not possible for the adversary to sign an

equivocated update and keep it “off the public record”.

5.4.3 Evolution of Authoritative Keys

So far, we have assumed that cothority keys are static, hence clients who verify (individual or

collective) signatures need not rely on centralized intermediaries such as CAs to retrieve those

public keys. This assumption is unrealistic, however, as it makes a compromise of a key only

a matter of time. Collective signing exacerbates this problem, because for both maximum

independence and administrative manageability, witnesses’ keys might need to rotate on

different schedules. To lift this assumption without relying on centralized CAs, we construct a

decentralized mechanism for a trust delegation that enables the evolution of the keys. As a

result, developers and cothorities can change, when necessary, their signing keys and create a

moving target for an attacker, and the cothority becomes more robust to churn.

To implement this trust delegation mechanism, we introduce forward-linked blockchains. A

forward-linked blockchain is a blockchain-like data structure where (a) every block represents

the set of authoritative keys representing a certain entity (e.g., the public keys of a cothority)

and (b) has forward links that delegate trust from an old representation to a new one, enabling

anyone to crawl the chain forward and get up-to-date.

Forward links result in two challenges: first, forward-links can only be added retroactively to

blocks of the log, as at the time of block creation, future blocks do not yet exist. Second, for the

creation of forward-links, we cannot rely on cryptographic hashes as in the case of back-links,

since it would result in a circular dependency between the forward-link of the current and the

back-link of the next block. To solve both problems we employ digital signatures. An authority

that wants to evolve, i.e., rotate its key, creates a new block containing the new key and a

back-link to the current head. Afterwards, it signs the new block with its current key thereby

creating a forward-link from the current to the new block which makes the latter also the new

head of the chain. That way, the authority delegates the trust from its old key to the new one

and a client following the chain in the forward direction can easily verify each step it is taking.

5.4.4 Skipchains

Finally, we extend the above design to provide efficient (i.e., logarithmic) navigability both

forward and backward in time via the full skipchain structure we detail here.

Skipchains are authenticated data structures that combine ideas from blockchains [148] and

skiplists [207, 190]. Skipchains enable clients (1) to securely traverse the timeline in both

forward and backward directions and (2) to efficiently traverse short or long distances by

employing multi-hop links. Backward links are cryptographic hashes of past blocks, as in

regular blockchains. Forward links are cryptographic signatures of future blocks, which are

added retroactively when the target block appears.

86

5.4. Design of SKIPPER

time

t − 4 t − 3 t − 2 t − 1 t t + 1 t + 2 t + 3 t + 4

1

2

3

1

2

3

height

Skipblock Forward link Backward link

Figure 5.2 – A deterministic skipchain S 3
2

We distinguish randomized and deterministic skipchains, which differ in the way the lengths of

multi-hop links are determined. The link length is tied to the height parameter of a block that

is computed during block creation, either randomly in randomized skipchains or via a fixed

formula in deterministic skipchains. In both approaches, skipchains enable logarithmic-cost

timeline traversal, both forward and backward.

Design We denote a skipchain by S h
b where h ≥ 1 and b > 0 are called skipheight and

skipbasis, respectively. If 0 < b < 1 we call the skipchain randomized; and if b ≥ 1 (b integer),

we call it deterministic. The elements of a skipchain are skipblocks Bt = (idt ,ht ,D t ,Bt ,Ft)

where t ≥ 0 is the block index. The variables idt , ht , D t , Bt , and Ft denote block identifier,

block height, payload data, list of backward links, and list of forward links, respectively. Both

Bt and Ft can store exactly ht links and a reference at index 0 ≤ i ≤ ht −1 in Bt (Ft) points to

the last (next) block in the timeline having at least height i +1. For deterministic skipchains

this block is Bt− j (Bt+ j) where j = bi .

The concrete value of ht is determined by the dependency of the skipchain’s type: if S h
b is

randomized, then a coin, with probability b to land on heads, is repeatedly flipped. Once it

lands on tails, we set ht = min{m,h} where m denotes the number of times it landed on heads

up to this point. If S h
b is deterministic, we set

ht = max{i : 0 ≤ i ≤ h ∧0 ≡ t mod bi−1} .

Figure 5.2 illustrates a simple deterministic skipchain.

During the creation of a block, its identifier is set to the (cryptographic) hash of D t and Bt ,

both known at this point, i.e., idt =H(D t ,Bt). For a backward link from Bt to Bt− j , we simply

store idt− j at index i in Bt . This works as in regular blockchains but with the difference that

87

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

links can point to blocks further back in the timeline.

Forward links [148], are added retroactively to blocks in the log as digital (multi-)signatures.

For a forward link from Bt to Bt+ j , we store the cryptographic signature 〈idt+ j 〉Et at index

i in Ft where Et denotes the entity (possibly a decentralized collective such as a BFT-CoSi

cothority [149, 148, 243]) that represents the head of trust of the system during time step t . To

create the required signatures for the forward links until all slots in Ft are full, in particular, Et

must “stay alive” and watch the head of the skipchain. Once this is achieved, the job of Et is

done and it ceases to exist.

5.4.5 Useful Properties and Applications

Skipchains provide a framework for timeline tracking, which can be useful in domains such as

cryptocurrencies [149, 191, 150], key-management [148, 178], certificate tracking [163, 2] or, in

general, for membership evolution in decentralized systems [242, 243]. Beyond the standard

properties of blockchains, skipchains offer the following two useful features.

First, skipchains enable clients to securely and efficiently traverse arbitrarily long timelines,

both forward and backward from any reference point. If the client has the correct hash of an

existing block and wants to obtain a future or past block in the timeline from an untrusted

source (such as a software-update server or a nearby peer), to cryptographically validate

the target block (and all links leading to it), the client needs to download only a logarithmic

number of additional, intermediate blocks.

Secondly, suppose two resource-constrained clients have two reference points on a skipchain,

but have no access to a database containing the full skipchain, e.g., clients exchanging peer-

to-peer software updates while disconnected from any central update server. Provided these

clients have cached a logarithmic number of additional blocks with their respective reference

points – specifically the reference points’ next and prior blocks at each level – then the two

clients have all the information they need to cryptographically validate each others’ reference

points. For software updates, forward validation is important when an out-of-date client

obtains a newer update from a peer. Reverse validation (via hashes) is useful for secure

version rollback, or in other applications, such as efficiently verifying a historical payment on

a skipchain for a cryptocurrency.

5.4.6 Security Considerations for Skipchains

We consider forward-links to be more “fragile” than back-links from a security perspective, for

several reasons. If any single forward-link is completely compromised, then potentially so is

any client that tries to follow that link. For example, if an attacker can forge a forward-link –

because the attacker holds a threshold of colluding participants in a collective signing group –

then the attacker can forge an alternate “future timeline” and direct out-of-date clients down

that forged timeline. Further, such an attacker can potentially equivocate and provide different

88

5.5. Multi-level Relationships

forged timelines to different clients. In addition, the cryptographic foundations of current

digital signature schemes may be more susceptible than cryptographic hash functions to

attacks by quantum computers in the longer term. Thus, even with collective signing, it is

preferable to rely more on back-links than forward-links whenever possible.

These properties create a need to balance between efficiency and security considerations

for “long” forward-links. Long forward-links are better for allowing extremely out-of-date

clients who have been offline for a long time to catch up quickly, but their downside is that the

(collective) holders of the private keys corresponding to the starting point for the forward-link

must hold and protect their secret keys for a longer time period. Thus, we suggest imposing a

maximum time period that forward-links are allowed to cover (and hence a maximum lifetime

for the secret keys needed to sign them): a one-year forward-skip limit seems likely to be

reasonable for example. Any client several years out of date must then follow forward-links

linearly one year at a time, but historically, clients that are more than 5–10 years out-of-

date may stop working anyway for unrelated technological obsolescence reasons such as

incompatible software or protocols.

5.5 Multi-level Relationships

In this Section, we explore the different timelines that SKIPPER models, which can be layered

to combine usability, security, and performance.

5.5.1 Multi-level Service Timelines

The need for secure timeline tracking exists in multiple administrative timescales to allow for

different trade-offs between usability, security, and performance. Specifically the most-critical

secret keys exist for long timescales, should only be used rarely and be kept offline. while lower

valued keys can be online to enable automatic signing; these lower-valued keys are at a higher

risk of compromise, but the impact of the attacks is low, detectable and recoverable.

We propose three useful and complementary timeline roles, namely (a) root-of-trust timeline,

(b) control/configuration timeline, and (c) data/transaction timeline. Finally, we introduce

a timestamping role that the configuration timeline fulfills which protects against freeze

attacks [217]. A freeze attack happens when an adversary first eclipses all network connections

from a target client and then serves him stale data. For example, he can send him an old

configuration block which he (the adversary) managed to compromise after a long time period.

Root-of-Trust Timeline The Internet is an inherently trustless and hostile environment. Any

system that wants to operate securely in such a setting, needs to provide a certain base level of

trust, from where a client can either securely request a service or start its navigation and reach

the correct point of service over a previously established chain of trust.

89

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

Due to its fundamental security role, the root of trust is obviously the most critical one from a

security perspective and has the highest value to attackers. The root signing keys are often

very long-lived and should receive a high level of protection. This might include storing them

offline in a secured environment (e.g., a Yubikey) and minimizing the possibility of exposure to

attackers by only using them when absolutely necessary. Such special situations might include

events like the need for revocation and replacement of compromised keys. Many systems,

like DNSSEC [87, 2] or X.509 [66], provide such roots of trust by anchoring. Another option is

to provide new trusted roots through software updates [82], however, in both situations, the

update of the root is hard especially if the previous anchor is compromised.

Control/Configuration Timeline Due to the necessity of securing the root of trust, it cannot

be assumed that the root level service is permanently available. Hence, there is usually

an online representative of the root layer, which we call the control layer, that has a more

restricted set of permissions but that is able to serve clients and monitor applications. As a

consequence, the signing keys need to be stored online which puts them at a higher risk of

being compromised by attackers but on the other hand, allows to efficiently serve clients. The

life span of epochs in the control layer is usually shorter than of those in the root layer, for

example, due to the need for key rotation or participation churn. An example of a control-layer

timeline is the key-block blockchain of ByzCoin where the miners delegate trust to the next

committee by collectively signing the new valid key-block.

Data/Transaction Timeline These timelines may or may not hold authoritative keys de-

pending on the application. For example, it may be a blockchain that stores transactions

and/or data such as the micro-block blockchain of ByzCoin [149] or the transparent log of

CONIKS and CT. On the other hand, there are applications where the identity management is

strongly integrated into the application and trust delegation is required even at this low-level.

One such application is Chainiac [195], where the data timeline does hold the keys of the

developers of a software update and data-blocks are doubly linked. Another is our SSH-key

management described in Section 5.6

Timestamp Role of Control Timeline Finally, the TIME role provides a timestamp service

that informs clients of the latest version of a package, within a coarse-grained time interval.

Every TIME block contains a wall-clock timestamp and a hash of the latest release. The CONFIG

leader creates this block when a new DATA skipblock is co-signed, or every hour if nothing

happens. Before signing it off, the rest of the independent servers check that the hash inside

the timestamp is correct and that the time indicated is sufficiently close to their clocks (e.g.,

within five minutes). From an absence of fresh TIME updates and provided that clients have an

approximately accurate notion of the current time1, the clients can then detect freeze attacks.

1 Protecting the client’s notion of time is an important but orthogonal problem [174], solvable using a times-
tamping service with collectively-signed proofs-of-freshness, as in CoSi [243].

90

5.6. Prototype Implementation

5.5.2 Multi-Layer Trust Delegation in SKIPPER

time

root

config

data

forward-link (co-signature)

backward-link (hash)

optional links

timestamps

| | | | | | | | | | | | | | | | | |

Figure 5.3 – Trust delegation in SKIPPER

SKIPPER is a trust-delegation framework which exhibits a three-tier architecture where ROOT

denotes the highest, CONFIG the middle, and DATA the lowest level. Layers ROOT and CONFIG

are used to securely track service configurations while the DATA layer is used to track concrete

application data. This might again be service configurations but could also be information

such as transactions of a cryptocurrency. Each level consists of at least one skipchain ensuring

“horizontal” trust-delegation. The ROOT layer usually has just a single skipchain, while layers

CONFIG and DATA might have multiple ones that exist next to each other. Vertical trust delega-

tion is done by signing certain skipblocks which happens exclusively in a top-down approach,

i.e., from ROOT over CONFIG to DATA, and never from a lower to a higher level. In other words,

a particular layer is allowed to sign skipblocks on its own or on lower layers but never on a

higher one. A “vertical” downward (upward) link is a cryptographic signature (hash) similarly

to a forward (backward) link in a skipchain. Since the ROOT layer is assumed to change only

very slowly its respective skipchain has a height of h = 1 to achieve maximum security. The

CONFIG layer, however, will often change rapidly and thus might better utilize skipchains of

height h > 1. Figure 5.3 gives an overview of trust delegation in SKIPPER.

5.6 Prototype Implementation

In this section, we describe concrete applications that we have implemented using the SKIPPER

framework.

91

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

5.6.1 SKIPPER Implementation

We have built and evaluated a working prototype of SKIPPER by implementing a new protocol

based on the BFT algorithm of ByzCoin [149] and using it as a lower layer for the creation

of skipchains. The implementation which is written in Go [118] and is available at Github.

The SKIPPER prototype currently implements a full cothority and multiple layers can be

concurrently deployed, connected together with vertical downward links as described earlier.

We evaluated the SKIPPER implementation with Schnorr signatures implemented on the

Ed25519 curve [27].

Subsequent subsections now discuss particular experimental prototype applications we have

implemented and experimented with using this prototype implementation of SKIPPER.

5.6.2 Software Updates with SKIPPER

We explore how skipchains may be useful in the context of securing software updates. Specif-

ically, we integrate skipchains into Diplomat [158], a security system that is designed to be

resilient to an attacker that compromises the software repository. Diplomat has three roles

of particular interest for this work, the timestamp role (which knows the timestamp of the

freshest metadata), the snapshot role (which knows the versions of the latest packages), and

the root role (which establishes and revokes trust). We will show how integration with SKIPPER

improves the security of Diplomat.

Skipchain on the Root Role

The root of trust in Diplomat is a set of keys that collectively sign the root metadata. These

keys are trusted to delegate and revoke trust to other roles in the system. When one of the

root keys needs to be replaced (perhaps due to a compromise), a new Skipblock is created,

containing the new set of keys (that might overlap with the previous), and signed by all the

keys. This effectively creates new root metadata and updates the set of trusted keys. This way

the root role achieves a strongest-link security since an attacker with all but one keys is unable

to change the root-of-trust and gain full control. Skipchains enable secure tracking of the

root-role from an out-of-date client and guarantee a linear timeline. This enables the client

to detect any attacks where the attacker got hold of the root role, installed malware and then

returned control to the correct root to avoid detection.

SKIPPER in Timestamp and Snapshot metadata

The timestamp role in Diplomat has the highest risk of compromise of any role. This is because

it is stored online on the repository and is even sometimes given to mirrors. Thus in Diplomat,

this role can be compromised if the weakest party possessing the key is compromised. The

snapshot role is also an online role that is stored on the repository. It informs the user of what

92

5.6. Prototype Implementation

Figure 5.4 – SSH Management with SKIPPER. System Architecture

version of packages is the latest, but does not sign the packages themselves. Compromising

just the Timestamp role leads to freeze [217] attacks while additional compromise of the

Snapshot role can lead to mix-and-match attacks [217].

Securing the online snapshot and timestamp roles with skipchains greatly improves resilience

to compromise and adds anti-equivocation properties. An attacker would need to compromise

a threshold of keys in a short timeframe across a wide array of servers to compromise a key.

Furthermore, the use of multi-layered skipchains means that the impact of a compromise is

minimized, since the chaining of updates enables quick detection and the multiple timeline

layering will allow for recovery, since the CONFIG-skipchain can effectively route around the

compromised part of the DATA-skipchain, and this way protect the clients, from following the

compromised path.

SKIPPER can be deployed as a cothority that only allows one linear timeline of timestamps.

This way even if the timestamping and snapshot keys are compromised the attacker will be

unable to get two conflicting snapshots signed, one for the public and one specifically tailored

for the victim. These security properties can be provided with minimal overhead thanks to

higher lever skiplinks as we can see in Section 5.7.2.

5.6.3 SSH-based Distributed User Identities

As an example of the identity-tracking we built an application to manage automatic login to

servers using SSH. Figure 5.4 illustrates the architecture of the system.

The Manager-Devices are devices that the user can physically access, like laptops, and phones.

They are authoritative for managing the user’s identity by proposing new data to be included

in the blocks. In our use-case, this data consists of public SSH keys. However, the managers

are not always available and/or accessible, thus they cannot be used to serve new blocks to

the clients, or manage the distributed coordination. To mitigate this problem we assume the

existence of publicly reachable servers forming a cothority [243], that provides blockchain

management as a service. Any potential user can request his keys to be tracked by the service

by generating a separate DATA-timeline where user stores and manages his identity. The

DATA-skipblocks consist of the actual list of authoritative keys of the user. If a device is lost the

user creates a new list where the lost key is missing, which leads to the generation of a new

DATA-skipblock. The same process is followed if a new device is introduced, or the user decides

93

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

1.0 10.0

Time since start (days)

100

101

102

103

104

105

106

C
o
n
s
u
m

e
d
 B

a
n
d
w

id
th

 (
M

B
y
te

s
) Linear update

Diplomat update

Skipchain S1

1
 update

Skipchain S1

1

Skipchain S7

5

Skipchain S4

11

Figure 5.5 – Communication cost for different frameworks

to rotate his keys. SKIPPER simplifies the rotation and revocation of SSH-keys by enabling

automatic secure tracking and updating of the authorized_keys. The security is increased

by requiring a threshold number of identities to sign any update. This security parameter

makes it impossible for an attacker who has less than the threshold of devices in his control to

tamper with the identity-list of the user and gain full control.

5.7 Experimental Evaluation

In this section, we experimentally evaluate our SKIPPER prototype. The main question we

answer is whether SKIPPER is usable in practice without incurring large overheads.

5.7.1 Experimental Methodology

In the experiments we used real-life data from the PyPI package repository [208]. The data

represented snapshots of the repository of about 58,000 packages. There were 11,000 snapshots

over a period of 30 days. Additionally, we had 1.5 million update-requests from 400,000 clients

during the same 30-day period. Using this data, we implemented a simulation in Ruby to

compare different bandwidth usages.

5.7.2 Skipchain Effect on PyPI Communication Cost

To evaluate the effect on communication cost of using skipchains for update verification,

we compare it with two other scenarios using data from the PyPI package repository. The

scenarios are as follows:

1. Linear update: When a client requests an update, she downloads all the diffs between

snapshots, starting from her last update to the most recent one. This way she validates

94

5.7. Experimental Evaluation

every step and tracks the timeline herself.

2. Diplomat: The client only downloads the diff between her last update and the latest

update available. This configuration does not provide secure timeline tracking and

incurs the lowest possible bandwidth overhead.

3. Skipchain S1
1: The scenario is as in Diplomat, but every skipblock is also sent to prove

the correctness of the current update. The skipchains add security to the snapshots by

signing it and by enabling users to efficiently track changes in the signers.

The results over the 30-day data are presented in Figure 5.5. The straight lines correspond to

the aforementioned scenarios. Linear updates increase the communication cost since the

cumulative updates between two snapshots can contain different updates, which are only

transferred once, of the same package, as in the case of Diplomat or skipchains. As can be

seen, the communication costs for Diplomat and skipchain are similar, even in the worst case

where a skipchain has height-1 only, which corresponds to a simple double-linked list.

To further investigate the best parameters of the skipchain, we plotted only the skipchain

overhead using the same data. In Figure 5.5, the dashed lines show the additional communica-

tion cost for different skipchain parameters. We observe that a skipchain with height > 1 can

reduce by a factor of 15 the communication cost for proving the validity of a snapshot. Using

the base 5 for the skipchain can further reduce the communication cost by another factor of 2.

5.7.3 SSH-based User Identities

We implemented a simple SSH key-management system as described in Section 5.6.3. A

manager-device proposes a change to the identity-blockchain of the user which is transmitted

to the other manager-devices and has to be confirmed by a threshold of them. The clients have

a list of identity-blockchains that they track. In the case where a client missed several updates,

he will receive all blocks necessary to prove that the timeline he is tracking is legitimate.

Every manager-device that wants to accept a change needs to transmit a confirmation signa-

ture on the update which is about 64 bytes. Once the cothority has verified the manger-devices’

signatures it appends a new block on the blockchains that has an overhead of 256 bytes for

the hash, the signature, and other configuration-fields for the blockchain. When a client

downloads the new list it also has to download that overhead and then needs to verify that the

signatures of the manager-devices correct. We have also implemented the option to delegate

the individual signature verification to the storage cothority. In this case, the cothority verifies

the manager-devices’ signatures and then collectively signs the block. This verification of

the collective signatures uses only the aggregate public key of the cothority and as such is

lightweight, even in the case of a large number of cothority-servers, making the system suitable

even for resource-constrained devices (e.g., in IoT).

95

Chapter 5. Decentralized Tracking and Long-Term Relationships using SKIPPER

5.8 Conclusion

We described SKIPPER, a decentralized relationship-keeping system that leverages blockchain

technology and scalable byzantine fault-tolerant collective signing to enable clients to asyn-

chronously but securely track the updates of decentralized and distributed systems. SKIPPER

is built on three distinct layers of skipchains to provide security, usability, and performance.

Clients need not verify all the previous updates to retrieve the information they need, but

can walk and jump through the timeline to quickly verify the information they want without

relying on intermediaries. On simulations we showed that SKIPPER can demonstrably increase

the security of Diplomat, a software update framework, while introducing minimal overhead

as well as enable secure and usable SSH-key management.

96

Part IIIPrivate and Horizontally Scalable
Distributed Ledgers

97

6 OMNILEDGER: A Secure, Scale-Out,
Decentralized Ledger via Sharding

6.1 Introduction

The scalability of distributed ledgers (DLs), in both total transaction volume and the number

of independent participants involved in processing them, is a major challenge to their main-

stream adoption, especially when weighted against security and decentralization challenges.

Many approaches exhibit different security and performance trade-offs [47, 10, 95, 149, 205].

Replacing the Nakamoto consensus [191] with PBFT [55], for example, can increase through-

put while decreasing transaction commit latency [3, 149]. These approaches still require

all validators or consensus group members to redundantly validate and process all transac-

tions, hence the system’s total transaction processing capacity does not increase with added

participants, and, in fact, gradually decreases due to increased coordination overheads.

The proven and obvious approach to building scale-out databases, whose capacity scales

horizontally with the number of participants, is by sharding [67], or partitioning the state into

multiple shards that are handled in parallel by different subsets of participating validators.

Sharding could benefit DLs [70] by reducing the transaction processing load on each validator

and by increasing the system’s total processing capacity proportionally with the number of

participants. Existing proposals for sharded DLs, however, forfeit permissionless decentraliza-

tion [74], introduce new security assumptions, and/or trade performance for security [173], as

illustrated in Figure 6.1 and explored in detail in Section 6.2.

In this chapter we introduce OMNILEDGER, the first DL architecture that provides scale-out

transaction processing capacity competitive with centralized payment-processing systems,

such as Visa, without compromising security or support for permissionless decentralization.

To achieve this goal, OMNILEDGER faces three key correctness and security challenges. First,

OMNILEDGER must choose statistically representative groups of validators periodically via

permissionless Sybil-attack-resistant foundations such as proof-of-work [191, 198, 149] or

proof-of-stake [116]. Second, OMNILEDGER must ensure a negligible probability that any

shard is compromised across the (long-term) system lifetime via periodically (re-)forming

shards (subsets of validators to record state and process transactions), that are both sufficiently

99

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

Elasti
co [1

73]

Scale-Out

ByzCoin
[149]

Decentralization

RSCoin [74] Security

OMNILEDGER

Figure 6.1 – Trade-offs in current DL systems.

large and bias-resistant. Third, OMNILEDGER must correctly and atomically handle cross-shard

transactions, or transactions that affect the ledger state held by two or more distinct shards.

To choose representative validators via proof-of-work, OMNILEDGER builds on ByzCoin (Chap-

ter 3) and Hybrid Consensus [198], using a sliding window of recent proof-of-work block

miners as its validator set. To support the more power-efficient alternative of apportioning

consensus group membership based on directly invested stake rather than work, OMNILEDGER

builds on Algorand [116], running a public randomness or cryptographic sortition protocol

within a prior validator group to pick a subsequent validator group from the current stake-

holder distribution defined in the ledger. To ensure that this sampling of representative

validators is both scalable and strongly bias-resistant, OMNILEDGER uses RandHound (Chap-

ter 4), a protocol that serves this purpose under standard t-of-n threshold assumptions.

Appropriate use of RandHound provides the basis by which OMNILEDGER addresses the

second key security challenge of securely assigning validators to shards, and of periodically

rotating these assignments as the set of validators evolves. OMNILEDGER chooses shards large

enough, based on the analysis in Section 6.6, to ensure a negligible probability that any shard

is ever compromised, even across years of operation.

Finally, to ensure that transactions either commit or abort atomically even when they affect

state distributed across multiple shards (e.g., several cryptocurrency accounts), OMNILEDGER

introduces Atomix, a two-phase client-driven “lock/unlock” protocol that ensures that clients

can either fully commit a transaction across shards, or obtain rejection proofs to abort and

unlock state affected by partially completed transactions.

Besides addressing the above key security challenges, OMNILEDGER also introduces sev-

eral performance and scalability refinements we found to be instrumental in achieving its

usability goals. OMNILEDGER’s consensus protocol, ByzCoinX, enhances the PBFT-based

consensus in ByzCoin [149] to preserve performance under Byzantine denial-of-service (DoS)

attacks, by adopting a more robust group communication pattern. To help new or long-offline

miners catch up to the current ledger state without having to download the entire history,

100

6.2. Preliminaries

OMNILEDGER adapts classic distributed checkpointing principles [92] to produce consistent,

state blocks periodically.

Finally, to minimize transaction latency in common cases such as low-value payments, OM-

NILEDGER supports optional trust-but-verify validation in which a first small tier of validators

processes the transactions quickly and then hands them over to a second larger, hence slower,

tier that re-verifies the correctness of the first tier transactions and ensures long-term security.

This two-level approach ensures that any misbehavior within the first tier is detected within

minutes, and can be strongly disincentivized through recourse such as loss of deposits. Clients

can wait for both tiers to process high-value transactions for maximum security or just wait

for the first tier to process low-value transactions.

To evaluate OMNILEDGER, we implemented a prototype in Go on commodity servers (12-

core VMs on Deterlab). Our experimental results show that OMNILEDGER scales linearly

in the number of validators, yielding a throughput of 6,000 transactions per second with a

10-second consensus latency (for 1800 widely-distributed hosts, of which 12.5% are malicious).

Furthermore, deploying OMNILEDGER with two-level, trust-but-verify validation provides a

throughput of 2,250 tps with a four-second first-tier latency under a 25% adversary. Finally, a

Bitcoin validator with a month-long stale view of the state incurs 40% of the bandwidth, due

to state blocks.

In summary, this chapter makes the following contributions:

• We introduce the first DL architecture that provides horizontal scaling without compro-

mising either long-term security or permissionless decentralization.

• We introduce Atomix, an Atomic Commit protocol, to commit transactions atomically

across shards.

• We introduce ByzCoinX, a BFT consensus protocol that increases performance and

robustness to DoS attacks.

• We introduce state blocks, that are deployed along OMNILEDGER to minimize storage

and update overhead.

• We introduce two-tier trust-but-verify processing to minimize the latency of low-value

transactions.

6.2 Preliminaries

6.2.1 Transaction Processing and the UTXO model

Distributed ledgers derive current system state from a blockchain, or a sequence of totally

ordered blocks that contain transactions. OMNILEDGER adopts the unspent transaction output

101

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

(UTXO) model to represent ledger state, due to its simplicity and parallelizability. In this

model, the outputs of a transaction create new UTXOs (and assign them credits), and inputs

completely “spend” existing UTXOs. During bootstrapping, new (full) nodes crawl the entire

distributed ledger and build a database of valid UTXOs needed to subsequently decide whether

a new block can be accepted. The UTXO model was introduced by Bitcoin [191] but has been

widely adopted by other distributed ledger systems.

6.2.2 Prior Sharded Ledgers: Elastico

OMNILEDGER builds closely on Elastico [173], which previously explored sharding in permis-

sionless ledgers. In every round, Elastico uses the least-significant bits of the PoW hash to

distribute miners to different shards. After this setup, every shard runs PBFT [55] to reach

consensus, and a leader shard verifies all the signatures and creates a global block.

OMNILEDGER addresses several challenges that Elastico leaves unsolved. First, Elastico’s

relatively small shards (e.g., 100 validators per shard in experiments) yield a high failure-

probability of 2.76%1 per shard per block under a 25% adversary, which cannot safely be

relaxed in a PoW system. For 16 shards, the failure probability is 97% over only 6 epochs.

Second, Elastico’s shard selection is not strongly bias-resistant, as miners can selectively

discard PoWs to bias results [41]. Third, Elastico does not ensure transaction atomicity across

shards, leaving funds in one shard locked forever if another shard rejects the transaction.

Fourth, the validators constantly switch shards, forcing themselves to store the global state,

which can hinder performance but provides stronger guarantees against adaptive adversaries.

Finally, the latency of transaction commitment is comparable to Bitcoin (≈ 10 min.), which is

far from OMNILEDGER’s usability goals.

6.2.3 Sybil-Resistant Identities

Unlike permissioned blockchains [74], where the validators are known, permissionless blockchains

need to deal with the potential of Sybil attacks [84] to remain secure. Bitcoin [191] suggested

the use of Proof-of-Work (PoW), where validators (aka miners) create a valid block by perform-

ing an expensive computation (iterating through a nonce and trying to brute-force a hash of a

block’s header such that it has a certain number of leading zeros). Bitcoin-NG [95] uses this

PoW technique to enable a Sybil-resistant generation of identities. There are certain issues

associated with PoW, such as the waste of electricity [79] and the fact that it causes recen-

tralization [134] to mining pools. Other approaches for establishing Sybil-resistant identities

such as Proof-of-Stake (PoS) [116], Proof-of-Burn (PoB) [247] or Proof-of-Personhood [43]

overcome PoW’s problems and are compatible with ByzCoin’s identity (key-block) blockchain,

and in turn with OMNILEDGER.

1Cumulative binomial distribution (P = 0.25, N = 100, X ≥ 34)

102

6.3. System Overview

6.3 System Overview

Figure 6.2 – OMNILEDGER architecture overview: At the beginning of an epoch e, all validators
(shard membership is visualized through the different colors) (1) run RandHound to re-assign
randomly a certain threshold of validators to new shards and assign new validators who
registered to the identity blockchain in epoch e − 1. Validators ensure (2) consistency of
the shards’ ledgers via ByzCoinX while clients ensure (3) consistency of their cross-shard
transactions via Atomix (here the client spends inputs from shards 1 and 2 and outputs to
shard 3).

This section presents the system, network and threat models, the design goals, and a roadmap

towards OMNILEDGER that begins with a strawman design.

6.3.1 System Model

We assume that there are n validators who process transactions and ensure the consistency

of the system’s state. Each validator i has a public / private key pair (pki ,ski), and we often

identify i by pki . Validators are evenly distributed across m shards. We assume that the

configuration parameters of a shard j are summarized in a shard-policy file. We denote by

an epoch e the fixed time (e.g., a day) between global reconfiguration events where a new

assignment of validators to shards is computed. The time during an epoch is counted in

rounds r that do not have to be consistent between different shards. During each round, each

shard processes transactions collected from clients. We assume that validators can establish

identities through any Sybil-attack-resistant mechanism and commit them to the identity

blockchain; to participate in epoch e validators have to register in epoch e−1. These identities

are added into an identity blockchain as described in Chapter 3.

6.3.2 Network Model

For the underlying network, we make the same assumption as prior work [173, 191]. Specifi-

cally, we assume that (a) the network graph of honest validators is well connected and that

(b) the communication channels between honest validators are synchronous, i.e., that if an

honest validator broadcasts a message, then all honest validators receive the message within a

known maximum delay of ∆ [199]. However, as ∆ is on the scale of minutes, we cannot use it

103

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

within epochs as we target latencies of seconds. Thus, all protocols inside one epoch use the

partially synchronous model [55] with optimistic, exponentially increasing time-outs, whereas

∆ is used for slow operations such as identity creation and shard assignment.

6.3.3 Threat Model

We denote the number of Byzantine validators by f and assume, that n = 4 f , i.e., at most 25%2

of the validators can be malicious at any given moment, which is similar to prior DL’s [95, 149,

173]. These malicious nodes can behave arbitrarily, e.g., they might refuse to participate or

collude to attack the system. The remaining validators are honest and faithfully follow the

protocol. We further assume that the adversary is mildly adaptive [173] on the order of epochs,

i.e., he can try to corrupt validators, but it takes some time for such corruption attempts to

actually take effect.

We further assume that the adversary is computationally bounded, that cryptographic primi-

tives are secure, and that the computational Diffie-Hellman problem is hard.

6.3.4 System Goals

OMNILEDGER has the following primary goals with respect to decentralization, security, and

scalability.

1. Full decentralization. OMNILEDGER does not have any single points of failure (such as

trusted third parties).

2. Shard robustness. Each shard correctly and continuously processes transactions as-

signed to it.

3. Secure transactions. Transactions are committed atomically or eventually aborted,

both within and across shards.

4. Scale-out. The expected throughput of OMNILEDGER increases linearly in the number

of participating validators.

5. Low storage overhead. Validators do not need to store the full transaction history but

only a periodically computed reference point that summarizes a shard’s state.

6. Low latency. OMNILEDGER provides low latency for transaction confirmations.

6.3.5 Design Roadmap

This section introduces SLedger, a strawman DL system that we use to outline OMNILEDGER’s

design. Below we describe one epoch of SLedger and show how it transitions from epoch e −1

2The system can handle up to 33%−ε with degraded performance.

104

6.3. System Overview

to epoch e.

We start with the secure validator-assignment to shards. Permitting the validators to choose

the shards they want to validate is insecure, as the adversary could focus all his validators in

one shard. As a result, we need a source of randomness to ensure that the validators of one

shard will be a sample of the overall system and w.h.p. will have the same fraction of malicious

nodes. SLedger operates a trusted randomness beacon that broadcasts a random value rnde

to all participants in each epoch e. Validators, who want to participate in SLedger starting

from epoch e, have to first register to a global identity blockchain. They create their identities

through a Sybil-attack-resistant mechanism in epoch e −1 and broadcast them, together with

the respective proofs, on the gossip network at most ∆ before epoch e −1 ends.

Epoch e begins with a leader, elected using randomness rnde−1, who requests from the already

registered and active validators a (BFT) signature on a block with all identities that have been

provably established so far. If at least 2
3 of these validators endorse the block, it becomes

valid, and the leader appends it to the identity blockchain. Afterwards, all registered validators

take rnde to determine their assignment to one of the SLedger’s shards and to bootstrap their

internal states from the shards’ distributed ledgers. Then, they are ready to start processing

transactions using ByzCoin. The random shard-assignment ensures that the ratio between ma-

licious and honest validators in any given shard closely matches the ratio across all validators

with high probability.

SLedger already provides similar functionality to OMNILEDGER, but it has several significant

security restrictions. First, the randomness beacon is a trusted third party. Second, the system

stops processing transactions during the global reconfiguration at the beginning of each epoch

until enough validators have bootstrapped their internal states and third, there is no support

for cross-shard transactions. SLedger’s design also falls short in performance. First, due

to ByzCoin’s failure handling mechanism, its performance deteriorates when validators fail.

Second, validators face high storage and bootstrapping overheads. Finally, SLedger cannot

provide real-time confirmation latencies and high throughput.

To address the security challenges, we introduce OMNILEDGER’s security design in Section 6.4:

1. In Section 6.4.1, we remove the trusted randomness beacon and show how validators

can autonomously perform a secure sharding by using a combination of RandHound

and VRF-based leader election via cryptographic sortition.

2. In Section 6.4.2, we show how to securely handle the validator assignment to shards

between epochs while maintaining the ability to continuously process transactions.

3. In Section 6.4.3, we present Atomix, a novel two-step atomic commit protocol for atomi-

cally processing cross-shard transactions in a Byzantine setting.

To deal with the performance challenges, we introduce OMNILEDGER’s performance and

105

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

usability design in Section 6.5:

4) In Section 6.5.1, we introduce ByzCoinX, a variant of ByzCoin, that utilizes more robust

communication patterns to efficiently process transactions within shards, even if some

of the validators fail, and that resolves dependencies on the transaction level to achieve

better block parallelization.

5) In Section 6.5.3, we introduce state blocks that summarize the shards’ states in an epoch

and that enable ledger pruning to reduce storage and bootstrapping costs for validators.

6) In Section 6.5.4, we show how to enable optimistic real-time transaction confirmations

without sacrificing security or throughput by utilizing an intra-shard architecture with

trust-but-verify transaction validation.

A high-level overview of the (security) architecture of OMNILEDGER is illustrated in Figure 6.2.

6.4 OMNILEDGER: Security Design

6.4.1 Sharding via Bias-Resistant Distributed Randomness

To generate a seed for sharding securely without requiring a trusted randomness beacon [74]

or binding the protocol to PoW [173], we rely on a distributed randomness generation protocol

that is collectively executed by the validators.

We require that the distributed-randomness generation protocol provide unbiasability, un-

predictability, third-party verifiability, and scalability. Multiple proposals exist [41, 125, 242].

The first approach relies on Bitcoin, whereas the other two share many parts of the design; we

focus on RandHound [242] due to better documentation and open-source implementation.

Because RandHound relies on a leader to orchestrate the protocol run, we need an appropriate

mechanism to select one of the validators for this role. If we use a deterministic approach to

perform leader election, then an adversary might be able to enforce up to f out of n failures in

the worst case by refusing to run the protocol, resulting in up to 1
4 n failures given our threat

model. Hence, the selection mechanism must be unpredictable and unbiasable, which leads

to a chicken-and-egg problem as we use RandHound to generate randomness with these

properties in the first place. To overcome this predicament, we combine RandHound with a

VRF-based leader election algorithm [242, 116].

At the beginning of an epoch e, each validator i computes a ticket ticketi ,e,v =VRFski (“leader” ∥
confige ∥ v) where confige is the configuration containing all properly registered validators

of epoch e (as stored in the identity blockchain) and v is a view counter. Validators then

gossip these tickets with each other for a time ∆, after which they lock in the lowest-value

valid ticket they have seen thus far and accept the corresponding node as the leader of the

106

6.4. OMNILEDGER: Security Design

RandHound protocol run. If the elected node fails to start RandHound within another ∆,

validators consider the current run as failed and ignore this validator for the rest of the epoch,

even if he returns later on. In this case, the validators increase the view number to v +1 and

re-run the lottery. Once the validators have successfully completed a run of RandHound

and the leader has broadcast rnde together with its correctness proof, each of the n properly

registered validators can first verify and then use rnde to compute a permutation πe of 1, . . . ,n

and subdivide the result into m approximately equally-sized buckets, thereby determining its

assignment of nodes to shards.

Security Arguments We make the following observations to informally argue the security of

the above approach. Each participant can produce only a single valid ticket per view v in a

given epoch e, because the VRF-based leader election starts only after the valid identities have

been fixed in the identity blockchain. Furthermore, as the output of a VRF is unpredictable

as long as the private key ski is kept secret, the tickets of non-colluding nodes, hence the

outcome of the lottery is also unpredictable. The synchrony bound ∆ guarantees that the

ticket of an honest leader is seen by all other honest validators. If the adversary wins the lottery,

he can decide either to comply and run the RandHound protocol or to fail, which excludes

that particular node from participating for the rest of the epoch.

After a successful run of RandHound, the adversary is the first to learn the randomness, hence

the sharding assignment, however, his benefit is minimal. The adversary can again either

decide to cooperate and publish the random value or withhold it in the hope of winning

the lottery again and obtaining a sharding assignment that fits his agenda better. However,

the probability that an adversary wins the lottery a times in a row is upper bounded by the

exponentially decreasing term (f /n)a . Thus, after only a few re-runs of the lottery, an honest

node wins with high probability and coordinates the sharding. Finally, we remark that an

adversary cannot collect random values from multiple runs and then choose the one he likes

best as validators accept only the latest random value that matches their view number v .

Breaking the Network Model Although DL protocols that assume a non-static group of

validators have similar synchrony assumptions [173, 191], in this section we discuss what can

happen if the adversary manages to break them [13]. In such a case we can detect the attack

and provide a back-up randomness generation mechanism which is not expected to scale but

guarantees safety even in asynchrony.

Given that RandHound guarantees safety without the need for synchrony an adversary ma-

nipulates the network can at most slow down any validator he does not control, winning

the leadership all the time. However this does not enable the adversary to manipulate Rand-

Hound; it just gives him the advantage of being able to restart the protocol if he does not

like the random number. This restart will be visible to the network, and the participants can

suspect a bias-attempt, when multiple consecutive RandHound rounds start to fail.

107

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

OMNILEDGER can provide a “safety valve” mechanism in order to mitigate this problem. When

5 RandHound views fail in a row, which under normal circumstances could happen with less

than 1% probability, the validators switch from RandHound to running an asynchronous

coin-tossing protocol [49] in order to produce the epoch’s randomness. This protocol scales

poorly (O(n3)), but it will be run when the network is anyway under attack and liveness is not

guaranteed, in which case safety is more important.

6.4.2 Maintaining Operability During Epoch Transitions

Recall that, in each epoch e, SLedger changes the assignments of all n validators to shards,

which results in an idle phase during which the system cannot process transactions until

enough validators have finished bootstrapping.

To maintain operability during transition phases, OMNILEDGER gradually swaps in new val-

idators to each shard per epoch. This enables the remaining operators to continue providing

service (in the honest scenario) to clients while the recently joined validators are bootstrapping.

In order to achieve this continued operation, we can swap-out at most 1
3 of the shard’s size

(≈ n
m), however, the bigger the batch is, the higher the risk gets that the number of remaining

honest validators is insufficient to reach consensus and the more stress the bootstrapping of

new validators causes to the network.

To balance the chances of a temporary loss of liveness, the shard assignment of validators

in OMNILEDGER works as follows. First, we fix a parameter k < 1
3

n
m specifying the swap-out

batch, i.e., the number of validators that are swapped out at a given time. For OMNILEDGER,

we decided to work in batches of k = log n
m . Then for each shard j , we derive a seed H(j ∥ rnde)

to compute a permutation π j ,e of the shard’s validators, and we specify the permutation of the

batches. We also compute another seed H(0 ∥ rnde) to permute and scatter the validators who

joined in epoch e and to define the order in which they will do so (again, in batches of size k).

After defining the random permutations, each batch waits for ∆ before starting to bootstrap in

order to spread the load on the network. Once a validator is ready, he sends an announcement

to the shard’s leader who then swaps the validator in.

Security Arguments During the transition phase, we ensure the safety of the BFT consen-

sus in each shard as there are always at least 2
3

n
m honest validators willing to participate in

the consensus within each shard. And, as we use the epoch’s randomness rnde to pick the

permutation of the batches, we keep the shards’ configurations a moving target for an adap-

tive adversary. Finally, as long as there are 2
3

n
m honest and up-to-date validators, liveness is

guaranteed. Whereas if this quorum is breached during a transition (the new batch of honest

validators has not yet updated), the liveness is lost only temporarily, until the new validators

update.

108

6.4. OMNILEDGER: Security Design

6.4.3 Cross-Shard Transactions

To enable value transfer between different shards thereby achieving shard interoperability,

support for secure cross-shard transactions is crucial in any sharded-ledger system. We expect

that the majority of transactions to be cross-shard in the traditional model where UTXOs are

randomly assigned to shards for processing [74, 173], see [150].

A simple but inadequate strawman approach to a cross-shard transaction, is to send a trans-

action concurrently to several shards for processing because some shards might commit the

transaction while others might abort. In such a case, the UTXOs at the shard who accepted

the transactions are lost as there is no straightforward way to roll back a half-committed

transaction, without adding exploitable race conditions.

To address this issue, we propose a novel Byzantine Shard Atomic Commit (Atomix) protocol

for atomically processing transactions across shards, such that each transaction is either

committed or eventually aborted. The purpose is to ensure consistency of transactions

between shards, to prevent double spending and to prevent unspent funds from being locked

forever. In distributed computing, this problem is known as atomic commit [248] and atomic

commit protocols [120, 142] are deployed on honest but unreliable processors. Deploying

such protocols in OMNILEDGER is unnecessarily complex, because the shards are collectively

honest, do not crash infinitely, and run ByzCoin (that provides BFT consensus). Atomix

improves the strawman approach with a lock-then-unlock process. We intentionally keep

the shards’ logic simple and make any direct shard-to-shard communication unnecessary by

tasking the client with the responsibility of driving the unlock process while permitting any

other party (e.g., validators or even other clients) to fill in for the client if a specific transaction

stalls after being submitted for processing.

Atomix uses the UTXO state model, see Section 6.2.1 for an overview, which enables the

following simple and efficient three-step protocol, also depicted in Figure 6.3.

1. Initialize. A client creates a cross-shard transaction (cross-TX for short) whose inputs

spend UTXOs of some input shards (ISs) and whose outputs create new UTXOs in some

output shards (OSs). The client gossips the cross-TX and it eventually reaches all ISs.

2. Lock. All input shards associated with a given cross-TX proceed as follows. First, to de-

cide whether the inputs can be spent, each IS leader validates the transaction within his

shard. If the transaction is valid, the leader marks within the state that the input is spent,

logs the transaction in the shard’s ledger and gossips a proof-of-acceptance, a signed

Merkle proof against the block where the transaction is included. If the transaction is

rejected, the leader creates an analogous proof-of-rejection, where a special bit indicates

an acceptance or rejection. The client can use each IS ledger to verify his proofs and

that the transaction was indeed locked. After all ISs have processed the lock request, the

client holds enough proofs to either commit the transaction or abort it and reclaim any

locked funds, but not both.

109

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

Figure 6.3 – Atomix protocol in OMNILEDGER.

3. Unlock. Depending on the outcome of the lock phase, the client is able to either commit

or abort his transaction.

(a) Unlock to Commit. If all IS leaders issued proofs-of-acceptance, then the respec-

tive transaction can be committed. The client (or any other entity such as an IS

leader after a time-out) creates and gossips an unlock-to-commit transaction that

consists of the lock transaction and a proof-of-acceptance for each input UTXO. In

turn, each involved OS validates the transaction and includes it in the next block of

its ledger in order to update the state and enable the expenditure of the new funds.

(b) Unlock to Abort. If, however, any one IS issued a proof-of-rejection, then the trans-

action cannot be committed and has to abort. In order to reclaim the funds locked

in the previous phase, the client (or any other entity) must request the involved ISs

to unlock that particular transaction by gossiping an unlock-to-abort transaction

that includes (at least) one proof-of-rejection for one of the input UTXOs. Upon

receiving a request to unlock, the ISs’ leaders follow a similar procedure and mark

the original UTXOs as spendable again.

Although the focus of OMNILEDGER is on the UTXO model, Atomix can be extended with

a locking mechanism for systems where objects are long-lived and hold state (e.g., smart

contracts [250]), see Section 6.9.1 for details.

Security Arguments We informally argue the previously stated security properties of Atomix,

based on the following observations. Under our assumptions, shards are honest, do not fail,

eventually receive all messages and reach BFT consensus. Consequently, (1) all shards always

faithfully process valid transactions; (2) if all input shards issue a proof-of-acceptance, then

every output shard unlocks to commit; (3) if even one input shard issues a proof-of-rejection,

then all input shards unlock to abort; and (4) if even one input shard issues a proof-of-rejection,

then no output shard unlocks to commit.

110

6.4. OMNILEDGER: Security Design

In Atomix, each cross-TX eventually commits or aborts. Based on (1), each input shard returns

exactly one response: either a proof-of-acceptance or a proof-of-rejection. Consequently, if a

client has the required number of proofs (one per each input UTXO), then the client either

only holds proofs-of-acceptance (allowing the transaction to be committed as (2) holds) or

not (forcing the transaction to abort as (3) and (4) holds), but not both simultaneously.

In Atomix, no cross-TX can be spent twice. As shown above, cross-shard transactions are

atomic and are assigned to specific shards who are solely responsible for them. Based on (1),

the assigned shards do not process a transaction twice and no other shard attempts to unlock

to commit.

In Atomix, if a transaction cannot be committed, then the locked funds can be reclaimed. If a

transaction cannot be committed, then there must exist at least one proof-of-rejection issued

by an input shard, therefore (3) must hold. Once all input shards unlock to abort, the funds

become available again.

We remark that funds are not automatically reclaimed and a client or other entity must initiate

the unlock-to-abort process. Although this approach poses the risk that if a client crashes

indefinitely his funds remain locked, it enables a simplified protocol with minimal logic

that requires no direct shard-to-shard communication. A client who crashes indefinitely

is equivalent to a client who loses his private key, which prevents him from spending the

corresponding UTXOs. Furthermore, any entity in the system, for example, a validator in

exchange for a fee, can fill in for the client to create an unlock transaction, as all necessary

information is gossiped.

To ensure better robustness, we can also assign the shard of the smallest-valued input UTXO to

be a coordinator responsible for driving the process of creating unlock transactions. Because

a shard’s leader might be malicious, f +1 validators of the shard need to send the unlock

transaction to guarantee that all transactions are eventually unlocked.

Size of Unlock Transactions In Atomix, the unlock transactions are larger than regular

transactions as appropriate proofs for input UTXOs need to be included. OMNILEDGER relies

on ByzCoinX (described in Section 6.5.1) for processing transactions within each shard. When

the shard’s validators reach an agreement on a block that contains committed transactions,

they produce a collective signature whose size is independent of the number of validators. This

important feature enables us to keep Atomix proofs (and consequently the unlock transactions)

short, even though the validity of each transaction is checked against the signed blocks of all

input UTXOs. If ByzCoinX did not use collective signatures, the size of unlock transactions

would be impractical. For example, for a shard of 100 validators, a collective signature would

only be 77 bytes, whereas a regular signature would be 9KB, almost two order’s of magnitude

larger than the size of a simple transaction (500 bytes).

111

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

6.5 Design Refinements for Performance

In this section, we introduce the performance sub-protocols of OMNILEDGER. First, we

describe a scalable BFT-consensus called ByzCoinX that is more robust and more parallelizable

than ByzCoin. Then, we introduce state-blocks that enable fast bootstrapping and decrease

storage costs. Finally, we propose an optional trust-but-verify validation step to provide

real-time latency for low-risk transactions

6.5.1 Fault Tolerance under Byzantine Faults

The original ByzCoin design offers good scalability, partially due to the usage of a tree com-

munication pattern. Maintaining such communication trees over long time periods can be

difficult, as they are quite susceptible to faults. In the event of a failure, ByzCoin falls back on a

more robust all-to-all communication pattern, similarly to PBFT. Consequently, the consensus

performance deteriorates significantly, which the adversary can exploit to hinder the system’s

performance.

To achieve better fault tolerance in OMNILEDGER, without resorting to a PBFT-like all-to-all

communication pattern, we introduce for ByzCoinX a new communication pattern that trades-

off some of ByzCoin’s high scalability for robustness, by changing the message propagation

mechanism within the consensus group to resemble a two-level tree. During the setup of

OMNILEDGER in an epoch, the generated randomness is not only used to assign validators

to shards but also to assign them evenly to groups within a shard. The number of groups g ,

from which the maximum group size can be derived by taking the shard size into account, is

specified in the shard policy file. At the beginning of a ByzCoinX roundtrip, the protocol leader

randomly selects one of the validators in each group to be the group leader responsible for

managing communication between the protocol leader and the respective group members.

If a group leader does not reply before a predefined timeout, the protocol leader randomly

chooses another group member to replace the failed leader. As soon as the protocol leader

receives more than 2
3 of the validators’ acceptances, he proceeds to the next phase of the

protocol. If the protocol leader fails, all validators initiate a PBFT-like view-change procedure.

6.5.2 Parallelizing Block Commitments

We now show how ByzCoinX parallelizes block commitments in the UTXO model by analyzing

and handling dependencies between transactions.

We observe that transactions that do not conflict with each other can be committed in different

blocks and consequently can be safely processed in parallel. To identify conflicting transac-

tions, we need to analyze the dependencies that are possible between transactions. Let txA

and txB denote two transactions. Then, there are two cases that need to be carefully handled:

(1) both txA and txB try to spend the same UTXO and (2) a UTXO created at the output of txA

112

6.5. Design Refinements for Performance

is spent at the input of txB (or vice versa). To address (1) and maintain consistency, only one

of the two tx can be committed. To address (2), txA has to be committed to the ledger before

txB , i.e., txB has to be in a block that depends (transitively) on the block containing txA . All

transactions that do not exhibit these two properties can be processed safely in parallel. In

particular, we remark that transactions that credit the same address do not produce a conflict,

because they generate different UTXOs

To capture the concurrent processing of blocks, we adopt a block-based directed acyclic graph

(blockDAG) [167] as a data structure, where every block can have multiple parents. The

ByzCoinX protocol leader enforces that each pending block includes only non-conflicting

transactions and captures UTXO dependencies by adding the hashes of former blocks (i.e.,

backpointers) upon which a given block’s transactions depend. To decrease the number

of such hashes, we remark that UTXO dependencies are transitive, enabling us to relax the

requirement that blocks have to capture all UTXO dependencies directly. Instead, a given

block can simply add backpointers to a set of blocks, transitively capturing all dependencies.

6.5.3 Shard Ledger Pruning

Now we tackle the issues of an ever-growing ledger and the resulting costly bootstrapping

of new validators; this is particularly urgent for high-throughput DL systems. For example,

whereas Bitcoin’s blockchain grows by ≈ 144 MB per day and has a total size of about 133 GB,

next-generation systems with Visa-level throughput (e.g., 4000 tx/sec and 500 B/tx) can easily

produce over 150 GB per day.

To reduce the storage and bootstrapping costs for validators (whose shard assignments might

change periodically), we introduce state blocks, which are similar to stable checkpoints in

PBFT [55] and that summarize the entire state of a shard’s ledger. To create a state block sb j ,e

for shard j in epoch e, the shard’s validators execute the following steps: At the end of e, the

shard’s leader stores the UTXOs in an ordered Merkle tree and puts the Merkle tree’s root

hash in the header of sb j ,e . Afterwards, the validators run consensus on the header of sb j ,e

(note that each validator can construct the same ordered Merkle tree for verification) and, if

successful, the leader stores the approved header in the shard’s ledger making sb j ,e the genesis

block of epoch e +1. Finally, the body of sb j ,e−1 (UTXOs) can be discarded safely. We keep

the regular blocks of epoch e, however, until after the end of epoch e +1 for the purpose of

creating transaction proofs.

As OMNILEDGER’s state is split across multiple shards and as we store only the state blocks’

headers in a shard’s ledger, a client cannot prove the existence of a past transaction to another

party by presenting an inclusion proof to the block where the transaction was committed. We

work around this by moving the responsibility of storing transactions’ proofs-of-existence

to the clients of OMNILEDGER. During epoch e +1 clients can generate proofs-of-existence

for transactions validated in epoch e using the normal block of epoch e and the state block.

Such a proof for a given transaction tx contains the Merkle tree inclusion proof to the regular

113

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

block B that committed tx in epoch e and a sequence of block headers from the state block

sb j ,e at the end of the epoch to block B . To reduce the size of these proofs, state blocks can

include several multi-hop backpointers to headers of intermediate (regular) blocks similarly

to skipchains [195].

Finally, if we naively implement the creation of state blocks, it stalls the epoch’s start, hence the

transaction processing until sb j ,e has been appended to the ledger. To avoid this downtime,

the consistent validators of the shard in epoch e + 1 include an empty state-block at the

beginning of the epoch as a place-holder; and once sb j ,e is ready they commit it as a regular

block, pointing back to the place-holder and sb j ,e−1.

6.5.4 Optional Trust-but-Verify Validation

There exists an inherent trade-off between the number of shards (and consequently the

size of a shard), throughput and latency, as illustrated in Figure 6.4. A higher number of

smaller shards results in a better performance but provides less resiliency against a more

powerful attacker (25%). Because the design of OMNILEDGER favors security over scalability,

we pessimistically assume an adversary who controls 25% of the validators and, accordingly,

choose large shards at the cost of higher latency but guarantee the finality of transactions. This

assumption, however, might not appropriately reflect the priorities of clients with frequent,

latency-sensitive but low-value transactions (e.g., checking out at a grocery store, buying gas

or paying for coffee) and who would like to have transactions processed as quickly as possible.

Figure 6.4 – Trust-but-Verify Validation Architecture

In response to the clients’ needs, we augment the intra-shard architecture (see Figure 6.4) by

following a trust but verify model, where optimistic validators process transactions quickly,

providing a provisional but unlikely-to-change commitment and core validators subsequently

verify again the transactions to provide finality and ensure verifiability. Optimistic validators

follow the usual procedures for deciding which transactions are committed in which order; but

they form much smaller groups, even as small as one validator per group. Consequently, they

114

6.6. Security Analysis

produce smaller blocks with real-time latencies but are potentially less secure as the adversary

needs to control a (proportionally) smaller number of validators to subvert their operation.

As a result, some bad transactions might be committed, but ultimately core validators verify

all provisional commitments, detecting any inconsistencies and their culprits, which makes

it possible to punish rogue validators and to compensate the defrauded customers for the

damages. The trust-but-verify approach strikes a balance for processing small transactions in

real-time, as validators are unlikely to misbehave for small amounts of money.

At the beginning of an epoch e, all validators assign themselves to shards by using the per-

epoch randomness and then bootstrap their states from the respective shard’s last state

block. Then, OMNILEDGER assigns each validator randomly to one of the multiple optimistic

processing groups or a single core processing group. The shard-policy file specifies the number

of optimistic and core validators, as well as the number of optimistic groups. Finally, in order

to guarantee that any misbehavior will be contained inside the shard, it can also define the

maximum amount of optimistic validated transactions to be equal to the stake or revenue of

the validators.

Transactions are first processed by an optimistic group that produces optimistically validated

blocks. These blocks serve as input for re-validation by core validators who run concurrently

and combine inputs from multiple optimistic processing groups, thus maximizing the system’s

throughput (Figure 6.4). Valid transactions are included in a finalized block that is added to

the shard’s ledger and are finally included in the state block. However, when core validators

detect an inconsistency, then the respective optimistically validated transaction is excluded

and the validators who signed the invalid block are identified and held accountable, e.g., by

withholding any rewards or by excluding them from the system. We remark that the exact

details of such punishments depend on the incentive scheme that is out of the scope of this

work. Given a minimal incentive to misbehave and the quantifiable confidence in the security

of optimistic validation (Figure 6.5), clients can choose, depending on their needs, to take

advantage of real-time processing with an optimistic assurance of finality or to wait to have

their transaction finalized.

6.6 Security Analysis

Our contributions are mainly pragmatic rather than theoretical and in this section, we provide

an informal security analysis supplementing the arguments in Sections 6.4 and 6.5.

6.6.1 Randomness Creation

RandHound assumes an honest leader who is responsible for coordinating the protocol run

and for making the produced randomness available to others. In OMNILEDGER, however,

we cannot always guarantee that an honest leader will be selected. Although a dishonest

leader cannot affect the unbiasability of the random output, he can choose to withhold the

115

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

randomness if it is not to his liking, thus forcing the protocol to restart. We economically

disincentivize such behavior and bound the bias by the randomized leader-election process.

The leader-election process is unpredictable as the adversary is bound by the usual crypto-

graphic hardness assumptions and is unaware of (a) the private keys of the honest validators

and (b) the input string x to the VRF function. Also, OMNILEDGER’s membership is unpre-

dictable at the moment of private key selection and private keys are bound to identities. As a

result, the adversary has at most m = 1/4 chance per round to control the elected leader as

he controls at most 25% of all nodes. Each time an adversary-controlled leader is elected and

runs RandHound the adversary can choose to accept the random output, and the sharding

assignment produced by it, or to forfeit it and try again in hopes of a more favorable yet still

random assignment. Consequently, the probability that an adversary controls n consecutive

leaders is upper-bounded by P [X ≥ n] = 1
4n < 10−λ. For λ = 6, the adversary will control at

most 10 consecutive RandHound runs. This is an upper bound, as we do not include the

exclusion of the previous leader from the consecutive elections.

6.6.2 Shard-Size Security

We previously made the assumption that each shard is collectively honest. This assumption

holds as long as each shard has less than c = bn
3 c malicious validators, because ByzCoinX

requires n = 3 f +1 to provide BFT consensus.

The security of OMNILEDGER’s validator assignment mechanism is modeled as a random

sampling problem with two possible outcomes (honest or malicious). Assuming an infinite

pool of potential validators, we can use the binomial distribution (Eq. 6.1). We can assume

random sampling due to RandHound’s unpredictability property that guarantees that each

selection is completely random; this leads to the adversarial power of at most m = 0.25.

P
[

X ≤ bn

3
c
]
=

n∑
k=0

(
n

k

)
mk (1−m)n−k (6.1)

To calculate the failure rate of one shard, i.e., the probability that a shard is controlled by an

adversary, we use the cumulative distributions over the shard size n, where X is the random

variable that represents the number of times we pick a malicious node. Figure 6.5 (right)

illustrates the proposed shard size, based on the power of the adversary. In a similar fashion,

we calculate the confidence a client can have that an optimistic validation group is honest

(left).

116

6.6. Security Analysis

Figure 6.5 – Left: Shard size required for 10−6 system failure probability under different
adversarial models. Right: Security of an optimistic validation group for 12.5% and 25%
adversaries.

6.6.3 Epoch Security

In the last section, we modeled the security of a single shard as a random selection process

that does, however, not correspond to the system’s failure probability within one epoch.

Instead, the total failure rate can be approximated by the union bound over the failure rates of

individual shards.

We argue that, given an adequately large shard size, the epoch-failure probability is negligible.

We can calculate an upper bound on the total-failure probability by permitting the adversary to

run RandHound multiple times and select the output he prefers. This is a stronger assumption

than what RandHound permits, as the adversary cannot go back to a previously computed

output if he chose to re-run RandHound. An upper bound of the epoch failure event XE is

given by

P [XE] ≤
l∑

k=0

1

4k
·n ·P [XS] (6.2)

where l is the number of consecutive views the adversary controls, n is the number of shards

and P [XS] is the failure probability of one shard as calculated in Section 6.6.2. For l →∞, we

get P [XE] ≤ 4
3 ·n ·P [XS]. More concretely, the failure probability, given a 12.5%-adversary and

16 shards, is 4 ·10−5 or one failure in 68.5 years for one-day epochs

117

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

6.6.4 Group Communication

We now show that OMNILEDGER’s group-communication pattern has a high probability of

convergence under faults. We assume that there are N nodes that are split in
p

N groups ofp
N nodes each.

Setting the Time-Outs

In order to ensure that the shard leader will have enough time to find honest group leaders,

we need to set up the view change time-outs accordingly. OMNILEDGER achieves this by

having two time-outs. The first timeout T1 is used by the shard leader to retry the request to

non-responsive group members. The second timeout T2 is used by the group members to

identify a potential failure of a shard leader and to initiate a view-change [55]. To ensure that

the shard leader has enough time to retry his requests, we have a fixed ratio of T1 = 0.1T2 .

However, if the T2 is triggered, then in the new view T2 doubles (as is typical [55]) in order to

compensate for an increase in the network’s asynchrony, hence T1 should double to respect

the ratio.

Reaching Consensus

We calculate the probability for a group size N = 600 where
p

N = 25: Given a population of 600

nodes and a sampling size of 25, we use the hypergeometric distribution for our calculation

which yields a probability of 99.93% that a given group will have less than 25−10 = 15 malicious

nodes. A union bound over 25 groups yields a probability of 98.25% that no group will have

more than 15 malicious nodes. In the worst case, where there are exactly 1
3 malicious nodes

in total, we need all of the honest validators to reply. For a group that contains exactly 15

malicious nodes, the shard’s leader will find an honest group leader (for ByzCoinX) after 10

tries with a probability of 1− ((15/24)10) = 98.6%. As a result, the total probability of failure is

1−0.986∗0.9825 = 0.031.

This failure does not constitute a compromise of the security of OMNILEDGER. Rather, it

represents the probability of a failure for the shard leader who is in charge of coordinating the

shard’s operation. If a shard leader indeed fails, then a new shard leader will be elected having

97% probability of successfully reaching consensus.

6.6.5 Censorship Resistance Protocol

One issue existing in prior work [149, 173] that OMNILEDGER partially addresses is when a

malicious shard leader censors transactions. This attack can be undetectable from the rest of

the shard’s validators. A leader who does not propose a transaction is acceptable as far as the

state is concerned, but this attack can compromise the fairness of the system or be used as a

coercion tool.

118

6.7. Implementation

For this reason, we enable the validators to request transactions to be committed, because

they think the transactions are censored. They can either collect those transactions via the

normal gossiping process or receive a request directly from a client. This protocol can be run

periodically (e.g., once every 10 blocks). We denote N = 3 f +1 validators exist where at most f

are dishonest.

Figure 6.6 – Anti-censorship mechanism OMNILEDGER

The workflow (Figure 6.6), starts 1© with each validator proposing a few (e.g., 100)3 blinded

transactions for anti-censorship, which initiates a consensus round. The leader should add in

the blocks all the proposals, however, he can censor f of the honest proposers. Nevertheless,

he is blind on the f inputs he has to add from the honest validators he will reach consensus

with. Once the round ends, there is a list 2© of transactions that are eligible for anti-censorship,

which is a subset of the proposed. As the transactions are blinded, no other validator knows

which ones are proposed before the end of the consensus. Each validators reveals 3© his

chosen transactions, the validators check that the transactions are valid and run consensus

on which ones they expect the leader to propose. The leader is then obliged to include 4© the

transactions that are consistent with the state, otherwise the honest validators will cause a

view-change [55]. This way, if a validator sees transactions with normal fee-size being starved,

he can preserve fairness.

6.7 Implementation

We implemented OMNILEDGER and its subprotocols for sharding, consensus, and processing

of cross-shard transactions in Go [118]. For sharding, we combined RandHound’s code,

available on GitHub, with our implementation of a VRF-based leader-election mechanism

by using a VRF construction similar to the one of Franklin and Zhang [107]. Similarly, to

implement ByzCoinX, we extended ByzCoin’s code, available on GitHub as well, by the parallel

block commitment mechanism as introduced in Section 6.5.2. We also implemented the

Atomix protocol, see Section 6.4.3, on top of the shards and a client that dispatches and verifies

cross-shard transactions.

3The number should be small otherwise this protocol will take over the normal validation.

119

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

Table 6.1 – OMNILEDGER transaction confirmation latency in seconds for different configura-
tions with respect to the shard size s, adversarial power f /n, and validation types.

[s, f /n] [4,1%] [25,5%] [70,12.5%] [600,25%]

Regular val. 1.38 5.99 8.04 14.52

1st lvl. val. 1.38 1.38 1.38 4.48
2nd lvl. val. 1.38 55.89 41.84 62.96

6.8 Evaluation

In this section, we experimentally evaluate our prototype implementation of OMNILEDGER.

The primary questions we want to evaluate concern the overall performance of OMNILEDGER

and whether it truly scales out (Section 6.8.2), the cost of epoch transitions (Section 6.8.3),

the client-perceived latency when committing cross-shard transactions (Section 6.8.4), and

the performance differences between ByzCoinX and ByzCoin with respect to throughput and

latency (Section 6.8.5).

6.8.1 Experimental Setup

We ran all our experiments on DeterLab using 60 physical machines, each equipped with

an Intel E5-2420 v2 CPU, 24 GB of RAM, and a 10 Gbps network link. To simulate a realistic,

globally distributed deployment, we restricted the bandwidth of all connections between

nodes to 20 Mbps and impose a latency of 100 ms on all communication links. The basis for

our experiments was a data set consisting of the first 10,000 blocks of the Bitcoin blockchain.

6.8.2 OMNILEDGER Performance

In this experiment, we evaluate the performance of OMNILEDGER in terms of throughput and

latency in different situations: we distinguish the cases where we have a fixed shard size and

varying adversarial power (in particular 1%, 5%, 12.5%, and 25%) or the other way round. We

also distinguish between configurations with regular or trust-but-verify validations where we

use 1 MB blocks in the former case and 500 KB for optimistically validated blocks and 16 MB

for final blocks in the latter case. In order to provide enough transactions for the final blocks,

for each shard, there are 32 optimistic validation groups concurrently running; they all feed to

one core shard, enabling low latency for low-risk transactions (Table 6.1) and high throughput

of the total system.

Figure 6.7 shows OMNILEDGER’s throughput for 1800 hosts in different configurations and, for

comparison, includes the average throughput of Visa at ≈ 4000 tx/sec. Additionally, Table 6.1

shows the confirmation latency in the above configuration.

We observe that OMNILEDGER’s throughput with trust-but-verify validation is almost an order

120

6.8. Evaluation

[4, 1%] [25, 5%] [70, 12.5%] [600, 25%]
[Shard Size, Adversarial Power]

100

101

102

103

104

105

106

107

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Visa (~4000 tx/sec)

OmniLedger (regular)
OmniLedger (trust-but-verify)

Figure 6.7 – OMNILEDGER throughput for 1800 hosts, varying shard sizes s, and adversarial
power f /n.

Table 6.2 – OMNILEDGER scale-out throughput in transactions per second (tps) for a adversarial
power of f /n = 12.5% shard size of s = 70, and a varying number of shards m.

m 1 2 4 8 16

tps 439 869 1674 3240 5850

of magnitude higher than with regular validation, at the cost of a higher latency for high-

risk transactions that require both validation steps. For low-risk transactions, OMNILEDGER

provides an optimistic confirmation in a few seconds after the first validation step, with less

than 10% probability that the confirmation was vulnerable to a double-spending attack due to

a higher-than-average number of malicious validators. For high-risk transactions, the latency

to guarantee finality is still less than one minute.

Table 6.2 shows the scale-out throughput of OMNILEDGER with a 12.5% adversary, a shard size

of 70, and a number of shards m between 1 and 16. As we can see, the throughput increases

almost linearly in the number of shards.

In Figure 6.7, with a 12.5% adversary and a total number of 1800 hosts, we distributed the

latter across 25 shards for which we measured throughput of 13,000 tps corresponding to 3

times the level of Visa. If we want to maintain OMNILEDGER’s security against a 25% adversary

and still achieve the same average throughput of Visa, i.e., 4000 tps, then we estimate that we

need to increase the number of hosts to about 4200 (which is less than the number of Bitcoin

full nodes [32]) and split them into 7 shards. Unfortunately, our experimental platform could

not handle such a high load, therefore, we mention here only an estimated value.

121

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

70 140 280 560 1200 1800
Number of Hosts

100

101

102

103

La
te

nc
y

(s
ec

)

Identity Block Creation
Leader Election
Randomness Generation
Randomness Verification

Figure 6.8 – Epoch transition latency.

6.8.3 Epoch-Transition Costs

In this experiment, we evaluate the costs for transitioning from an epoch e −1 to epoch e.

Recall, that at the end of epoch e −1 the new membership configuration is first collectively

signed, then used for the VRF-based leader-election. Once the leader is elected, he runs

RandHound with a group-size of 16 hosts (which is secure for a 25% adversary [242]) and

broadcasts it to all validators, who then verify the result and connect to their peers. We assume

that validators already know the state of the shard they will be validating. It is important to

mention that this process is not on the critical path, but occurs concurrently with the previous

epoch. Once the new groups have been setup, the new shard leaders enforce a view-change.

As we can see in Figure 6.8, the cost of bootstrapping is mainly due to RandHound that takes

up more than 70% of the total run time. To estimate the worst-case scenario, we refer to our

security analysis in Section 6.6.1 and see that, even in the case with 1800 hosts, an honest

leader is elected after 10 RandHound runs with high probability, which takes approximately 3

hours. Given an epoch duration of one day, this worst-case overhead is acceptable.

6.8.4 Client-Perceived End-to-End Latency with Atomix

In this experiment we evaluate in different shard configurations, the client-perceived, end-

to-end latency when using Atomix. As shown in Figure 6.9, the client-perceived latency is

almost double the value of the consensus latency as there are already other blocks waiting to

be processed in the common case. Consequently, the inclusion of the transaction in a block is

delayed. This latency increases slightly further when multiple shards validate a transaction.

The overall end-to-end latency would be even higher if a client had to wait for output shards

to run consensus that, however, is not required.

122

6.8. Evaluation

1 2 3 4 5 6 7
Number of Shards

0

5

10

15

20

25

30

Cl
ie

nt
 E

nd
-to

-E
nd

 L
at

en
cy

 (s
ec

)

Shard Size = 70
Queue
Consensus

1 2 3
Number of Shards

Shard Size = 600
Queue
Consensus

Figure 6.9 – Client-perceived, end-to-end latency for cross-shard transactions via Atomix.

Table 6.3 – ByzCoinX latency in seconds for different concurrency levels and data sizes.

Concurrency

Data Size 1 2 4 8

1 MB 15.4 13.5 12.6 11.4
8 MB 32.2 27.7 26.0 23.2

32 MB 61.6 58.0 50.1 50.9

If the client wants to spend the new funds directly, he can batch together the proof-of-

acceptance and the expenditure transaction in order to respect the input-after-output con-

straint.

Overall, the client-perceived end-to-end latency for cross-shard transactions is not signifi-

cantly affected when increasing the number of shards.

6.8.5 ByzCoinX Performance

In this experiment, we measure the performance improvements of ByzCoinX over the original

ByzCoin. To have a fair comparison, each data-series corresponds to the total size of data

concurrently in the network, meaning that if the concurrency level is 2 then there are 2 blocks

of 4 MB concurrently, adding to a total of 8 MB, whereas a concurrency level of 4 means 4

blocks of 2 MB each.

In Figures 6.10 and Table 6.3, we see that there is a 20% performance increase when mov-

ing from one big block to four smaller concurrently running blocks, with a concurrent 35%

decrease in the per-block consensus latency. This can be attributed to the higher resource

utilization of the system, when blocks arrive more frequently for validation. When the concur-

rency further increases, we can see a slight drop in performance, meaning that the overhead

123

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

1 (ByzCoin) 2 4 8
Concurrency Level

0

200

400

600

800

1000

1200

1400

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Data Size
1MB
8MB
32MB

Figure 6.10 – ByzCoinX throughput in transactions per second for different levels of concur-
rency.

of the parallel consensus outweighs the parallelization benefits, due to the constant number

of cryptographic operations per block.

Figure 6.11 illustrates the scalability of ByzCoin’s [149] tree and fall-back flat topology, versus

ByzCoinX’s more fault-tolerant (group-based) topology and its performance when failures

occur. As expected the tree topology scales better, but only after the consensus is run among

more than 600 nodes, which assumes an adversary stronger than usual (see Figure 6.5).

For a group size below 600, ByzCoinX’s communication pattern actually performs better than

ByzCoin’s. This is due to ByzCoinX’s communication pattern that can be seen as a shallow tree

where the roundtrip from root to leaves is faster than in the tree of ByzCoin. Hence, ByzCoin

has a fixed branching factor and an increasing depth, whereas ByzCoinX has a fixed depth and

an increasing branching factor. The effect of these two choices leads to better latencies for a

few hundred nodes for fixed depth. The importance of the group topology, however, is that it

is more fault tolerant because when failures occur the performance is not seriously affected.

This is not true for ByzCoin; it switches to a flat topology in case of failure that does not scale

after a few hundred nodes, due to the huge branching factor. This experiment was run with

1 MB blocks, the non-visible data point is at 300 seconds.

6.8.6 Bandwidth Costs for State Block Bootstrapping

In this experiment, we evaluate the improvements that state blocks offer to new validators

during bootstrapping. Recall, that during an epoch transition, a new validator first crawls the

identity blockchain, after which he needs to download only the latest state block instead of

replaying the full blockchain to create the UTXO state. For this experiment, we reconstructed

Bitcoin’s blockchain [35, 219] and created a parallel OMNILEDGER blockchain with weekly

124

6.8. Evaluation

21 23 25 27 29

Size of Consensus Group
0

10

20

30

La
te

nc
y

(s
ec

)

ByzCoin Tree
ByzCoinX Groups
ByzCoin Partial Failure
ByzCoinX Partial Failure

Figure 6.11 – ByzCoinX communication pattern latency.

0 20 40 60 80 100
Number of Days Without Update

0

2

4

6

8

10

12

14

Co
ns

um
ed

 B
an

dw
id

th
 (G

B)

No State Blocks (Bitcoin)
Weekly State Blocks (OmniLedger)

Figure 6.12 – Bootstrap bandwidth consumption with state blocks.

state blocks.

Figure 6.12 depicts the bandwidth overhead of a validator that did not follow the state for the

first 100 days. As we can see, the state block approach is better if the validator is outdated for

more than 19 days or 2736 Bitcoin blocks.

The benefit might not seem substantial for Bitcoin, but in OMNILEDGER, 2736 blocks are

created in less than 8 hours, meaning that for one day-long epochs, the state block approach is

significantly better. If a peak throughput is required and 16 MB blocks are deployed, we expect

reduced bandwidth consumption close to two orders of magnitude.

125

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

6.9 Limitation and Future Work

OMNILEDGER is still a proof of concept and has limitations that we want to address in future

work. First, even if the epoch bootstrap does not interfere with the normal operation, its

cost (in the order of minutes) is significant. We leave to future work the use of advanced

cryptography, such as BLS [39] for performance improvements. Additionally, the actual

throughput is dependent on the workload as shown in Chainspace [6]. If all transactions

touch all the shards before committing, then the system is better off with only one shard.

We leave to future work the exploration of alternative ways of sharding, e.g., using locality

measures. Furthermore, we rely on the fact that honest validators will detect that transactions

are unfairly censored and change the leader in the case of censorship. But, further anti-

censorship guarantees are needed. We provide a protocol sketch in Section 6.6.5 and leave

to future work its implementation and further combination with secret sharing techniques

for providing stronger guarantees. Another shortcoming of OMNILEDGER is that it does

not formally reason around the incentives of participants and focus on the usual honest

or malicious model, which can be proven unrealistic in anonymous open cryptocurrencies.

Finally, the system is not suitable for highly adaptive adversaries, as the bootstrap time of an

epoch is substantial and scales only moderately, thus leading to the need for day-long epochs.

6.9.1 Atomix for State-full Objects

T,
T

T

T,

Figure 6.13 – State-Machine for the UTXO model. No locking is necessary

The original Atomix protocol in Section 6.4 implements a state machine as depicted in Fig-

126

6.10. Conclusion

(T,

(T,

(T’,
T)(PoR,

Reject)

Reject)

Accept) (PoA*,T)

(S) (S’)

(S) {S}

(S’)

Figure 6.14 – State-Machine for the account model. Pessimistic locking is necessary

ure 6.13. We leave for future work the implementation of Atomix for state-full objects as

described below.

To enable the use of such an algorithm in smart contracts we need to account on the fact that

a smart-contract object is mutable and can be accessed concurrently for a legitimate reason.

As a result, we need to modify the algorithm in two ways: a) the Unlock transactions should

be sent to both Input and Output shards and b) the state machine should have one more

state as the shards need to wait for confirmation before unlocking. This is necessary because

there is the chance that the (state-full) object will be accessed again and this could violate the

input-after-output dependency if Atomix decides to abort.

In Figure 6.14, we can see that an object will Lock for a specific transaction (T) and will reject

any concurrent T ′, until T is committed and the new state S′ is logged, or aborted and the old

state S is open for change again.

6.10 Conclusion

OMNILEDGER is the first DL that securely scales-out to offer a Visa-level throughput and a

latency of seconds while preserving full decentralization and protecting against a Byzantine

adversary. OMNILEDGER achieves this through a novel approach consisting of three steps. First,

OMNILEDGER is designed with concurrency in mind; both the full system (through sharding)

and each shard separately (through ByzCoinX) validate transactions in parallel, maximizing

resource utilization while preserving safety. Second, OMNILEDGER enables any user to transact

127

Chapter 6. OMNILEDGER: A Secure, Scale-Out, Decentralized Ledger via Sharding

safely with any other user, regardless of the shard they use, by deploying Atomix, an algorithm

for cross-shard transactions as well as real-time validation with the introduction of a trust-but-

verify approach. Finally, OMNILEDGER enables validators to securely and efficiently switch

between shards, without being bound to a single anti-Sybil attack method and without stalling

between reconfiguration events.

We implemented and evaluated OMNILEDGER and each of its sub-components. ByzCoinX

improves ByzCoin both in performance, with 20% more throughput and 35% less latency,

and in robustness against failures. Atomix offers secure processing of cross-shard transac-

tions and its overhead is minimal compared to intra-shard consensus. Finally, we evaluated

the OMNILEDGER prototype thoroughly and showed that it can indeed achieve Visa-level

throughput.

128

7 CALYPSO: Verifiable Management of
Private Data over Blockchains

7.1 Introduction

New data privacy legislation, such as the European Union General Data Protection Regulation

(GDPR) [94] or the EFF’s call for information fiduciary rules for businesses [223], has reignited

interest in secure management of private data. The ability to effectively share and manage data

is one of the cornerstones of the digital revolution that turned many applications and processes

to be data-driven and data-dependent. However, the current model of data management

via a single server has repeatedly proven to be insecure and unfair: centralized data-sharing

makes it possible to covertly grant access to unauthorized parties [164], and centralized data

life-cycle management can fail to enforce all phases of the cycle and “forget” to delete user

data [108]. Lastly, well-located servers may have an unfair advantage in accessing information

faster than others, thereby, for example, requiring additional burdensome regulations for

trading markets [152].

Replacing single points of failure with decentralized alternatives is an obvious approach to

achieve more transparent and fair data sharing and management. Decentralized data-sharing

can give rise to data markets controlled by users [237] and not solely by tech giants such as

Google or Facebook; enable sharing of confidential data between mutually distrustful parties,

such as state institutions or even different countries; or bring the much-needed transparency

to lawful access requests [98]. Decentralized data life-cycle management can enable effective

and guaranteed data retention (e.g., legal or corporate data retention policies or enforcement

of the “right to be forgotten”), or an implementation of an information-publication version of a

dead man’s switch [91] that enables journalists to create a contingency plan to have entrusted

data disclosed under specific circumstances. Finally, if correctly implemented, decentralized

data life-cycle management can also result in fair lotteries [12], games (e.g., poker [157]), and

trading (e.g., exchanges [73]).

Unfortunately, current decentralized data-sharing applications [170, 203] fail to manage

private data securely unless they forfeit the full life-cycle management [109] and publish

encrypted data on Bitcoin; or rely on semi-centralized solutions [15, 256]. Furthermore, de-

129

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

Figure 7.1 – Auditable data sharing in CALYPSO: (1) Wanda encrypts data under the secret-
management cothority’s key, specifying the intended reader (e.g., Ron) and the access policy,
and then sends it to the access-control cothority which verifies and logs it. (2) Ron downloads
the encrypted secret from the blockchain and then requests access to it by contacting the
access-control cothority which logs the query if valid, effectively authorizing Ron’s access
to the secret. (3) Ron asks the secret-management cothority for the secret shares of the key
needed to decrypt the secret by proving that the previous authorization by access-control
cothority was successful. (4) Ron decrypts the secret. If a specific application requires fairness,
the data can be atomically disclosed on-chain.

centralized applications that rely on the timing of data disclosure to enforce fairness are

susceptible to front-running attacks where the adversary gets early access to information and

unfairly adapts their strategies. For example, the winner of the Fomo3D [225] event (gaining

a prize of 10.5k Ether ($2.2M at the time)) enforced an early termination of the lottery by

submitting a sequence of high-fee transactions, which significantly increased his winning

probability. Due to the lack of fairness guarantees, decentralized exchanges remain vulnera-

ble [73] or resort to centralized order-book matching (e.g., 0x Project [64]), and decentralized

lotteries require collateral [12] or run in a non-constant number of rounds [183].

In this paper, we introduce CALYPSO, a new secure data-management framework that ad-

dresses the challenge of providing fair and verifiable access to private information without

relying on a trusted party. In achieving this goal CALYPSO faces three key challenges. First,

CALYPSO has to provide accountability for all accesses to confidential data to ensure that

secrets are not improperly disclosed and to enforce the proper recording of data accesses and

usage. Second, CALYPSO has to prevent front-running attacks and guarantee fair access to

information. Third, CALYPSO has to enable data owners to maintain control over the data

they share, and data consumers to maintain access even when their identities (public keys)

are updated. In particular, CALYPSO should allow for flexible updates to access-control rules

130

7.1. Introduction

and user identities, e.g., to add or revoke access rights or public keys. Figure 7.1 provides an

overview of a typical data-sharing application using CALYPSO that builds on top of a novel

abstraction called on-chain secrets (OCS) and uses skipchains [195, 148] to provide dynamic

access-control and identity management.

On-chain secrets addresses the first two challenges by combining threshold cryptography [222,

227, 229] and blockchain technology [149, 250] to enable users to share their encrypted data

with collective authorities (cothorities) that are responsible for enforcing access-control and

atomically disclosing data to authorized parties. Furthermore, CALYPSO combines on-chain

secrets with skipchains [148, 195] in order to enable dynamic access-control and identity-

management. We present two specific secure implementations of on-chain secrets, namely

one-time secrets and long-term secrets, that have different trade-offs in terms of computational

and storage overheads.

To evaluate CALYPSO, we implemented a prototype in Go and ran experiments on commod-

ity servers. We implemented both versions of on-chain secrets and show that they have a

moderate overhead of 0.2 to 8 seconds for cothorities of 16 and 128 trustees, respectively,

and overall scale linearly in the number of trustees. Furthermore, in addition to evaluations

on simulated data, we tested two deployments of CALYPSO using real data traces. First, we

deployed a document-sharing application and tested it under different loads. CALYPSO takes

10–20 (10–150) seconds to execute a write (read) request, and has a 0.2× to 5× latency over-

head compared to a semi-centralized solution that stores data on the cloud. Finally, we show

that CALYPSO-based zero-collateral lotteries significantly outperform the state-of-the-art as

they require 1 and logn rounds to finish, respectively, where n denotes the number of lottery

participants.

In summary, this paper makes the following contributions.

• We introduce CALYPSO, a decentralized framework for auditable management of private

data while maintaining fairness and confidentiality (see Section 7.3). CALYPSO enables

dynamic updates to access-control rules without compromising security.

• We present on-chain secrets and its two implementations, one-time and long-term

secrets, that enable transparent and efficient management of data without requiring a

trusted third party (see Section 7.4).

• We demonstrate the feasibility of using CALYPSO to address the data sharing needs of

actual organizations by presenting three classes of realistic, decentralized deployments:

auditable data sharing, data life-cycle management, and atomic data publication (see

Section 7.7). To evaluate our system and conduct these feasibility studies, we created an

implementation of CALYPSO which was independently audited and will be released as

open-source (see Sections 7.8 and 7.9).

131

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

7.2 Motivating Applications

In this section, we motivate the practical need for CALYPSO by describing how it can enable

security and fairness in three different classes of applications: auditable data sharing, data

life-cycle management, and atomic data publication.

7.2.1 Auditable Data Sharing.

Current cloud-based data-sharing systems (e.g., Dropbox or Google Drive) provide a conve-

nient way to store and share data, however, their main focus is on integrity whereas ensuring

data confidentiality and access accountability is often secondary if provided at all. Further,

clients must trust the individual companies that these properties are indeed achieved in

practice as clients, for a variety of reasons, are typically not able to verify these security guar-

antees themselves. Furthermore, many systems often provide only retroactive and network-

dependent detection mechanisms for data integrity failures [168, 177]. Consequently, any

secure data-sharing system should be decentralized to avoid the need to rely on trusted third

parties, and it should provide integrity, confidentiality, and accountability and ensure that any

violations can be detected proactively.

Current decentralized data-sharing applications [170, 203, 239, 251] that focus on shared

access to private data often fail to manage these private data in a secure and accountable man-

ner, especially when it comes to sharing data between independent and mutually-distrustful

parties. They either ignore these issues altogether [139, 253], fall back on naive solutions [109],

or use semi-centralized approaches [15, 138, 256], where access information and hashes of

the data are put on-chain but the secret data is stored and managed off-chain, hence violating

the accountability requirement.

To address the above challenges and enable secure decentralized data-sharing applications,

CALYPSO uses threshold cryptography and distributed-ledger technology to protect the in-

tegrity and confidentiality of shared data and to ensure data-access accountability by generat-

ing a third-party verifiable audit trail for data accesses. Designers of decentralized applications

can further use CALYPSO to achieve additional functionalities such as monetizing data accesses

or providing proofs to aid investigations of data leaks or breaches.

7.2.2 Data Life-Cycle Management.

Custodian systems can provide secure data life-cycle management and have a variety of useful

applications. However, certain features, such as provable deletion and provable publication,

are problematic to achieve in practice. The lack of provable deletion mechanisms affects users

who want to enforce their legal right to be forgotten provided by the EU GDPR legislature [94].

This situation is particularly tricky when the relevant data is stored in the databases of large

organizations, such as Google or Facebook, whose systems were not designed to provide

132

7.2. Motivating Applications

this feature. Provable publication of data based on user-specified policies would permit

automatic publication of documents, for example, legal wills or estate plans, but only when

specific conditions are met. Further, it would enable whistleblowers to implement digital life

insurances where files are published automatically unless the custodian receives a regular

heartbeat message that bears the digital signature of the insured person [91, 215].

Securely realizing such custodian systems is a challenging task as the intuitive, centralized

designs would not protect users from malicious, bribed or coerced providers. Custodian

systems also need to provide support for (decentralized) access-control mechanisms to effec-

tively express and enforce rules, which is necessary to enable applications such as the ones

described above. Previous works have already attempted to design such systems but they have

weak spots, e.g., in terms of failure resilience or guaranteed erasure of data [108].

CALYPSO solves these challenges with on-chain secrets and an expressive access-control

mechanism that enables the revocation of access rights for everyone, effectively preventing

any access to the secrets stored on-chain. Furthermore, the access-control mechanism can

express not only time-based but also event-based public decryption (e.g., reveal data in the

absence of a heartbeat message).

7.2.3 Atomic Data Publication.

Security and fairness requirements significantly change when an application is deployed in a

Byzantine, decentralized environment as opposed to the traditional, centralized setting. For

example, an adversary can easily gain an unfair advantage over honest participants through

front-running attacks [73, 225, 241] if decentralized applications, such as lotteries [12], poker

games [157], or exchanges [73], are not designed with such attacks in mind. To protect users

against front-running, these applications often fall back to trusted intermediaries giving up

decentralization, or they implement naive commit-and-reveal schemes exposing themselves

to liveness attacks where adversaries can DoS the application or force it to restart by refusing

to reveal their inputs. To provide failure resilience and protect against such late aborts, many

applications introduce complex incentive mechanisms whose security guarantees are usually

difficult to analyze [12, 157].

In CALYPSO, all inputs committed by the participants (e.g., lottery randomness, trading bids,

game moves) remain confidential up to a barrier point that is expressed through specific

rules defined in a policy. All of the decommitted values are taken into account to compute

and atomically disclose the results of the protocol to every interested party. Consequently,

CALYPSO resolves the tension between decentralization, fairness, and availability, and provides

a secure foundation for decentralized applications.

133

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

7.3 CALYPSO Overview

This section provides an overview of CALYPSO. We start with a strawman solution to motivate

the challenges that any secure, decentralized data-sharing and management system should

address. We then derive the system goals from our observations, describe system and threat

models, and lastly present the system design (see Figure 7.1).

7.3.1 Strawman Data Management Solution

We assume that the strawman consists of a tamper-resistant public log, such as the Bitcoin

blockchain, and that participants register their identities on-chain, e.g., as PGP keys. Now

consider an application on top of the strawman system where Wanda is the operator of a paid

service providing asynchronous access to some information and Ron is a customer. Once

Ron has paid the fee, Wanda can simply encrypt the data under Ron’s key, post the ciphertext

on-chain which Ron can then retrieve and decrypt at his discretion.

This strawman approach provides the intended functionality but has several drawbacks. (1)

There is no data access auditability because Ron’s payment record does not prove that he

actually accessed the data, and such a proof might be needed if the provided information

is misused, for example. (2) If Wanda ever wants to change the access rights, e.g., because

Ron cancelled his access subscription, she cannot do so because the ciphertext is on-chain

and Ron controls the decryption key. (3) If Ron ever needs to change his public key, he would

lose access to all data encrypted under that key, unless Wanda re-publishes that data using

Ron’s new key. (4) Since the exchange of payment and data is not atomic, having submitted a

payment successfully does not guarantee that Ron access to the data. (5) If Wanda makes the

data available on a first-come-first-serve basis, then customers with better connectivity are

able to make payments faster and thereby mount front-running attacks.

To address these issues, we introduce two new components and transform the strawman into

CALYPSO.

1. To enable auditability of data accesses and ensure atomic data delivery, we introduce

on-chain secrets (OCS) in Sections 7.4.1 and 7.4.2.

2. To enable decentralized, dynamic, user-sovereign identities and access policies, we

extend skipchains and integrate them with CALYPSO in Section 7.5.

7.3.2 System Goals

CALYPSO has the following primary goals.

• Confidentiality: Secrets stored on-chain can only be decrypted by authorized clients.

134

7.3. CALYPSO Overview

• Auditability: All access transactions are third-party verifiable and recorded in a tamper-

resistant log.

• Fair access: Clients are guaranteed to get access on a secret they are authorized for if

any only if they posted an access request on-chain. If a barrier point exists, authorized

clients get concurrent access after it.

• Dynamic sovereign identities: Users (or organizations) fully control their identities

(public keys) and can update them in a third-party verifiable way.

• Decentralization: No single point of compromise or failure.

7.3.3 System Model

There are four main entities in CALYPSO: writers who put secrets on-chain, readers who retrieve

secrets, an access-control collective authority that is responsible for logging write and read

transactions on-chain and enforcing access control for secrets, and a secret-management

collective authority that is responsible for managing and delivering secrets. In the rest of the

paper, we use Wanda and Ron to refer to a (generic) writer and reader, respectively.

A collective authority or cothority is an abstract decentralized entity that is responsible for

some authoritative action. We call the nodes of a cothority trustees. For example, the set of

Bitcoin miners can be considered a cothority that maintain the consistency of Bitcoin’s state.

The access-control cothority requires a Byzantine fault-tolerant consensus [149, 150, 159, 191].

There are various ways to implement an access-control cothority, e.g., as a set of permissioned

servers that maintains a blockchain using BFT consensus or as an access-control enforcing

a smart contract on top of a permissionless cryptocurrency such as Ethereum. The secret-

management cothority membership is fixed; it may be set up on a per-secret basis or in a

more persistent setting, the differences of which are discussed in Section 7.4. The secret-

management trustees maintain their private keys and may need to maintain additional secret

state, such as private-key shares. They do not run consensus for every transaction.

We denote private and public key pairs of Wanda and Ron by (skW ,pkW) and (skR ,pkR). Anal-

ogously, we write (ski ,pki) to refer to the key pair of trustee i . To denote a list of elements we

use angle brackets, e.g., we write 〈pki 〉 to refer to a list of public keys pk1, . . . ,pkn . We assume

that there is a registration mechanism through which writers have to register their public

keys pkW on the blockchain before they can start any secret-sharing processes. We denote an

access-control label by policy, where policy = pkR is the simplest case with Ron being the only

reader.

7.3.4 Threat Model

We make the usual cryptographic assumptions: the adversary is computationally bounded,

cryptographically-secure hash functions exist, and there is a cyclic group G (with generator

135

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

g) in which the decisional Diffie-Hellman assumption holds. We assume that participants,

including trustees, verify the signatures of the messages they receive and process those that

are correctly signed.

In the respective cothorities, we denote the total number of trustees by n and those that are

malicious by f . Depending on the consensus mechanism that is used for the blockchain

underlying the access-control cothority, we either require an honest majority n = 2 f +1 for

Nakamoto-style consensus [191] or n = 3 f +1 for classic BFT consensus [149]1. In the secret-

management cothority, we require n = 2 f + 1 and set the threshold to recover a secret to

t = f +1.

We assume that readers and writers do not trust each other. We further assume that writers

encrypt the correct data and share the correct symmetric key with the secret-management

cothority, as readers can release a protocol transcript and prove the misbehavior of writers.

Conversely, readers might try to get access to a secret and claim later that they have never

received it. Additionally, writers might try to frame readers by claiming that they shared a

secret although they have never done so. Finally, the writer can define a barrier point, an

event before which no one can access the secret guaranteeing fair access. We guarantee

data confidentiality up to the point where an authorized reader gains access. To maintain

confidentiality after this point, writers may rely on additional privacy-preserving technologies

such as differential privacy [83] or homomorphic encryption [97].

7.3.5 Architecture Overview

On a high level CALYPSO enables Wanda, the writer, to share a secret with Ron, the reader, under

a specific access-control policy. When Wanda wants to put a secret on-chain (see Figure 7.1),

she encrypts the secret and then sends a write transaction txw to the access-control cothority.

The access-control cothority verifies and logs txw, making the secret available for retrieval by

Ron, the authorized reader. To request access to a secret, Ron downloads the secret from the

blockchain and sends to the access-control cothority a read transaction txr which carries a

valid authorization from Ron’s identity skipchain with respect to the current policy.

If Ron is authorized to access the requested secret, the access-control cothority logs txr.

Subsequently, Ron contacts the secret-management cothority to recover the secret. The secret-

management trustees verify Ron’s request using the blockchain and check that the barrier

point (if any) has occurred. Afterwards, the trustees deliver the secret shares of the key needed

to decrypt Wanda’s secret as shared in txw.

136

7.4. On-Chain Secrets

Writer Reader
Access-control

cothority
Secret-management

cothority

Write transaction txw
Verify

and

log
ACK / NACK

Read transaction txr
Verify

and

log
ACK / NACK

Share request reqshare

Share reply repshare / Error
Verify

Recover

and

decrypt

(1)

(2)

(3)

(4)

Figure 7.2 – On-chain secrets protocol steps: (1) Write transaction, (2) Read transaction, (3)
Share retrieval, (4) Secret reconstruction.

7.4 On-Chain Secrets

In this section we introduce two on-chain secrets protocols, one-time secrets and long-term

secrets. Figure 7.2 provides an overview of on-chain secrets. The assumptions listed in the

previous section apply to both protocols. We also present two protocol extensions: an on-

chain blinded key exchange that allows concealing the identities of the readers as well as a

post-quantum secure version of on-chain secrets.

One-time secrets uses PVSS and employs a per-secret secret-management cothority. One-time

secrets’ simplicity enables each txw to define a fresh, ad hoc group of secret-management

trustees without any setup or coordination. This simplicity, however, comes at a price. The txw

size and the encryption/decryption overhead are linear in the size of the secret-management

cothority because all encrypted shares are included in the transaction and the number of

secret shares is equal to the size of the secret-management cothority.

Long-term secrets, the second approach to implementing on-chain secrets, requires the secret-

management cothority to perform a coordinated setup phase to generate a collective key

(DKG) and to maintain a minimal state of their DKG secret shares. As a result, however,

long-term secrets offers a constant encryption overhead and a flexible secret-management

cothority membership through re-sharing the shared key or re-encrypting existing secrets to a

new shared key.

1We assume the associated network model is strong enough to guarantee the security of the blockchain used.

137

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

The on-chain private key exchange protocol can be applied to both on-chain secrets protocols

and hide the reader’s identity by blinding the reader’s public key in the write and read transac-

tions. Lastly, the post-quantum on-chain secrets describe the modifications needed to achieve

post-quantum security.

7.4.1 One-Time Secrets

One-time secrets is based on PVSS [222]. Wanda, the writer, first prepares a secret she wants to

share along with a policy that lists the public key of the intended reader. She then generates a

symmetric encryption key by running PVSS for the secret-management cothority members,

encrypts the secret with the key she shared and then stores the resulting ciphertext either

on-chain or off-chain. Finally, she sends a write transaction txw containing the information

necessary for the verification and retrieval of her secret to the access-control cothority to

have it logged. Ron, the reader, creates and sends to the access-control cothority a read

transaction txr for a specific secret. The trustees check txr against the secret’s access policy

and if Ron is authorized to access the secret, they log the transaction creating a proof of

access. Ron sends this proof together with the encrypted secret shares from txw to each secret-

management (PVSS) trustee and gets the secret key shares. Once Ron has received a threshold

of valid shares, he recovers the symmetric key and decrypts the original data.

Write transaction protocol

Wanda, the writer and each trustee of the access-control cothority perform the following

protocol to log the write transaction txw on the blockchain. Wanda initiates the protocol as

follows.

1. Compute h = H(policy) to map the access-control policy to a group element h to be

used as the base point for the PVSS polynomial commitments.

2. Choose a secret sharing polynomial s(x) =∑t−1
j=0 a j x j of degree t −1. The secret to be

shared is s =G s(0).

3. For each secret-management trustee i , compute the encrypted share ŝi = pks(i)
i of

the secret s and create the corresponding NIZK proof πŝi that each share is correctly

encrypted (see Section 2.3.6). Create the polynomial commitments b j = ha j , for 0 ≤ j ≤
t −1.

4. Set k = H(s) as the symmetric key, encrypt the secret message m to be shared as c =
enck (m), and compute Hc = H(c). Set policy = pkR to designate Ron as the intended

reader of the secret message m.

5. Finally, prepare and sign the write transaction

txw = [〈ŝi 〉 ,〈b j 〉 ,〈πŝi 〉 , Hc ,〈pki 〉 ,policy]sigskW

138

7.4. On-Chain Secrets

and send it to the access-control cothority.

The access-control cothority then logs the write transaction on the blockchain as follows.

1. Derive the PVSS base point h =H(policy).

2. Verify each encrypted share ŝi against πŝi using 〈b j 〉 and h (see Section 2.3.6). This step

guarantees that Wanda correctly shared the encryption key.

3. If all shares are valid, log txw in block bw .

Read transaction protocol

After the write transaction has been recorded, Ron needs to log the read transaction txr through

the access-control cothority before he can request the secret. To do so, Ron performs the

following steps.

1. Retrieve the ciphertext c and bw , which stores txw, from the access-control cothority.

2. Check that H(c) is equal to Hc in txw to ensure that the ciphertext c of Wanda’s secret

has not been altered.

3. Compute Hw =H(txw) as the unique identifier for the secret that Ron requests access to

and determine the proof πtxw showing that txw has been logged on-chain.

4. Prepare and sign the transaction

txr = [Hw,πtxw]sigskR

and send it to the access-control cothority.

The access-control cothority then logs the read transaction on the blockchain as follows.

1. Retrieve txw using Hw and use pkR , as recorded in policy, to verify the signature on txr.

2. If the signature is valid and Ron is authorized to access the secret, log txr in block br .

Share retrieval protocol

After the read transaction has been logged, Ron can recover the secret message m by running

first the share retrieval protocol with the secret-management cothority to obtain shares of the

encryption key used to secure m. To do so, Ron initiates the protocol as follows.

139

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

1. Create and sign a secret-sharing request

reqshare = [txw, txr,πtxr]sigskR

where πtxr proves that txr has been logged on-chain.

2. Send reqshare to each secret-management trustee to obtain the decrypted shares.

Each trustee i of the secret-management cothority responds to Ron’s request as follows.

1. Use pkR in txw to verify the signature of reqshare andπtxr to check that txr has been logged

on-chain.

2. Compute the decrypted share si = (ŝi)sk
−1
i , create a NIZK proof πsi that the share was

decrypted correctly (see Section 2.3.6), and derive ci = encpkR
(si) to ensure that only

Ron can access it.

3. Create and sign the secret-sharing reply

repshare = [ci ,πsi]sigski

and send it back to Ron.

Secret reconstruction protocol

To recover the secret key k and decrypt the secret m, Ron performs the following steps.

1. Decrypt each si = decpkR
(ci) and verify it against πsi .

2. If there are at least t valid shares, use Lagrange interpolation to recover s.

3. Recover the encryption key as k =H(s) and use it to decrypt the ciphertext c to obtain

the message m = deck (c).

Achieving system goals

The one-time secrets protocol achieves all our goals except for dynamic sovereign identities.

Confidentiality of Secrets. The secret message m is encrypted under a symmetric key k which

is securely secret-shared using PVSS among the secret-management trustees such that t =
f +1 shares are required to reconstruct it. The access-control trustees verify and log on the

blockchain the encrypted secret shares which, based on the properties of PVSS, do not leak any

information about k. After the secret-management trustees receive a valid request reqshare,

they respond with their secret shares encrypted under the public key listed in policy from

140

7.4. On-Chain Secrets

the respective write transaction txw. Further, a dishonest reader cannot obtain access to

someone else’s secret through a new write transaction that uses a policy that lists him as the

reader but copies secret shares from another transaction in hopes of having them decrypted

by the secret-management cothority. This is because each transaction is bound to a specific

policy which is used to derive the base point for the PVSS NIZK consistency proofs. Without

the knowledge of the decrypted secret shares (and the key k), the malicious reader cannot

generate correct proofs and all transactions without valid proofs are rejected. This means that

only the intended reader obtains a threshold of secret shares necessary to recover k and then

access m.

Auditability. Under the assumption that the access-control cothority provides Byzantine

consensus guarantees, all properly created read and write transactions are logged by the

access-control cothority on the blockchain. Once a transaction is logged, anyone can verify

this fact and obtain a third-party verifiable transaction inclusion proof.

Atomic Data Delivery. Once a read transaction txr is logged by the access-control cothority,

the reader can run the share retrieval protocol with the secret-management cothority. Under

the assumption that n = 2 f +1, the reader receives at least t = f +1 shares of the symmetric

encryption key k from the honest trustees. This guarantees that the reader has enough shares

to reconstruct k and access the secret message m using the secret reconstruction protocol.

Dynamic Sovereign Identities. While all participants maintain their own private keys and

hence their identities, the identities used in write transactions cannot be updated without

re-encrypting the secrets and posting new write transactions.

Decentralization. The protocols do not assume a trusted third party and they tolerate up to

t −1 failures.

Protocol advantages and shortcomings

The one-time secrets protocol uses existing and proven to be secure building blocks and its

design is simple to implement and analyze. Further, it does not require a setup phase among

the secret-management members, e.g., to generate a collective private-public key pair. It also

enables the use of a different secret-management cothority for each secret, without requiring

the servers to maintain any protocol state.

However, one-time secrets has a few shortcomings too. First, it incurs high PVSS setup and

share reconstruction costs as Wanda needs to evaluate the secret sharing polynomial at n

points, create n encrypted shares and NIZK proofs, along with t polynomial commitments.

Similarly, Ron has to verify up to n decrypted shares against the NIZK proofs and to re-

construct the secret on his device. Second, the transaction size increases linearly with the

secret-management cothority size. Because the secret-management trustees do not store any

per-secret protocol state making them nearly stateless, the write transaction txw must contain

the encrypted shares, NIZK proofs, and the polynomial commitments. Lastly, one-time se-

141

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

crets does not enable re-encryption of the shares to another set of trustees, preventing the

possibility of moving shares from one set of secret-management trustees to another.

7.4.2 Long-Term Secrets

Long-term secrets address the above limitations through a dedicated secret-management

cothority that persists over a long period of time and that maintains a collective private-public

key pair used to secure access to the secrets.

After a one-time distributed key generation (DKG) phase (see Section 2.3.1 for details) per-

formed by the secret-management cothority, Wanda, the writer, prepares her secret message,

encrypts it with a symmetric key and then encrypts that key with the shared public key of the

secret-management cothority. As a result, the overhead of encrypting secrets is constant as

each write transaction contains a single ciphertext instead of individual shares. Ron, the reader,

recovers the symmetric key by obtaining a threshold of securely blinded shares of the collec-

tive private key and reconstructing the symmetric key himself or with the help of a trustee

he selects. Furthermore, the configuration of the secret-management cothority can change

by re-sharing the shared key or re-encrypting all the secrets to a new secret-management

cothority.

Protocol setup

Before any transactions can be created and processed, the secret-management cothority needs

to run a DKG protocol to generate a shared private-public key pair. There exist a number of

DKG protocols that are synchronous [110] or asynchronous [141]. Given the rarity of the setup

phase, we assume a pessimistic synchrony assumption for the DKG (e.g., every message is

posted to the access-control cothority blockchain) and implement the DKG by Gennaro et

al. [110] because of its simplicity and the fact that it permits a higher threshold of corruptions.

The output of the setup phase is a collective public key pksmc = Gsksmc , where sksmc is the

unknown collective private key. Each server i holds a share of the secret key denoted as ski

and all servers know the public counterpart pki =Gski . The secret key can be reconstructed by

combining a threshold t = f +1 of the individual shares. We assume that pksmc is registered

on the blockchain of the access-control cothority.

Write transaction protocol

Wanda and each trustee of the access-control cothority perform the following protocol to

log the write transaction txw on the blockchain. Wanda initiates the protocol through the

following steps.

1. Retrieve the collective public key pksmc of the secret-management cothority.

142

7.4. On-Chain Secrets

2. Choose a symmetric key k and encrypt the secret message m to be shared as cm =
enck (m) and compute Hcm =H(cm). Set policy = pkR to designate Ron as the intended

reader of the secret message m.

3. Encrypt k towards pksmc using a threshold variant of the ElGamal encryption scheme [229].

To do so, embed k as a point k ′ ∈ G , pick a value r uniformly at random, compute

ck = (pkr
smck ′,Gr) and create the NIZK proof πck to guarantee that the ciphertext is

correctly formed, CCA-secure and non-malleable.

4. Finally, prepare and sign the write transaction

txw = [ck ,πck , Hcm ,policy]sigskW

and send it to the access-control cothority.

The access-control cothority then logs the write transaction.

1. Verify the correctness of the ciphertext ck using the NIZK proof πck .

2. If the check succeeds, log txw in block bw .

Read transaction protocol

After txw has been recorded, Ron needs to log a read transaction txr through the access-control

cothority before he can request the decryption key shares. To do so, Ron performs the following

steps.

1. Retrieve the ciphertext cm and the block bw , which stores txw, from the access-control

cothority.

2. Check that H(cm) is equal to Hcm in txw to ensure that the ciphertext cm of Wanda’s

secret has not been altered.

3. Compute Hw =H(txw) as the unique identifier for the secret that Ron requests access to

and determine the proof πtxw showing that txw has been logged on-chain.

4. Prepare and sign the read transaction

txr = [Hw,πtxw]sigskR

and send it to the access-control cothority.

The access-control cothority then logs txr as follows.

143

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

1. Retrieve txw using Hw and use pkR , as recorded in policy, to verify the signature on txr.

2. If the signature is valid and Ron is authorized to access the secret, log txr in block br .

Share retrieval protocol

After the read transaction has been logged, Ron can recover the secret data by running the

share retrieval protocol with the secret-management cothority. To do so Ron initiates the

protocol as follows.

1. Create and sign a secret-sharing request

reqshare = [txw, txr,πtxr]sigskR

where πtxr proves that txr has been logged on-chain.

2. Send reqshare to each secret-management trustee to request the blinded shares.

Each trustee i of the secret-management cothority responds to Ron’s request as follows.

1. Get Gr and pkR from txw and prepare a blinded share ui = (Gr pkR)ski with a NIZK

correctness proof πui .

2. Create and sign the secret-sharing reply

repshare = [ui ,πui]sigski

and send it back to Ron.

Secret reconstruction protocol

To retrieve the decryption key k and recover the secret m, Ron performs as follows.

1. Wait to receive at least t valid shares ui = G (r+skR)ski = Gr ′ski and then use Lagrange

interpolation to recover the blinded decryption key

pkr ′
smc =

t∏
k=0

(Gr ′ski)λi ,

where λi is the i th Lagrange element.

2. Unblind pkr ′
smc to get the decryption key pkr

smc for ck via

(pkr ′
smc)(pkskR

smc)−1 = (pkr
smc)(pkskR

smc)(pkskR
smc)−1

144

7.4. On-Chain Secrets

3. Retrieve the encoded symmetric key k ′ from ck via

(ck)(pkr
smc)−1 = (pkr

smck ′)(pkr
smc)−1,

decode it to k, and finally recover m = deck (cm).

Ron may delegate the costly verification and combination of shares to a trustee, i.e., the first

step of the above protocol. The trustee is assumed to be honest-but-curious and to not DoS

Ron. The trustee cannot access the secret, as he does not know skR and hence cannot unblind

pkr ′
smc. Ron can detect if the trustee carries out the recovery incorrectly.

Evolution of the secret-management cothority

The secret-management cothority is expected to persist over a long period of time and to re-

main secure and available. However, a number of issues can arise over its lifetime. First, servers

can join and leave the cothority resulting in churn. Second, even if the secret-management

cothority membership remains static, the private shares of the servers should be regularly (e.g.,

every month) refreshed to thwart an attacker who can attempt to collect a threshold of shares

over a period of time. Lastly, the collective private key of the secret-management cothority

should be rotated periodically e.g., once every year or two. Any change of the current collective

private-public key pair would require re-encrypting all of the long-lived secrets, however, if

done by simply choosing a new key pair.

We address the first two problems by periodically re-sharing [129] the existing collective public

key when a server joins or leaves the secret-management cothority, or when servers want to

refresh their private key shares. Lastly, when the secret-management cothority wants to rotate

the collective public/private key pair (pksmc, sksmc), CALYPSO needs to collectively re-encrypt

each individual secret under the new collective public key. To achieve this, we can generate

and use translation certificates [135] such that the secrets can be re-encrypted without the

involvement of their writers and without exposing the underlying secrets to any of the servers.

Achieving system goals

Long-term secrets achieves its goals similarly to one-time secrets with these differences.

Confidentiality of Secrets. In long-term secrets, the secret message m is encrypted under a

symmetric key k which is subsequently encrypted under a collective public key of the secret-

management cothority such that at least t = f +1 trustees must cooperate to decrypt it. The

ciphertext is bound to a specific policy through the use of NIZK proofs [229] so it cannot be

reposted in a new write transaction with a malicious reader listed in its policy. The access-

control trustees log the write transaction txw that includes the encrypted key which, based

on the properties of the encryption scheme, does not leak any information about k. After the

secret-management trustees receive a valid request reqshare, they respond with the blinded

145

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

shares of the collective private key encrypted under the public key in policy from the respective

txw. Based on the properties of the DKG protocol, the collective private key is never known to

any single entity and can only be used if t trustees cooperate. This means, only the intended

reader gets a threshold of secret shares necessary to recover k and access m.

7.4.3 On-chain Blinded Key Exchange

In both on-chain secrets protocols, Wanda includes the public key of Ron in a secret’s policy

to mark him as the authorized reader. Once Wanda’s write transaction is logged, everyone

knows that she has shared a secret with Ron and correspondingly, once his read transaction is

logged, everyone knows that he has obtained the secret. While this property is desirable for

many deployment scenarios we envision, certain applications may benefit from concealing

the reader’s identity. See Section 7.7 for a discussion of CALYPSO’s deployment.

We introduce an on-chain blinded key exchange protocol, an extension that can be applied

to both on-chain secrets protocols. This protocol allows the writer to conceal the intended

reader’s identity in the write transaction and to generate a blinded public key for the reader

to use in his read transaction. The corresponding private key can only be calculated by the

reader and the signature under this private key is sufficient for the writer to prove that the

intended reader created the read transaction. The protocol works as follows.

1. Public Key Blinding. Wanda generates a random blinding factor b and uses it to calculate

a blinded version of Ron’s public key pkR̃ = pkb
R =Gb skR .

2. Write Transaction. Wanda follows either the one-time secrets or long-term secrets

protocol to create txw with the following modifications. Wanda encrypts b under pkR

to enable Ron to calculate the blinded version of his public key by picking a random

number b′ and encrypting b as (cb1 ,cb2) = (GskR b′
b,Gb′

). Then, she uses pkR̃ instead of

pkR in the policy. Wanda includes cb = (cb1 ,cb2) and policy in txw. After txw is logged,

she notifies Ron on a separate, secure channel that she posted txw such that he knows

which transaction to retrieve.

3. Read Transaction. When Ron wants to read Wanda’s secret, he first decrypts cb using

skR to retrieve b = (cb1)(cskR

b2
)−1 = (GskR b′

b)(Gb′skR)−1. Then, he can compute skR̃ = b skR

and use this blinded private key to anonymously sign his txr.

4. Auditing. If Wanda wants to prove that Ron generated the txr, she can release b. Then,

anyone can unblind Ron’s public key pkR = pk−b
R̃

, verify the signature on the transaction

and convince themselves that only Ron could have validly signed the transaction as he

is the only one who could calculate skR̃ .

The on-chain blinded key exchange protocol enables Wanda to protect the identity of the

intended reader of her secrets without forfeiting any of the on-chain secrets’s guarantees,

146

7.4. On-Chain Secrets

however, it requires the knowledge of the reader’s public key. As a consequence, this protocol

does not support dynamic identities discussed in Section 7.5, as we cannot predict and

blind an unknown, future public key. Nonetheless, this protocol provides a viable option for

applications where relationship privacy is more important than dynamic identity evolution.

An extension of this protocol that allows blinding of dynamic identities remains an open

challenge to be addressed in future work.

7.4.4 Post-Quantum On-chain Secrets

The security of both on-chain secrets implementations relies on the hardness of the discrete

logarithm (DL) problem. An efficient quantum algorithm [228] for solving the DL prob-

lem exists, however. One solution to provide post-quantum security in CALYPSO is to use

post-quantum cryptography (e.g., lattice-based cryptography [88]). Alternatively, we can im-

plement on-chain secrets using the Shamir’s secret sharing [227] scheme which is information-

theoretically secure. Unlike the publicly-verifiable scheme we previously used, Shamir’s secret

sharing does not prevent a malicious writer from distributing bad secret shares because the

shares cannot be verified publicly.

To mitigate this problem, we add a step to provide accountability of the secret sharing phase

by (1) requiring the writer to commit to the secret shares she wishes to distribute and (2)

requesting that each secret-management trustee verifies and acknowledges that the secret

share they hold is consistent with the writer’s commitment. As a result, assuming n = 3 f +1

and secret sharing threshold t = f +1, the reader can hold the writer accountable for producing

a bad transaction should he fail to correctly decrypt the secret message.

Write transaction protocol

Wanda prepares her write transaction txw with the help of the secret-management and access-

control cothorities, where each individual trustee carries out the respective steps. Wanda

initiates the protocol by preparing a write transaction as follows.

1. Choose a secret sharing polynomial s(x) =∑t−1
j=0 a j x j of degree t −1. The secret to be

shared is s = s(0).

2. Use k =H(s) as the symmetric key to compute the ciphertext c = enck (m) for the secret

message m and set Hc =H(c).

3. For each trustee i , generate a commitment qi =H(vi ∥ s(i)), where vi is a random salt

value.

4. Specify the access policy and prepare and sign txw.

txw = [〈qi 〉 , Hc ,〈pki 〉 ,policy]sigskW

147

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

5. Send the share s(i), salt vi , and txw to each secret-management trustee using a post-

quantum secure channel.

The secret-management cothority verifies txw as follows.

1. Verify the secret share by checking that (s(i), vi) corresponds to the commitment qi . If

yes, sign txw and send it back to Wanda as a confirmation that the share is valid.

The access-control cothority finally logs Wanda’s txw.

1. Wait to receive txw signed by Wanda and the secret-management trustees. Verify that at

least 2 f +1 trustees signed the transaction. If yes, log txw.

Read transaction, share request, and reconstruction protocols

The other protocols remain unchanged except that the secret-management trustees are already

in possession of their secret shares and the shares need not be included in txr. Once Ron

receives the shares from the trustees, he recovers the symmetric key k as before and decrypts c .

If the decryption fails, then the information shared by Wanda (the key, the ciphertext, or both)

was incorrect. Such an outcome would indicate that Wanda is malicious and did not correctly

execute the txw protocol. In response, Ron can release the transcript of the txr protocol in

order to hold Wanda accountable.

7.5 Skipchain Identity and Access Management

The CALYPSO protocols described so far do not provide dynamic sovereign identities. They

only support static identities (public keys) and access policies as they provide no mechanisms

to update these values. These assumptions are rather unrealistic though, as the participants

may need to change or add new public keys to revoke a compromised private key or to extend

access rights to a new device, for example. Similarly, it should be possible to change access

policies so that access to resources can be extended, updated or revoked and to define access-

control rules for individual identities and groups of users for greater flexibility and efficiency.

Finally, any access-control system that supports the above properties should be efficient as

well as secure to prevent freeze and replay attacks [195], and race conditions between applying

changes to access rights and accessing the resources.

In order to address these challenges and achieve dynamic sovereign identities, we introduce

the skipchain-based identity and access management (SIAM) subsystem for CALYPSO that pro-

vides the following properties: (1) Enable users to specify and announce updates to resource

access keys and policies. (2) Support identities for both individual users and groups of users.

148

7.5. Skipchain Identity and Access Management

id: idRon
admin: pk1 ∧ pk2

service: pklab, pkdoc

id: idRon
admin: pk1 ∧ pk2

service: pklab, pkdoc
pkssh

sigsk1∧sk2

hash

id: idLab
admin: idRon

members: idRon, idEve

id: idLab
admin: idRon

members: idRon, idEve,
idAna

sigsklab

hash

id: idPaper
admin: idRon

access: idRon

id: idPaper
admin: idRon ∨ idAna

access: idLab

sigskdoc

hash

Personal identity skipchain

Federated identity skipchain

Resource policy skipchain

Figure 7.3 – Skipchain-based identity and access management (SIAM): First, Ron updates
his personal identity skipchain idRon to include pkssh. Afterwards, he uses sklab to extend
the federated identity skipchain idlab to add idAna as a member. Finally, he adds idAna as an
administrator and idlab as authorized readers to the resource policy skipchain idpaper by using
skdoc.

(3) Protect against replay and freeze attacks. (4) Enforce atomicity of accessing resources and

updating resource access rights to prevent race conditions.

7.5.1 Architecture

In SIAM, we introduce three types of skipchains [195], structures similar to a blockchain but

doubly-linked. Personal identity skipchains store the public keys that individual users control

and use to access resources. A user can maintain a number of public keys that correspond to

his identity that are used for access to resources on different devices, for example. Federated

identity skipchains specify identities and public keys of a collective identity that encompasses

users that belong to some group, such as employees of a company, members of a research lab,

a board of directors, etc. Resource policy skipchains track access rights of identities, personal

or federated, to certain resources and enable dynamic access control. In addition to listing

identities and their public keys, policy skipchains include access-control rules allowing to

enforce fine-grained update conditions for write transactions. Section 7.8 describes a simple

access-control list (ACL) we created for our implementation.

The main insight is that skipchains securely maintain a verifiable timeline of changes to the

identities and policies they represent. This means that these identities or policies can evolve

dynamically and independently of the specific applications that make use of them and that at

149

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

any point the applications can verifiably obtain the most up-to-date version of each.

The SIAM skipchains are under the self-sovereign control of individual users or groups of

users. To track administrative rights, each SIAM skipchain includes in its skipblocks the

(public) administrative keys of users authorized to make updates and the policy under which

a skipchain can be updated. These update policies can be expressed as arbitrary boolean

circuits, e.g., requiring approvals from just a single administrator or a certain set of them. Since

the administrative keys are used only for skipchain updates, they should be stored in cold

wallets, such as hardware security modules, for increased security.

To evolve a SIAM skipchain and consequently the identities or access policies it represents,

its administrators follow the skipchain’s update policies and create a new skipblock that

reflects the necessary changes, and then publicly announce it, e.g., by pushing the update

to the storage provider(s) maintaining a public interface to the SIAM skipchain. Users and

services that follow SIAM skipchains can get notified automatically about those updates and

accept them if they are proposed by authorized users and adhere to the update policies.

Since the latest skipblock represents the current state of a skipchain, i.e., identities of all

currently authorized users or all current access rules, revocation is trivially supported as the

administrators simply push a new skipblock to the respective skipchain that omits the public

key or access rule that needs to be revoked. Figure 7.3 provides an overview on SIAM.

7.5.2 Integration Into CALYPSO

To integrate SIAM with CALYPSO, the long-term secrets protocols described in Section 7.4.2

are adapted as follows. Assume that Ron has logged the unique identifier idR of his personal

identity skipchain on the access-control blockchain. If Wanda wants to give Ron access to a

resource, she simply sets policy = idR instead of policy = pkR in txw.

This means that instead of defining access rights in terms of Ron’s static public pkR , she does

so in terms of Ron’s skipchain and consequently, any public key(s) specified in the most

current block of idR . Then, the resource is encrypted under the shared public key of the

secret-management cothority as before. To request access, Ron creates the read transaction

txr = [Hw ,πtxw ,pkR ′]sigskR′

where Hw = H(txw) is the unique identifier for the secret that Ron requests access to, πtxw is

the blockchain inclusion proof for txw, and pkR ′ is one of Ron’s public keys that he wishes to

use from the latest block of the idR skipchain. After receiving txr, the access-control cothority

follows the idR skipchain to retrieve the latest skipblock and verifies pkR ′ against it. Then, the

access-control cothority checks the signature on txr using pkR ′ and, if valid, logs txr. Once

txr is logged, the rest of the protocol works as described in Section 7.4.2, where the secret-

management cothority uses pkR ′ for re-encryption to enable Ron to retrieve the resource.

150

7.6. Further Security Consideration

7.5.3 Achieving SIAM Goals

When SIAM is used, Ron is able to evolve the idR skipchain arbitrarily, e.g., rotate existing access

keys or add new devices, and still retain access to the encrypted resource without needing

Wanda to update the initial write transaction. Analogously, Wanda can efficiently provide a

group of users access to a resource by using a federated identity idF that these users are a

part of, instead of adding each user individually, by setting policy = idF in txw. This approach

outsources the resource access maintenance to the administrators of the idF skipchain as they

are in charge of the federated identity’s membership and can add and remove members at will.

Alternatively, Wanda can set up a resource policy skipchain idP she is in charge of and include

idF as non-administrative members along with any other rules she wants to have enforced.

Then, Wanda would use policy = idP in txw authorizing idF to access the respective resource

under the specified rules.

In order for users to defend against freeze and replay attacks we require them to generate

freshness proofs of their SIAM skipchains. To do this they submit in regular time periods (e.g.,

every hour) the head of their skipchain for timestamping on the blockchain. This prevents

freeze and replay attacks as an adversary that managed to subvert an old SIAM skipblock

cannot convince a client to accept the adversarial actions as authoritative, given that the

skipblock the adversary refers to is different from the fresh one appearing on the blockchain.

This practice further ensures the atomicity of read, write, and (skipchain) update operations,

at the moment a SIAM update happens the client should send the new SIAM skipblock for

timestamping. This effectively serializes reads, writes, and updates and therefore prevents

race conditions.

7.6 Further Security Consideration

Our contributions are mainly pragmatic rather than theoretical as we employ only existing,

well-studied cryptographic algorithms. We already discussed achieving CALYPSO’s security

goals in the previous sections. On-chain secrets protocols achieve all goals but dynamic

sovereign identities which is addressed by SIAM. In this section, we discuss the effect of

malicious parties on CALYPSO.

Malicious readers and writers CALYPSO’s functionality resembles a fair-exchange proto-

col [197] in which a malicious reader may try to access a secret without paying for it and a

malicious writer may try to get paid without revealing the secret. In CALYPSO, we protect

against such attacks by employing the access-control and secret-management cothorities as

decentralized equivalents of trusted third parties that mediate interactions between readers

and writers.

The access-control cothority logs a write transaction on the blockchain only after it successfully

verifies the encrypted data against the corresponding consistency proof. This ensures that

151

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

a malicious writer cannot post a transaction for a secret that cannot be recovered. Further,

as each txw binds its contents to its policy, it protects against attacks where malicious writers

naively extract contents of already posted transactions and submit them with a different policy

listing themselves as the authorized readers. Similarly, before logging a read transaction, the

access-control cothority verifies that it refers to a valid txw and it is sent by an authorized

reader as defined in the policy of txw. A logged read transaction serves as an access approval.

The secret-management cothority releases the decryption shares to the authorized reader

only after confirming the reader presents an auditable proof of txr.

Malicious trustees Our threat model permits a fraction of the access-control and secret-

management cothority trustees to be dishonest. The thresholds (t = f +1) used in on-chain

secrets, however, prevent the malicious trustees from being able to pool their secret shares

and access writers’ secrets or to prevent an authorized reader from accessing their secret by

withholding the secret shares. Further, even if some individual malicious trustees refuse to

accept requests from the clients or to participate in the protocols altogether, the remaining

honest trustees are able to carry out all protocols by themselves thereby ensuring service

availability.

Malicious storage providers Wanda may choose to store the actual encrypted data either

on-chain or off-chain by choosing to outsource the storage to external providers. Because the

data is encrypted, it can be shared with any number of possibly untrusted providers. Before

Ron creates a txr he needs to retrieve and verify the encrypted data against the hash posted

in txw. If Ron cannot obtain the encrypted data from the provider, he can contact Wanda to

expose the provider as dishonest and receive the encrypted data directly from Wanda or an

alternative storage provider.

7.7 Experience Using CALYPSO

Below we describe three real-world deployments, two completed and one in-progress, of

CALYPSO that resulted from collaborations with companies that needed a flexible, secure,

and decentralized solution to share data. We also describe a zero-collateral, constant-round

decentralized lottery and compare it with the existing solutions.

7.7.1 Auditable Online Invoice Issuing

Together with Conextrade2, the main invoice regulator of Switzerland, we built an auditable

online invoice issuing system. It uses HyperLedger Fabric v1.0 as the access-control blockchain

together with long-term secrets. While the system uses static identities, they are blinded as

needed using the protocol described in Section 7.4.3.

2https://www.conextrade.com/

152

7.7. Experience Using CALYPSO

Problem definition The system consists of a set of potentially mutually distrustful sellers

and buyers as well as a regulator, who are all part of a dynamic ecosystem. To keep track of all

business relationships without the need for an intermediary the system relies on blockchain

technology. A seller wishes to verifiably issue an invoice to a buyer while granting additional

access to the regulator. The invoice contains confidential information that both parties want

to protect. The goal was to allow the invoices to be logged and tracked and to enable the

regulator to access the details if an issue arises between the parties.

Solution with CALYPSO This system required a straightforward deployment of CALYPSO. The

sellers generate write transactions where the secret message is the invoice and the authorized

readers are both the buyer and the regulator. When the buyer sees the respective write

transaction, he issues a read transaction to access the invoice. If there is an issue with the

invoice or no invoice has been issued for a certain amount of time, the buyer reports it to the

regulator who can audit the transactions and the invoice. Analogously, the seller can request

the regulator to audit if an issue arises on his side. Using CALYPSO’s blinded identities in the

write transactions hides the relationships between the sellers and buyers and consequently

details such as trade frequencies and types of purchases, which is advantageous from a

business perspective.

7.7.2 Clearance-enforcing Document Sharing

We have used CALYPSO to deploy a decentralized, clearance-enforcing document-sharing

system that enables two organizations, A and B , to share a document D , such that a policy of

confidentiality can be enforced on D . We have realized this system with ByzGen3 a contract

of the Ministry of Defense of the UK using ByzCoin (Chapter 3) and long-term secrets. The

evaluation of this application is in Section 7.9.2.

Problem Definition Organization A wants to share with organization B a document D

whose entirety or certain parts are classified as confidential and should only be accessible by

people with proper clearance. Clearance is granted to (or revoked from) employees individually

as needed or automatically when they join (or leave) a specific department so the set of

authorized employees continuously changes. The goal is to enable the mutually distrustful

A and B to share D while dynamically enforcing the specific clearance requirements and

securely tracking accesses to D for auditing.

Solution with CALYPSO First, A and B agree on a mutually-trusted blockchain system to

implement the access-control cothority whose trustees include servers controlled by both

organizations. Then, each organization establishes federated identity skipchains with all

the identities that have clearance, idA and idB , respectively which include references to: (a)

3https://byzgen.com/

153

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

federated skipchains for departments that have a top-secret classification (e.g., senior manage-

ment), (b) federated skipchains for attributes that have a top-secret classification (e.g., ranked

as captain) and (c) personal skipchains of employees that need exceptional clearance.

Organization A creates a document D , labels each paragraph as confidential or unclassified

and, encrypts it using a different symmetric key. A shares the ciphertext with B and generates

txw, which contains the symmetric keys of the classified paragraphs and policy = idB . Any

employee of B whose public key is included in the set of classified employees as defined in the

most current skipblock of idB can retrieve the symmetric keys by creating read transactions.

CALYPSO logs the txr creates a proof of access and delivers the key. Both organizations can

update their identity skipchains as needed to ensure that at any given moment only authorized

employees can access.

7.7.3 Patient-centric Medical Data Sharing

CALYPSO lends itself well for applications that require secure data-sharing for research pur-

poses [211]. We are in the process of working with hospitals and research institutions from a

Switzerland as part of the DPPH project4 to build a patient-centric system to share medical

data. We expect to use OmniLedger (Chapter 4) along with long-term secrets. We do not

provide an evaluation of this application as it is similar to the previous one.

Problem Definition Researchers face difficulties in gathering medical data from hospitals

as patients increasingly refuse to approve access to their data for research purposes amidst

rapidly-growing privacy concerns [130]. Patients dislike consenting once and completely

losing control over their data and are more likely to consent to sharing their data with specific

institutions [144]. The goal of this collaboration is to enable patients to remain sovereign

over their data; hospitals to verifiably obtain patients’ consent for specific purposes; and

researchers to obtain access to valuable patient data. In the case that a patient is unable to

grant access (unconscious), the medical doctor can request an exception (specified in the

policy) and access the data while leaving an auditable proof.

Solution with CALYPSO We have designed a preliminary architecture for a data-sharing

application that enables a patient P to share her data with multiple potential readers over

time. This deployment is different from the previously described one in that the data generator

(hospital) and the data owner (P) are different. For this reason, we use a resource policy

skipchain idP such that the hospital can represent P ’s wishes with respect to her data. Policy

skipchains can dynamically evolve by adding and removing authorized readers, and can

include rich access-control rules.

CALYPSO enables P to initialize idP when she first registers with the medical system, Initially,

4https://dpph.ch/

154

7.8. Implementation

idP is empty, indicating that P ’s data cannot be shared. If a new research organization or other

hospital requests to access some of P ’s data, then P can update idP by adding a federated

identity of the research organization and specific rules. When new data is available for sharing,

the hospital generates a new write transaction that consists of the encrypted and possibly

obfuscated, or anonymized medical data and idP as policy. As before, users whose identities

are included in idP can post read transactions to obtain access. Hence, P remains in control of

her data and can unilaterally update or revoke access.

7.7.4 Decentralized Lottery

Problem Definition We assume there is a set of n participants who want to run a decentral-

ized zero-collateral lottery selecting one winner. The lottery is managed by a smart contract

that collects the bids and waits for the final randomness to decide on the winner. The evalua-

tion of this application is in Section 7.9.3.

Solution with CALYPSO Each participant creates a txw where the secret is their contribution

to the randomness calculation and shares it using long-term secrets. After a predefined

number of blocks (the barrier point) the input phase of the lottery closes. Afterwards the smart

contract creates a txr to retrieve all inputs submitted before the barrier point and posts the

reconstructed values and the corresponding proofs.

Once the final randomness has been computed as an XOR of all inputs, the smart contract

uses it to select the winner.

Comparison to Existing Solutions Prior proposals for decentralized lotteries either need

collateral (e.g., Ethereum’s RandDAO [212]) or run in a non-constant number of rounds [183].

CALYPSO enables a simpler decentralized lottery design, as the lottery executes in one round

and needs no collateral because the participants cannot predict the final randomness or abort

prematurely.

7.8 Implementation

We implemented all components of CALYPSO, on-chain secrets, and SIAM, in Go [118]. For

cryptographic operations, we relied on Kyber [160], an advanced crypto library for Go. In

particular, we used its implementation of the Edwards25519 elliptic curve, which provides a

128-bit security level. For the consensus mechanism required for the access-control cothority,

we used a publicly available implementation of ByzCoin [149], a scalable Byzantine consensus

protocol. We implemented both on-chain secrets protocols, one-time and long-term secrets,

run by the secret-management cothority. For SIAM, we implemented signing and verifying

using a JSON-based ACL as described below. All of our implementations are available under

155

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

Figure 7.4 – Verifier’s path checking for multi-
signature requests. Figure 7.5 – Sample Policy in JSON access-

control language.

an open source license on GitHub.

We used a simple JSON-based access-control language to describe policies in CALYPSO, how-

ever, different deployments of CALYPSO might benefit from more expressive ACLs. A policy

consists of a unique identifier, a version number, and a list of rules that regulate the access

to secrets stored in txw. A rule has the following three fields. An action field which refers to

the activity that can be performed on the secret (e.g., READ or UPDATE). A subjects field listing

the identities (e.g., idRon) that are permitted to perform the action. Lastly, an expression field

which is a string of the form operator : [operands], where the operator is a logical operation

(AND and OR in our case) and operands are either subjects or other expressions that describe

the conditions under which the rule can be satisfied. More concretely, a sample expression

could be {AND : [idLab, idRon]}, which means that signatures of both idLab and idRon are required

to satisfy that rule. To express more complex conditions we can nest expressions, for example

{OR : [{AND : [id1, id2]}, {AND : [id3, id4]}]} evaluates to ((id1 AND id2) OR (id3 AND id4)). We describe

single and multi-signature access requests against policies and outline how they are created

and verified below.

7.8.1 Access Requests and Verification

In this section, we outline how we create and verify access requests. A request consists of the

policy and the rule invoked that permits the requester to perform the action requested. There

is also a message field where extra information can be provided e.g., a set of documents is

governed by the same policy but the requester accesses one specific document. A request

req is of the form: req = [idPol i c y , indexRul e , M], where idPol i c y is the ID of the target policy

outlining the access rules; indexRul e is the index of the rule invoked by the requester; and M is

a message describing extra information.

156

7.9. Evaluation

To have accountability and verify that the requester is permitted to access, we use signatures.

The requester signs the request and creates a signature consisting of the signed request (sigreq)

and the public key used (pk). On receiving an access request, the verifier checks that the sigreq

is correct. The verifier then checks that there is a valid path from the target policy, idPol i c y , to

the requester’s public key, pk. This could involve multiple levels of checks, if the requester’s key

is not present directly in the list of subjects but included transitively in some federated SIAM

that is a subject. The verifier searches along all paths (looking at the last version timestamped

by the access-control cothority) until the requester’s key is found.

Sometimes, an access request requires multiple parties to sign. Conditions for multi-signature

approval can be described using the expression field in the rules. An access request in this case

would be of the form (req,[sigreq]) where [sigreq] is a list of signatures from the required-for-

access parties. The verification process is similar to a single signature case.

Figure 7.4 shows an example of the path verification performed by the verifier. Report X has a

policy with a Rule granting read access to Bob and Amy. There is an expression stating that

both Bob’s and Amy’s signatures are required to obtain access. Hence, if Bob wants access, he

sends a request (req,[sigreq,pk1
, sigreq,pk4

]), where req = [1234,2,“ReportX”] The verifier checks

the paths from the policy to Bob’s pk4 and Amy’s to pk1 are valid. Paths are shown in red and

blue respectively. Then the expression ‘AND’ : [0,1] is checked against the signatures. If all

checks pass, the request is considered to be verified.

7.8.2 JSON Access-Control Language

A sample policy for a document, expressed in the JSON based language, is shown in Figure 7.5.

The policy states that it has one Admin rule. The admins are S1 and S2 and they are allowed

to make changes to the policy. The Expression field indicates that any changes to the policy

require both S1 and S2’s signatures.

7.9 Evaluation

To evaluate CALYPSO, we use micro-benchmarks to compare on-chain secrets against both

a centralized and a semi-centralized solution using simulated workloads. We also evaluate

CALYPSO using simulated and real data traces in the context of two applications: clearance-

enforcing document sharing (see Section 7.7.2) and a decentralized lottery (see Section 7.7.4).

We remark that the synthetic workloads we generated were significantly heavier than those

from the real data traces. We ran all our experiments on 4 Mininet [187] servers, each equipped

with 256 GB of memory and 24 cores running at 2.5 GHz. To simulate a realistic network, we

configured Mininet with a 100 ms point-to-point latency between the nodes and a bandwidth

of 100 Mbps for each node.

157

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

16 32 64 128
Size of SM and AC

0.01

0.1

1

10

100

W
a
ll
-c

lo
c
k
 t

im
e
 (

s
e
c
)

Write transaction (Client)

Write transaction (AC)

Read transaction (AC)

Share retrieval (SM)

Secret reconstruction (Client)

Figure 7.6 – Latency of one-time secrets protocol for varying sizes of the secret-management
(SM) and access-control (AC) cothorities.

7.9.1 Mirco-benchmarks

We evaluated and compared both on-chain secrets protocols as well as the overheads intro-

duced through the use of the dynamic identities and policies of SIAM. The primary questions

we wish to investigate for on-chain secrets are whether its latency overheads are acceptable

when deployed on top of blockchain systems and whether it can scale to hundreds of valida-

tors as required to ensure a high degree of confidence in the security of the system. In all

experiments, we checked the time it takes to create read and write transactions given different

sizes of secret-management and access-control cothorities. For SIAM, we evaluate the latency

overhead of creating and verifying access requests against SIAM skipchains both for simple

identities as well as for complex policies.

On-chain Secrets

In our experiments, we measure the overall latency of both on-chain secrets protocols, as

shown in Figure 7.2, where we investigate the cost of the write, read, share retrieval and

share reconstruction sub-protocols. In the experiments, we vary the number of trustees to

determine the effects on the latency and we remark that in our implementation all trustees

are part of both cothorities.

One-time secrets Figure 7.6 shows the latency results for varying sizes of access-control and

secret-management cothorities. First, we observe that the client-side creation of the txw is a

costly operation which takes almost one second for 64 secret-management trustees. This is

expected as preparing the txw involves picking a polynomial and evaluating it at n points, and

158

7.9. Evaluation

16 32 64 128

Size of SM and AC

0.01

0.1

1

10

100

T
im

e
 (

s
e
c
)

DKG setup (SM)

CPU / Wall

Write transaction (AC)

Read transaction (AC)

Secret reconstruction (SM)

Figure 7.7 – Latency of long-term secrets protocol for varying sizes of secret-management (SM)
and access-control (AC) cothorities.

setting up the PVSS shares and commitments, all of which involve expensive ECC operations.

Second, we observe that the txw and txr processing times at the access-control cothority are

comparable, but a write takes ≈ 250ms longer on average than a read. This is due to the fact

that the access-control trustees verify all NIZK encryption proofs. Our experiments also show

that verifying the NIZK decryption proofs and recovering the shared secret are substantially

faster than creating the txw and differ by an order of magnitude for large numbers of shares

(e.g., for 128 shares, ≈ 250ms vs ≈ 3 sec). This is due to the fact that verifying the NIZK proofs

and reconstructing the shared secret require less ECC computations than the computationally

expensive setup of the PVSS shares. Finally, we observe that the overhead for the secret-

management cothority part of the secret recovery is an order of magnitude higher than the

client side. This is expected as the client sends a request to each secret-management trustee

and waits until a threshold of them replies.

Long-term secrets Figure 7.7 presents the overall latency costs of the cothority setup (DKG),

write, read, share retrieval and share reconstruction sub-protocols. Except for the DKG setup,

all steps of the long-term secrets protocol scale linearly in the size of the cothority. Even for a

large cothority of 128 servers, it takes less than 8 seconds to process a write transaction. The

CPU time is significantly lower than the wall-clock time due to the network (WAN) overhead

that is included in the wall-clock measurements. While the DKG setup is quite costly, especially

for a large number of servers, it is a one-time cost incurred only at the start of a new epoch.

The overhead of the share retrieval is linear in the secret-management cothority as the number

of shares t , which need to be validated and interpolated, increases linearly in the size of the

secret-management cothority.

The size of transactions is smaller in long-term secrets than in one-time secrets because the

159

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

Table 7.1 – txw size for varying secret-management cothority sizes

txw size (bytes)

Number of trustees One-time secrets Long-term secrets

16 4’086 160
32 8’054 160
64 15’990 160

128 31’926 160

data is encrypted under the secret-management’s collective public key which results in a con-

stant overhead regardless of the cothority’s size. Table 7.1 shows txw sizes in one-time secrets

and long-term secrets for different secret-management cothority configurations. In one-time

secrets, a txw stores three pieces of PVSS-related information: encrypted shares, polynomial

commitments and NIZK encryption consistency proofs. As the size of this information is

determined by the number of PVSS trustees, the size of the txw increases linearly with the size

of the secret-management cothority. In long-term secrets txw uses the collective key of the

secret-management cothority and does not need to include the encrypted shares. As a result,

long-term secrets have constant write transaction size.

Skipchain-based Identity and Access Management

For SIAM, we benchmark the cost of validating the signature on a read transaction which is

the most resource and time intensive operation. We distinguish single and multi-signature

requests. The single signature case represents simple requests where one identity is requesting

access while multi-signature requests occur for more complex access-control rules.

Single-signature request verification For single-signature requests, the verification time

is the sum of the signature verification and the time to validate the identity of the reader

requesting access by checking it against the identity of the target reader as defined in the

policy. The validation is done by finding the path from the target’s skipchain to the requester’s

skipchain. We vary the depth of the requester, which refers to the distance between the

two skipchains. Figure 7.8 shows the variation in request verification time depending on

the requester’s depth. We observe that most of the request verification time is required for

signature verification which takes ≈ 385µs and accounts for 92.04–99.94% of the total time.

Multi-signature request verification As signature verification is the main overhead, we

investigate the effect of verifying multi-signature requests. We create requests with a varying

number of signers and investigate the number of request per second we can verify. Figure 7.9

shows the results for a requester skipchain’s depth of 2 and 10. There is a significant reduction

in the number of requests that can be verified when the number of signers increases whereas

160

7.9. Evaluation

1 2 5 10 20 50 100 200
Depth of the requester

0.1

1

10

100

1000
R

e
q
u
e
st

 v
e
ri

fi
ca

ti
o
n
 t

im
e
 (

u
s)

Path verification

Signature verification

Figure 7.8 – Single-signature request verifica-
tion.

2 5 10 20 50 100
Number of signatures in request

10-1

100

101

102

103

104

R
e
q
u
e
st

s
v
e
ri

fi
e
d
 p

e
r

se
co

n
d Subject depth = 2

Subject depth = 10

Figure 7.9 – Multi-signature request verifica-
tion throughput.

4 16 64 256
Number of write transactions

0.01

0.1

1

10

100

La
te
n
cy
 (
se
c)

Fully-centralized

Semi-centralized

Calypso

Figure 7.10 – Write transaction latency for
different loads in clearance-enforcing doc-
ument sharing.

4 16 64 256

Number of read transactions

0.1

1

10

100

1000

La
te
n
cy
 (
se
c)

Fully-centralized

Semi-centralized

Calypso

Figure 7.11 – Read transaction latency for
different loads in clearance-enforcing doc-
ument sharing.

the depth of the requester is not significant.

7.9.2 Clearance-Enforcing Document Sharing

We compare the clearance-enforcing document sharing deployment of CALYPSO with both a

fully-centralized access-control system (one cloud server manages everything) and a semi-

centralized one where accesses and policies are logged on-chain but the data is managed

in the cloud. We vary the simulated workload per block from 4 to 256 concurrent read and

write transactions. Figure 7.10 shows that CALYPSO takes 5× to 100× more time to execute

a write transaction compared to the centralized solution and has the same overhead as the

semi-centralized system. Figure 7.11 shows that CALYPSO takes 10× to 100× more time to

execute a read transaction compared to the centralized solution, but it only takes 0.2× to

5× more time than the semi-centralized system. These experiments use a blockchain with

a blocktime of 7 seconds. For a slower blockchain, such as Bitcoin, the overall latency of all

161

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

Write Read
Transaction type

0.01

0.1

1

10

T
im

e
 (

se
c)

Fully-centralized
Semi-centralized
Calypso

Figure 7.12 – Average write and read transaction latencies replaying the real-world data traces
from the clearance-enforcing document sharing deployment

transactions would be dominated by the (longer) blocktime.

Next, we evaluate the clearance-enforcing document sharing deployment of CALYPSO using

real-world data traces from our governmental contractor partner mentioned in Section 7.7.2.

Data traces are collected from the company’s testbed over a period of 15 days. There are

1821 txw and 1470 txr, and the minimum, maximum and average number of transactions per

block are 1, 7 and 2.62, respectively. We replayed the traces on CALYPSO, as well as our fully-

centralized and semi-centralized access-control system implementations. We use a blocktime

of 10 seconds as it is in the original data traces. Figure 7.12 shows the average latency for the

write and read transactions. The results show that CALYPSO and the semi-centralized system

have comparable read transaction latencies as it is dominated by the blocktime, which agrees

with our micro-benchmark results.

7.9.3 Decentralized Lottery

We compared our CALYPSO-based zero-collateral lottery with the corresponding lottery by

Miller et al. [183] (tournament) simulated and real workloads. Figure 7.14 shows that CALYPSO-

based lottery performs better both in terms of the overall execution time and necessary

bandwidth. Specifically, our lottery runs in one round (it always takes two blocks to finish

the lottery) while the tournament runs in a logarithmic number of rounds due to its design

consisting of multiple two-party lotteries.

Next, we evaluate both lottery implementations using the transactions from Fire Lotto [72],

an Ethereum-based lottery, see Figure 7.13 for overall time comparisons. We considered

transactions sent to the Fire Lotto smart contract over a period of 30 days and each data

point in the graph corresponds to a single lottery run. As before, CALYPSO-based lottery

162

7.10. Conclusion

0 5 10 15 20 25 30
Day

0

20

40

60

80

100

120

T
im

e
 (

se
c)

Tournament

Calypso

Figure 7.13 – CALYPSO vs Tournament lottery using Fire Lotto workloads.

performs better because it completes in one round whereas the tournament lottery requires

a logarithmic number of interactions with the blockchain and consequently has a larger

overhead. More specifically, while the blocktime of 15 seconds makes up 14–20% of the total

latency in CALYPSO, it contributes most of the per-round latency to the tournament lottery. We

remark that our results only include the latency of the reveal phase since the commit phase

happens asynchronously over a full day.

7.10 Conclusion

We have presented CALYPSO, the first fully decentralized framework for auditable access

control on protected resources over a distributed ledger that maintains confidentiality and

control of the resources even after they have been shared. CALYPSO achieves its goals by

introducing two separate components. The first component, on-chain secrets, is deployed on

top of a blockchain to enable transparent and efficient management of secret data via threshold

cryptography. The second component, skipchain-based identity and access management,

allows for dynamic identities and resource access policies. We have implemented CALYPSO

and shown that it can be efficiently deployed with blockchain systems to enhance their

functionality. Lastly, we described four deployments of CALYPSO to illustrate its applicability

to real-world applications.

163

Chapter 7. CALYPSO: Verifiable Management of Private Data over Blockchains

4 8 16 32 64 128
0

200

400

600

800

1000

1200

1400

T
im
e
 (
se
c)

Tournament

Calypso

4 8 16 32 64 128

Number of participants

0

20

40

60

80

100

120

140

160

B
a
n
d
w
id
th
 (
K
B
) Tournament

Calypso

Figure 7.14 – CALYPSO vs Tournament lottery using simulated workloads.

164

8 Horizontal Scaling and Confidentiality
on Permissioned Blockchains

8.1 Introduction

In this chapter, we look into enabling sharding in the permissioned setting, where the adversar-

ial power can be relaxed. First, we deploy channels for horizontal scaling drawing inspiration

from the state of the art [150, 74], but at the same time navigating the functionality and trust

spectrum to create simplified protocols with less complexity and need for coordination. Then,

we introduce the idea that, in a permissioned setting, we can leverage the state partition that a

channel introduces as a confidentiality boundary. In the second part of the chapter, we show

how we enable confidential channels while preserving support for cross-shard transactions.

Our main contributions are (a) the support for horizontal scaling on permissioned blockchains

with cross-channel transaction semantics, (b) the use of channels as a confidentiality boundary

and (c) the formalization of an asset-management application on top of blockchain systems.

8.2 Preliminaries

Blockchain Definitions In the context of this work, a blockchain is an append-only tamper-

evident log maintained by a distributed group of collectively trusted nodes. When these nodes

are part of a defined set [10], we call the blockchain permissioned. Inside every block, there

are transactions that may modify the state of the blockchain (they might be invalid [10]). A dis-

tributed ledger [240] is a generalization of a blockchain as it can include multiple blockchains

that interact with each other, given that sufficient trust between blockchains exists.

We define the following roles for nodes in a blockchain:

• Peers execute and validate transactions. Peers store the blockchain and need to agree

on the state.

• Orderers collectively form the ordering service. The ordering service establishes the

total order of transactions. Orderers are unaware of the application state and do not

165

Chapter 8. Horizontal Scaling and Confidentiality on Permissioned Blockchains

participate in the execution or validation of transactions. Orderers reach consensus [10,

149, 191, 50] on the blocks in order to provide a deterministic input for the blockchain

peers to validate transactions.

• Oracles are special nodes that provide information about a specific blockchain to

nodes not being peers of that blockchain. Oracles come with a validation policy of

the blockchain defining when the announcement of an oracle is trustworthy1.

• (Light) Clients submit transactions that either read or write the state of a distributed

ledger. Clients do not directly subscribe to state updates, but trust some oracles to

provide the necessary proofs that a request is valid.

Nodes can implement multiple roles or collapse roles (e.g., miners in Bitcoin [191] are con-

currently peers and orderers). In a distributed ledger that supports multiple blockchains

that interoperate the peers of one blockchain necessarily implement a client for every other

blockchain and trust the oracles to provide proofs of validity for a cross-channel transaction.

A specific oracle instantiation can be for example that a quorum (e.g., 2
3) of the peers need to

sign any announcement for it to be valid.

8.2.1 Channels

In this paper we extend channels (first introduced in Hyperledger Fabric [10]), an abstraction

similar to shards. In prior work [10], a channel is defined as an autonomous blockchain

agnostic to the rest of the state of the system. In this work, we redefine a channel as a state

partition of the full system that (a) is autonomously managed by a (logically) separate set of

peers (but is still aware of the bigger system it belongs) and (b) optionally hides the internal

state from the rest of the system.

A channel might communicate with multiple other channels; and there needs to be some

level of trust for two channels to transact. Hence, we permit each channel to decide on what

comprises an authoritative proof of its own state. This is what we call validation policy: clients

need to verify this policy in order to believe that something happened in a channel they are

transacting with. When channel A wants to transact with channel B , then the peers of A

effectively implement a client of channel B (as they do not know the state of B directly). Thus,

the peers of A verify that the validation policy of B is satisfied when receiving authoritative

statements from channel B .

For channels to interact, they need to be aware of each other and be able to communicate.

Oracles are responsible for this functionality, as they can gossip authoritative statements

(statements supported by the validation policy) to the oracles of the other channels. This

functionality needs a bootstrap step where channels and validation policies are discovered,

which we do not address in this work. A global consortium of organizations could publicly

1e.g., in Bitcoin the oracles will give proofs that have 6 Proofs-of-Work build on top of them

166

8.3. Asset Management in a Single Channel

announce such information, or consortia represented by channels could communicate off-

band. Once a channel is established further evolution can be done without a centralized

intermediary, by using skipchains [195].

8.2.2 Threat Model

The peers that have the right to access one channel’s state are trusted for confidentiality, mean-

ing that they will not leak the state of the channel on purpose. We relax this assumption later,

providing forward and backward secrecy in case of compromise. We assume that the ordering

service is secure, produces a unique blockchain without forks and the blocks produced are

available to the peers of the channels. We further assume that the adversary is computationally

bounded and that cryptographic primitives (e.g., hash functions and digital signatures) are

secure.

8.2.3 System Goals

We have the following primary goals.

1. Secure transactions. Transactions are committed atomically or eventually aborted,

both within and across channels.

2. Scale-out. The system supports state partitions that can work in parallel if no depen-

dencies exist.

3. Confidentiality. The state of a channel remains internal to the channel peers. The only

(if any) state revealed for cross-channel transactions should be necessary to verify that a

transaction is valid (e.g., does not create new assets).

8.3 Asset Management in a Single Channel

In this section, we describe a simple asset-management system on top of the Unspent Transaction-

Output model (henceforth referred to as UTXO) that utilizes a single, non-confidential channel.

In particular, we focus on the UTXO-based data model [191], as it is the most adopted data

model in cryptocurrencies, for its simplicity and parallelizability.

8.3.1 Assets in Transactions

In a UTXO system, transactions are the means through which one or more virtual assets are

managed. More specifically, mint transactions signify the introduction of new assets in the

system and spend transactions signify the change of ownership of an asset that already exists

in the system. If an asset is divisible, i.e., can be split into two or more assets of measurable

167

Chapter 8. Horizontal Scaling and Confidentiality on Permissioned Blockchains

value, then a spend transaction can signify such a split, indicating the owners of each resulting

component of the original asset.

Assets are represented in the transactions by transaction inputs and outputs. More specifically,

in the typical UTXO model, an input represents the asset that is to be spent and an output

represents the new asset that is created in response of the input assets’ consumption. We can

think of inputs and outputs representing different phases of the state of the same asset, where

state includes its ownership (shares). Clearly, an input can be used only once, as after being

spent, the original asset is substituted by the output assets, and stops being considered in

the system. To ensure the single-spending of any given input, transactions are equipped with

information authenticating the transaction creators as the owners of the (parts of the) assets

that are referenced by the transaction inputs.

In more technical terms in the standard UTXO model, input fields implicitly or explicitly

reference output fields of other transactions that have not yet been spent. At validation time,

verifiers would need to ensure that the outputs referenced by the inputs of the transaction

have not been spent; and upon transaction-commitment deem them as spent. To look up the

status of each output at validation time efficiently, the UTXO model is equipped with a pool of

unspent transaction outputs (UTXO pool).

8.3.2 UTXO Pool

The UTXO pool is the list of transaction outputs that have not yet been spent. We say that an

output is spent if a transaction that references it in its inputs is included in the list of ledger’s

valid transactions.

To validate a transaction, peers check if (1) the transaction inputs refer to outputs that appear

in the UTXO pool as well as (2) that the transaction’s creators own these outputs. Other checks

take place during the transaction validation, i.e., input-output consistency checks. After these

checks are successfully completed, the peers mark the outputs matching the transaction’s

inputs as spent and add to the pool the freshly created outputs. Hence, the pool consistently

includes “unspent” outputs.

8.3.3 Asset or Output Definition

An asset is a logical entity that sits behind transaction outputs, implicitly referenced by trans-

action outputs. As such the terms output and asset can be used interchangeably. An output

(the corresponding asset) is described by the following fields:

• namespace, the namespace the output belongs to (e.g., a channel);

• owner, the owner of the output

• value, the value of the asset the output represents (if divisible);

168

8.3. Asset Management in a Single Channel

• type, the type of the asset the output represents (if multiple types exist).

Depending on the privacy requirements and properties of the ledger they reside, outputs

provide this information in the clear (e.g., Bitcoin [191] outputs) or in a concealed form (e.g.,

ZeroCoin [182], ZeroCash [218]). Privacy-preserving outputs are required to be cryptographi-

cally bound to the value of each of the fields describing them, whereas its plaintext information

should be available to the owner of the output.

8.3.4 UTXO operations

We elaborate on the UTXO system functions where we adopt the following notation. For a

sequence of values x1, . . . , xi , we use the notation [xi] = (x1, . . . , xi). By slight abuse of notation,

we write x1 = [x1]. We denote algorithms by sans-serif fonts. Executing an algorithm algo on

input y is denoted as y ← algo(x), where y can take on the special value ⊥ to indicate an error.

A UTXO system exposes the following functions:

• 〈U ,pool〉← Setup(κ) that enables each user to issue one or more identities by using se-

curity parameter κ. Henceforth, we denote by secuser the secret information associated

to a user with identity user. Setup also generates privileged identities, i.e., identities

allowed to mint assets to the system, denoted as adm. Finally, Setup initializes the pool

pool to ; and returns the set of users in the system U and pool.

• 〈out,secout〉← ComputeOutput(nspace,owner,value,type), to obtain an output repre-

senting the asset state as reflected in the function’s parameters. That is, the algorithm

would produce an output that is bound to namespace nspace, owned by owner, and

represents an asset of type type, and value value. As mentioned before, depending on

the nature of the system the result of the function could output two output components,

one that is to be posted on the ledger as part of a transaction (out) and a private part to

be maintained at its owner side (secout).

• ain ← ComputeInput(out,secout,pool), where, on input an asset pool pool, an output

out, and its respective secrets, the algorithm returns a representation of the asset that

can be used as transaction input ain. In Bitcoin, an input of an output is a direct

reference to the latter, i.e., it is constructed to be the hash of the transaction where the

output appeared in the ledger, together with the index of the output. In ZeroCash, an

input is constructed as a combination of a serial number and a zero-knowledge proof

that the serial corresponds to an unspent output of the ledger.

• tx ←CreateTx([secowneri], [aini], [out j]), that creates a transaction tx to request the con-

summation of inputs {aink }i
k=1 into outputs {outk } j

k=1. The function takes also as input

the secrets of the owners of the outputs referenced by the inputs and returns tx. Notice

that the same function can be used to construct mint transactions, where the input

gives its place to the freshly introduced assets description.

169

Chapter 8. Horizontal Scaling and Confidentiality on Permissioned Blockchains

• pool′ ← ValidateTx(nspace,tx,pool), that validates transaction inputs w.r.t. pool pool,

and their consistency with transaction outputs and namespace nspace. It subsequently

updates the pool with the new outputs and spent inputs and returns its new version

pool′. Input owner of mint transactions is the administrators adm.

Properties Regardless of its implementation, an asset management system should satisfy

the properties defined below:

• Validity: Let tx be a transaction generated from a valid input ain according to some

pool pool, i.e., generated via a successful call to tx ←CreateTx(secowner ,ain,out′), where

ain ← ComputeInput(out,secout,pool), owner is the owner of out′, and out′ ∉ pool. Va-

lidity requires that a call to pool′ ← ValidateTx(tx,pool) succeeds, i.e. pool′ 6= ⊥, and

that pool′ = (pool \ {out})∪ {out′}.

• Termination: Any call to the functions exposed by the system eventually return the

expected return value or ⊥.

• Unforgeability. Let an output out ∈ pool with corresponding secret secout and owner

secret secowner that is part of the UTXO pool pool; unforgeability requires that it is

computationally hard for an attacker without secout and secowner to create a transaction

tx such that ValidateTx(nspace,tx,pool) will not return ⊥, and that would mark out as

spent.

• Namespace consistency. Let an output corresponding to a namespace nspace of a user

owner. Namespace consistency requires that the adversary cannot compute any trans-

action tx referencing this output, and succeed in ValidateTx(nspace′, tx,pool), where

nspace′ 6= nspace.

• Balance. Let a user owner owning a set of unspent outputs [outi] ∈ pool. Let the collected

value of these outputs for each asset type τ be valueτ. Balance property requires that

owner cannot spend outputs of value more than valueτ for any asset type τ, assuming

that it is not the recipient of outputs in the meantime, or colludes with other users

owning more outputs. Essentially, it cannot construct a set of transactions [txi] that

are all accepted when sequentially2 invoking ValidateTx(tx,pool) with the most recent

versions of the pool pool, such that owner does not appear as the recipient of assets

after the acquisition of [outi], and the overall spent value of its after that point exceeds

for some asset type τ valueτ.

8.3.5 Protocol

We defined an asset output as, out = 〈nm,o, t , v〉, where nm is a namespace of the asset, o is

the identity of its owner, t the type of the asset, and v its value. In its simplest implementation,

2This is a reasonable assumption, given we are referring to transactions appearing on a ledger.

170

8.3. Asset Management in a Single Channel

the UTXO pool would be implemented as the list of available outputs and inputs would directly

reference the outputs in the pool, e.g., using its hash3. Clearly, a valid transaction for out’s

spending would require a signature with seco .

Asset Management in a single channel We assume two users Alice and Bob, with respective

identities〈A, secA〉 and 〈B , secB 〉. There is only one channel ch in the system with a namespace

nsch associated with ch, where both users have permission to access. We also assume that

there are system administrators with secrets secadm allowed to mint assets in the system, and

that these administrators are known to everyone.

Asset Management Initialization This requires the setup of the identities of the system ad-

ministrators4. For simplicity, we assume there is one asset management administrator,

〈adm,secadm〉. The pool is initialized to include no assets, i.e., poolch ←;.

Asset Import The administrator creates a transaction t xi mp , as:

t xi mp ←〈;, [outn],σ〉,

where outk ←ComputeOutput(nsch ,uk, tk , vk), (ti , vi) the type and value of the output asset

outk , uk its owner and σ a signature on transaction data using skadm . Validation of t xi mp

would result into poolch ← {poolch∪ {[outn]}}.

Transfer of Asset Ownership Let outA ∈ poolch be an output owned by Alice, corresponding a

description 〈nsch , A, t , v〉). For Alice to move ownership of this asset to Bob, it would create a

transaction

txmove ←CreateTx(secA ;ainA ,outB),

where ainA is a reference of outA in poolch, and outB ← ComputeOutput(nsch ,B , t , v), the

updated version of the asset, owned by Bob. txmove has the form of 〈ainA ,outB ,σA〉 is a

signature matching A. At validation of t xmove , poolch is updated to no longer consider outA as

unspent, and include the freshly created output outB :

poolch ← (poolch \ {outA})∪ {outB } .

Discussion The protocol introduced above does provide a “secure” (under the security

properties described above) asset management application within a single channel. More

specifically, the Validity property follows directly from the correctness of the application where

a transaction generated by using a valid input representation will be successfully validated

by the peers after it is included in an ordered block. The Unforgeability is guaranteed from

3Different approaches would need to be adopted in cases where unlinkability between outputs and respective
inputs is required.

4Can be a list of identities, or policies, or mapping between either of the two and types of assets.

171

Chapter 8. Horizontal Scaling and Confidentiality on Permissioned Blockchains

the requirement of a valid signature corresponding to the owner of the consumed input when

calling the ValidateTx function, and Namespace consistency is guaranteed as there is only one

namespace in this setting. Termination follows from the liveness guarantees of the validating

peers and the consensus run by orderers. Finally, Balance also follows from the serial execution

of transactions that will spend the out the first time and return ⊥ for all subsequent calls (there

is no out in the pool).

The protocol can be extended to naively scale out. We can create more than one channel

(each with its own namespace), where each one has a separate set of peers and each channel is

unaware of the existence of other channels. Although each channel can have its own ordering

service it has been shown [10], that the ordering service does not constitute a bottleneck.

Hence, we assume that channels share the ordering service.

The naive approach has two shortcomings. First, assets cannot be transferred between chan-

nels, meaning that value is “locked” within a channel and is not free to flow wherever its owner

wants. Second, the state of each channel is public as all transactions are communicated in

plaintext to the orderers who act as a global passive adversary.

We deal with these problems by introducing (i) a step-wise approach on enabling cross-

channel transactions depending on the functionality required and the underlying trust model

(See, Section 8.4), and (ii) the notion of confidential channels (see Section 8.5). Further,

for confidential channels to work, we adapt our algorithms to provide confidentiality while

multiple confidential channels transact atomically.

8.4 Atomic Cross-Channel Transactions

In this section, we describe how we implement cross-channel transactions in permissioned

blockchains (that enable the scale-out property as shown in Chapter 6). We introduce multiple

protocols based on the functionality required and on the trust assumptions (that can be

relaxed in a permissioned setting). First, in Section 8.4.1, we introduce a narrow functionality

of 1-input-1-output transactions where Alice simply transfers an asset to Bob. Second, in

Section 8.4.2, we extend this functionality to arbitrary transactions but assume the existence

of a trusted channel among the participants. Finally, in Section 8.4.3, we lift this assumption

and describe a protocol inspired by two-phase commit [248]. These protocols do not make

timing assumptions but assume the correctness of the channels to guarantee fairness, unlike

work in atomic cross-chain swaps.

Preliminaries We assume two users Alice (ua), and Bob (ub). We further assume that each

channel has a validation policy and a set of oracles (as defined in Section 8.2). We assume

that each channel is aware of the policies and the oracles that are authoritative over the

asset-management systems in each of the rest of the channels.

172

8.4. Atomic Cross-Channel Transactions

Communication of pools content across channels. On a regular basis, each channel adver-

tises its pool content to the rest of the channels. More specifically, the oracles of the asset

management system in each channel are responsible for regularly advertise a commitment of

the content of the channel’s pool to the rest of the channels. Such commitments can be the

full list of assets in the pool or, for efficiency reasons, the Merkle root of a deterministically

ordered list of asset outputs created on that channel.

For the purpose of this simplistic example, we assume that for each channel chi, a commitment

(e.g., Merkle root) of its pool content is advertised to all the other channels. That is, each

channel chi maintains a table with the following type of entries: 〈chj,cmt j 〉, j 6= i , where cmt j

the commitment corresponding to the pool of channel with identifier chj. We will refer to this

pool by poolj.

8.4.1 Asset Transfer across Channels

Let outA be an output included in the unspent output pool of ch1, pool1, corresponding to

outA ←ComputeOutput(ch1,ua , t , v)

i.e., an asset owned by Alice, active on ch1. For Alice to move ownership of this asset to Bob

and in channel with identifier ch2, she would first create a new asset for Bob in ch2 as

outB ←ComputeOutput(ch2,ub , t , v)

she would then create a transaction

txmove ←CreateTx(secA ;ainA ,outB),

where ainA is a reference of outA in pool1. Finally, secA is a signature matching pkA , and

ownership transfer data.

At validation of txmove, it is first ensured that outA ∈ pool1, and that outA .namespace = ch1.

outA is then removed from pool1 and outB is added to it, i.e.,

pool1 ← (pool1 \ {outA})∪ {outB } .

Bob waits until the commitment of the current content of pool1 is announced. Let us call the

latter view1. Then Bob can generate a transaction “virtually” spending the asset from pool1
and generating an asset in pool2. The full transaction will happen in ch2 as the spend asset’s

namespace is ch2. More specifically, Bob creates an input representation

{ainB } ←ComputeInput(outB ; secB ,πB)

of the asset outB that Alice generated for him. Notice that instead of the pool, Bob needs to

173

Chapter 8. Horizontal Scaling and Confidentiality on Permissioned Blockchains

provide πB , we explain below why this is needed to guarantee the balance property. Finally,

Bob generates a transaction using ainB .

To be ensured that the outB is a valid asset, Bob needs to be provided with a proof, say πB , that

an output matching its public key and ch2 has entered pool1, matching view1. For example, if

view1 is the root of the Merkle tree of outputs in pool1, πB could be the sibling path of outB in

that tree with outB. This proof can be communicated from the oracles of ch1 to the oracles of

ch2 or be directly pulled by Bob and introduced to ch2. Finally, in order to prevent Bob from

using the same proof twice (i.e., perform a replay attack) pool2 need to be enhanced with a set

of spent cross-transaction outputs (ScTXOs) that keep track of all the output representations

outX that have been already redeemed in another txcross. The outB is extracted from πB .

The validity property holds by extending the asset-management protocol of every channel

to only accept transactions that spend assets that are part of the channel’s name-space.

Unforgeability holds as before, due to the requirement for Alice and Bob to sign their respective

transactions. Namespace Consistency holds as before, as validators of each channel only

validate consistent transactions; and Termination holds because of the liveness guarantees of

ch1 and ch2 and the assumption that the gossiped commitments will eventually arrive at all

the channels. Finally, the Balance property holds as Alice can only spend her asset once in ch1,

which will generate a new asset not controlled by Alice anymore. Similarly, Bob can only use

his proof once as outB will be added in the ScTXO list of pool2 afterwards.

8.4.2 Cross-Channel Trade with a Trusted Channel

The approach described above works for cases where Alice is altruistic and wants to transfer

an asset to Bob. However, more complicated protocols (e.g., fair exchange) are not supported,

as they need atomicity and abort procedures in place. For example, if Alice and Bob want to

exchange an asset, Alice should be able to abort the protocol if Bob decides to not cooperate.

With the current protocol, this is not possible as Alice assumes that Bob wants the protocol to

finish and has nothing to win by misbehaving.

A simple approach to circumvent this problem is to assume a commonly trusted channel cht

from all actors. This channel can either be an agreed upon “fair” channel or any of the channels

of the participants, as long as all participants are able to access the channel and create/spend

assets on/from it. The protocol uses the functionality of the asset transfer protocol described

above (Section 8.4.1) to implement the Deposit and Withdraw subprotocols. In total, it exposes

three functions and enables a cross-channel transaction with multiple inputs and outputs:

1. Deposit: All parties that contribute inputs transfer the assets to cht but maintain control

over them by assigning the new asset in cht on their respective public keys.

2. Transact: When all input assets are created in cht, a txcross is generated and signed by all

ai n owners. This txcross has the full logic of the trade. For example, in the fair exchange,

174

8.4. Atomic Cross-Channel Transactions

Figure 8.1 – Cross-channel transaction architecture overview with (8.4.2) and without (8.4.3) a
trusted channel

it will have two inputs and two outputs. This txcross is validated as an atomic state update

in cht.

3. Withdraw: Once the transaction is validated, each party that manages an output trans-

fers their newly minted assets from cht to their respective channels choi

Any input party can decide to abort the protocol by transferring back the input asset to their

channel, as they always remain in control of the asset.

The protocol builds on top of the asset-transfer protocol and inherits its security properties

to the extent of the Deposit and Withdraw sub-protocols. Furthermore, the trusted channel

is only trusted to provide the necessary liveness for assets to be moved across channels,

but it cannot double-spent any asset as they still remain under the control of their rightful

owners (bound to the owner’s public key). As a result, the asset-trade protocol satisfies the

asset-management security requirements because it can be implemented by combining the

protocol of Section 8.4.1 for the “Transact” function inside cht and the asset-transfer protocol

of Section 8.4.2 for “Withdraw” and “Deposit”.

8.4.3 Cross-Channel Trade without a Trusted Channel

A mutually trusted channel (as assumed above), where every party is permitted to generate

and spend assets, might not always exist; in this section, we describe a protocol that lifts this

assumption. The protocol is inspired by the Atomix protocol [150], but addresses implementa-

tion details that are ignored in Atomix, such as how to represent and communicate proofs,

and it is more specialized to our asset management model.

1. Initialize. The transacting parties create a txcross whose inputs spend assets of some

input channels (ICs) and whose outputs create new assets in some output channels

175

Chapter 8. Horizontal Scaling and Confidentiality on Permissioned Blockchains

(OCs). More concretely.

If Alice wants to exchange outA from ch1 with Bob’s outB from ch2. Alice and Bob work

together to generate the txcross as

txcross ←CreateTx([secA , secB]; [ainA ,ainB]; [outA ,outB])

where ainA , ainB are the input representations that show the assets to exist in the

respective pools.

2. Lock. All input channels internally spend the assets they manage and generate a

new asset bound to the transaction (we call it the “locked asset”), by using a collision-

resistant Hash function to derive the name-space of the new asset, as H(txcross)5. The

locked asset’s value is either equal to the sum of the assets previously spent on that

channel or 0, depending on whether the txcross is valid according to the current state. In

both cases, there is a new asset added in pooli. Or in our example:

Alice submits txcross to ch2, which generates the “locked” asset for txcross. Alice then

receives πB , which shows that outB is locked for txcross and is represented by outB′ ,

which is the locked asset that is generated specifically for txcross and is locked for Alice

but not spendable by Alice. Specifically,

asset2′ = 〈H(txcross), t , v〉,

where v is either equal to the value of asset2 or 0, depending on whether asset2 was

already spent. Same process happens for Bob. Notice that the namespace of the asset

change to H(txcross) indicates that this asset can only be used as proof of existence and

not spent again in ch2.

3. Unlock. Depending on the outcome of the lock phase, the clients are able to either

commit or abort their transaction.

(a) Unlock to Commit. If all ICs accepted the transaction (generated locked assets

with non-zero values), then the respective transaction can be committed.

Each holder of an output creates an unlock-to-commit transaction for his channel;

it consists of the lock transaction and an oracle-generated proof for each input

asset (e.g., against the gossiped MTR). Or in our example:

Alice (and Bob respectively) collects πA′ and πB ′ which correspond to the proofs of

existence of outA′ ,outB ′ and submits in ch1 an unlock-to-commit transaction:

txuc ←CreateTx([πA′ ,πB ′]; [ain1′ ,ain2′]; [outA′′];)

The transaction is validated in ch1 creating a new asset (outA′′), similar to the one

Bob spent at ch2, as indicated by txcross.

5The transaction’s hash is an identifier for a virtual channel created only for this transaction

176

8.4. Atomic Cross-Channel Transactions

(b) Unlock to Abort. If, however, at least one IC rejects the transaction (due to a

double-spent), then the transaction cannot be committed and has to abort. In

order to reclaim the funds locked in the previous phase, the client must request

the involved ICs that already spent their inputs, to re-issue these inputs. Alice can

initiate this procedure by providing the proof that the transaction has failed in ch2.

Or in our case if Bob’s asset validation failed, then there is an asset outB ′ with zero

value and Alice received from ch2 the respective proof π′
B ′ . Alice will then generate

an unlock-to-abort transaction:

txua ←CreateTx([πB ′], [ai n2′]; [outA′′])

which will generate a new asset outA′′ that is identical to outA and remains under

the control of Alice

Security Arguments Under our assumptions, channels are collectively honest and do not

fail hence propagate correct commitments of their pool (commitments valid against the

validation policy).

Validity and Namespace Consistency hold because every channel manages its own namespace

and faithfully executes transactions. Unforgeability holds as before, due to the requirement

for Alice and Bob to sign their respective transactions and the txcross.

Termination holds if every txcross eventually commits or aborts, meaning that either a transac-

tion will be fully committed or the locked funds can be reclaimed. Based on the fact that all

channels always process all transactions, each IC eventually generates either a commit-asset

or an abort-asset. Consequently, if a client has the required number of proofs (one per input),

then the client either holds all commit-assets (allowing the transaction to be committed) or at

least one abort-asset (forcing the transaction to abort), but as channels do not fail, the client

will eventually hold enough proof. Termination is bound to the assumption that some client

will be willing to initiate the unlock step, otherwise, his assets will remain unspendable. We

argue that failure to do such only results in harm of the asset-holder and does not interfere

with the correctness of the asset-management application.

Finally, Balance holds as cross-channel transactions are atomic and are assigned to specific

channels who are solely responsible for the assets they control (as described by validity) and

generate exactly one asset. Specifically, if all input channels issue an asset with value, then

every output channel unlocks to commit; if even one input channel issues an asset with zero

value, then all input channels unlock to abort; and if even one input shard issues an asset with

zero value, then no output channel unlocks to commit. As a result, the assigned channels do

not process a transaction twice and no channel attempts to unlock without a valid proof.

177

Chapter 8. Horizontal Scaling and Confidentiality on Permissioned Blockchains

8.5 Using Channels for Confidentiality

So far we have focused on enabling transactions between channels that guarantee fairness

among participants. This means that no honest participant will be worse off by participating in

one of the protocols. Here, we focus on providing confidentiality among the peers of a channel,

assuming that the orderers upon which the channel relies for maintaining the blockchain are

not fully trusted hence might leak data.

Strawman Solution We start with a simple solution that can be implemented with vanilla

channels [10]. We define a random key k and a symmetric encryption algorithm that is sent in a

private message to every participating peer. All transactions and endorsements are encrypted

under k then sent for ordering, hence the confidentiality of the channel is protected by the

unpredictability of the symmetric encryption algorithm.

This strawman protocol provides the confidentiality we expect from a channel, but its security

is static. Even though peers are trusted for confidentiality, all it takes for an adversary to

compromise the full past and future confidential transactions of the system is to compromise

a single peer and recover k. Afterwards the adversary can collude with a Byzantine order to

use the channels blockchain as a log of the past and decrypt every transaction, as well as keep

receiving future transactions from the colluding orderer.

8.5.1 Deploying Group Key Agreement

To work around the attack, we first need to minimize the attack surface. To achieve this we

need to think of the peers of a channel, as participants of a confidential communication

channel and provide similar guarantees. Specifically, we guarantee the following properties.

1. Forward Secrecy: A passive adversary that knows one or more old encryption keys ki ,

cannot discover any future encryption key k j where i < j

2. Backward Secrecy: A passive adversary that knows one or more encryption keys ki ,

cannot discover any previous encryption key k j where j < i

3. Group Key Secrecy: It is computationally infeasible for an adversary to guess any group

key ki

4. Key Agreement: For an epoch i all group members agree on the epoch key ki

There are two types of group key agreement we look into:

Centralized group-key distribution: In these systems, there is a dedicated server that sends

the symmetric key to all the participants. The centralized nature of the key creation is scalable,

but might not be acceptable even in a permissioned setting where different organizations

participating in a channel are mutually suspicious.

178

8.5. Using Channels for Confidentiality

Figure 8.2 – Privacy-Preserving Cross-Channel Transaction structure

Contributory group-key management: In these systems, each group member contributes

a share to the common group key, which is then computed by each member autonomously.

These protocols are a natural fit to decentralized systems such as distributed ledgers, but they

scale poorly.

We use the existence of the validation policy as an indication of the trusted entities of the

channel (i.e., the oracles) and create a more suitable protocol to the permissioned setting.

Another approach could be to introduce a key-management policy that defines the key-

generation and update rules but, for simplicity, we merge it with the validation policy that the

peers trust anyway. We start with a scalable contributory group-key agreement protocol [146],

namely the Tree-Based Group Diffie-Hellman system. However, instead of deploying it among

the peers as contributors (which would require running view-synchronization protocols

among them), we deploy it among the smaller set of oracles of the channel. The oracles

generate symmetric keys in a decentralized way, and the peers simply contact their favorite

oracle to receive the latest key. If an oracle replies to a peer with an invalid key, the peer can

detect it because he can no longer decrypt the data, hence he can (a) provably blame the

oracle and (b) request the key from another oracle.

More specifically, we only deploy the group-join and group-leave protocols of Kim et al. [146],

because we do not want to allow for splitting of the network, which might cause forks on the

blockchain. We also deploy a group-key refresh protocol that is similar to group-leave, but no

oracle is actually leaving.

8.5.2 Enabling Cross-Shard Transactions among Confidential Channels

In the protocols we mentioned in Section 8.4, every party has full visibility on the inputs and

outputs and is able to link the transfer of coins. However, this might not be desirable. In this

section, we describe a way to preserve privacy during cross-channel transactions within each

asset’s channel.

For example, we can assume the existence of two banks, each with its own channel. It would

179

Chapter 8. Horizontal Scaling and Confidentiality on Permissioned Blockchains

be desirable to not expose intra-channel transactions or account information when two banks

perform an interbank asset-transfer. More concretely, we assume that Alice and Bob want to

perform a fair exchange. They have already exchanged the type of assets and the values they

expect to receive. The protocol can be extended to store any kind of ZK Proofs the underlying

system supports, as long as the transaction can be publicly verified based on the proofs.

To provide the obfuscation functionality, we use Merkle trees. More specifically, we represent

a cross-shard transaction as a Merkle tree (see Figure 8.2), where the left branch has all the

inputs lexicographically ordered and the right branch has all the outputs. Each input/output

is represented as a tree node with two leaves: a private leaf with all the information available

for the channel and a public leaf with the necessary information for third-party verification of

the transaction’s validity.

The protocol for Alice works as follows:

Transaction Generation:

1. Input Merkle-Node Generation: Alice generates an input as before and a separate Merkle

leaf that only has the type of the asset and the value. These two leaves are then hashed

together to generate their input Merkle node.

2. Output Merkle-Node Generation: Similarly, Alice generates an Output Merkle node, that

consists of the actual output (including the output address) on the private leaf and only

the type and value of the asset expected to be credited on the public.

3. Transaction Generation: Alice and Bob exchange their public Input and Output Merkle-

tree nodes and autonomously generate the full Merkle tree of the transaction.

Transaction Validation:

1. Signature Creation: Alice signs the MTR of the txcross, together with a bitmap of which

leaves she has seen and accepts. Then she receives a similar signature from Bob and

verifies it. Then Alice hashes both signatures and attaches them to the full transaction.

This is the txcross that she submits in her channel for validation. Furthermore, she

provides her full signature, which is logged in the channel’s confidential chain but does

not appear in the pool; in the pool the generated asset is H(txcross).

2. Validation: Each channel validates the signed transaction (from all inputs inside the

channel’s state) making sure that the transaction is semantically correct (e.g., does not

create new assets). They also check that the publicly exposed leaf of every input is well

generated (e.g., value and type much). Then they generate the new asset (H(txcross) as

before) that is used to provide proof-of-commitment/abortion. The rest of the protocol

(e.g., Unlock phase) is the same as Section 8.4.3.

180

8.6. Case Study: Cross-Shard Transactions on Hyperledger Fabric

Security & Privacy Arguments The atomicity of the protocol is already detailed above. Pri-

vacy is achieved because the source and destination addresses (accounts) are never exposed

outside the shard and the signatures that authenticate the inputs inside the channel are only

exposed within the channel. We also describe the security of the system outside the atomic

commit protocol. More specifically,

1. Every txcross is publicly verifiable to make sure that the net-flow is zero, either by expos-

ing the input and output values or by correctly generating ZK-proofs.

2. The correspondence of the public and the private leaf of a transaction is fully validated

by the input and/or output channel, making sure that its state remains correct.

3. The hash of the txcross is added in the pool to represent the asset. Given the collision

resistance of a hash function, this signals to all other channels that the private leaves

correspond to the transaction have been seen, validated and accepted.

The scheme can be further enhanced to hide the values using Pedersen commitments [201]

and range proofs similar to confidential transactions [204]. In such an implementation the

Pedersen commitments should also be opened on the private leaf for the consistency checks

to be correctly done.

8.6 Case Study: Cross-Shard Transactions on Hyperledger Fabric

In order to implement the cross-channel support on Fabric v1.1, we start with the current

implementation of FabCoin [10] that implements an asset-management protocol similar to

the one introduced in Section 8.3.5.

Channel-Based Implementation

As described by Androulaki et al. [10], a Fabric network can support multiple blockchains con-

nected to the same ordering service. Each such blockchain is called a channel. Each channel

has its own configuration that includes all the functioning metadata, such as defining the mem-

bership service providers that authenticate the peers, how to reach the ordering service, and

the rules to update the configuration itself. The genesis block of a channel contains the initial

configuration. The configuration can be updated by submitting a reconfiguration transaction.

If this transaction is valid with the respect to the rules described by the current configuration,

then it gets committed in a block containing only the reconfiguration transaction, and the

chances are applied.

In this work, we extend the channel configuration to include the metadata to support cross-

channel transactions. Specifically, the configuration lists the channels with which interaction

is allowed; we call them friend channels. Each entry also has a state-update validation policy,

181

Chapter 8. Horizontal Scaling and Confidentiality on Permissioned Blockchains

to validate the channel’s state-updates, the identities of the oracles of that channel, that will

advertise state-update transactions, and the current commitment to the state of that channel.

The configuration block is also used as a lock-step that signals the view-synchrony needed for

the oracles to produce the symmetric-key of the channel. If an oracle misbehaves, then a new

configuration block will be issued to ban it.

Finally, we introduce a new entity called timestamper (inspired by recent work in software

updates [195]) to defend against freeze attacks where the adversary presents a stale configura-

tion block that has an obsolete validation policy, making the network accepting an incorrect

state update. The last valid configuration is signed by the timestampers every interval, defined

in the configuration, and (assuming loosely synchronized clocks) guarantees the freshness of

state updates6.

Extending FabCoin to Scale-out

In FabCoin [10] each asset is represented by its current output state that is a tuple of the

form (txid.j,(value, owner, type)). This representation denotes the the asset created as the j-th

output of a transaction with identifier txid that has value units of asset type. The output is

owned by the public key denoted as owner.

To support cross-channel transactions, we extend FabCoin transactions by adding one more

field, called namespace, that defines the channel that manages the asset

(i.e., (txid.j,(namespace, value, owner, type))).

Periodically, every channel generates a state commitment to its state, this can be done by one

or more channel’s oracles. This state commitment consists of two components: (i) the root of

the Merkle tree built on top of the UTXO pool, (ii) the hash of the current configuration block

with the latest timestamp, which is necessary to avoid freeze attacks.

Then, the oracles of that channel announce the new state commitment to the friend channels

by submitting specific transactions targeting each of these friend channels. The transaction is

committed if (i) the hashed configuration block is equal to the last seen configuration block,

(ii) the timestamp is not “too” stale (for some time value that is defined per channel) and

(iii) the transaction verifies against the state-updates validation policy. If those conditions

hold, then the channel’s configuration is updated with the new state commitment. If the first

condition does not hold, then the channel is stale regarding the external channel it transacts

with and needs to update its view.

Using the above state update mechanism, Alice and Bob can now produce verifiable proofs

that certain outputs belong to the UTXO pool of a certain channel; these proofs are com-

municated to the interested parties differently, depending on the protocol. On the simple

asset-transfer case (Section 8.4.1), we assume that Alice is altruistic (as she donates an asset to

6Unless both the timestamp role and the validation policy are compromised.

182

8.7. Conclusion

Table 8.1 – Atomic Commit Protocol on Fabric Channels

Protocol Atomicity Trust Assumption Generality of Transactions Privacy

Asset Transfer (Section 8.4.1) Yes Nothing Extra 1-Input-1-Ouptut No
Trusted Channel (Section 8.4.2) Yes Trusted Intermediary Channel N-Input-M-output No
Atomic Commit (Section 8.4.3) Yes Nothing Extra N-Input-M-output No

Obfuscated Transaction AC (Section 8.5.2) Yes Nothing Extra N-Input-M-output Yes

Bob) and request the proofs from her channel that is then communicated off-band to Bob.

On the asset trade with trusted channels (Section 8.4.2) Alice and Bob can independently

produce the proofs from their channels or the trusted channel as they have visibility and access

rights. Finally on the asset trade of Section 8.4.3, Alice and Bob use the signed cross-channel

transaction as proof-of-access right to the channels of the input assets in order to obtain the

proofs. This is permitted because the txcross is signed by some party that has access rights to

the channel and the channels peers can directly retrieve the proofs as the asset’s ID is derived

from H(txcross).

8.7 Conclusion

In this chapter, we have redefined channels, provided an implementation guideline on Fab-

ric [10] and formalized an asset management system. A channel is the same as a shard that

has been already defined in previous work [74, 150]. Our first contribution is to explore the

design space of sharding on permissioned blockchains where different trust assumptions can

be made. We have introduced three different protocols that achieve different properties as de-

scribed in Table 8.1. Afterwards, we have introduced the idea that a channel in a permissioned

distributed ledger can be used as a confidentiality boundary and describe how to achieve this.

Finally, we have merged the contributions to achieving a confidentiality preserving, scale-out

asset management system, by introducing obfuscated transaction trees.

183

Part IVRelated Work and Concluding
Remarks

185

9 Related Work

In this section, we summarize work that is related to the systems this thesis describes. We cover

the topics of scaling blockchains, consensus-group membership management, generating

good distributed randomness, enabling confidentiality of blockchains, and decentralized

management of identities and certificates.

9.1 Scaling Blockchains

How to handle Bitcoin’s performance shortcomings is one of the major controversies discussed

in the community. But even though it is an urgent concern, so far no solution was found that

all involved parties were satisfied with. A simple approach would be to increase the block size

and with that the maximum throughput of Bitcoin. However, this might also negatively affect

the security of the system and does not address the core of the problem: Bitcoin’s probabilistic

consistency.

BYZCOIN and Bitcoin [191] share a similar objective: implement a state machine replica-

tion (SMR) system with open membership [42]. Both, therefore, differ from more classic

approaches to Byzantine fault-tolerant SMRs with static or slowly changing consensus groups

such as PBFT [55], Tendermint [46], or Hyperledger Fabric [10].

Bitcoin has well-known performance shortcomings; there are several proposals [167, 250]

on how to address these. The GHOST protocol [233] changes the chain selection rule when

a fork occurs. While Bitcoin declares the fork with the most proof-of-work as the new valid

chain, GHOST instead chooses the entire subtree that received the most computational effort.

Put differently, the subtree that was considered correct for the longest time will have a high

possibility of being selected, making an intentional fork much harder. One limitation of

GHOST is that no node will know the full tree, as invalid blocks are not propagated. While

all blocks could be propagated, this makes the system vulnerable to DoS attacks since an

adversary can simply flood the network with low-difficulty blocks.

Off-chain transactions, an idea that originated from the two-point channel protocol [127], are

187

Chapter 9. Related Work

another alternative to improve latency and throughput of the Bitcoin network. Other similar

proposals include the Bitcoin Lightning Network [205] and micro-payment channels [78],

which allow transactions without a trusted middleman. They use contracts so that any party

can generate proof-of-fraud on the main blockchain and thereby deny revenue to an attacker.

Although these systems enable faster cryptocurrencies, they do not address the core problem

of scaling SMR systems, thus sacrificing the open and distributed nature of Bitcoin. Finally,

the idea behind sidechains [17] is to connect multiple chains with each other and enable

the transfer of Bitcoins from one chain to another. This enables the workload distribution to

multiple subsets of nodes that run the same protocol.

There are several proposals that, like BYZCOIN, target the consensus mechanism and try to

improve different aspects. Ripple [224] implements and runs a variant of PBFT that is low-

latency and based on collectively-trusted subnetworks with slow membership changes. The

degree of decentralization depends on the concrete configuration of an instance. Tender-

mint [46] also implements a PBFT-like algorithm, but evaluates it with at most 64 “validators”.

Furthermore, Tendermint does not address important challenges such as the link-bandwidth

between validators, which we found to be a primary bottleneck. PeerCensus [77] and Hybrid

Consensus [198] are interesting alternative that shares similarities with BYZCOIN, but are only

of theoretical interest.

Finally, Stellar [176] proposes a novel consensus protocol named Federated Byzantine Agree-

ment, which introduces Quorum slices that enable a BFT protocol “open for anyone to par-

ticipate”. Its security, however, depends on a nontrivial and unfamiliar trust model requiring

correct configuration of trustees by each client.

9.2 Comparison of OMNILEDGER with Prior Work

Table 9.1 – Comparison of Distributed Ledger Systems

System Scale-Out Cross-Shard State Blocks Measured Scalability Estimated Measured
Atomicity (# of Validators) Time to Fail Latency

RSCoin [74] In Permissioned Partial No 30 N/A 1 sec
Elastico [173] In PoW No No 1600 1 hour 800 sec
ByzCoin [149] No N/A No 1008 19 years 40 sec

Bitcoin-NG [95] No N/A No 1000 N/A 600 sec
PBFT [46, 10] No N/A No 16 N/A 1 sec

Nakamoto [191] No N/A No 4000 N/A 600 sec
OMNILEDGER Yes Yes Yes 2400 68.5 years 1.5 sec

The growing interests in scaling blockchains have produced a number of prominent systems

that we compare in Table 9.1. ByzCoin [149] is a first step to scalable BFT consensus, but

cannot scale out. Elastico is the first open scale-out DL, however, it suffers from performance

and security challenges that we have already discussed in Section 6.2.2. RSCoin [74] proposes

sharding as a scalable approach for centrally banked cryptocurrencies. RSCoin relies on a

trusted source of randomness for sharding and auditing, making its usage problematic in

188

9.3. Consensus Group Membership and Stake

trustless settings. Furthermore, to validate transactions, each shard has to coordinate with the

client and instead of running BFT, RSCoin uses a simple two-phase commit, assuming that

safety is preserved if the majority of validators is honest. This approach, however, does not

protect from double spending attempts by a malicious client colluding with a validator.

In short, prior solutions [74, 149, 173] achieve only two out of the three desired properties;

decentralization, long-term security, and scale-out, as illustrated in Figure 6.1. OMNILEDGER

overcomes this issue by scaling out, as far as throughput is concerned, and by maintaining

consistency to the level required for safety, without imposing a total order.

Bitcoin-NG scales Bitcoin without changing the consensus algorithm by observing that the

PoW process does not have to be the same as the transaction validation process; this results in

two separate timelines: one slow for PoW and one fast for transaction validation. Although

Bitcoin-NG significantly increases the throughput of Bitcoin, it is still susceptible to the same

attacks as Bitcoin [113, 13].

9.3 Consensus Group Membership and Stake

Unlike permissioned blockchains [74], where the validators are known, permissionless block-

chains need to deal with the potential of Sybil attacks [84] to remain secure. Bitcoin [191]

suggested the use of Proof-of-Work (PoW), where validators (aka miners) create a valid block

by performing an expensive computation (iterating through a nonce and trying to brute-

force a hash of a block’s header such that it has a certain number of leading zeros). Bitcoin-

NG [95] uses this PoW technique to enable a Sybil-resistant generation of identities. There

are certain issues associated with PoW, such as the waste of electricity [79] and the fact that

it causes recentralization [134] to mining pools. Other approaches for establishing Sybil-

resistant identities such as Proof-of-Stake (PoS) [116], Proof-of-Burn (PoB) [247] or Proof-

of-Personhood [43] overcome PoW’s problems and are promising ways toward ecological

blockchain technology.

9.4 Randomness Generation and Beacons

Generation of public randomness has been studied in various contexts. In 1981, Blum pro-

posed the first coin flipping protocol [36]. Rabin introduced the notion of cryptographic

randomness beacons in 1983 [210]. NIST later launched such a beacon to generate random-

ness from high-entropy sources [193]. Centralized randomness servers have seen limited

adoption, however, in part because users must rely on the trustworthiness of the party that

runs the service.

Other approaches attempt to avoid trusted parties [206, 41, 18, 60]. Bonneau et al. [41] use

Bitcoin to collect entropy, focusing on analyzing the financial cost of a given amount of bias

rather than preventing bias outright. Lenstra et al. [165] propose a new cryptographic primitive,

189

Chapter 9. Related Work

a slow hash, to prevent a client from biasing the output. This approach is promising but

relies on new and untested cryptographic hardness assumptions, and assumes that everyone

observes the commitment before the slow hash produces its output. If an adversary can delay

the commitment messages and/or accelerate the slow hash sufficiently, he can see the hash

function’s output before committing, leaving the difficult question of how slow is “slow enough”

in practice. Other approaches use lotteries [18], or financial data [60] as public randomness

sources.

An important observation by Gennaro et al. [111] is that in many distributed key generation

protocols [202] an attacker can observe public values of honest participants, use this knowl-

edge to influence the protocol run, and disqualify honest peers hence would be able to bias

output. To mitigate this attack, the authors propose to delay the disclosure of the protocol’s

public values after a “point-of-no-return” at which point the attacker cannot influence the

output anymore, as it has been already fixed before and, in particular, the honest participants

can finish the protocol without the cooperation of the attacker. We also use the concept of a

“point-of-no-return” in our randomness generation protocols to prevent an adversary from

biasing the output. However, their assumption of a fully synchronous network is unrealistic for

real-world scenarios. Cachin et al., propose an asynchronous distributed coin tossing scheme

for public randomness generation [49], which relies on a trusted setup dealer. We improve

on that by letting multiple nodes deal secrets and combine them for randomness generation

in our protocols. Finally, Kate et al. [141], introduced an approach to solving distributed key-

generation in large-scale asynchronous networks, such as the Internet. The communication

complexity of their solution, similar to Gennaro’s and Cachin’s prevents scalability to large

numbers of nodes. Our protocols use sharding to limit communication overheads to linear

increases, which enables RANDHOUND and RANDHERD to scale to hundreds of nodes.

Applications of public randomness are manifold and include the protection of hidden ser-

vices in the Tor network [119], selection of elliptic curve parameters [18, 165], Byzantine

consensus [196], electronic voting [4], random sharding of nodes into groups [121], and non-

interactive client-puzzles [124]. In all of these cases, both RANDHOUND and RANDHERD

may be useful for generating bias-resistant, third-party verifiable randomness. For example,

RANDHOUND could be integrated into the Tor consensus mechanism to help the directory

authorities generate their daily random values in order to protect hidden services against DoS

or popularity estimation attacks.

9.5 Confidential Blockchains

CALYPSO is based on threshold cryptography, first used to replicate services [213]. Our ap-

proach can also be considered a version of proxy re-encryption [34], where the proxy is actually

a decentralized service that can withstand individual malicious proxies. The decentralized

data management platform Enigma [256, 257] provides comparable functionality to CALYPSO.

Users own and control their data and a blockchain enforces access control by logging valid

190

9.6. Decentralized Identity & Certificate Management

requests (as per the on-chain policy). However, Enigma stores the confidential data at a

non-decentralized storage provider who can read and/or decrypt the data or refuse to serve

the data even if there is a valid on-chain proof. The storage provider in Enigma is, therefore, a

single point of compromise/failure.

Other projects [15, 86, 133, 226, 257] commonly rely on centralized key-management and/or

storage systems as well and hence suffer from comparable issues with respect to atomicity

and robustness against malicious service providers. Vanish [108] is another secure data-

sharing system which ensures that no-longer-usable data self-destructs to protect against

accidental leakage. CALYPSO can provide similar functionality by adding time-outs to write

transactions after which (honest) trustees destroy their secret key shares making the secret

inaccessible. Vanish, however, relies on DHTs and is thus not as robust as the blockchain-

based CALYPSO. Other privacy-focused blockchains [182, 218] do not address the issue of data

sharing and access control but instead, focus on hiding identity and transaction data through

zero-knowledge proofs.

9.6 Decentralized Identity & Certificate Management

Existing decentralized identity management systems, such as UIA [104] or SDSI/SPKI [214]

enable users to control their identities but they lack authenticated updates via trust-delegating

forward links of skipchains which enable SKIPPER to support secure long-term relationships

between user identities and secure access control over shared data. OAuth2 [126] is an access-

control framework where an authorization server can issue access tokens to authenticated

clients which the latter can use to retrieve the requested data from a resource server. CALYPSO

can emulate OAuth2 without any single points of compromise/failure where the access-control

blockchain and the secret-management cothority act as decentralized versions of the autho-

rization and resource servers, respectively. Further, thanks to CALYPSO’s serialization of access

requests and SIAM updates, it is not vulnerable to attacks exploiting race conditions when

revoking access rights or access keys like OAuth2 [172]. ClaimChain [156] is a decentralized

PKI where users maintain repositories of claims about their own and contacts’ public keys.

However, it permits transfer of access-control tokens, which can result in unauthorized access

to the claims. Finally, Blockstack [7] uses Bitcoin to provide naming and identity functionality,

but it does not support private-data sharing with access control. CALYPSO can work along a

Blockstack-like system is implemented on top of an expressive enough blockchain [250] and

include Blockstack identities as part of SIAM.

Certificate, key, and software transparency. Bringing transparency to different security-

critical domains has been actively studied. Solutions for public-key validation infrastructure

are proposed in AKI [145], ARPKI [23] and Certificate Transparency (CT) [163] in which all

issued public-key certificates are publicly logged and validated by auditors. EthIKS [40]

provides stronger auditability to CONIKS [178], an end-user key verification service based on a

191

Chapter 9. Related Work

verifiable transparency log, by creating a smart contract on Ethereum that provides pro-active

security instead of re-active auditing.

Skipchains can be also seen as an extension of timeline entanglement [175], where nodes

can additionally crawl a timeline forward to update their trust and also enabling efficient

traversal using authenticated skiplists [93]. Finally, in order to make skipchains more robust

to compromised keys, we can combine them with proactive schemes mapped on top of the

managing cothority as suggested by Canetti et al. [51].

192

10 Conclusion and Future Work

We conclude this dissertation by discussing the outcomes of this thesis and its implications, as

well as by presenting potential avenues for future research.

10.1 Summary and Implications

This thesis tackles two pressing challenges current blockchain systems repeatedly face. First,

the scalability challenge both concerning total capacity or throughput the system can handle

and concerning confirmation latency. To understand how pressing this issue is, we consider

Bitcoin the most prominent and most valuable Blockchain to-date. Bitcoin has a throughput

of 3 transactions per second with a confirmation latency of one hour. Comparing this to VISA

that can easily handle 4,000 transactions per second with a confirmation latency of a few

seconds we conclude that Bitcoin as a payment system is disappointing, if not unusable, for

the average person.

This thesis builds a payment system that can provide a better alternative than Bitcoin to the

average person who simply wants to pay his groceries, without the need to trust a central

actor such as VISA or a bank. The capstone (scaling wise) of this thesis, OMNILEDGER, has

experimentally achieved throughput of 2,500 transactions per second with a confirmation

latency of less 10 seconds and has shown potential for far higher throughput, given enough

resources. At the same time OMNILEDGER does not assume trust on any centralized actor,

making it deployable in environments far more adversarial than what VISA can withstand.

A secondary scalability-benefit of OMNILEDGER that might in practice be more important

than the first, is that it enables “light clients” who neither mine blocks nor store the entire

blockchain history to verify quickly and efficiently that a transaction has committed, without

requiring active communication with or having to trust any particular full node.

The second pressing challenge is the privacy of data posted on-chain. A blockchain is (by

design) a transparent log visible to all the participants. This, however, is a disadvantage when

it comes to using blockchains in an environment where confidentiality is necessary, as most

193

Chapter 10. Conclusion and Future Work

businesses want to keep their data confidential and only selectively disclose them to vetted

collaborators. To tackle this problem, we propose CALYPSO that can be applied as an external

service to any programmable blockchain. CALYPSO enables a writer to share confidential data

with a reader and guarantees that (a) only the reader is authorized to access the data and

(b) if the reader accesses the data, the writer will hold an undeniable proof that the access

happened. As a result, with CALYPSO, even fully open blockchains can be used by private

companies without forcing them to reveal their confidential data. Furthermore, CALYPSO

enables the general verifiable management of private data, providing a secure infrastructure

for application typically susceptible to frontrunning attacks such as lotteries and decentralized

exchanges.

In our journey to solve these challenges, we required tools that work in a large scale and remain

robust under Byzantine adversaries. As a result, in this thesis, we also proposed novel tools for

scalable consensus, scalable bias-resistant randomness generation, and decentralized long-

term relationship tracking. Although these tools are introduced in the scope of this thesis, their

applicability exceeds it. For example, scalable consensus can be a building block for large-scale

state-machine replication, bias-resistant randomness can help run public-verifiable lotteries

or scale anonymity systems, and decentralized relationship tracking is already proposed as a

solution to secure software-update dispersion [195].

10.2 Future Work

We now discuss some potential directions for future research that builds on the contributions

of this dissertation and addresses some of its limitations.

10.2.1 Sharding for Smart Contracts

In this dissertation we presented OMNILEDGER, a decentralized global payment network that

employs sharding in order to scale out. However, one of the most promising blockchain

applications is smart contracts, or self-executed programs, which OMNILEDGER does not

support. In future work, we envision a system similar to OMNILEDGER that supports smart

contracts. In order to implement this, we want to design a UTXO or account-based smart

contract language that supports efficient cross-shard operation without compromising the

security guarantees and especially the serializability of transactions that all blockchain systems

currently provide.

10.2.2 Heterogeneous Sharding

While showing great promise, smart contracts are difficult to program correctly, as they

need a deep understanding of cryptographic and distributed algorithms, and offer limited

functionality, as they have to be deterministic and cannot operate on secret data. In future

194

10.2. Future Work

work, we envision a system called Protean [8] which provides a novel Byzantine fault-tolerant

decentralized computer that draws inspiration from the microservice architecture of cloud

computing and modern CPU architectures. Protean uses secure, specialized modules, called

functional units, for building decentralized applications that are commonly seen in smart

contracts, such as lotteries and e-voting schemes. Such modules can be the systems introduced

in this dissertation, for example, a Randhound can be a randomness generation functional

unit, CALYPSO can be a secret managing functional unit while OMNILEDGER can be a secure

and transparent meta-data storage functional unit.

As these functional units are special purpose, they are easier to prove correct than Turing-

complete smart contracts and provide a layer of abstraction to smart contract developers

who might lack a full understanding of cryptography and distributed algorithms. Further-

more, by hosting arbitrarily-defined functional units, as well as multiple instantiations of the

same, abstract functional unit with different security and performance properties, Protean

equips smart-contract developers with great flexibility in building their applications, thereby

extending the range of applications that are enabled by smart contracts.

10.2.3 Locality Preserving Sharding

While decentralized blockchains are getting increasingly attractive due to their third-party

independence, they still suffer from fundamental limitations to increase throughput and lower

latency, and to remain secure under attacks. There is abundant work to fix the security and

scalability problems of Bitcoin (and of blockchains that inherit some of its design decisions).

Existing solutions (including the ones presented in this thesis), however, still do not achieve

real-time latencies, especially under heavy load, or they are insecure under strong network

adversaries.

One of the main reasons this problem persists is that transactions have to first be announced

across the globe and only then get finalized by the validators. OMNILEDGER provided a solution

to the problem of forcing every single validator to see the transaction and instead requires

only a subset (or shard) to consent. However, because of the random selection of validators

per shard there is still a high chance that the transaction has to travel across the globe and

back.

To mitigate this issue, we envision Blinkchain [21], a latency-aware blockchain that provides

bounds on consensus latency. We retain sharding as a technique to scale horizontally. Our

proposal differs in the way we select validators for the blockchain in each shard. Namely, to

achieve low-latency consensus among validators, we use techniques from Crux [22], which

enhance scalable distributed protocols with low latency.

195

Chapter 10. Conclusion and Future Work

10.2.4 Alternatives to Proof-of-Work

Bitcoin and many of its offspring use proof-of-work (PoW) mechanisms [16] to allow pseudony-

mous, untrusted, external actors to securely extend the blockchain. However, PoW requires

costly special-purpose hardware and consumes massive amounts of electricity. This has led

to a re-centralization since only a few privileged entities who have access to the necessary

resources are capable to mine, whereas regular users who can not afford such hardware and

its maintenance are excluded. Consequently, the control over the entire system rests in the

hands of a small number of elite users, for example as in Bitcoin; an undemocratic approach.

To mitigate this problem a first step is to study Proof-of-stake (PoS), where participants use

their assets (coins) to create (mint) new assets, and which promises similar properties as PoW

but consumes far less energy. As future work, we intend to combine the building blocks that

are introduced in this thesis to create a functional PoS system.

However, PoS is essentially nothing but a shareholder corporation where the rich again have

an advantage as they possess more assets and thus are able to mint new coins faster than

less-privileged participants. As a consequence, the (already) rich become even richer; again,

an undemocratic approach. This is why we developed proof-of-personhood (PoP) [43] as a

first step towards our goal, which combines pseudonym parties [105] with state-of-the-art

cryptographic tools like linkable ring signatures [171] and collective signing [243] to create

so-called PoP-tokens, which are basically accountable anonymous credentials.

The core idea of pseudonym parties is to verify real people, thereby linking physical and

virtual identities and providing a basis to prevent adversaries from mounting Sybil attacks.

Pseudonym parties are, as the name suggests, parties which can be organized basically by

anyone, from governments to non-profit organizations, or companies to small groups of

people in their own village. The participants agree on a set of rules such as specifying a

place and time. All parties are recorded for transparency, but attendees are free to hide their

identities by dressing as they wish, including hiding their faces for anonymity. By the end of

the party, each attendee will obtain exactly one cryptographic identity token that represents

both a physical and virtual identity without revealing sensitive information.

196

Bibliography

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and

Jay J. Wylie. Fault-scalable Byzantine Fault-tolerant Services. SIGOPS Operating Systems

Review, 39(5):59–74, October 2005.

[2] Joe Abley, David Blacka, David Conrad, Richard Lamb, Matt Larson, Fredrik Ljunggren,

David Knight, Tomofumi Okubo, and Jakob Schlyter. DNSSEC Root Zone – High Level

Technical Architecture, June 2010. Version 1.4.

[3] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solida:

A Blockchain Protocol Based on Reconfigurable Byzantine Consensus. In James Aspnes,

Alysson Bessani, Pascal Felber, and João Leitão, editors, 21st International Conference

on Principles of Distributed Systems (OPODIS 2017), volume 95 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 25:1–25:19, Dagstuhl, Germany, 2018. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

[4] Ben Adida. Helios: Web-based Open-audit Voting. In Proceedings of the 17th Confer-

ence on Security Symposium, SS’08, pages 335–348, Berkeley, CA, USA, 2008. USENIX

Association.

[5] Akamai Technologies, Inc. Akamai: Content Delivery Network (CDN) & Cloud Comput-

ing. May 2016.

[6] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George

Danezis. Chainspace: A sharded smart contracts platform. In 25th Annual Network

and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,

February 18-21, 2018, 2018.

[7] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J. Freedman. Blockstack: A Global

Naming and Storage System Secured by Blockchains. In 2016 USENIX Annual Tech-

nical Conference (USENIX ATC 16), pages 181–194, Denver, CO, June 2016. USENIX

Association.

[8] Enis Ceyhun Alp, Eleftherios Kokoris-Kogias, Georgia Fragkouli, and Bryan Ford. Re-

thinking General-Purpose Decentralized Computing. In XVII Workshop on Hot Topics in

Operating Systems (HotOS), May 2019.

197

http://doi.acm.org/10.1145/1095809.1095817
http://www.root-dnssec.org/wp-content/uploads/2010/06/draft-icann-dnssec-arch-v1dot4.pdf
http://www.root-dnssec.org/wp-content/uploads/2010/06/draft-icann-dnssec-arch-v1dot4.pdf
http://static.usenix.org/event/sec08/tech/full_papers/adida/adida.pdf
https://www.akamai.com/
https://www.akamai.com/
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali

Bibliography

[9] Gavin Andresen. Classic? Unlimited? XT? Core?, January 2016.

[10] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-

tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov

Manevich, et al. Hyperledger Fabric: A Distributed Operating System for Permissioned

Blockchains. In Proceedings of the Thirteenth European conference on Computer systems,

EuroSys ’18, New York, NY, USA, 2018. ACM.

[11] Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias.

Channels: Horizontal scaling and confidentiality on permissioned blockchains. In

European Symposium on Research in Computer Security, pages 111–131. Springer, 2018.

[12] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek.

Secure multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and

Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 443–458, 2014.

[13] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking Bitcoin: Large-scale

Network Attacks on Cryptocurrencies. In 2017 IEEE Symposium on Security and Privacy,

SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 375–392, 2017.

[14] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of Space:

When Space is of the Essence. In Security and Cryptography for Networks, pages 538–557.

Springer, 2014.

[15] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. MedRec: Using

blockchain for medical data access and permission management. In Open and Big Data

(OBD), International Conference on, pages 25–30. IEEE, 2016.

[16] Adam Back. Hashcash – A Denial of Service Counter-Measure, August 2002.

[17] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew

Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling Blockchain Innova-

tions with Pegged Sidechains. October 2014.

[18] Thomas Baignères, Cécile Delerablée, Matthieu Finiasz, Louis Goubin, Tancrède Lep-

oint, and Matthieu Rivain. Trap Me If You Can – Million Dollar Curve. Cryptology ePrint

Archive, Report 2015/1249, 2015.

[19] James Ball and Dominic Rushe. NSA Prism program taps in to user data of Apple, Google

and others. October 2013.

[20] Devlin Barret. U.S. Suspects Hackers in China Breached About 4 Million People’s Records,

Officials Say. June 2015.

[21] Cristina Basescu, Eleftherios Kokoris-Kogias, and Bryan Alexander Ford. Low-latency

Blockchain Consensus. Technical report, May 2017.

198

http://gavinandresen.ninja/classic-unlimited-xt-core
https://arxiv.org/abs/1801.10228
https://arxiv.org/abs/1801.10228
https://ieeexplore.ieee.org/abstract/document/6956580
http://arxiv.org/abs/1605.07524
http://arxiv.org/abs/1605.07524
https://link.springer.com/chapter/10.1007%2F978-3-319-10879-7_31
https://link.springer.com/chapter/10.1007%2F978-3-319-10879-7_31
https://ieeexplore.ieee.org/abstract/document/7573685/
https://ieeexplore.ieee.org/abstract/document/7573685/
http://www.hashcash.org/papers/hashcash.pdf
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
http://eprint.iacr.org/2015/1249
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.wsj.com/articles/u-s-suspects-hackers-in-china-behind-government-data-breach-sources-say-1433451888
http://www.wsj.com/articles/u-s-suspects-hackers-in-china-behind-government-data-breach-sources-say-1433451888
http://infoscience.epfl.ch/record/228942
http://infoscience.epfl.ch/record/228942

Bibliography

[22] Cristina Basescu, Michael F Nowlan, Kirill Nikitin, Jose M Faleiro, and Bryan Ford. Crux:

Locality-Preserving Distributed Services. arXiv preprint arXiv:1405.0637, 2014.

[23] David A. Basin, Cas J. F. Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and

Pawel Szalachowski. ARPKI: attack resilient public-key infrastructure. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,

AZ, USA, November 3-7, 2014, pages 382–393, 2014.

[24] Kevin S. Bauer, Damon McCoy, Dirk Grunwald, and Douglas C. Sicker. BitBlender: Light-

Weight Anonymity for BitTorrent. In 4th International ICST Conference on Security and

Privacy in Communication Networks, SECURECOMM 2008, Istanbul, Turkey, September

22-25, 2008, 2008.

[25] Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Moti Yung,

Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC

2006, pages 207–228, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[26] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas Hülsing, Eran

Lambooij, Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal. How to

manipulate curve standards: A white paper for the black hat. In Security Standardisation

Research - Second International Conference, SSR 2015, Tokyo, Japan, December 15-16,

2015, Proceedings, pages 109–139, 2015.

[27] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-

speed high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89, 2012.

[28] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-

curve points indistinguishable from uniform random strings. In 2013 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS’13, Berlin, Germany, November

4-8, 2013, pages 967–980, 2013.

[29] Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: A standardized

back door. In The New Codebreakers - Essays Dedicated to David Kahn on the Occasion

of His 85th Birthday, pages 256–281, 2016.

[30] Bitcoin Wiki. Confirmation, en.bitcoin.it/wiki/confirmation, accessed may 2016.

[31] Bitcoin Wiki. Scalability, en.bitcoin.it/wiki/scalability, accessed may 2016, 2016.

[32] Bitnodes. Bitcoin Network Snapshot, accessed april 2017, April 2017.

[33] George Robert Blakley et al. Safeguarding cryptographic keys. In Proceedings of the

national computer conference, volume 48, pages 313–317, 1979.

[34] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy

cryptography. In International Conference on the Theory and Applications of Crypto-

graphic Techniques, pages 127–144. Springer, 1998.

199

https://arxiv.org/pdf/1405.0637.pdf
https://arxiv.org/pdf/1405.0637.pdf
http://link.springer.com/article/10.1007/s13389-012-0027-1
http://link.springer.com/article/10.1007/s13389-012-0027-1
https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoin.it/wiki/Scalability
https://bitnodes.21.co/nodes/
https://www.computer.org/csdl/proceedings/afips/1979/5087/00/50870313.pdf

Bibliography

[35] Blockchain.info. Blockchain Size, blockchain.info/charts/blocks-size, February 2017.

[36] Manuel Blum. Coin flipping by telephone. In Advances in Cryptology: A Report on

CRYPTO 81, IEEE Workshop on Communications Security, Santa Barbara, California,

USA, August 24-26, 1981., pages 11–15, 1981.

[37] Carlo Blundo, Alfredo De Santis, and Ugo Vaccaro. Randomness in distribution proto-

cols. In Serge Abiteboul and Eli Shamir, editors, Automata, Languages and Programming,

volume 820 of Lecture Notes in Computer Science, pages 568–579. Springer Berlin Hei-

delberg, 1994.

[38] Alexandra Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based

on the Gap-Diffie-Hellman-Group Signature Scheme. In Public Key Cryptography – PKC

2003. Springer, 2002.

[39] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In

International Conference on the Theory and Application of Cryptology and Information

Security, pages 514–532. Springer, 2001.

[40] Joseph Bonneau. EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log. In

Financial Cryptography and Data Security 2016. Springer Berlin Heidelberg, 2016.

[41] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On Bitcoin as a public random-

ness source. IACR eprint archive, October 2015.

[42] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua Kroll, and Ed-

ward W Felten. Research Perspectives and Challenges for Bitcoin and Cryptocurrencies.

In 2015 IEEE Symposium on Security and Privacy. IEEE, 2015.

[43] Maria Borge, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser,

and Bryan Ford. Proof-of-Personhood: Redemocratizing Permissionless Cryptocurren-

cies. In 1st IEEE Security and Privacy on the Blockchain, April 2017.

[44] Peter Bright. How the Comodo certificate fraud calls CA trust into questions. arstechnica,

March 2011.

[45] Peter Bright. Another fraudulent certificate raises the same old questions about certifi-

cate authorities. arstechnica, August 2011.

[46] Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains,

2016.

[47] Vitalik Buterin, Jeff Coleman, and Matthew Wampler-Doty. Notes on Scalable

Blockchain Protocols (version 0.3), 2015.

[48] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and Efficient

Asynchronous Broadcast Protocols. In Advances in Cryptology - CRYPTO 2001, 21st

Annual International Cryptology Conference, Santa Barbara, California, USA, August

19-23, 2001, Proceedings, pages 524–541, 2001.

200

https://blockchain.info/charts/blocks-size
https://eprint.iacr.org/2002/118
https://eprint.iacr.org/2002/118
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://link.springer.com/chapter/10.1007/978-3-662-53357-4_7
https://eprint.iacr.org/2015/1015.pdf
https://eprint.iacr.org/2015/1015.pdf
http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf
http://bford.info/pub/dec/pop-abs
http://bford.info/pub/dec/pop-abs
http://prosecco.gforge.inria.fr/ieee-blockchain2016/
http://arstechnica.com/security/2011/03/how-the-comodo-certificate-fraud-calls-ca-trust-into-question/
http://arstechnica.com/security/2011/08/earlier-this-year-an-iranian/
http://arstechnica.com/security/2011/08/earlier-this-year-an-iranian/
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&isAllowed=y
https://pdfs.semanticscholar.org/ae5b/c3aaf0e02a42f4cd41916072c87db0e04ac6.pdf
https://pdfs.semanticscholar.org/ae5b/c3aaf0e02a42f4cd41916072c87db0e04ac6.pdf
http://www.zurich.ibm.com/~cca/papers/abc.pdf
http://www.zurich.ibm.com/~cca/papers/abc.pdf

Bibliography

[49] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random Oracles in Constantinople:

Practical asynchronous Byzantine agreement using cryptography. In Proceedings of the

Nineteenth Annual ACM Symposium on Principles of Distributed Computing, July 16-19,

2000, Portland, Oregon, USA., pages 123–132, 2000.

[50] Christian Cachin and Marko Vukolic. Blockchain Consensus Protocols in the Wild

(Keynote Talk). In Andréa W. Richa, editor, 31st International Symposium on Distributed

Computing (DISC 2017), volume 91 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 1:1–1:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[51] Ran Canetti, Shai Halevi, and Amir Herzberg. Maintaining authenticated communica-

tion in the presence of break-ins. Journal of Cryptology, 13(1):61–105, Jan 2000.

[52] Justin Cappos, Justin Samuel, Scott M. Baker, and John H. Hartman. A Look In the

Mirror: Attacks on Package Managers. In Proceedings of the 2008 ACM Conference on

Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA, October

27-31, 2008, pages 565–574, 2008.

[53] Ignacio Cascudo and Bernardo David. SCRAPE: scalable randomness attested by public

entities. In Applied Cryptography and Network Security - 15th International Conference,

ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings, pages 537–556, 2017.

[54] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Row-

stron, and Atul Singh. SplitStream: high-bandwidth multicast in cooperative environ-

ments. In ACM Symposium on Operating Systems Principles (SOSP), 2003.

[55] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In 3rd USENIX

Symposium on Operating Systems Design and Implementation (OSDI), February 1999.

[56] David Chaum and Torben P. Pedersen. Wallet databases with observers. In IACR

International Cryptology Conference (CRYPTO), 1992.

[57] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84–90, 1981.

[58] Richard Chirgwin. iOS 7’s weak random number generator stuns kernel security. The

Register, March 2014.

[59] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret

sharing and achieving simultaneity in the presence of faults. In Symposium on Founda-

tions of Computer Science (SFCS), SFCS ’85, pages 383–395, Washington, DC, USA, 1985.

IEEE Computer Society.

[60] Jeremy Clark and Urs Hengartner. On the Use of Financial Data as a Random Beacon.

In 2010 Electronic Voting Technology Workshop / Workshop on Trustworthy Elections,

EVT/WOTE ’10, Washington, D.C., USA, August 9-10, 2010, 2010.

201

http://link.springer.com/article/10.1007/s00145-005-0318-0
http://www.cs.arizona.edu/stork/packagemanagersecurity/ccs2008.pdf
http://www.cs.arizona.edu/stork/packagemanagersecurity/ccs2008.pdf
http://research.microsoft.com/en-us/um/people/antr/PAST/SplitStream-sosp.pdf
http://research.microsoft.com/en-us/um/people/antr/PAST/SplitStream-sosp.pdf
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
https://www.theregister.co.uk/2014/03/16/ios_7_has_weak_random_number_generator/
https://eprint.iacr.org/2010/361

Bibliography

[61] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A dis-

tributed anonymous information storage and retrieval system. In Workshop on Design

Issues in Anonymity and Unobservability, July 2000.

[62] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco Marchetti.

Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults. In 6th USENIX

Symposium on Networked Systems Design and Implementation, April 2009.

[63] CloudFlare, Inc. CloudFlare - The web performance & security company. May 2016.

[64] CoinDesk. Decentralized Exchanges Aren’t Living Up to Their Name - And Data Proves

It, July 2018.

[65] Comodo Group. Comodo Fraud Incident. July 2015.

[66] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. RFC 5280 -

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

Profile. Technical report, May 2008.

[67] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.

Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,

Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey

Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi

Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Span-

ner: Google’s Globally Distributed Database. ACM Transactions on Computer Systems,

31(3):8:1–8:22, August 2013.

[68] Henry Corrigan-Gibbs, Wendy Mu, Dan Boneh, and Bryan Ford. Ensuring high-quality

randomness in cryptographic key generation. In 20th ACM Conference on Computer

and Communications Security (CCS), November 2013.

[69] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.

HQ Replication: A Hybrid Quorum Protocol for Byzantine Fault Tolerance. In 7th

Symposium on Operating Systems Design and Implementation, OSDI ’06, pages 177–190,

Berkeley, CA, USA, 2006. USENIX Association.

[70] Kyle Croman, Christian Decke, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba,

Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gun Sirer, Dawn Song an, and Roger

Wattenhofer. On Scaling Decentralized Blockchains (A Position Paper). In 3rd Workshop

on Bitcoin and Blockchain Research, 2016.

[71] Scott A. Crosby and Dan S. Wallach. Efficient data structures for tamper-evident logging.

In 18th USENIX Security Symposium, Montreal, Canada, August 10-14, 2009, Proceedings,

pages 317–334, 2009.

[72] CuriosMind. World’s Hottest Decentralized Lottery Powered by Blockchain, February

2018.

202

https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/clement/clement.pdf
https://www.cloudflare.com/
https://www.coindesk.com/decentralized-exchange-crypto-dex
https://www.coindesk.com/decentralized-exchange-crypto-dex
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://doi.acm.org/10.1145/2491245
http://doi.acm.org/10.1145/2491245
http://static.usenix.org/legacy/events/osdi06/tech/full_papers/cowling/cowling.pdf
http://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
https://medium.com/@Curious_Mind/worlds-hottest-decentralized-lottery-powered-by-blockchain-90a35bad464a

Bibliography

[73] Matt Czernik. On Blockchain Frontrunning , February 2018.

[74] George Danezis and Sarah Meiklejohn. Centrally Banked Cryptocurrencies. In 23rd

Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego,

California, USA, February 21-24, 2016, 2016.

[75] Debian. Advanced Package Tool, May 2016.

[76] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and

Werner Vogels. Dynamo: Amazon’s highly available key-value store. In 21st ACM Sympo-

sium on Operating Systems Principles (SOSP), October 2007.

[77] Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin Meets Strong Con-

sistency. In 17th International Conference on Distributed Computing and Networking

(ICDCN), Singapore, January 2016.

[78] Christian Decker and Roger Wattenhofer. A Fast and Scalable Payment Network with

Bitcoin Duplex Micropayment Channels. In Stabilization, Safety, and Security of Dis-

tributed Systems, pages 3–18. Springer, August 2015.

[79] Sebastiaan Deetman. Bitcoin Could Consume as Much Electricity as Denmark by 2020,

May 2016.

[80] DeterLab Network Security Testbed, September 2012.

[81] Tim Dierks and Eric Rescorla. RFC 5246-the transport layer security (TLS) protocol

version 1.2. Internet Engineering Task Force, 2008.

[82] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the second-generation

onion router. In 12th USENIX Security Symposium, August 2004.

[83] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Pro-

ceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 202–210. ACM, 2003.

[84] John R. Douceur. The Sybil Attack. In 1st International Workshop on Peer-to-Peer Systems

(IPTPS), March 2002.

[85] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven,

and Igors Stepanovs. On the security of two-round multi-signatures. In IEEE Symposium

on Security and Privacy. IEEE, May 2019.

[86] Alevtina Dubovitskaya, Zhigang Xu, Samuel Ryu, Michael Schumacher, and Fusheng

Wang. Secure and Trustable Electronic Medical Records Sharing using Blockchain. 2017.

[87] D. Eastlake. Domain name system security extensions, March 1999. RFC 2535.

203

https://medium.com/@matt.czernik/on-blockchain-frontrunning-part-i-cut-the-line-or-make-a-new-one-b33850663b55
https://eprint.iacr.org/2015/502.pdf
https://wiki.debian.org/Apt
http://www.tik.ee.ethz.ch/file/ed3e5da74fbca5584920e434d9976a12/peercensus.pdf
http://www.tik.ee.ethz.ch/file/ed3e5da74fbca5584920e434d9976a12/peercensus.pdf
http://www.tik.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
http://www.tik.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
https://motherboard.vice.com/en_us/article/bitcoin-could-consume-as-much-electricity-as-denmark-by-2020
http://isi.deterlab.net/
https://dl.acm.org/citation.cfm?id=773173
http://research.microsoft.com/pubs/74220/IPTPS2002.pdf
https://arxiv.org/pdf/1709.06528.pdf

Bibliography

[88] Rachid El Bansarkhani and Mohammed Meziani. An efficient lattice-based secret

sharing construction. In IFIP International Workshop on Information Security Theory

and Practice, pages 160–168. Springer, 2012.

[89] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Advances in Cryptology, Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 1985.

[90] Michael Elkins, David Del Torto, Raph Levien, and Thomas Roessler. MIME security

with OpenPGP. Technical report, 2001. RFC 3156.

[91] Justin Ellis. The Guardian introduces SecureDrop for document leaks. Nieman Journal-

ism Lab, 2014.

[92] Elmootazbellah Nabil Elnozahy, David B. Johnson, and Willy Zwaenepoel. The Perfor-

mance of Consistent Checkpointing. In 11th Symposium on Reliable Distributed Systems,

pages 39–47. IEEE, 1992.

[93] C. Christopher Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamas-

sia. Dynamic provable data possession. In Proceedings of the 2009 ACM Conference on

Computer and Communications Security, CCS 2009, Chicago, Illinois, USA, November

9-13, 2009, pages 213–222, 2009.

[94] European Parliament and Council of the European Union. General Data Protection

Regulation (GDPR). Official Journal of the European Union (OJ), L119:1–88, 2016.

[95] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. Bitcoin-NG: A

Scalable Blockchain Protocol. In 13th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 16), Santa Clara, CA, March 2016. USENIX Association.

[96] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In

Financial Cryptography and Data Security, pages 436–454. Springer, 2014.

[97] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryp-

tion. IACR Cryptology ePrint Archive, 2012:144, 2012.

[98] Joan Feigenbaum. Multiple Objectives of Lawful-Surveillance Protocols (Transcript of

Discussion). In Cambridge International Workshop on Security Protocols, pages 9–17.

Springer, 2017.

[99] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th

Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA,

27-29 October 1987, pages 427–437, 1987.

[100] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification

and signature problems. In IACR International Cryptology Conference (CRYPTO), pages

186–194, 1987.

204

https://link.springer.com/chapter/10.1007%2F978-3-642-30955-7_14
https://link.springer.com/chapter/10.1007%2F978-3-642-30955-7_14
https://www.rfc-editor.org/info/rfc3156
https://www.rfc-editor.org/info/rfc3156
https://www.theguardian.com/technology/2014/jun/05/guardian-launches-securedrop-whistleblowers-documents
https://infoscience.epfl.ch/record/55787/files/srds92.ps.pdf
https://infoscience.epfl.ch/record/55787/files/srds92.ps.pdf
https://www.eugdpr.org/
https://www.eugdpr.org/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf
https://link.springer.com/chapter/10.1007/978-3-319-71075-4_2
https://link.springer.com/chapter/10.1007/978-3-319-71075-4_2
https://ieeexplore.ieee.org/abstract/document/4568297/

Bibliography

[101] Hal Finney. Best practice for fast transaction acceptance – how high is the risk?, February

2011. Bitcoin Forum comment.

[102] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[103] Bryan Ford. Apple, FBI, and Software Transparency. Freedom to Tinker, March 2016.

[104] Bryan Ford et al. Persistent personal names for globally connected mobile devices.

In 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI),

November 2006.

[105] Bryan Ford and Jacob Strauss. An offline foundation for online accountable pseudonyms.

In 1st International Workshop on Social Network Systems (SocialNets), 2008.

[106] Matthew Franklin and Haibin Zhang. Unique ring signatures: A practical construction.

In Ahmad-Reza Sadeghi, editor, Financial Cryptography and Data Security 2013, pages

162–170. Springer Berlin Heidelberg, 2013.

[107] Matthew K Franklin and Haibin Zhang. A Framework for Unique Ring Signatures. IACR

Cryptology ePrint Archive, 2012:577, 2012.

[108] Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy, and Henry M. Levy. Vanish: In-

creasing Data Privacy with Self-Destructing Data. In 18th USENIX Security Symposium,

Montreal, Canada, August 10-14, 2009, Proceedings, pages 299–316, 2009.

[109] Genecoin. Make a Backup of Yourself Using Bitcoin, May 2018.

[110] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed

key generation for discrete-log based cryptosystems. In Advances in Cryptology - EU-

ROCRYPT ’99, International Conference on the Theory and Application of Cryptographic

Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 295–310, 1999.

[111] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed

key generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83,

2007.

[112] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf,

and Srdjan Capkun. On the Security and Performance of Proof of Work Blockchains.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security, Vienna, Austria, October 24-28, 2016, pages 3–16, 2016.

[113] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and Srdjan Capkun. Tampering

with the Delivery of Blocks and Transactions in Bitcoin. In 22nd ACM SIGSAC Conference

on Computer and Communications Security, pages 692–705. ACM, 2015.

205

https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://freedom-to-tinker.com/blog/bford/apple-fbi-and-software-transparency/
https://freedom-to-tinker.com/
http://bford.info/pub/net/sybil.pdf
https://eprint.iacr.org/2012/577.pdf
https://www.usenix.org/legacy/events/sec09/tech/full_papers/sec09_crypto.pdf
https://www.usenix.org/legacy/events/sec09/tech/full_papers/sec09_crypto.pdf
http://genecoin.me/
https://link.springer.com/chapter/10.1007/3-540-48910-X_21
https://link.springer.com/chapter/10.1007/3-540-48910-X_21
https://eprint.iacr.org/2016/555.pdf
https://eprint.iacr.org/2015/578.pdf
https://eprint.iacr.org/2015/578.pdf

Bibliography

[114] Mainak Ghosh, Miles Richardson, Bryan Ford, and Rob Jansen. A TorPath to TorCoin:

Proof-of-bandwidth altcoins for compensating relays. In Workshop on Hot Topics in

Privacy Enhancing Technologies (HotPETs), 2014.

[115] Samuel Gibbs. Man hacked random-number generator to rig lotteries, investigators say.

The Guardian, April 2016.

[116] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In Proceedings of the

26th Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017,

pages 51–68, 2017.

[117] Sharad Goel, Mark Robson, Milo Polte, and Emin Gun Sirer. Herbivore: A scalable and

efficient protocol for anonymous communication. Technical Report 2003-1890, Cornell

University, February 2003.

[118] The Go Programming Language, February 2018.

[119] David Goulet and George Kadianakis. Random Number Generation During Tor Voting,

2015.

[120] Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed systems

with failure detectors. Distributed Computing, 15(1):17–25, 2002.

[121] Rachid Guerraoui, Florian Huc, and Anne-Marie Kermarrec. Highly Dynamic Dis-

tributed Computing with Byzantine Failures. In Proceedings of the 2013 ACM Symposium

on Principles of Distributed Computing, PODC ’13, pages 176–183, New York, NY, USA,

2013. ACM.

[122] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700

BFT protocols. In 5th European conference on Computer systems, pages 363–376. ACM,

2010.

[123] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the Linux Random

Number Generator. In 2006 IEEE Symposium on Security and Privacy (S&P 2006), 21-24

May 2006, Berkeley, California, USA, pages 371–385, 2006.

[124] J. Alex Halderman and Brent Waters. Harvesting Verifiable Challenges from Oblivious

Online Sources. In Proceedings of the 14th ACM Conference on Computer and Commu-

nications Security, CCS ’07, pages 330–341, New York, NY, USA, 2007. ACM.

[125] Timo Hanke and Dominic Williams. Intoducing Random Beascons Using Threshold

Relay Chains, September 2016.

[126] Ed Hardt. The OAuth 2.0 authorization framework, October 2012. RFC 6749.

[127] Mike Hearn and J Spilman. Rapidly-adjusted (micro)payments to a pre-determined

party, 2015.

206

https://www.theguardian.com/technology/2016/apr/08/man-hacked-random-number-generator-rig-lotteries-investigators-say
https://dl.acm.org/authorize?N47148
http://golang.org/
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://pdfs.semanticscholar.org/1998/ddf989eb4bb7ba8fe1e678c26f2029e9911f.pdf
https://pdfs.semanticscholar.org/1998/ddf989eb4bb7ba8fe1e678c26f2029e9911f.pdf
http://www.vukolic.com/700-Eurosys.pdf
http://www.vukolic.com/700-Eurosys.pdf
http://string.technology/2016/09/14/threshold-relay-random-beacon.en/
http://string.technology/2016/09/14/threshold-relay-random-beacon.en/
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract

Bibliography

[128] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse Attacks on

Bitcoin’s Peer-to-Peer Network. In 24th USENIX Security Symposium, pages 129–144,

2015.

[129] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret

sharing or: How to cope with perpetual leakage. Advances in Cryptology—CRYPT0’95,

pages 339–352, 1995.

[130] Kate Fultz Hollis. To Share or Not to Share: Ethical Acquisition and Use of Medical Data.

AMIA Summits on Translational Science Proceedings, 2016:420, 2016.

[131] M. Horton and R. Adams. Standard for interchange of USENET messages, December

1987. RFC 1036.

[132] Max Howell. Homebrew – The Missing Packet Manager for macOS, May 2016.

[133] Longxia Huang, Gongxuan Zhang, Shui Yu, Anmin Fu, and John Yearwood. SeShare:

Secure cloud data sharing based on blockchain and public auditing. Concurrency and

Computation: Practice and Experience.

[134] Emin Gün Sirer Ittay Eyal. It’s Time For a Hard Bitcoin Fork, June 2014.

[135] Markus Jakobsson. On quorum controlled asymmetric proxy re-encryption. In Public

key cryptography, pages 632–632. Springer, 1999.

[136] Meiko Jensen, Jörg Schwenk, Nils Gruschka, and Luigi Lo Iacono. On technical security

issues in cloud computing. In Cloud Computing, 2009. CLOUD’09. IEEE International

Conference on, pages 109–116. IEEE, 2009.

[137] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation systems

for online service provision. Decision support systems, 43(2):618–644, 2007.

[138] HIPAA Journal. The Benefits of Using Blockchain for Medical Records, September 2017.

[139] IBM Blockchain Juan Delacruz. Blockchain is tackling the challenge of data sharing in

government, May 2018.

[140] Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. Double-spending fast payments

in Bitcoin. In 19th ACM Conference on Computer and communications security, pages

906–917. ACM, 2012.

[141] Aniket Kate and Ian Goldberg. Distributed Key Generation for the Internet. In Dis-

tributed Computing Systems, 2009. ICDCS’09. 29th IEEE International Conference on,

pages 119–128. IEEE, 2009.

[142] Idit Keidar and Danny Dolev. Increasing the resilience of atomic commit, at no addi-

tional cost. In Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART symposium

on Principles of database systems, pages 245–254. ACM, 1995.

207

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
https://link.springer.com/chapter/10.1007/3-540-44750-4_27
https://link.springer.com/chapter/10.1007/3-540-44750-4_27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001759/
http://brew.sh/
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4359
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4359
http://hackingdistributed.com/2014/06/13/time-for-a-hard-bitcoin-fork/
https://link.springer.com/chapter/10.1007/3-540-49162-7_9
https://www.hipaajournal.com/blockchain-medical-records/
https://www.ibm.com/blogs/blockchain/2018/02/blockchain-is-tackling-the-challenge-of-data-sharing-in-government/
https://www.ibm.com/blogs/blockchain/2018/02/blockchain-is-tackling-the-challenge-of-data-sharing-in-government/
https://eprint.iacr.org/2012/248.pdf
https://eprint.iacr.org/2012/248.pdf
https://ieeexplore.ieee.org/abstract/document/5158416/

Bibliography

[143] Limor Kessem. Certificates-as-a-Service? Code Signing Certs Become Popular Cyber-

crime Commodity, September 2015.

[144] Katherine K Kim, Pamela Sankar, Machelle D Wilson, and Sarah C Haynes. Factors

affecting willingness to share electronic health data among California consumers. BMC

medical ethics, 18(1):25, 2017.

[145] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson, and Virgil Gligor.

Accountable Key Infrastructure (AKI): A Proposal for a Public-Key Validation Infrastruc-

ture. In International Word Wide Web Conference (WWW), 2014.

[146] Yongdae Kim, Adrian Perrig, and Gene Tsudik. Tree-based group key agreement. ACM

Transactions on Information and System Security (TISSEC), 7(1):60–96, 2004.

[147] Sunny King and Scott Nadal. PPCoin: Peer-to-peer Crypto-Currency with Proof-of-Stake.

August 2012.

[148] Eleftherios Kokoris-Kogias, Linus Gasser, Ismail Khoffi, Philipp Jovanovic, Nicolas Gailly,

and Bryan Ford. Managing Identities Using Blockchains and CoSi. Technical report, 9th

Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2016), 2016.

[149] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,

and Bryan Ford. Enhancing Bitcoin Security and Performance with Strong Consis-

tency via Collective Signing. In Proceedings of the 25th USENIX Conference on Security

Symposium, 2016.

[150] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta,

and Bryan Ford. OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding.

In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,

San Francisco, California, USA, pages 583–598, 2018.

[151] Eleftherios Kokoris-Kogias, Orfefs Voutyras, and Theodora Varvarigou. TRM-SIoT: A

scalable hybrid trust & reputation model for the social Internet of Things. In 2016 IEEE

21st International Conference on Emerging Technologies and Factory Automation (ETFA),

pages 1–9. IEEE, 2016.

[152] Charles R Korsmo. High-Frequency Trading: A Regulatory Strategy. U. Rich. L. Rev.,

48:523, 2013.

[153] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.

Hawk: The blockchain model of cryptography and privacy-preserving smart contracts.

In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,

pages 839–858, 2016.

[154] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.

Zyzzyva: Speculative Byzantine Fault Tolerance. In 21st ACM SIGOPS Symposium on

Operating Systems Principles (SOSP). ACM, October 2007.

208

https://securityintelligence.com/certificates-as-a-service-code-signing-certs-become-popular-cybercrime-commodity/
https://securityintelligence.com/certificates-as-a-service-code-signing-certs-become-popular-cybercrime-commodity/
https://bmcmedethics.biomedcentral.com/articles/10.1186/s12910-017-0185-x
https://bmcmedethics.biomedcentral.com/articles/10.1186/s12910-017-0185-x
https://www.cs.cmu.edu/~xia/resources/Documents/kim-www13.pdf
https://www.cs.cmu.edu/~xia/resources/Documents/kim-www13.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/1_Managing_identities_bryan_ford_etc.pdf
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
http://eprint.iacr.org/2017/406
https://lawreview.richmond.edu/files/2014/03/Korsmo-482-AC.pdf
http://www.sosp2007.org/papers/sosp052-kotla.pdf

Bibliography

[155] Maxwell N Krohn, Michael J Freedman, and David Mazières. On-the-fly verification of

rateless erasure codes for efficient content distribution. In Security and Privacy, 2004.

Proceedings. 2004 IEEE Symposium on, pages 226–240. IEEE, 2004.

[156] Bogdan Kulynych, Wouter Lueks, Marios Isaakidis, George Danezis, and Carmela Tron-

coso. ClaimChain: Improving the Security and Privacy of In-band Key Distribution for

Messaging. In Proceedings of the 2018 Workshop on Privacy in the Electronic Society,

WPES@CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 86–103, 2018.

[157] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use Bitcoin to play decen-

tralized poker. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 195–206. ACM, 2015.

[158] Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and Justin Cappos.

Diplomat: Using Delegations to Protect Community Repositories. In 13th USENIX

Symposium on Networked Systems Design and Implementation (NSDI), March 2016.

[159] Jae Kwon. TenderMint: Consensus without Mining. 2014.

[160] The Kyber Cryptography Library, 2010 – 2018.

[161] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage

system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[162] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem.

ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,

1982.

[163] Ben Laurie. Certificate Transparency. ACM Queue, 12(8), September 2014.

[164] Timothy B. Lee. Facebook’s Cambridge Analytica Scandal, Explained [Updated], 2018

(accessed July 27, 2018).

[165] Arjen K. Lenstra and Benjamin Wesolowski. Trustworthy public randomness with sloth,

unicorn, and trx. IJACT, 3(4):330–343, 2017.

[166] Chris Lesniewski-Laas and M. Frans Kaashoek. Whanau: A Sybil-proof distributed hash

table. In Proceedings of the 7th USENIX Symposium on Networked Systems Design and

Implementation, NSDI 2010, April 28-30, 2010, San Jose, CA, USA, pages 111–126, 2010.

[167] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols.

In International Conference on Financial Cryptography and Data Security, pages 528–547.

Springer, 2015.

[168] Jinyuan Li, Maxwell N. Krohn, David Mazières, and Dennis E. Shasha. Secure untrusted

data repository (SUNDR). In 6th Symposium on Operating System Design and Implemen-

tation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004, pages 121–136,

2004.

209

https://people.csail.mit.edu/ranjit/papers/poker.pdf
https://people.csail.mit.edu/ranjit/papers/poker.pdf
https://www.usenix.org/node/194973
http://tendermint.com/docs/tendermint.pdf
https://github.com/dedis/kyber
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
https://queue.acm.org/detail.cfm?id=2668154
https://arstechnica.com/tech-policy/2018/03/facebooks-cambridge-analytica-scandal-explained/
https://link.springer.com/chapter/10.1007/978-3-662-47854-7_33

Bibliography

[169] Jian Liang, Naoum Naoumov, and Keith W. Ross. The index poisoning attack in P2P file

sharing systems. In INFOCOM 2006. 25th IEEE International Conference on Computer

Communications, Joint Conference of the IEEE Computer and Communications Societies,

23-29 April 2006, Barcelona, Catalunya, Spain, 2006.

[170] Laure A Linn and Martha B Koo. Blockchain for health data and its potential use in

health it and health care related research. In ONC/NIST Use of Blockchain for Healthcare

and Research Workshop. Gaithersburg, Maryland, United States: ONC/NIST, 2016.

[171] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anonymous

group signature for ad hoc groups. In Australian Conference on Information Security

and Privacy, pages 614–623, July 2004.

[172] T. Loddersted, S. Dronia, and M. Scurtescu. OAuth 2.0 token revocation, August 2013.

RFC 7009.

[173] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek

Saxena. A Secure Sharding Protocol For Open Blockchains. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, pages

17–30, New York, NY, USA, 2016. ACM.

[174] Aanchal Malhotra, Isaac E. Cohen, Erik Brakke, and Sharon Goldberg. Attacking the

Network Time Protocol. In 23rd Annual Network and Distributed System Security Sym-

posium, NDSS 2016, San Diego, California, USA, February 21-24, 2016, 2016.

[175] Petros Maniatis and Mary Baker. Secure history preservation through timeline entangle-

ment. In Proceedings of the 11th USENIX Security Symposium, San Francisco, CA, USA,

August 5-9, 2002, pages 297–312, 2002.

[176] David Mazières. The Stellar Consensus Protocol: A Federated Model for Internet-level

Consensus. February 2016.

[177] David Mazières and Dennis Shasha. Building secure file systems out of Byzantine

storage. In Proceedings of the twenty-first annual symposium on Principles of distributed

computing, pages 108–117. ACM, 2002.

[178] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and Michael J

Freedman. CONIKS: Bringing Key Transparency to End Users. In Proceedings of the 24th

USENIX Conference on Security Symposium, pages 383–398. USENIX Association, 2015.

[179] Ralph Charles Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis,

Stanford University, June 1979.

[180] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable random functions. In Pro-

ceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS ’99,

pages 120–130. IEEE Computer Society, 1999.

210

https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf
https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf
http://doi.acm.org/10.1145/2976749.2978389
https://eprint.iacr.org/2015/1020.pdf
https://eprint.iacr.org/2015/1020.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://dl.acm.org/citation.cfm?id=571840
https://dl.acm.org/citation.cfm?id=571840
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
http://www.merkle.com/papers/Thesis1979.pdf

Bibliography

[181] Nikolaos Michalakis, Robert Soulé, and Robert Grimm. Ensuring content integrity for

untrusted peer-to-peer content distribution networks. In Proceedings of the 4th USENIX

conference on Networked systems design & implementation, pages 11–11. USENIX Asso-

ciation, 2007.

[182] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous

distributed E-Cash from Bitcoin. In 34th IEEE Symposium on Security and Privacy (S&P),

May 2013.

[183] Andrew Miller and Iddo Bentov. Zero-collateral lotteries in Bitcoin and Ethereum. In

Security and Privacy Workshops (EuroS&PW), 2017 IEEE European Symposium on, pages

4–13. IEEE, 2017.

[184] Andrew Miller and Rob Jansen. Shadow-Bitcoin: scalable simulation via direct execution

of multi-threaded applications. In 8th Workshop on Cyber Security Experimentation and

Test (CSET 15), 2015.

[185] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The Honey Badger of

BFT Protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’16, pages 31–42, New York, NY, USA, 2016. ACM.

[186] Michael Mimoso. D-Link Accidentally Leaks Private Code-Signing Keys. ThreatPost,

September 2015.

[187] Mininet – An Instant Virtual Network on your Laptop (or other PC), February 2018.

[188] Paul V. Mockapetris and Kevin J. Dunlap. Development of the domain name system. In

SIGCOMM ’88, Proceedings of the ACM Symposium on Communications Architectures

and Protocols, Stanford, CA, USA, August 16-18, 1988, pages 123–133, 1988.

[189] Rafael Moreno-Vozmediano, Ruben S. Montero, and Ignacio M. Llorente. Elastic man-

agement of cluster-based services in the cloud. In Proceedings of the 1st Workshop on

Automated Control for Datacenters and Clouds, ACDC ’09, pages 19–24, New York, NY,

USA, 2009. ACM.

[190] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic Skip Lists. In

Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

’92, pages 367–375, Philadelphia, PA, USA, 1992. Society for Industrial and Applied

Mathematics.

[191] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[192] National Institute of Standards and Technology. Security of Interactive and automated

Access Management Using Secure Shell (SSH), chapter 5.1.2. 2015.

[193] National Institute of Standards and Technology. NIST Randomness Beacon, 2017.

211

https://ieeexplore.ieee.org/abstract/document/6547123/
https://ieeexplore.ieee.org/document/7966964
https://www.usenix.org/conference/cset15/workshop-program/presentation/miller
https://www.usenix.org/conference/cset15/workshop-program/presentation/miller
https://eprint.iacr.org/2016/199.pdf
https://eprint.iacr.org/2016/199.pdf
https://threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/114727/
http://mininet.org/
http://www.dtic.mil/dtic/tr/fulltext/u2/a203901.pdf
http://www.ic.unicamp.br/~celio/peer2peer/skip-net-graph/deterministic-skip-lists-munro.pdf
https://bitcoin.org/bitcoin.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7966.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7966.pdf
http://www.nist.gov/itl/csd/ct/nist_beacon.cfm

Bibliography

[194] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn Mining: Gener-

alizing Selfish Mining and Combining with an Eclipse Attack. In 1st IEEE European

Symposium on Security and Privacy, March 2015.

[195] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser,

Ismail Khoffi, Justin Cappos, and Bryan Ford. CHAINIAC: Proactive Software-Update

Transparency via Collectively Signed Skipchains and Verified Builds. In 26th USENIX

Security Symposium (USENIX Security 17), pages 1271–1287. USENIX Association, 2017.

[196] Olumuyiwa Oluwasanmi and Jared Saia. Scalable Byzantine Agreement with a Random

Beacon. In Andréa W. Richa and Christian Scheideler, editors, Stabilization, Safety, and

Security of Distributed Systems, volume 7596 of Lecture Notes in Computer Science, pages

253–265. Springer Berlin Heidelberg, 2012.

[197] Henning Pagnia and Felix C Gärtner. On the impossibility of fair exchange without a

trusted third party. Technical report, Technical Report TUD-BS-1999-02, Darmstadt

University of Technology, Department of Computer Science, Darmstadt, Germany, 1999.

[198] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless

model. In 31st International Symposium on Distributed Computing (DISC 2017). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[199] Rafael Pass, Cornell Tech, and Lior Seeman. Analysis of the Blockchain Protocol in Asyn-

chronous Networks. Annual International Conference on the Theory and Applications of

Cryptographic Techniques (EUROCRYPT), 2017.

[200] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the pres-

ence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[201] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings, pages

129–140, 1991.

[202] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended ab-

stract). In Advances in Cryptology - EUROCRYPT ’91, Workshop on the Theory and

Application of of Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceedings,

pages 522–526, 1991.

[203] Marc Pilkington. Blockchain technology: principles and applications. Browser Down-

load This Paper, 2015.

[204] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter Wuille.

Confidential assets. In International Conference on Financial Cryptography and Data

Security, pages 43–63. Springer, 2018.

212

http://eprint.iacr.org/2015/796.pdf
http://eprint.iacr.org/2015/796.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://pdfs.semanticscholar.org/208b/22c7a094ada20736593afcc8c759c7d1b79c.pdf
https://pdfs.semanticscholar.org/208b/22c7a094ada20736593afcc8c759c7d1b79c.pdf
https://eprint.iacr.org/2016/454.pdf
https://eprint.iacr.org/2016/454.pdf
http://dl.acm.org/citation.cfm?id=322188
http://dl.acm.org/citation.cfm?id=322188
https://books.google.ch/books?hl=en&lr=&id=1_QCDQAAQBAJ&oi=fnd&pg=PA225&dq=Blockchain+technology:+princi-+ples+and+applications.&ots=s-4_LBIHKU&sig=0zu7XIW6It8dINuRnFakNr1C_2Q&redir_esc=y#v=onepage&q=Blockchain%20technology%3A%20princi-%20ples%20and%20applications.&f=false

Bibliography

[205] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable Off-Chain

Instant Payments, January 2016.

[206] Serguei Popov. On a decentralized trustless pseudo-random number generation algo-

rithm. J. Mathematical Cryptology, 11(1):37–43, 2017.

[207] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Communications

of the ACM, 33(6):668–676, June 1990.

[208] Python Community. PyPI - the Python Package Index, September 2016.

[209] Python Community. EasyInstall Module, May 2016.

[210] Michael O. Rabin. Transaction Protection by Beacons. Journal of Computer and System

Sciences, 27(2):256–267, 1983.

[211] Jean Louis Raisaro, Juan Troncoso-Pastoriza, Mickaël Misbach, João Sá Sousa, Sylvain

Pradervand, Edoardo Missiaglia, Olivier Michielin, Bryan Ford, and Jean-Pierre Hubaux.

MedCo: Enabling secure and privacy-preserving exploration of distributed clinical and

genomic data. IEEE/ACM transactions on computational biology and bioinformatics,

2018.

[212] randao.org. Randao: Verifiable Random Number Generation, 2017.

[213] Michael K Reiter and Kenneth P Birman. How to securely replicate services. ACM

Transactions on Programming Languages and Systems (TOPLAS), 16(3):986–1009, 1994.

[214] R.L. Rivest and B. Lampson. SDSI: A Simple Distributed Security Infrastructure, April

1996. http://theory.lcs.mit.edu/~cis/sdsi.html.

[215] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release

crypto. 1996.

[216] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing

for large-scale peer-to-peer systems. In International Conference on Distributed Systems

Platforms (Middleware), 2001.

[217] Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine. Survivable Key

Compromise in Software Update Systems. In 17th ACM Conference on Computer and

Communications security (CCS), October 2010.

[218] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran

Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin.

In Security and Privacy (SP), 2014 IEEE Symposium on, pages 459–474. IEEE, 2014.

[219] Satoshi.info. Unspent Transaction Output Set, February 2017.

[220] Fred B. Schneider. Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. Computing Surveys, 22(4):299–319, December 1990.

213

https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://eprint.iacr.org/2016/228
http://eprint.iacr.org/2016/228
http://courses.cs.vt.edu/cs2604/fall05/wmcquain/Notes/Supplemental/PughSkiplistPaper.pdf
https://pypi.python.org/pypi
https://wiki.python.org/moin/EasyInstall
https://randao.org/
http://theory.lcs.mit.edu/~cis/sdsi.html
http://theory.lcs.mit.edu/~cis/sdsi.html
https://dl.acm.org/citation.cfm?id=888615
https://dl.acm.org/citation.cfm?id=888615
http://justinsamuel.com/papers/survivable-key-compromise-ccs2010.pdf
http://justinsamuel.com/papers/survivable-key-compromise-ccs2010.pdf
https://ieeexplore.ieee.org/abstract/document/6956581/
https://statoshi.info/dashboard/db/unspent-transaction-output-set

Bibliography

[221] Claus P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,

4(3):161–174, 1991.

[222] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its applica-

tion to electronic voting. In IACR International Cryptology Conference (CRYPTO), pages

784–784, 1999.

[223] Adam Schwartz and Cindy Cohn. “Information Fiduciaries” Must Protect Your Data

Privacy, October 2018.

[224] David Schwartz, Noah Youngs, and Arthur Britto. The Ripple protocol consensus algo-

rithm. Ripple Labs Inc White Paper, page 5, 2014.

[225] SECBIT. How the winner got Fomo3D prize — A Detailed Explanation, August 2018.

[226] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy. Towards

Blockchain-based Auditable Storage and Sharing of IoT Data. In Proceedings of the 2017

on Cloud Computing Security Workshop, pages 45–50. ACM, 2017.

[227] Adi Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613, 1979.

[228] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[229] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen

ciphertext attack. Advances in Cryptology—EUROCRYPT’98, pages 1–16, 1998.

[230] Dan Shumow and Niels Ferguson. On the Possibility of a Back Door in the NIST SP800-

90 Dual EC PRNG. CRYPTO 2007 Rump Session, 2007. http://rump2007.cr.yp.to/

15-shumow.pdf.

[231] Emil Sit and Robert Morris. Security considerations for peer-to-peer distributed hash

tables. In 1st International Workshop on Peer-to-Peer Systems (IPTPS), March 2002.

[232] Matthew Skala. Hypergeometric Tail Inequalities: Ending the Insanity. CoRR,

abs/1311.5939, 2013.

[233] Yonatan Sompolinsky and Aviv Zohar. Accelerating Bitcoin’s Transaction Processing.

Fast Money Grows on Trees, Not Chains, December 2013.

[234] Markus Stadler. Publicly Verifiable Secret Sharing. In 15th International Conference on

the Theory and Applications of Cryptographic Techniques (EUROCRYPT), pages 190–199,

Berlin, Heidelberg, 1996. Springer.

[235] Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr signatures

and a (t ,n) threshold scheme for implicit certificates. In Vijay Varadharajan and Yi Mu,

editors, Australasian Conference on Information Security and Privacy (ACISP), pages

417–434, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

214

https://www.researchgate.net/profile/Claus_Schnorr/publication/227088517_Efficient_signature_generation_by_smart_cards/links/0046353849579ce09c000000.pdf
https://link.springer.com/chapter/10.1007/3-540-48405-1_10
https://link.springer.com/chapter/10.1007/3-540-48405-1_10
https://www.eff.org/deeplinks/2018/10/information-fiduciaries-must-protect-your-data-privacy?fbclid=IwAR2Hd6n4o0hhG0GspGeTRtKx5ghHu0nz6EPBBsjJVLHFmvHS844pKn1C0_o
https://www.eff.org/deeplinks/2018/10/information-fiduciaries-must-protect-your-data-privacy?fbclid=IwAR2Hd6n4o0hhG0GspGeTRtKx5ghHu0nz6EPBBsjJVLHFmvHS844pKn1C0_o
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://dl.acm.org/citation.cfm?id=3140656
https://dl.acm.org/citation.cfm?id=3140656
https://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.pdf
https://epubs.siam.org/doi/10.1137/S0036144598347011
https://epubs.siam.org/doi/10.1137/S0036144598347011
https://link.springer.com/chapter/10.1007/BFb0054113
https://link.springer.com/chapter/10.1007/BFb0054113
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
https://arxiv.org/abs/1311.5939
http://eprint.iacr.org/2013/881
http://eprint.iacr.org/2013/881

Bibliography

[236] Ion Stoica, Robert Tappan Morris, David R. Karger, M. Frans Kaashoek, and Hari Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In

SIGCOMM, pages 149–160, 2001.

[237] Hemang Subramanian. Decentralized blockchain-based electronic marketplaces. Com-

munications of the ACM, 61(1):78–84, 2017.

[238] Apple Support. Frequently asked questions about iCloud Keychain, May 2016.

[239] Melanie Swan. Blockchain: Blueprint for a new economy. O’Reilly Media, Inc., 2015.

[240] Tim Swanson. Consensus-as-a-service: a brief report on the emergence of permissioned,

distributed ledger systems. April 2015.

[241] Martin Holst Swende. Blockchain Frontrunning , October 2017.

[242] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser,

Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable Bias-Resistant Distributed

Randomness. In 38th IEEE Symposium on Security and Privacy, May 2017.

[243] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic, Linus

Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping Authorities “Honest or

Bust” with Decentralized Witness Cosigning. In 37th IEEE Symposium on Security and

Privacy, May 2016.

[244] Simon Thomsen. Ashley Madison data breach. July 2015.

[245] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela:

Scalable Private Messaging Resistant to Traffic Analysis. In Proceedings of the 25th

Symposium on Operating Systems Principles, SOSP ’15, pages 137–152, New York, NY,

USA, 2015. ACM.

[246] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replica-

tion. In International Workshop on Open Problems in Network Security, pages 112–125.

Springer, 2015.

[247] Bitcoin Wiki. Proof of burn, September 2017.

[248] Wikipedia. Atomic commit, February 2017.

[249] David Isaac Wolinsky, Henry Corrigan-Gibbs, Aaron Johnson, and Bryan Ford. Dissent

in numbers: Making strong anonymity scale. In 10th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), October 2012.

[250] Gavin Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger.

Ethereum Project Yellow Paper, 2014.

[251] David Yermack. Corporate governance and blockchains. Review of Finance, 21(1):7–31,

2017.

215

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.7635
https://dl.acm.org/citation.cfm?id=3158333
https://support.apple.com/en-us/HT204085
https://books.google.ch/books?hl=en&lr=&id=RHJmBgAAQBAJ&oi=fnd&pg=PR3&dq=Blueprint+for+a+new+economy&ots=XQsFJ-0Ne2&sig=FKoBJ8r9BVE3Jg9ZBidyxmXLHIU&redir_esc=y#v=onepage&q=Blueprint%20for%20a%20new%20economy&f=false
https://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
https://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://swende.se/blog/Frontrunning.html
http://eprint.iacr.org/2016/1067
http://eprint.iacr.org/2016/1067
http://dedis.cs.yale.edu/dissent/papers/witness-abs
http://dedis.cs.yale.edu/dissent/papers/witness-abs
http://uk.businessinsider.com/cheating-affair-website-ashley-madison-hacked-user-data-leaked-2015-7?r=US&IR=T
http://vukolic.com/iNetSec_2015.pdf
http://vukolic.com/iNetSec_2015.pdf
https://en.bitcoin.it/wiki/Proof_of_burn
https://en.wikipedia.org/wiki/Atomic_commit
https://github.com/ethereum/wiki/wiki/White-Paper
https://academic.oup.com/rof/article/21/1/7/2888422

Bibliography

[252] T. Ylonen and C. Lonvick, Ed. The secure shell protocol architecture, January 2006. RFC

4251.

[253] Ernst & Young. Blockchain in health, May 2018.

[254] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng Xiao. SybilLimit: A Near-

Optimal Social Network Defense against Sybil Attacks. In 29th IEEE Symposium on

Security and Privacy (S&P), May 2008.

[255] YUM. Yellowdog Updater Modified, May 2016.

[256] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to protect

personal data. In Security and Privacy Workshops (SPW), 2015 IEEE, pages 180–184.

IEEE, 2015.

[257] Guy Zyskind, Oz Nathan, and Alex Pentland. Enigma: Decentralized computation

platform with guaranteed privacy. arXiv preprint arXiv:1506.03471, 2015.

216

https://www.hyperledger.org/wp-content/uploads/2016/10/ey-blockchain-in-health.pdf
https://www.iscs.nus.edu.sg/~yuhf/sybillimit-tr.pdf
https://www.iscs.nus.edu.sg/~yuhf/sybillimit-tr.pdf
http://yum.baseurl.org/
https://ieeexplore.ieee.org/abstract/document/7163223/
https://ieeexplore.ieee.org/abstract/document/7163223/
https://arxiv.org/pdf/1506.03471.pdf
https://arxiv.org/pdf/1506.03471.pdf

Index,

adaptive adversary, 102

agreement, 7

append-only, 3

asset-management, 165, 167

asynchronous network, 52

Atomix, 109

availability, 51

barrier point, 52

beacon, 49

bias-resistant, 5, 48

Bitcoin, 3, 4, 7, 11–13, 25, 78, 102

block size, 13

blockchain, 3, 11, 23, 101

blockchain technology, 3, 189

Byzantine adversary, 49

censorship-resistance, 119

Channel, 165, 166

ciphertext, 4

Collective Signing, 9, 24, 49, 78

confidential, 4, 165, 167, 178

confidential data sharing, 5, 179

consensus, 4, 10, 12, 23

CoSi, 9, 28

cross-shard, 102, 109, 165, 173

cryptocurrency, 3, 23, 77

cryptographic hash, 9

cryptographic hash-chain, 3, 78, 85

data privacy, 4

data-sharing, 129

decentralization, 23, 104

decentralized system, 3, 23, 77, 129

distributed key-generation, 15, 51

distributed ledger, 23, 99, 101

distributed randomness, 5, 50, 106

double-spending, 13, 23, 40

doubly-linked, 5

forward links, 5, 78, 86

full node, 78

hash power, 12, 24, 27

heterogeneous sharding, 194

honest-but-curious, 51

horizontal scalability, 6, 7, 173

Hyperledger Fabric, 182

indirection principle, 80

keyblock, 13

latency, 14, 23, 25, 39, 70

Light Client, 166

locality preserving, 195

long-term relationships, 77

microblock, 13

miners, 11, 12, 23, 25

multi-signatures, 4, 9, 78

offline-verifiable, 78

Oracles, 166

ordering service, 165

peer-to-peer, 23

permissioned blockchains, 165

permissionless blockchain, 11, 99

Proof-of-Burn, 102, 189

Proof-of-Personhood, 46, 102, 189

217

Index

Proof-of-Stake, 102, 189

Proof-of-Work, 5, 12, 25, 46, 102, 166, 189

public-verifiability, 47

Publicly Verifiable Secret Sharing, 18, 138

RandHound, 53

randomness, 7, 47, 50, 115

scalability, 4, 23

Scale-out, 104

scale-out, 172

scaling, 172

Schnorr signature, 10

secret sharing, 14

sharding, 5, 107, 165

SIAM, 150

skipchains, 79, 84

smart contract, 194

Software updates, 81, 92

state-machine replication, 3, 10, 187

strongly-consistent, 5

super-majority, 11

Sybil, 102, 189

synchronous, 4, 12, 51

third-party verifiable, 50

threshold cryptography, 4, 131

threshold encryption, 16, 142

threshold secret sharing, 7, 51

threshold signing, 14

throughput, 14, 39, 121

transaction fees, 27

transactions per second, 13

unbiasability, 5, 47, 51

unpredictability, 5, 51

user-identities, 79

verifiable secret sharing, 5, 14, 52

view change, 33, 118

weakly synchronous, 10, 25

218

Lefteris Kokoris-Kogias

Researcher (PhD) on decentralized
systems and applied cryptography

RESEARCH INTERESTS

Decentralized systems and algorithms (focus on blockchain technology); Privacy-preserving technologies (focus
on anonymous communications and confidential data-sharing); Electronic voting; Secure, reliable, and
authenticated information dissemination.

EXPERIENCE

2015-2019 Research Scientist (Decentralized and Distributed Systems Lab – EPFL).

¡ Scalable Byzantine fault tolerance with focus on Blockchain technologies.
¡ Scalable, bias-resistant randomness creation.
¡ Distributed, secure, privacy hardened data management.
¡ Secure decentralized software updates.
¡ Teaching assistant and Bachelor/ Master/ Junior PhD projects supervision.

01-04/2018 Member of Research Team
 (Blockchain and Industrial Platforms Lab – IBM Research Zurich).

¡ Research on novel capabilities for Hyperledger Fabric.
¡ Resulted in publication and partial integration in Hyperledger Fabric.

2014-2015 Research Scientist (Distributed Knowledge and Media Systems Group – NTUA).

¡ Designed a scalable Trust & Reputation algorithm for the Internet of Things.
¡ Resulted in publication and included in COSMOS (EU FP7) final deliverables.

EDUCATION

2015-2019 PhD in Computer Science.
 EPFL.
 Advisor: Prof. Bryan Ford.

2010-2015 5-Year Diploma in Electrical and Computer Engineering.
 School of Electrical and Computer Engineering National Technical University of Athens.
 Grade: 9.18/10 – excellent (top 3%).
 Major: Computer Systems & Software & Networks – Grade: 9.8/10 (2nd out of 105).
 Minor: Bioengineering.

Chemin du Croset 1c, Lausanne, Switzerland
Phone: 0041 78 630 45 57
E-mail:eleftherios.kokoriskogias@epfl.ch
Links: [scholar], [epfl], [LinkedIn]

219

PUBLICATIONS

1. Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing, Eleftherios
Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, Bryan Ford, In 25th USE-
NIX Security Symposium, 2016 (accepted 72/467).

2. Scalable Bias-Resistant Distributed Randomness, Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Ko-
gias, Nicolas Gailly, Ismail Khoffi, Linus Gasser, Michael J. Fischer, Bryan Ford, 38th IEEE Symposium on
Security and Privacy, 2017 (accepted 60/463).

3. CHAINIAC: Proactive Software-Update Transparency via Collectively Signed Skipchains and Verified
Builds, Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, Justin Cappos, Bryan Ford, In 26th USENIX Security Symposium, 2017 (accepted 85/522).

4. OmniLedger: A Secure, Scale-Out, Decentralized Ledger, Eleftherios Kokoris-Kogias, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Bryan Ford, 39th IEEE Symposium on Security and Privacy, 2018 (accepted
63/549).

5. Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains: Elli Androulaki, Cristian
Cachin, Angelo De Caro, Eleftherios Kokoris-Kogias*. European Symposium on Research in Computer
Security. Springer, September, 2018.

6. Rethinking General-Purpose Decentralized Computing, Enis Ceyhun Alp*, Eleftherios Kokoris-Ko-
gias*, Georgia Fragkouli, Bryan Ford, 17th Workshop on Hot Topics in Operating Systems (Ho-
tOS), 2019 (accepted 30/125)

7. Proof-of-Personhood: Redemocratizing permissionless cryptocurrencies, Maria Borge, Eleftherios Ko-
koris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser, Bryan Ford, 1st IEEE Security and Privacy
On The Blockchain, 2017.	

8. Managing Identities Using Blockchains and CoSi, Eleftherios Kokoris-Kogias, Linus Gasser, Ismail
Khoffi, Philipp Jovanovic, Nicolas Gailly, Bryan Ford, 9th Hot Topics in Privacy Enhancing Technologies
(HotPETs), 2016 (accepted 9/29)

9. TRM-SIoT: A Scalable Hybrid Trust & Reputation Model for the Social Internet of Things,
Eleftherios Kokoris-Kogias, Orfefs Voutyras,Theodora Varvarigou, 21st International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), September 2016

10. Cryptographically Verifiable Data Structure Having Multi-Hop Forward and Backwards Links
and Associated Systems and Methods. Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser and Bryan Ford. US-Patent Application. May 2017

11. Hidden in Plain Sight: Storing and Managing Secrets on a Public Ledger. Eleftherios Kokoris-
Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas Gailly, Philipp Jovanovic, Linus Gasser,
Bryan Ford. Under Submission. February 2018

12. Methods and Systems for Secure Data Exchange: Eleftherios Kokoris-Kogias, Philipp
Jovanovic, Linus Gasser, Bryan Ford. PCT-Patent Application, February 2018

AWARDS

¡ IBM PhD Fellowship 2017-2018, 2018-2020.
¡ EPFL Appreciation for Exceptional Performance 2017, 2018
¡ Winner of SICPA workshop “Granting a product proof of origin in a complex value chain” 2017.
¡ EPFL IC School Fellowship for the Doctoral Program 2015-2016.
¡ Thomaidion Award for Academic Excellence NTUA 2014-2015.
¡ Kary Award nomination for excellent academic performance, 2013-2014, 2014-2015.
¡ 2nd in Greece, IEEE Xtreme 7.0 24h Programming Competition 2013.

220

INVITED TALKS

Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing.
 USENIX Security Conference – August 2016, Scaling Bitcoin Workshop – October 2016
 Geneva Bitcoin Meetup – January 2017, Master Workshop 2.0. – November 2018
Scalable Bias-Resistant Distributed Randomness.
 IBM Research Zurich – November 2017
OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding.
 IEEE Symposium on Security and Privacy – May 2018, Scaling Bitcoin Workshop – October 2018
Scalable and Efficient Distributed Ledger.
 CESC – October 2017, Blockchain Unchained – September 2018, ETH Zurich – October 2018,
 IBM Research – March 2019
Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains.
 ESORICS – September 2018
Hidden in Plain Sight: Storing and Managing Secrets on a Public Ledger.
 Bitcoin Wednesday – November 2018

SERVICE TO COMMUNITY

Lead organizer of Swiss Blockchain Summer School 2017, 2019 (EPFL).
Reviewer: TIFS ’18, EURASIP JIoS ’18, CACM ’19, CBT ’19, SSS ’19, PETS ’19 (external)
Sub-reviewer: CCS ’17, DSN ’18, FC ’19, NSDI ’19

I am also committed to igniting the interest of students for decentralized systems. To this goal, I participated in
designing from scratch and lecturing two courses (Information security and privacy, Decentralized systems
engineering) at EPFL. Finally, during my PhD studies, I have been lucky to mentor 5 PhD semester projects, 3
MSc thesis, 7 MSc semester projects, 5 Summer interns and 1 BSc project.

LANGUAGES

Greek: Native English: C2 German: B2 French: B1

REFERENCES

Upon request.

221

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

	Acknowledgments
	Abstract (English/Français)
	List of figures
	List of tables
	I Introduction and Background
	Introduction
	Motivation
	The Scalability Challenge
	The Data Privacy Challenge

	Contributions and Publications
	Organization and Structure

	Background
	Committee-based Agreement Protocols
	Scalable Agreement via Collective Signing
	Practical Byzantine Fault Tolerance

	Blockchain Systems
	Bitcoin
	Bitcoin-NG

	Threshold Cryptosystems
	Secret Sharing
	Verifiable Secret Sharing
	Threshold Signing
	Distributed Key Generation
	Threshold ElGamal Encryption
	Publicly Verifiable Secret Sharing

	II Tools for Efficient Decentralization
	Scalable, Strongly-Consistent Consensus for Bitcoin
	Introduction
	ByzCoin Design
	System Model
	Strawman Design: PBFTCoin
	Opening the Consensus Group
	Replacing MACs by Digital Signatures
	Scalable Collective Signing
	Decoupling Transaction Verification from Leader Election
	Tolerating Churn and Byzantine Faults

	Performance Evaluation
	Prototype Implementation
	Evaluation
	Consensus Latency
	Transaction Throughput

	Security Analysis
	Transaction Safety
	Proof-of-Membership Security
	Defense Against Bitcoin Attacks

	Limitations and Future Work
	Conclusion

	Scalable Bias-Resistant Distributed Randomness
	Introduction
	How (not) to Generate Randomness
	Insecure Approaches to Public Randomness
	RandShare: Small-Scale Unbiasable Randomness Protocol

	RandHound: Scalable, Verifiable Randomness Scavenging
	Protocol Overview
	Description
	Security Properties
	Extensions

	RandHerd: A Scalable Randomness Cothority
	Overview
	Description
	Security Properties
	Addressing Leader Availability Issues
	Extensions

	Evaluation
	Implementation
	Performance Measurements
	Availability Failure Analysis

	Conclusions

	Decentralized Tracking and Long-Term Relationships using Skipper
	Introduction
	Motivation
	The Relationship Problem
	Motivating Examples

	Overview
	Security Goals and Threat Model
	Architectural Model and Roles
	Timelines and Tracking

	Design of Skipper
	Centrally Managed Tamper-Evident Logs
	Anti-Equivocation via Collective Witnessing
	Evolution of Authoritative Keys
	Skipchains
	Useful Properties and Applications
	Security Considerations for Skipchains

	 Multi-level Relationships
	Multi-level Service Timelines
	Multi-Layer Trust Delegation in Skipper

	Prototype Implementation
	Skipper Implementation
	Software Updates with Skipper
	SSH-based Distributed User Identities

	Experimental Evaluation
	Experimental Methodology
	Skipchain Effect on PyPI Communication Cost
	SSH-based User Identities

	Conclusion

	III Private and Horizontally Scalable Distributed Ledgers
	OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding
	Introduction
	Preliminaries
	Transaction Processing and the UTXO model
	Prior Sharded Ledgers: Elastico
	Sybil-Resistant Identities

	System Overview
	System Model
	Network Model
	Threat Model
	System Goals
	Design Roadmap

	OmniLedger: Security Design
	Sharding via Bias-Resistant Distributed Randomness
	Maintaining Operability During Epoch Transitions
	Cross-Shard Transactions

	Design Refinements for Performance
	Fault Tolerance under Byzantine Faults
	Parallelizing Block Commitments
	Shard Ledger Pruning
	Optional Trust-but-Verify Validation

	Security Analysis
	Randomness Creation
	Shard-Size Security
	Epoch Security
	Group Communication
	Censorship Resistance Protocol

	Implementation
	Evaluation
	Experimental Setup
	OmniLedger Performance
	Epoch-Transition Costs
	Client-Perceived End-to-End Latency with Atomix
	ByzCoinX Performance
	Bandwidth Costs for State Block Bootstrapping

	Limitation and Future Work
	Atomix for State-full Objects

	Conclusion

	Calypso: Verifiable Management of Private Data over Blockchains
	Introduction
	Motivating Applications
	Auditable Data Sharing.
	Data Life-Cycle Management.
	Atomic Data Publication.

	Calypso Overview
	Strawman Data Management Solution
	System Goals
	System Model
	Threat Model
	Architecture Overview

	On-Chain Secrets
	One-Time Secrets
	Long-Term Secrets
	On-chain Blinded Key Exchange
	Post-Quantum On-chain Secrets

	Skipchain Identity and Access Management
	Architecture
	Integration Into Calypso
	Achieving SIAM Goals

	Further Security Consideration
	Experience Using Calypso
	Auditable Online Invoice Issuing
	Clearance-enforcing Document Sharing
	Patient-centric Medical Data Sharing
	Decentralized Lottery

	Implementation
	Access Requests and Verification
	JSON Access-Control Language

	Evaluation
	Mirco-benchmarks
	Clearance-Enforcing Document Sharing
	Decentralized Lottery

	Conclusion

	Horizontal Scaling and Confidentiality on Permissioned Blockchains
	Introduction
	Preliminaries
	Channels
	Threat Model
	System Goals

	Asset Management in a Single Channel
	Assets in Transactions
	UTXO Pool
	Asset or Output Definition
	UTXO operations
	Protocol

	Atomic Cross-Channel Transactions
	Asset Transfer across Channels
	Cross-Channel Trade with a Trusted Channel
	Cross-Channel Trade without a Trusted Channel

	Using Channels for Confidentiality
	Deploying Group Key Agreement
	Enabling Cross-Shard Transactions among Confidential Channels

	Case Study: Cross-Shard Transactions on Hyperledger Fabric
	Conclusion

	IV Related Work and Concluding Remarks
	Related Work
	Scaling Blockchains
	Comparison of OmniLedger with Prior Work
	Consensus Group Membership and Stake
	Randomness Generation and Beacons
	Confidential Blockchains
	Decentralized Identity & Certificate Management

	Conclusion and Future Work
	Summary and Implications
	Future Work
	Sharding for Smart Contracts
	Heterogeneous Sharding
	Locality Preserving Sharding
	Alternatives to Proof-of-Work

	Bibliography
	Curriculum Vitae

