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Today’s cloud computing systems pervasively rely on redundancy techniques to

enhance reliability and availability. In complex multi-layered hardware/software

stacks, however, seemingly independent components used redundantly might share

deep, hidden dependencies. These common dependencies may potentially result in

unexpected correlated failures, thus undermining redundancy efforts.

Heading off correlated failures is extremely challenging in cloud-scale systems for

the following three reasons. First, infrastructure components and their dependencies

underlying cloud-scale redundant systems are typically very complex. Second, it is

non-trivial to efficiently and accurately determine the common dependencies poten-

tially resulting in correlated failures within cloud-scale system environment. Third,

application-level cloud services (e.g., iCloud) renting multiple cloud providers for re-

dundancy cannot identify dependencies shared by these rented cloud providers, since

no cloud provider is willing to disclose such sensitive information.

This thesis proposes Independence-as-a-Service (or INDaaS), a practical and flex-

ible architecture to audit the independence of redundant systems proactively, thus

avoiding potential correlated failures fundamentally. INDaaS first utilizes pluggable

dependency acquisition modules to automatically collect the structural dependency

information (including network, hardware, and software level dependencies) from a

variety of sources underlying the audited cloud services. With this information in

hand, INDaaS then evaluates the independence of redundant systems of interest us-
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ing pluggable auditing modules, offering various performance, precision, and data

secrecy trade-offs. For redundant systems across multiple cloud providers unwilling

to share their full structural information with others, INDaaS can leverage privacy-

preserving set intersection cardinality protocols to quantify the independence of the

redundant systems without leaking any sensitive information of the cloud providers.

We evaluate the practicality of INDaaS with three case studies that audit realistic

network, hardware, and software dependency structures, and evaluate the effective-

ness and efficiency of INDaaS through large-scale datasets.



A Flexible Architecture for Structural

Reliability Auditing to the Clouds

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Ennan Zhai

Dissertation Director: Bryan A. Ford

December 2015



Copyright c© 2015 by Ennan Zhai

All rights reserved.

ii



To my parents and my wife



Acknowledgments

I owe a great amount of gratitude to my advisor, Bryan A. Ford, for his constant

guidance, intellectual insight and extraordinary patience, and for giving me the free-

dom to explore my own route. His impact on my research is beyond words.

I would like to express my sincere gratitude to my committee members, Joan

Feigenbaum, Wenjun Hu and Ruichuan Chen, for many insightful discussions on my

research. I also wish to thank other faculty members at Yale for their additional

guidances and stimulating discussions on specific research topics: Dana Angluin,

James Aspnes, Ruzica Piskac, and Zhong Shao.

This research work benefited a lot from the collaboration with David Isaac Wolin-

sky, and was improved by the valuable feedback of Gustavo Alonso, Jiewen Huang,

Hongqiang Liu, Jeff Mogul, Timothy Roscoe, Xueyuan Su, Hongda Xiao, and the

thirty one anonymous reviewers who pored over many drafts of this work.

I was fortunate to work alongside amazing colleagues of the DeDiS group at Yale,

including Henry Corrigan-Gibbs, Michael F. Nowlan, Liang Gu, Daniel Jackowitz,

John Maheswaran, Ewa Syta and Weiyi Wu. I enjoyed every minute with them.

Last but not least, I want to thank my parents for their unending encourage-

ment and unwavering support, and thank my wife, Lewie, for her love, support and

understanding.



Previous Publications

This thesis incorporates and extends work previously published in the following pa-

pers:

• Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. Heading

off correlated failures through Independence-as-a-Service. In Proceedings of the

11th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), Broomfield, CO, Oct 2014. [88]

• Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. An un-

told story of redundant clouds: Making your service deployment truly reliable.

In Proceedings of the 9th Workshop on Hot Topics in Dependable Systems (Hot-

Dep), Farmington, PA, Nov 2013. [87]

• Ennan Zhai, David Isaac Wolinsky, Hongda Xiao, Hongqiang Liu, Xueyuan

Su, and Bryan Ford. Auditing the structural reliability of the clouds. In Yale

University Technical Report TR-1479, Jul 2013. [89]



Contents

1 Introduction 1

2 Problem Statement and Challenges 7

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 INDaaS Architecture Overview 11

3.1 INDaaS Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 INDaaS Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Dependency Acquisition 15

4.1 Flexible Dependency Acquisition in INDaaS . . . . . . . . . . . . . . 15

4.2 Developed Network Dependency Acquisition . . . . . . . . . . . . . . 19

5 Structural Independence Auditing 22

5.1 Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Generating Dependency Graph . . . . . . . . . . . . . . . . . . . . . 26

5.3 Determining Risk Groups . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Minimal RG Algorithm . . . . . . . . . . . . . . . . . . . . . . 28

5.3.2 Failure Sampling Algorithm . . . . . . . . . . . . . . . . . . . 30

5.3.3 Failure Sampling Algorithm Analysis . . . . . . . . . . . . . . 30

vi



5.4 Ranking Risk Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Generating the Auditing Report . . . . . . . . . . . . . . . . . . . . . 39

6 Private Independence Auditing 41

6.1 Trust Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Technical Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Jaccard Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.2 MinHash Technique . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.3 Commutative Encryption . . . . . . . . . . . . . . . . . . . . . 44

6.2.4 Private Set Intersection Cardinality . . . . . . . . . . . . . . . 45

6.3 Generating Dependency Graph . . . . . . . . . . . . . . . . . . . . . 47

6.4 Auditing Independence Privately . . . . . . . . . . . . . . . . . . . . 48

6.5 Generating the Auditing Report . . . . . . . . . . . . . . . . . . . . . 48

7 Limitations and Practical Issues 51

7.1 Limitations and Potential Solutions . . . . . . . . . . . . . . . . . . . 51

7.1.1 Complex Dependency Acquisition . . . . . . . . . . . . . . . . 51

7.1.2 Dependencies Outside Control . . . . . . . . . . . . . . . . . . 52

7.2 Practical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.1 Do cloud providers have incentives to join? . . . . . . . . . . . 53

7.2.2 Will cloud providers behave honestly? . . . . . . . . . . . . . . 53

8 Implementation and Deployment 55

8.1 Structural Independence Auditing . . . . . . . . . . . . . . . . . . . . 55

8.2 Private Independence Auditing . . . . . . . . . . . . . . . . . . . . . 57

8.2.1 Comparison: Kissner and Song Protocol . . . . . . . . . . . . 59

vii



9 Evaluation 61

9.1 Practicality Evaluation: Case Studies . . . . . . . . . . . . . . . . . . 61

9.1.1 Common Network Dependency . . . . . . . . . . . . . . . . . 61

9.1.2 Common Hardware Dependency . . . . . . . . . . . . . . . . . 63

9.1.3 Common Software Dependency . . . . . . . . . . . . . . . . . 65

9.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.2.1 SIA: Efficiency v.s. Accuracy . . . . . . . . . . . . . . . . . . 66

9.2.2 PIA: System Overheads . . . . . . . . . . . . . . . . . . . . . 68

9.2.3 Comparison: SIA Versus PIA . . . . . . . . . . . . . . . . . . 70

10 Related Work 73

10.1 Auditing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.2 Diagnosis and Accountability Systems . . . . . . . . . . . . . . . . . 74

10.3 Private Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 74

11 Conclusion 76

viii



List of Figures

3.1 INDaaS architecture overview. . . . . . . . . . . . . . . . . . . . . . . 12

4.1 A sample distributed storage system. . . . . . . . . . . . . . . . . . . 17

4.2 A sample of the collected dependency data. . . . . . . . . . . . . . . . 18

5.1 Dependency graphs represented at three different levels of detail. . . . 23

8.1 Implementation and deployment of SIA. . . . . . . . . . . . . . . . . 56

8.2 Implementation and deployment of PIA. . . . . . . . . . . . . . . . . 58

9.1 Case study for common network dependency. . . . . . . . . . . . . . . 62

9.2 Case study for common hardware dependency. . . . . . . . . . . . . . 63

9.3 Case study for common software dependency. . . . . . . . . . . . . . 66

9.4 Comparison between two algorithms of SIA. . . . . . . . . . . . . . . 67

9.5 Bandwidth overhead evaluation of PIA . . . . . . . . . . . . . . . . . 69

9.6 Computational overhead evaluation of PIA . . . . . . . . . . . . . . . 70

9.7 Comparison between SIA and PIA. . . . . . . . . . . . . . . . . . . . 71

ix



List of Tables

4.1 Uniform format definition of various dependencies. . . . . . . . . . . . 16

9.1 A RG-ranking list for OpenStack case study. . . . . . . . . . . . . . . 64

9.2 Ranking lists for PIA case study. . . . . . . . . . . . . . . . . . . . . 65

9.3 Configurations of the generated topologies. . . . . . . . . . . . . . . . 68

x



Chapter 1

Introduction

A distributed system is one in which the failure of a computer you

didn’t even know existed can render your own computer unusable.

— Leslie Lamport

Today’s cloud services explicitly require high reliability. Typically, service providers

pervasively rely on redundancy techniques to achieve this requirement [21,23,26,42].

Amazon S3, for example, replicates each data object across multiple racks in an S3

region [1]. iCloud, as a representative application-level cloud service, rents infras-

tructures from multiple cloud providers – both Amazon EC2 and Microsoft Azure

– for redundancy [2]. Seemingly independent infrastructure components underlying

redundant systems, however, may share deep, hidden dependencies. Failures in these

shared dependencies may lead to unexpected correlated failures across the whole re-

dundant systems, thus undermining redundancy efforts [32, 41, 46,56,60,87,89].

In a typical cloud service’s redundant system, a risk group [47] (or RG) is defined

as a set of components whose simultaneous failures could make the redundant system

unavailable, thus causing the service outage. Suppose some service A replicates

critical state across independent servers B, C and D located in three separate racks.
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The intent of this three-way redundancy configuration is for all RGs to be of size

three, i.e., three servers must fail simultaneously to cause an outage. Unbeknownst

to the service provider, however, the three racks share an infrastructure component

such as an aggregation switch S. If the switch S fails for whatever reason, B, C

and D could become unavailable at the same time, causing the service A to fail.

We say such common dependency introduces an unexpected RG, defined as a smaller

than expected RG, whose failures could disable the whole service despite redundancy

efforts.

This example, while simplistic, nevertheless illustrates documented failures. In

an Amazon AWS event [4], a glitch on one Amazon Elastic Block Store (EBS) server

disabled the EBS service across Amazon’s US-East availability zones, due to a la-

tency bug in the data collection agent running on that server. The failure of the

EBS service caused correlated failures across multiple Elastic Compute Cloud (EC2)

instances utilizing that EBS for storage, and in turn disabled applications designed

for redundancy across these EC2 instances. The EBS server in this example was

a single common dependency, i.e., an unexpected RG, that undermined the EC2’s

redundancy efforts.

Discovering and eliminating unexpected common dependencies is extremely chal-

lenging in practice [33, 35]. Many diagnostic and forensic approaches attempt to

localize or tolerate such failures after they occur [19, 26, 29, 38–41, 44, 49, 55]. These

retroactive approaches, however, still require human intervention, leading to pro-

longed failure recovery time [81]. Google has estimated that “close to 37% of failures

are truly correlated” within its global storage system, but they lack the tools to

identify these failure correlations systematically [33].

Even worse, correlated failures can be hidden not just by inadequate tools or

analysts within one cloud provider, but also by non-transparent business contracts
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between cloud providers forming complex multi-level service stacks [32]. Application-

level cloud services such as iCloud often redundantly rely on multiple cloud providers,

e.g., Amazon EC2 and Microsoft Azure [2]. However, a storm in Dublin recently took

down a local power source and its backup generator, thus leading to both the Amazon

and Microsoft clouds in that region to be unavailable for many hours, potentially

undermining the reliability efforts of applications attempting to achieve redundancy

across those two cloud infrastructure providers [30]. Providers of higher-level cloud

services cannot readily know how independent the lower-level services they build on

redundantly really are, since the relevant common dependencies (e.g., power sources)

are often proprietary internal information, which cloud providers do not normally

share [32, 82, 87].

This thesis proposes Independence-as-a-Service or INDaaS, a practical and flex-

ible architecture that aims to tackle the above problems proactively. Rather than

localizing and tolerating failures after a service outage, INDaaS collects and au-

dits structural dependency information to evaluate the independence of redundant

systems before failures occur. Because INDaaS’s clients (e.g., cloud operators and

cloud application developers) may have different requirements on the accuracy, per-

formance, and secrecy of independence auditing, INDaaS is designed to support

these needs through multiple pluggable modules, thus exhibiting its flexibility. In

particular, INDaaS consists of a pluggable set of dependency acquisition modules

that are responsible for collecting various dependency data, and an auditing agent

that employs a similarly pluggable set of auditing modules to not only quantify the

independence of redundant systems but also determine common dependencies that

may introduce unexpected correlated failures.

In the dependency acquisition phase, we introduce a uniform representation for

different types of dependency data, enabling dependency acquisition modules to be
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tailored and reused for a particular cloud provider’s infrastructure. As an example,

our experimental prototype was able to collect dependency data from various sources

with respect to network topologies, hardware components, and software packages.

To represent this collected dependency data, INDaaS builds on the traditional

fault analysis techniques [66, 74], and further adapts these techniques to audit the

independence of redundant systems. Our fault graph representation supports three

levels of detail appropriate in different situations: component-sets, fault-sets, and

fault graphs. INDaaS can use component-sets to identify shared components even

if no failure likelihood information is available. With fault-sets, INDaaS can take

failure likelihood information into account. Fault graphs further enable INDaaS to

account for deep internal structures involving multiple levels of redundancy.

In its auditing phase, INDaaS offers multiple auditing modules to address trade-

offs among performance, precision, and data secrecy. Our most powerful and infor-

mative auditing methods assume that a single independent auditing agent is able

to obtain all the required structural dependency data in the clear. This assumption

may hold if the agent is a system run by and within a single cloud provider, or if

the agent is run by a trusted third party such as a cloud insurance company or a

non-profit underwriting agency.

To support independence auditing even across mutually distrustful cloud providers

who may be unwilling to share full dependency data with anyone, INDaaS offers

private independence auditing (or PIA). We have explored two approaches to PIA.

The first uses secure multi-party computation [85], which offers the best generality

in principle but performs adequately only on small dependency datasets [82]. We

therefore focus here on the second approach, based on private set intersection cardi-

nality [51,72]. This approach restricts INDaaS’s auditing to the component-set level

of detail, but we find it to be practical and scalable to large datasets.
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We have developed a prototype INDaaS auditing system, and evaluated its per-

formance with three small but realistic case studies. These case studies exercise

INDaaS’s two capabilities: 1) proactively quantifying the independence of given re-

dundancy configurations, and 2) identifying potential correlated failures. We find

that the prototype scales well. For example, the prototype can audit a cloud depen-

dency structure containing 27, 648 servers and 2, 880 switches/routers, and identify

about 90% of relevant dependencies, within 3 hours.

Our INDaaS prototype has many limitations, and would need to be refined and

customized to particular cloud environments before real-world deployment. Never-

theless, even as a proof-of-concept, we feel that INDaaS represents one step towards

building reliable cloud infrastructures whose redundancy structures can avoid various

types of unexpected common-mode failures [36], emergent risks due to overwhelm-

ing complexity [56], and proprietary information barriers that naturally arise in the

cloud ecosystem [32].

In summary, this thesis makes the following contributions:

1. the first practical and flexible architecture designed to audit the independence

of redundant cloud systems before or during deployment;

2. adaptation of fault graph analysis techniques to support multiple levels of detail

in explicit dependency structures;

3. an efficient fault graph analysis technique that scales to large datasets repre-

senting realistic cloud infrastructures;

4. an application of private set intersection cardinality techniques to enable effi-

cient private independence auditing;

5. a prototype implementation and evaluation of INDaaS’s practicality with small
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but realistic case studies and larger-scale simulations.

Roadmap. This thesis is organized as follows. The next chapter clarifies our target

problem and potential challenges. Then, we sketch INDaaS architecture and deploy-

ment in §3. Following the architecture, detailed designs of dependency acquisitions,

structural independence auditing, and privacy-preserving independence auditing are

given in §4, §5 and §6 respectively. After that, INDaaS’s limitations and practical

issues are discussed in §7. Next, we present the implementation of INDaaS and eval-

uate this prototype system in §8 and §9, respectively. Finally, §10 summarizes and

discusses related work, and §11 concludes this work and presents future work.
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Chapter 2

Problem Statement and Challenges

This chapter first clarifies our target problem (§2.1) and then lists associated technical

challenges (§2.2).

2.1 Problem Statement

Under the assumption of failure independence, cloud providers typically leverage

redundancy techniques to reduce the likelihood of failures, thus enhancing the relia-

bility of their services.

Risk group. For a given service or application’s redundant system, we define a risk

group [47], RG, of this redundant system as a collection of the underlying components

whose simultaneous failures would lead to the service outage.1 For example suppose

a cloud storage service employs three-way redundancy configuration upon its storage

components. Its purpose is for all RGs to be of size at least three. In other words,

at least three components must fail simultaneously to result in the service outage.

However, if these three higher-level components unexpectedly depend on some single

1Failure of some component means the component does not function due to software, network
or hardware problems.
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lower-level component, e.g., an aggregation switch, then this lower-level component

represents a RG of size one in that its failure would make the whole service become

unavailable. Heading off unexpected RGs, defined as smaller than expected RGs, is

our goal.

Unexpected RGs within the clouds. Cloud service outages in reality have re-

sulted from unexpected RGs due to common dependencies [64]. Well-known cloud

IaaS services, such as Amazon EC2 and Microsoft Azure, try to utilize redundancy

to ensure service reliability, e.g., by introducing backup servers and switches in their

data centers [16, 37, 57, 91]. However, additional redundancy may not mitigate the

likelihood of failure due to a failed RGs, derailing providers’ efforts to improve relia-

bility [42]. Amazon, for example, experienced a significant disruption in the Northern

Virginia EC2 data center due to correlated failures resulting from incorrect configu-

ration on a few aggregation switches [5]. While Amazon repaired the failure after it

occurred, the general problem, i.e., an unexpectedly failed RG, would likely recur in

the future.

Unexpected RGs across multiple cloud providers. As the cloud diversifies,

some cloud service providers no longer depend upon only a single cloud service and

have begun redundantly using other cloud providers for enhanced reliability [23]. For

example, as a well-known cloud storage and computing platform, iCloud [2] redun-

dantly builds its service upon infrastructure services from both Amazon EC2 and

Microsoft Azure. Zynga [15], developer of many Facebook games, uses both EC2 and

an internal “cloud” for redundancy. Despite the efforts, these providers may be un-

aware and unable to mitigate failures due to unexpected RGs shared by distinct cloud

providers. For instance, a recent ferocious lightning storm in Northern Virginia [8,9]

took out local primary and backup power supplies, resulting in unavailability of all
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the IaaS services in the region.

2.2 Technical Challenges

Several technical challenges appear in detailed analysis of our target problem. The

following list focuses on those we view as critical toward building a practical solution

on our problem.

Challenge 1: Acquiring dependencies. In order to discover and eliminate un-

expected RGs within a cloud service deployment, we must be able to acquire the

information about relevant components and their associated dependencies support-

ing this service. Because such infrastructures underlying the cloud tend to be very

complex in practice, it is likely to be infeasible for the service provider or admin-

istrator to populate this information manually. Therefore, acquiring dependencies

automatically becomes an important and challenging problem. Existing efforts to-

wards this target found in monitoring and diagnosis systems have been limited to

networking ignoring hardware and software level dependencies [29]. Recent reports

have shown unsuitability of networking alone, as failures resulting from software and

hardware become rather commonplace [13].

Challenge 2: Determining and evaluating RGs. Even with a set of compo-

nents and their dependencies, it is still not obvious how best to determine unexpected

RGs and evaluate their importance in a useful way. Within this challenge, there ex-

ists the need to construct an useful dependency graph and instrumenting it with

potential failures. Determining RGs collected from target services provides a diffi-

cult challenge due to potentially complex dependencies. Existing efforts [19,52] have

tried to solve similar problems with diagnosis analysis; however, these approaches
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may fail to offer accurate results when confronted with complex dependencies [81].

Challenge 3: Privacy Preservation. For a cloud service that rents infrastruc-

ture from other different cloud providers, performing structural auditing is almost

impossible in practice. Since the infrastructure information is high secret propri-

etary information to every cloud provider, no provider is willing to share it. Au-

diting such multi-level cloud services, therefore, introduces another complex chal-

lenge: performing auditing of the target service without compromising the privacy

of its cloud infrastructure providers. Two possible solutions would be: 1) to in-

troduce a trusted third party, who collects dependency information from multiple

cloud providers and performs auditing for the service; or 2) using secure multi-party

computation (SMPC) [85] to compute the overlap privately, without exposing any

information from which those results are computed. Unfortunately, in the former

case cloud providers may be hesitant to trust a third-party, while the latter option

has been proven to be time-consuming and does not scale well [82, 89].
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Chapter 3

INDaaS Architecture Overview

This chapter presents a high-level overview of the INDaaS architecture including

deployment (§3.1) and a typical workflow (§3.2). We defer details of each component

of INDaaS to subsequent chapters.

3.1 INDaaS Deployment

Figure 3.1 shows deployment of INDaaS architecture. In practice, INDaaS architec-

ture mainly involves three roles or types of entities: auditing client, dependency data

source, and auditing agent.

The auditing client requests an audit of the independence of two or more cloud

systems, which may either be operated by the auditing client herself or rented from

other cloud providers, and which she believes to be independent so as to offer re-

dundancy. For example, an auditing client may request a one-time independence

audit prior to deploying a new service onto multiple redundant clouds, like iCloud’s

use of both Amazon EC2 and Microsoft Azure [2]. The auditing client may also re-

quest periodic audits on a deployed configuration to identify correlated failure risks

that configuration changes or evolution might introduce. In practice, auditing clients
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Figure 3.1: An example for INDaaS’s auditing process. There are three main roles:
auditing client, dependency data source, and auditing agent. In this example, an au-
diting client wishes to audit the independence of a two-way redundancy deployment.

could be the cloud operators of large organizations with vast resources and global

interests such as Amazon EC2, Microsoft Azure, and Google Engine, or application

developers with limited infrastructures resources such as Netflix, iCloud, and Zynga.

Dependency data sources (or data sources for brevity) represent the providers of

cloud systems whose independence the auditing client wishes to check. The data

sources in practice may be providers of computation, storage and networking com-

ponents to be used redundantly by the auditing client. INDaaS might be deployed so

as to utilize data sources either from a single provider or across multiple providers.

In the first case, a storage service like Amazon S3 might provide data sources for

each of multiple Amazon data centers offering intra-provider redundancy for S3. In

the second, inter-provider scenario, Amazon EC2 and Microsoft Azure might serve
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as distinct data sources for redundant services rented by iCloud. Either way, as

shown in Figure 3.1, each data source employs pluggable dependency acquisition

modules to collect structural dependency data on its components such as network

topology, hardware devices, or even software packages whose dependencies could lead

to common-mode failures (e.g., Heartbleed [36]).

The auditing agent mediates the interaction between the auditing client and the

data sources. In the case where the auditing agent can obtain the dependency data

from all the relevant data sources, the auditing agent constructs a dependency graph

based on the data from these data sources. Then, the agent processes the depen-

dency graph and quantifies its independence, or identifies any unexpected common

dependencies which may potentially cause correlated failures, using a set of plug-

gable independence auditing modules. In the case of private independence auditing,

the agent cannot obtain the full dependency data from data sources in cleartext,

but supervises a private set intersection cardinality protocol performed by the data

sources collaboratively.

3.2 INDaaS Workflow

We exhibit a typical independence auditing process as illustrated in Figure 3.1:

Step 1. An auditing client, say Alice, needs to specify to the auditing agent what

services or redundant systems she wishes to audit and in what way. In particular,

this specification normally includes: a) the relevant data sources; b) the level of

redundancy desired; c) the types of components and dependencies to be considered;

and d) the metrics used to quantify independence.
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Step 2. By receiving the auditing client’s specification, the auditing agent issues

a request to each data source mentioned in the specification.

Step 3. Each specified data source uses one or more dependency acquisition mod-

ules to collect different types of the dependency data (e.g., network, hardware and

software level dependencies) for future independence auditing (see §4).

Step 4. For the situation that data sources are not willing to share dependency

information with others, i.e., private independence auditing (PIA) case, the data

sources collaborate to compute the auditing results without revealing the proprietary

dependency data to each other (see §6).

Step 5. Each of data sources returns to the auditing agent either the full depen-

dency data for structural independence auditing (see §5), or in the PIA case, returns

the collaboratively computed independence auditing results.

Step 6. The auditing agent returns to Alice an auditing report quantifying the

independence of various redundancy deployments, optionally computing some useful

information such as the estimates of correlated failure probabilities and ranked lists

of potential risk groups.
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Chapter 4

Dependency Acquisition

Acquiring accurate structural dependency data within heterogeneous cloud systems is

our first technical challenge. Typically, realistic solutions would need to be adapted

to different cloud environments and platforms. As many dependency acquisition

tools have been deployed in today’s clouds for various purposes (e.g., system di-

agnosis) [18–20, 28, 29, 31, 44, 48, 49, 52], we expect such tools can be adapted and

reused to collect the dependency data required by INDaaS. Towards this end, we

propose INDaaS to leverage pluggable dependency acquisition modules (DAM), and

maintains a uniform representation of different types of dependency data.

In this chapter, we first exhibit our design on flexible dependency acquisition

(§4.1), and then describe a network dependency and failure probability acquisition

tool developed by us to handle the situation that cloud providers do not have their

own dependency acquisition tools (§4.2).

4.1 Flexible Dependency Acquisition in INDaaS

The basic idea of the design on flexible dependency acquisition is to introduce a uni-

form format (or representation) for different types of dependency data, thus enabling
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Table 4.1: Uniform format definition of various dependencies.

Type Dependency Expression
Network <src="S" dst="D" route="x,y,z"/>

Hardware <hw="H" type="T" dep="x"/>

Software <pgm="S" hw="H" dep="x,y,z"/>

different dependency acquisition modules to be tailored and reused for a particular

cloud providers’ infrastructure.

In particular, different data sources first collect dependency data through their

dependency acquisition systems or service monitoring systems, and then adapt the

collected data to a common XML-based format illustrated in Table 4.1. Finally, the

DAM stores the adapted dependency data in a database, DepDB, for further pro-

cessing. This design supports different cloud environments as long as their providers

can adapt the dependencies underlying their systems to our defined formats.

Table 4.1 shows how our prototype expresses network, hardware, and software

dependencies. Each such dependency corresponds to one of the three most com-

mon causes of correlated failures [35, 81]: incorrect network configurations, faulty

hardware components, and buggy or insecure software packages.1

A network dependency describes a route from source S to destination D via various

network components in between, such as routers and/or switches x, y, and z.

A hardware dependency describes a physical component, e.g., a disk or CPU of

a server. The hw field denotes a physical component, and type specifies the type

of this component such as CPU, disk, RAM, etc. The dep field specifies the model

number of the component.

A software dependency describes the package information of a software compo-

nent. The pgm field denotes the software component S itself, hw specifies the hardware

1 We also considered power supply dependencies, which are also critical and can lead to correlated
failures, but were unable to identify a systematic approach to collect power dependency information
with widely-available tools.
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Figure 4.1: Example for a simple distributed storage system using three servers
S1-S3. Riak i denotes individual Riak instance running on each machine, and, sim-
ilarly, Query Engine i means the application which is responsible for querying the
corresponding instance i.

H on which the S runs, and dep specifies various packages x, y and z used by S.

Our INDaaS prototype currently includes three dependency acquisition modules

employing existing tools to collect various raw dependency data, then adapt them

into the common format as discussed above. In particular, we employ NSDMiner [44,

59] to collect network dependencies, HardwareLister [6] to collect hardware de-

pendencies, and apt-rdepends [3] to collect software dependencies. These first-cut

INDaaS modules are in no way intended to be definitive but merely aim to provide

some examples of realistic dependency acquisition methods.

NSDMiner is a traffic-based network data collector, which discovers network de-

pendencies by analyzing network traffic flows collected from network devices or in-

dividual packets [44,59]. HardwareLister (lshw) extracts a target machine’s detailed

hardware configuration including CPUs, disks and drivers [6]. The apt-rdepends tool
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Network dependencies of S1 and S2:

<src="S1" dst="Internet" route="ToR1,Core1"/>

<src="S1" dst="Internet" route="ToR1,Core2"/>

<src="S2" dst="Internet" route="ToR1,Core1"/>

<src="S2" dst="Internet" route="ToR1,Core2"/>

------------------------------------

Hardware dependencies of S1 and S2:

<hw="S1" type="CPU" dep="S1-Intel(R)X5550@2.6GHz"/>

<hw="S1" type="Disk" dep="S1-SED900"/>

<hw="S2" type="CPU" dep="S2-Intel(R)X5550@2.6GHz"/>

<hw="S2" type="Disk" dep="S2-SED900"/>

------------------------------------

Software dependencies of S1 and S2:

<pgm="QueryEngine1" hw="S1" dep="libc6,libgccl">

<pgm="Riak1" hw="S1" dep="libc6,libsvn1">

<pgm="QueryEngine2" hw="S2" dep="libc6,libgccl">

<pgm="Riak2" hw="S2" dep="libc6,libsvn1">

Figure 4.2: A sample of the collected dependency data.

extracts the software package and library dependencies for popular Linux software

distributions [3].

Figure 4.1 illustrates a sample distributed storage system. Suppose an auditing

client desires two-way redundancy for her service running on two of the three servers

S1-S3 within her cloud. She submits to the auditing agent a specification indicating:

1) IP addresses of the three servers, and 2) relevant software components running

on these servers. Our current prototype requires the auditing client to list software

components of interest manually – e.g., Query Engine and Riak [11] (a distributed

database) in this example. With this specification, the auditing agent invokes the

dependency acquisition modules (i.e., NSDMiner, lshw, and apt-rdepends) on each

server to collect the network, hardware, and software dependencies, and store them

in the DepDB, as shown in Figure 4.2.
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4.2 Developed Network Dependency Acquisition

We also have developed a new network dependency acquisition tool, named NetAcq.

The basic idea of NetAcq is to determine network component dependencies by ana-

lyzing flows of network traffic that are either collected from communication devices

(e.g., switches and routers) or created from individual packets. The output of Ne-

tAcq is a set of dependency information (formated as defined in Table 4.1) about the

target redundant system.

In NetAcq, a network flow is defined as a continuous, directed stream of packets

between two networking infrastructure components (e.g., two servers). A network

flow is formated as a tuple of seven attributes 〈 StartT ime, EndT ime, SourceIP ,

SourcePort, Protocol, DestIP , DestPort 〉 in NetAcq. Our insight on designing

NetAcq is: when a client accesses a cloud or web service or its replication, the network

traffic flow between them would be open for the entire duration of this service session.

In other words, without interferences from other service requests, if we can capture

all the networking packets between the start time and end time of accessing target

service, we would be able to extract dependency information of this service from the

collected packets.

Therefore, based on the above insight, NetAcq plays as a client role to send

request to target service. During the whole session, NetAcq uses probing techniques

(e.g., snort [12]) to capture all the traffic flows. Although such a way has been enough

to collect dependencies in a small-scale service, nevertheless, for typical large-scale

service that depends on many components and other services, the probing process

would capture a lot of different flows (including noised flows) within the whole service

running procedure. For the complex case, therefore, NetAcq first tries to capture all

the possible traffic flows among different components. Regarding each captured flow,
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NetAcq counts and records the time of the flow occurring during the whole service

session, and then models these interactions in the form of a directed dependency edge

(i.e., A → B), which represents a item of network dependency information. Two

nodes (i.e., A and B) in this directed dependency edge are used to denote components

as the origination and destination of this flow respectively. The directed edge (i.e.,

the arrow) represents a dependency candidate between two network components (A

and B) with a weight indicating the number of times it lasts.

Because there are many noised traffic flows in large-scale service, we need to

use an intuitive metric to decide which dependency candidates should be looked as

actual dependency items. Thus, inspired by NSDMiner [44], we propose to adopt

a logarithm-based metric to determine “real” dependency from candidate pool. In

particular, we compute confidence of a dependency candidate A→ B as:

C(A→ B) = logweight(A)weight(A→ B) (4.1)

Where, weight(A) denotes the number of times node A is accessed. If a confidence

is higher than 50%, then we believe this is a real dependency between two devices,

and NetAcq stores such an item in dependency information database.

Two types of flows, TCP and UDP flows, are mainly considered by NetAcq. In

particular, the former represents the traffic of a TCP session and can be identified by

locating the 3-way handshake and 4-way handshake or reset that signal the beginning

and the end of the session, and the latter one consists of a continuous stream of UDP

packets where the delay between two consecutive packets is no greater than a certain

threshold.

By finishing the process of acquiring all the network dependency information,

NetAcq stores the collected information in the format as shown in Table 4.1.
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Failure probability acquisition. In order to achieve the goal of determining the

likelihood of RG failures, dependency collectors can be extended to obtain failure

probability. Any communication devices, for instance, have mean time to failure

and mean time between failures (MTTF) and many hardware components have war-

ranties during which the expected likelihood of failure is low. Using this information

combined with the use time of a device, which may be accessible via firmware, a

collector could estimate the likelihood of a failure. To further enhance these types

of predictions, we can make use of an online crowd-sourced database in which in-

dividuals post failure (or non-failure) information regarding various infrastructure

components. In that fashion, if a particular hard drive model has been found faulty,

the likelihood of failure would be far greater than computing some probability based

upon the MTTF and the current use time.

Failure probability measured in this context tends to be based upon purely me-

chanical objects. For each component, an administrator can extract how much time

the component was off-line, τ over a given time period T and obtain the failure prob-

ability by F = τ/T . Gill et al. [35] have successfully obtained the failure probability

of each of component failure events within an enterprise network of Microsoft based

on this approach.
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Chapter 5

Structural Independence Auditing

After dependency data acquisition phase, INDaaS performs independence auditing

to generate auditing reports.

As described in §3, INDaaS supports two scenarios. We first present a structural

independence auditing protocol in this chapter, which assumes data sources are will-

ing to provide the auditing agent with the full dependency data, e.g., for auditing

a common cloud provider. The auditing agent executes SIA protocol to generate

the dependency graph (§5.2), determine the RGs (§5.3), rank the RGs (§5.4), and

eventually generates an auditing report (§5.5).

In the next chapter, we present a private independence auditing protocol to sup-

port auditing across multiple cloud providers unwilling to reveal the full dependency

data to anyone.

5.1 Dependency Graph

To implement the most general structural independence auditing, the auditing agent

first generates an explicit dependency graph representation, which will later be used

by the pluggable auditing modules. In designing this representation, we adapt tradi-
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(a) Component-set level of detail. (b) Fault-set level of detail.

(c) Fault graph level of detail.

Figure 5.1: Dependency graphs represented at three different levels of detail.
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tional fault tree models [66,74] to a directed acyclic graph structure, and generalize

the representation to express dependencies at any of three different levels of detail:

component-set, fault-set and fault graph.

Component-set. At the most basic level of detail, we organize dependencies in

terms of component-sets. As shown in Figure 5.1a, if a system E1 depends on

components A1 and A2, and another system E2 depends on components A2 and A3,

then the two relevant component-sets are {A1, A2} and {A2, A3}, respectively. E1

and E2 are the data sources. At this level of detail, for independence reasoning,

we focus only on the presence of shared components – e.g., A2 – that may lead to

correlated failures.

As Figure 5.1a illustrates, we express component-sets in a two-level “AND-of-

ORs” dependency graph. This structure consists of two types of nodes: components

and logic gates. If a component fails (or not), it outputs a 1 (or 0) to its higher-layer

logic gate. The two types of logic gates, AND and OR, depict the different logical

relationships among components’ failures. For an OR gate, if any of its subsidiary

components fails, this failure propagates upwards. For an AND gate, only if all

of its subsidiary components fail, the gate propagates a failure upwards. The top-

level AND gate thus represents redundancy across the data sources (e.g., E1 and

E2), each of which uses an OR gate to connect all its dependent components. Our

representation also supports n-of-m redundant deployments (n ≤ m) via n-of-m

AND gates.

Fault-set. At the fault-set level of detail, we additionally assign some form of

weight to each component, e.g., probability of failure over some time period. As

shown in Figure 5.1b, the failure of A1 or A2 leads to the outage of system E1; thus,

the two failure events {A1 fails, A2 fails} form a fault-set. Hereafter, when reasoning
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at the fault-set level, we assign each failure event a failure probability between 0 and

1. Approaches to obtaining realistic failure probabilities are discussed later in §7.1.

Fault graph. The component-set and fault-set levels of detail assume a single level

of redundancy across data sources (e.g., E1 and E2), each depending on a “flat” set

of components among which any failure causes the respective data source to fail. The

fault graph, the richest level of detail INDaaS supports, can describe more complex

dependency structures as shown in Figure 5.1c. In a fault graph, event nodes having

no child nodes are called basic events, the root node is called the top event, and the

remaining nodes are intermediate events. Each node in a fault graph has a weight

expressing the failure probability of the associated event. A fault graph is evaluated

from basic events to the top event. Each top and intermediate event has an input

gate connecting the lower-layer events. For example, in Figure 5.1c, the top event’s

input gate is an AND gate representing top-level redundancy, but the fault graph

also expresses internal redundancy via the internal AND gates at lower levels.

Transformation between different details. Any fault-set model can be trivially

transformed into a fault graph simply by enumerating all the members of a given

subsystem’s component-set under an OR gate, and enumerating all the subsystems

whose independence is to be analyzed under a top-layer AND gate. Any fault graph

can be transformed into a fault-set level of detail that ”conservatively approximates”

the fault graph, simply by converting all AND nodes other than the one for the top

event into OR, and combining adjacent OR, resulting in a simple 2-layer (AND-of-

ORs).

Converting an AND into an OR is a conservative approximation in that doing so

may increase the estimated failure probability of the overall system (top event) and

hence overestimate the probability of failure, but the transformation can never de-
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crease or underestimate the ultimate probability of failure. This transformation basi-

cally amounts to ignoring or throwing away information about the failure-suppressing

effects of any deep, internal levels of redundancy.

5.2 Generating Dependency Graph

Any dependency graph, at whichever level of detail, in principle represents the un-

derlying structure of a top-level service across a number of redundant systems. Each

such system is a data source where the auditing agent can obtain the dependency

data. Automatically building a fault graph with the dependency data is non-trivial

in practice. We summarize here how the auditing agent builds a dependency graph

at the fault graph level of detail from top to bottom.

• Step 1: The fault graph’s top event is the failure of the entire redundancy

deployment R.

• Step 2: According to the auditing client’s specification (see Step 1 in §3), the

auditing agent sends a query to the dependency information database DepDB

for information about all servers given in the specification. Each server’s failure

event then becomes a child node of the top event, and an AND gate connects

the top event with its child nodes to express the servers’ redundancy.

• Step 3: The auditing agent then queries DepDB for each server’s network,

hardware, and software dependencies. As a result, each server’s failure event

has three child nodes, i.e., network, software, and hardware failure events. An

OR gate connects the server failure event with its three child nodes, since the

failure of any of these dependencies effectively causes the server to fail.
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• Step 4: For the hardware failure event of each server, the auditing agent

gets its dependency data from DepDB, then uses an OR gate to connect the

hardware failure event with its dependencies’ failure events.

• Step 5: For each server’s network failure event, the auditing agent queries

DepDB for network paths relevant to the server, then connects them as child

nodes to the server’s network failure event. The agent puts an AND gate be-

tween the network failure event and child nodes representing redundant paths,

while network devices comprising each path are connected by an OR gate.

• Step 6: The auditing agent repeats Step 5 to construct the child nodes for

each server’s software failure event. Different layers of software components are

connected by an OR gate, and all packages underlying a software component

are connected by an OR gate.

As an example, the redundancy deployment in Figure 4.1 may be represented

by the fault graph in Figure 5.1c. An information-rich fault graph may be “down-

graded” to the lower fault-set or component-set levels of detail, by discarding partial

information in a fault graph.

Our INDaaS prototype can also compose individual dependency graphs collected

from multiple services into more complex aggregate dependency graphs (e.g., EC2 in-

stances depending on services offered by EBS and ELB). The basic idea is to perform

the dependency graph generation multiple times, treating each service deployment

as a dependency sub-graph and then recursively linking them together to construct

the complete dependency graph.
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5.3 Determining Risk Groups

After building a dependency graph, SIA needs to determine risk groups (RGs) of in-

terest in the dependency graph. The SIA provides two pluggable auditing algorithms

which make trade-offs between accuracy and efficiency. The minimal RG algorithm

computes precise results, but its execution time increases exponentially with the size

of dependency graph, making it impractical on large datasets. The failure sampling

algorithm, in contrast, runs much faster but scarifies accuracy. Both algorithms

operate on dependency graphs represented at any level of detail. Without loss of

generality, hereafter we elaborate on the algorithms at the fault graph level.

Minimal RGs. An RG within a dependency graph is a group of basic failure

events with the property that if all of them occur simultaneously, then the top event

occurs as well. For example, in Figure 5.1(a), if A1 and A3 fail simultaneously, the

redundancy deployment fails. Here, {A1, A3}, {A1, A2}, {A1, A2, A3}, {A2}, and

{A2, A3} are five RGs. Some RGs, however, are more critical than others. We

define an RG as a minimal RG if the removal of any of its constituent failure events

makes it no longer an RG. Consider the following two RGs: {A1, A2} and {A2, A3}

in Figure 5.1(a). Neither are minimal RGs because {A2} alone is sufficient to cause

the top event to occur; thus, the minimal RGs should be {A2} and {A1, A3}. As

another example, the minimal RGs in Figure 5.1(c) are {ToR1 fails}, {Core1 fails,

Core2 fails}, etc.

5.3.1 Minimal RG Algorithm

The first algorithm for determining RGs is adapted from classic fault tree analysis

techniques [66, 74]. The pseudocode of this algorithm is presented in Algorithm 1.
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Algorithm 1: Minimal RG algorithm
Input: fault graph T
Output: minimalRG
foreach eventi ∈ T by reversed breadth-first traversal do

if eventi is basic event then
eventi.RG.append(eventi);

else

if eventi.InputGate is OR then

foreach ci ∈ eventi.ChildList do
foreach csi ∈ ci.RG do

eventi.RG.append(csi)

else

/* eventi.InputGate is AND */

foreach ci ∈ eventi.ChildList do
foreach cj ∈ eventi.ChildList and ci 6= cj do

/* list is the Cartesian product of ci.RG and cj .RG */

list← ci.RG× cj .RG;
eventi.RG.append(list);

/* reduce redundant items in root.RG and assign the result to

minimalRG, and then simplify minimalRG. */

minimalRG← reduce redundancy(root.RG);
minimalRG← simplify(minimalRG);

return minimalRG;

This algorithm traverses a dependency graph G in a reverse breadth-first order (from

basic events to the top event). Basic events first generate RGs containing only

themselves, while non-basic events produce RGs based on their child events’ RGs

and their input gates. For a non-basic event, if its input gate is an OR gate, the

RGs of this event include all its child events’ RGs; otherwise, if its input gate is an

AND gate, each RG of this event is an element of the cartesian product among the

RGs of its child events. Traversing the dependency graph G generates all the RGs,

and in turn all the minimal RGs through simplification procedures. This algorithm

produces precise results, but is NP-hard [73].
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5.3.2 Failure Sampling Algorithm

To address the efficiency issue, we developed an RG detection algorithm based on

random sampling, which makes a trade-off between accuracy and efficiency. This

algorithm uses multiple sampling rounds, each of which performs a breadth-first

traversal of the dependency graph G. Within each sampling round, the algorithm

assigns either a 1 or a 0 to each basic event of G based on random coin flipping, where

1 represents failure and 0 represents non-failure. Starting from such an assignment,

the algorithm assigns 1s and 0s to all non-basic events from bottom to top based on

their logic gates and the values of their child events. After each sampling round, the

algorithm checks whether the top event fails. If it fails (i.e., its value is 1), then the

algorithm generates an RG consisting of all the basic events being assigned a 1 in

this sampling round. The algorithm executes a large number of sampling rounds and

aggregates the resulting RGs in all rounds. The failure sampling algorithm offers

the linear time complexity, but is non-deterministic and cannot guarantee that the

resulting RGs it identifies are minimal RGs. We provide provable guarantees on fail-

ure sampling algorithm in the next section, which shows the algorithm is capable of

finding out minimal RGs with relatively high probability. This failure sampling algo-

rithm is similar in principle to heuristic SAT algorithms such as ApproxCount [80],

and these methods may offer ways to improve INDaaS failure sampling.

5.3.3 Failure Sampling Algorithm Analysis

Because failure sampling algorithm is a randomized approach, we are interested in

what type of guarantees it can provide. We provide provable guarantees for failure

sampling algorithm in this section.
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Algorithm 2: Failure sampling algorithm
Input: fault graph G and the number of samples N
Output: RG
for i← 1 to N do

foreach eventi ∈ G by reversed breadth-first traversal do

if eventi is basic event then
eventi.occurrence← 0 or 1 based on random flipping a fair coin

else

eventi.occurrence← 0;
if eventi.InputGate is OR then

foreach ci ∈ eventi.ChildList do
if ci.occurrence is 1 then

eventi.occurrence← 1;
break;

else /* eventi.InputGate is AND */

foreach ci ∈ eventi.ChildList do
if ci.occurrence is 0 then

break;

eventi.occurrence← 1;

if root.occurrence is 1 then

TmpSet← ∅;
foreach eventi ∈ G do

if eventi.occurrence is 1 then

TmpSet.append(eventi);

RG.append(TmpSet);

return RG;

5.3.3.1 Preliminaries

Let f : {0, 1}k → {0, 1} be a k-ary Boolean function. An assignment is a vector

~a ∈ {0, 1}k. A target is a set of assignments T ⊆ {0, 1}k. Assignment ~a is a satisfying

assignment for f if and only if f(~a) = 1. The size of a satisfying assignment ~a is the

number of 1’s in ~a. A satisfying assignment is minimal if it has minimum size over

all satisfying assignment.

For example, Maj5 is a Boolean function that maps any assignments with at least
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three 1’s to 1 and others to 0, and minmaj is a target that consists of all assignments

with minimum number of 1’s that evaluate to 1, i.e., those with exactly three 1’s.

Then any assignment is the target minmaj is a minimal satisfying assignment.

5.3.3.2 Hardness of Finding A Minimal Satisfying Assignment

A Boolean function is simple if it consists of only AND and OR operators. We show

that there is no efficient algorithm that computes a minimal satisfying assignment

for a simple Boolean function unless P = NP . The idea is by reduction from the

set cover problem.

An instance σ of the set cover problem (SCP) consists an universe U = {1, 2, · · · ,m},

and n subsets S = {s1, · · · , sn}, such that si ⊆ U for any 1 ≤ i ≤ n and
⋃

1≤i≤n si =

U . A cover of U is a subset of S such that their union equals U . The set cover

problem requires to find a cover with minimum size, which is known to be NP-hard.

Theorem 1 Finding a minimal satisfying assignment for a simple Boolean function

is NP-hard.

Proof 1 Given an instance σ of SCP, we construct an instance φ of the minimal

satisfying assignment problem (MSA). We first describe the construction of a simple

Boolean function in the conjunctive normal form (CNF). A Boolean function is CNF

if it is a conjunction (AND) of clauses, where a clause is a disjunction (OR) of

literals. The Boolean function has m clauses, C1, · · · , Cm, corresponding to the m

elements in U , and n variables, x1, · · · , xn, corresponding to the n subsets in S. For

each element j ∈ si, add variable xi to clause Cj. Apparently, this construction

g(σ) = φ can be computed in polynomial time.

Now we show that there is one-to-one correspondence between covers in SCP

and satisfying assignments in MSA. In one direction, given a cover in SCP, setting
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TRUE all variables xi corresponding to subsets si in the cover results in a satisfying

assignment in MSA. In the other direction, given a satisfying assignment in MSA,

including all subsets si corresponding to TRUE variables xi in the satisfying assign-

ment results in a cover in SCP. In addition, the size of the cover equals the size of the

satisfying assignment in both directions. A direct consequence of this observation is

that finding a cover with minimum size in σ is then equivalent to finding a satisfying

assignment with minimum size in φ. As SCP is NP-hard, the MSA problem is also

NP-hard.

5.3.3.3 Target Cover

Uniform sampling. Consider the following random process. Given a k-ary Boolean

function f and a target T , we randomly sample assignments. For each trial of sam-

pling, flip a sequence of k independent fair coins. Let random variable X be the

number of samples when all assignments in T are covered by the random sampling

process. Then we want to bound the following two problems: (1) What is the ex-

pected number of samples in order to cover the target? (2) What is the probability

of covering the target if the number of samples is m?

Lemma 2 The expected number of uniform samples to cover the target is E[X] =

2kHt = Θ(2k log t), where t = |T | and Hn =
∑n

i=1(1/i) is the harmonic number.

Proof 2 The probability for a random sample to cover any assignment in T is t/2k.

After i assignments in T has been covered, a random sample to cover an additional

assignment in T is (t− i)/2k. Let random variable Xi be the number of samples used

to hit the i-th assignment in T , then the subsequence of random sampling process to

cover the i-th assignment are Bernoulli trials with success probability (t− i+ 1)/2k.
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Therefore, for any 1 ≤ i ≤ d,

E[Xi] =
2k

t− i+ 1

Thus, by the linearity of expectation, we have

E[X] = E

[
t∑

i=1

Xi

]
=

t∑

i=1

E[Xi]

=
t∑

i=1

2k

t− i+ 1
= 2kHt

Then E[X] = Θ(2k log t) follows from the fact that Ht = Θ(log t).

Remark: we can regard the target cover problem as a variant of the coupon collector’s

problem, where t specific coupons out of 2k possible ones need to be collected.

Then we bound the probability of covering the target with m samples.

Lemma 3 The probability to cover the target with m uniform samples is at least

1−m/(2kHt).

Proof 3 By Markov’s inequality, the probability that more than m uniform samples

are need to cover the target is

Pr(X ≥ m) ≤ E[X]

m

Therefore, following Lemma 2, the probability to cover the target with m samples is

Pr(X ≤ m) = 1− Pr(X ≥ m) ≥ 1− 2kHt

m

Take the Boolean function Maj5 and the target minmaj as an example. The

expected number of uniform samples needed to cover all
(
5
3

)
= 10 target assignments
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is 25 ·H10 ≈ 94. The probability to cover the target with 188 uniform samples is at

least 0.5.

Biased sampling. Consider the following random process with biased sampling.

For each trial of sampling, instead of flipping fair coins, we flip a sequence of k

independent biased coins, such that each assignment ~ai is cover with probability pi

and
∑

i:~ai∈{0,1}k
pi = 1.

Without loss of generality, let T = {a1, a2, · · · , at} and p1 ≤ p2 · · · ≤ pt. Let

(q1, q2, · · · , qt) be the sequence of prefix sums for the sequence (p1, p2, · · · , pt), i.e.,

for any 1 ≤ i ≤ d,

qi =
i∑

j=1

pj

Let (q′1, q
′
2, · · · , q′t) be the sequence of prefix sums for the sequence (pt, pt−1, · · · , p1)1,

i.e., for any 1 ≤ i ≤ t,

q′i =
t∑

j=t−i+1

pj

Then by definition, it follows that qi ≤ q′i for any 1 ≤ i ≤ t. We will bound the

expected number of biased samples needed to cover the target with qi and q′i.

Lemma 4 The expected number of biased samples to cover the target is
∑t

i=1(1/q
′
i) ≤

E[X] ≤∑t

i=1(1/qi), where t = |T |.

Proof 4 The analysis is similar to that for Lemma 2, with the only distinction

that the success probability for each subsequence of Bernoulli trials depends on pi

now. Let π be a permutation of the sequence {1, 2, · · · , t}, representing the order in

which assignments in target T are covered in the sampling process. Let the sequence

(q̂1, · · · , q̂t) be the prefix sums of (pπ(1), pπ(2), · · · , pπ(t)), i.e., q̂i =
∑π(i)

j=π(1) pi for all

1The sequence of q′
i
can also be regarded as suffix sums for the sequence (p1, p2, · · · , pt), although

this definition is not standard.
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1 ≤ i ≤ t. Let p =
∑t

i=1 pi. It follows the definition that for any 1 ≤ i ≤ t,

qi ≤ q̂i ≤ q′i (5.1)

Let random variable Xi be the number of samples used to cover assignment ~aπ(i).

Then the subsequence of random sampling process to cover ~aπ(i) are Bernoulli trials

with success probability
∑π(t)

j=π(i) pj = p− q̂i−1, where q̂0 = 0 by convention. Therefore,

for any 1 ≤ i ≤ t,

E[Xi] =
1

p− q̂i−1

Thus, by the linearity of expectation, we have

E[X] = E

[
t∑

i=1

Xi

]
=

t∑

i=1

E[Xi]

=
t∑

i=1

1

p− q̂i−1

(5.2)

Define q0 = q′0 = 0 for convention. Combining (5.1) and (5.2) gives

t∑

i=1

1

p− qi−1

≤ E[X] ≤
t∑

i=1

1

p− q′i−1

(5.3)

Note that by definition, for all 1 ≤ i ≤ d,

p− qi−1 = q′t−i+1 (5.4)

Finally, combining (5.3) and (5.4) gives

t∑

i=1

1

q′i
≤ E[X] ≤

t∑

i=1

1

qi
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Take the Boolean function Maj5 and the target minmaj as an example. Assume

the ten target assignments have probability p1 = · · · = p5 = 1/16 and p6 = · · · =

p10 = 1/8. Then the expected number of biased samples needed to cover all target

assignments is bounded by 24.49 ≤ E[X] ≤ 44.35.

5.3.3.4 (d, t)-Target Cover

In some applications, covering the entire target is too expensive. In such cases, it

might be desirable to cover at least d out of all t target assignments. We call this

problem the (d, t)-target cover problem.

Lemma 5 The expected number of uniform samples to cover at least d members

in the target is E[X] = 2k(Ht − H(t − d)) = Θ(2k log t
t−d

), where t = |T | and

Hn =
∑n

i=1(1/i) is the harmonic number.

Proof 5 The proof is similar to that of Lemma 2, with the distinction that the count-

ing stops when we cover the d-th assignment in T . Let random variable Xi be the

number of samples used to cover the i-th assignment in T . For any 1 ≤ i ≤ d,

E[Xi] =
2k

t− i+ 1

Therefore, we have

E[X] = E

[
d∑

i=1

Xi

]
=

d∑

i=1

E[Xi]

=
d∑

i=1

2k

t− i+ 1
=

t∑

i=t−d+1

2k

i

= 2k

(
t∑

i=1

1

i
−

t−d∑

i=1

1

i

)

= 2k(Ht −Ht−d) = Θ

(
2k log

t

t− d

)
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The result in Lemma 5 indicates that when t is a significant fraction of 2k or

d is a small fraction of t, the expected number of samples for (d, t)-target cover is

not overwhelming. Take the Boolean function Maj5 and the target minmaj as an

example. The expected number of uniform samples to cover at least 3 out of the 10

target assignments is 25 · (H10 −H7) ≈ 10.76.

5.4 Ranking Risk Groups

After determining RGs, we have two algorithms to rank them and generate the RG-

ranking list.

Size-based ranking. To rank RGs at the component-set level or at the unweighted

fault graph level, we use a simple size-based ranking algorithm which ranks RGs based

on the number of components in each RG. While this algorithm cannot distinguish

which potential component failures may be more or less likely, identifying RGs with

fewer components – especially any of size 1 indicating no redundancy – can point

to areas of the system that may warrant closer manual inspection. For example, in

Figure 5.1(c), the RGs {ToR1} and {libc6} are ranked highest since they have the

least size.

Failure probability ranking. In cases where the probabilities of failure events

can be estimated, we provide a probability-based ranking algorithm to evaluate RGs

at the levels of fault-set and weighted fault graph. This algorithm can rank RGs

by their relative importance. For a given RG’s failure event (say, C), its relative

importance, IC , can be computed based on Equation 5.5.

IC =
Pr(C)

Pr(T )
(5.5)
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Where, T is the top event. Thus, the relative importance IC is actually computed

using the probability of C, Pr(C), in comparison to the probability of the top event

T , Pr(T ) Specifically, Pr(C) is the probability that all the events in C occur si-

multaneously, and Pr(T ) is computed by the inclusion-exclusion principle where the

involved sets are all the minimal RGs of T . Equation 5.6 shows how to compute the

probability of the top event T .

Pr(T ) =
n∑

i=1

Pr(MCi)−
n∑

i<j=2

Pr(MCi ·MCj)

+
n∑

i<j<k=2

Pr(MCi ·MCj ·MCk)

+ · · ·+ (−1)n−1 Pr(MC1 ·MC2 · · ·MCn)

(5.6)

Where, MCi means minimal RG i. For example in Figure 5.1(b), since the proba-

bilities of events A1, A2 and A3 are 0.1, 0.2 and 0.3, respectively, we have: Pr(T ) =

0.1 · 0.3 + 0.2 − 0.1 · 0.3 · 0.2 = 0.224. Therefore, the relative importances of

the minimal RGs {A2 fails} and {A1 fails, A3 fails} are: 0.2/0.224 = 0.8929 and

0.03/0.224 = 0.1339, respectively. As a result, {A2 fails} is ranked higher than {A1

fails, A3 fails}.

5.5 Generating the Auditing Report

Upon getting the RG-ranking lists for all redundancy deployments, SIA computes

an independence score for each of them. If the size-based ranking algorithm is used,

a given redundancy deployment R’s independence score is computed as indep(R) =

∑n

i=1 size(ci), where ci denotes the ith RG in the R’s RG-ranking list, and n denotes

the number of top RGs in the RG-ranking list used for this independence evalua-

tion. If the failure probability based ranking algorithm is used, a given redundancy
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deployment R’s independence score is then indep(R) =
∑n

i=1 Ici , where Ici denotes

the relative importance of ci.

The auditing agent generates an auditing report by ranking all the redundancy

deployments based on their independence scores, and finally sends the report back to

the auditing client for reference. With the auditing report, the auditing client might

for example select the most independent redundancy deployment for her service.

The auditing report can also help an auditing client understand unexpected com-

mon dependencies to focus further analysis. In the case of one documented Amazon

EC2 outage, for example [4], we speculate that the availability of an INDaaS audit-

ing report might have enabled the operators to notice that a specific EBS server had

become a common dependency, and fix it, thus avoiding the outage.
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Chapter 6

Private Independence Auditing

We now address the challenge of independence auditing across mutually distrustful

data sources, e.g., multiple cloud providers, who may be unwilling to share depen-

dency data with each other or any third-party auditor. To reflect the motivating

deployment model, we use the term cloud providers instead of data sources when

describing the private independence auditing (PIA) protocol.

The most general and direct private auditing approach, explored by Xiao et

al. [82], is to use secure multi-party computation (SMPC) [85] to compute and reveal

overlap among the datasets of multiple cloud providers while keeping the data them-

selves private. This approach works in theory, but scales poorly in practice due to

its inherent complexity. We find SMPC to be impractical currently even for datasets

with only a few hundreds of components.

We thus focus henceforth on a more scalable approach built on private set inter-

section cardinality techniques [34,51,72,86]. This approach sacrifices generality and

dependency graph expressiveness, operating only at the component-set level of detail.

The basic idea is to evaluate Jaccard similarity [45] using a private set intersection

cardinality protocol [72] to quantify the independence of redundancy configurations.
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To support the fault-set level of detail, our PIA protocol uses duplicate set elements

to implement weighted private set intersection. Although our design is more re-

stricted in that it can only reason at “coarse-grained” level of detail rather than

arbitrary one, it is efficient to implement practically at larger scales.

This chapter starts with the trust assumptions of each entity within PIA work-

ing process (§6.1) and needed technical building blocks (§6.2). Then, we present

PIA design according to the following phases: generating dependency graph (§6.3),

privately auditing independence (§6.4), and generating auditing report (§6.5).

6.1 Trust Assumptions

As described in §3, our architecture consists of entities filling three roles: auditing

client, cloud providers (i.e., data sources in Figure 3.1), and auditing agent.

We assume that auditing clients are potentially malicious and wish to learn as

much as possible about the cloud providers’ private dependency data. We assume

cloud providers and the auditing agent are honest but curious: they run the specified

PIA protocol faithfully but may try to learn additional information in doing so. We

assume there is no collusion among cloud providers and the auditing agent.

Dishonest behavior includes producing a partial set for dependency information

in an attempt to discover the dependency components of another cloud provider. We

wish to emphasize that we believe that our honest-but-curious trust assumption on

both cloud providers and the auditing agent is appropriate in the realistic scenario.

Previous efforts, e.g., PSI-CA [34], Kissner and Song [51], and DJoin [58] also assume

parties in their protocols are honest but curious. We discuss some potential solutions

to dealing with dishonest parties in §??. Finally, we assume that all the cryptographic

operations are operated correctly and computationally secure.
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6.2 Technical Building Blocks

There are four technical building blocks that we utilize throughout the PIA design.

6.2.1 Jaccard Similarity

Jaccard similarity [45] is a widely-adopted metric for measuring similarity across

multiple datasets. Jaccard similarity is defined as

J(S0, · · · , Sk−1) =
|S0 ∩ · · · ∩ Sk−1|
|S0 ∪ · · · ∪ Sk−1|

(6.1)

Where Si denotes the ith dataset. A Jaccard similarity J close to 1 indicates

high similarity, whereas a J close to 0 indicates the datasets are almost disjoint. In

practice, datasets with similarity J ≥ 0.75 are considered significantly correlated [75].

While there are many other similarity metrics, e.g., the Sørensen-Dice index [71], we

choose Jaccard similarity because it is efficient, easy to understand, and extends

readily to more than two datasets.

6.2.2 MinHash Technique

Computing the Jaccard similarity incurs a complexity linear with the dataset sizes.

In the context of a large number of big sets, its computation might be a relatively

expensive. In the presence of large datasets, an approximation of the Jaccard sim-

ilarity based on MinHash is often preferred [24, 25]. The MinHash technique [27]

extracts a vector {h(i)
min(S)}mi=1 of a dataset S through deterministic sampling, where

h(1)(·), · · · , h(m)(·) denote m different hash functions, and h
(i)
min(S) denotes the item

e ∈ S with the minimum value h(i)(e). Let δ denote the number of datasets satisfying

h
(i)
min(S0) = · · · = h

(i)
min(Sk−1). Then, the Jaccard similarity J(S0, · · · , Sk−1) can be
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approximated as δ/m. Here, the parameter m correlates to the expected error to the

precise Jaccard similarity — a larger m (i.e., more hash functions) yields a smaller

approximation error. Broder [27] proves that the expected error of MinHash-based

Jaccard similarity estimation is O(1/
√
m).

6.2.3 Commutative Encryption

In a commutative encryption system, for any given plaintext message M , multiple

parties encrypting M in any order always produce the same ciphertext. Suppose

E and D are commutative encryption and decryption functions, respectively. K

and J are public keys (or, private keys where applicable) used by different parties.

According to the definition given In a commutative encryption system, for any given

plaintext message M , multiple parties encrypting M in any order always produce

the same ciphertext. Suppose E and D are commutative encryption and decryption

functions, respectively. K and J are public keys (or, private keys where applicable)

used by different parties. According to the definition given by Shamir et al. [70], a

commutative encryption system should have the following five properties:

• EK(M) is the ciphertext of a given message M under the key K.

• DK(EK(M)) = M for all messages M and keys K.

• EK(EJ(M)) = EJ(EK(M)) for all messages M as well as keys J and K.

• Given M and EK(M), it is computationally impossible for a cryptanalyst to

derive K for all M and K.

• Given any messages M1 and M2, it is computationally impossible to find keys

J and K such that EJ(M1) = EK(M2).
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Typical commutative encryption systems employ encryption function EK(M) ≡

MK(mod p), where p is a large and secure composite number shared by all parties,

and gcd(K,ϕ(p)) = 1. Here, ϕ(p) is Euler’s totient function, which can be easily

computed from the prime factorization of p. For two-party case, we can call an

encryption function as commutative if EK(EJ(M)) ≡MJK(mod p) ≡MKJ(mod p)

≡ EJ(EK(M)). More detailed explanations about commutative encryption can be

found in Pohlig-Hellman (PH) [63] and commutative RSA [70].

6.2.4 Private Set Intersection Cardinality

A private set intersection cardinality protocol allows a group of k ≥ 2 parties, each

with a local dataset Si, to compute the number of overlapping elements among them

privately without learning any elements in other parties’ datasets. We adopt P-SOP,

a private set intersection cardinality protocol based on commutative encryption. In

P-SOP, all parties form a logical ring, and agree on the same deterministic hash func-

tion (e.g., SHA-1 or MD5). In addition, each party has its own permutation function

used to shuffle the elements in its local dataset, as well as its own public/private key

pair used for commutative encryption [63, 70]. Commutative encryption offers the

property that EK(EJ(M)) = EJ(EK(M)) where EX denotes using X’s public key

to encrypt the message M .

In P-SOP, each party first makes every element in its own dataset Si identical.

Specifically, any element e appearing t times in Si is represented as t unique elements

{e‖1, · · · , e‖t}, with ‘‖’ being a concatenation operator. Each party then hashes

and encrypts every individual element in its dataset, and randomly permutes all

the encrypted elements. Afterwards, each party sends the encrypted and permuted

dataset to its successor in the ring. Next, once the successor receives the dataset,

it simply encrypts each individual element in the received dataset, permutes them,
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and sends the resulting dataset to its successor. The process repeats until each party

receives its own dataset whose individual elements have been encrypted and permuted

by all parties in the ring. Finally, all parties share their respective encrypted and

permuted datasets, so that they can count the number of common elements in these

datasets, i.e., | ∩i Si|, as well as the number of unique elements in these datasets

| ∪i Si| due to the commutative property.

We now use a simple but illustrative example to clarify P-SOP protocol. Suppose

there are three providers Alice, Bob and Carlo. They have data sets SA, SB and SC ,

respectively. For clarity, we define the following symbols:

• Ĥ(S): generate a hash value for each individual item in the data set S using

an agreed-upon hash function H.

• Êi(S): encrypt each individual item in the data set S under the i-th provider

pi’s commutative public key.

• Pi(S): permute all items in the data set S using the i-th provider pi’s permu-

tation function.

In order to obtain the set intersection and union cardinality, the three parties

perform the following steps:

• Step 1: Alice hashes and encrypts each individual item in her data set SA,

and then randomly permutes all the encrypted items to obtain PA(ÊA(Ĥ(SA))).

Afterwards, Alice sends the encrypted and permuted data set to Bob.

• Step 2: Once receiving the data set, Bob simply encrypts each individual

item in the received data set, permutes all the double-encrypted items, and

then sends the resulting data set PB(ÊB(PA(ÊA(Ĥ(SA))))) to Carlo.
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• Step 3: Once receiving the data set, Carlo encrypts each individual item in

the received data set, permutes all the (triple-)encrypted items, and then sends

the resulting data set PC(ÊC(PB(ÊB(PA(ÊA(Ĥ(SA))))))) back to Alice.

• Step 4: The above three steps also apply to Bob and Carlo’s data sets SB and

SC , so that they eventually receive the processed data sets PA(ÊA(PC(ÊC(PB(ÊB(Ĥ(SB)))))))

and PB(ÊB(PA(ÊA(PC(ÊC(Ĥ(SC))))))), respectively.

• Step 5: Alice, Bob and Carlo share their respective data sets whose individual

items have been encrypted and permuted by all parties. Finally, they count

the number of common (or total) unique items in these data sets to learn the

set intersection (or union) cardinality.

6.3 Generating Dependency Graph

To perform private independence auditing, each cloud provider pi (holding an in-

dividual data source) within a given redundancy deployment R first generates its

local dependency graph at the component-set level. In addition, each pi needs to

normalize its generated component-set. This normalization ensures that the same

component shared across different cloud providers always has the same identifier.

Common sources of correlated failures across cloud providers are third-party com-

ponents such as routers and software packages [32]. Therefore, our current PIA pro-

totype normalizes two types of components: 1) third-party routing elements (e.g.,

ISP routers), and 2) third-party software packages (e.g., the widely-used OpenSSL

toolkit). PIA normalizes these components as follows: 1) for routers, PIA uses their

accessible IP addresses as unique identifiers, and 2) for software packages, PIA uses

their standard names plus version numbers as unique identifiers. In so doing, any
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given component in all cloud providers’ generated component-sets has a unique nor-

malized identifier.

6.4 Auditing Independence Privately

If cloud providers involved in a potential redundancy deployment have relatively

small component-sets, PIA takes these (normalized) component-sets Si directly as

input to the private set intersection cardinality protocol (P-SOP) to compute the

number of common components |∩iSi| and the number of unique components |∪iSi|

across cloud providers. With the two numbers, PIA can compute the Jaccard simi-

larity as |∩iSi|/|∪iSi| to evaluate the independence of this redundancy deployment.

Otherwise, if cloud providers in a potential redundancy deployment have large

component-sets, PIA uses m hash functions based on the MinHash technique to map

each such component-set to a much smaller dataset Si, and then takes these MinHash-

generated datasets as input to the P-SOP as normal to get the number of common

components across cloud providers, i.e., | ∩i Si|. As discussed in §6.2, the Jaccard

similarity can then be approximated as | ∩i Si|/m. This MinHash-based approach

leads to much higher efficiency but lower accuracy. To increase the accuracy, we can

use more hash functions in MinHash. How to make the trade-off between efficiency

and accuracy depends on the application domain. Algorithm 3 presents the protocol

in the form of pseudocode.

6.5 Generating the Auditing Report

In the design as so far, each cloud provider pi has computed the Jaccard similarities

(or estimated Jaccard similarities using MinHash) corresponding to all the redun-
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Algorithm 3: Private independence auditing (PIA) process

Input: There are k ≥ 2 cloud providers, each with a local standardization data set
defined as Di, which contains all the dependency information needed by PIA
process. All providers form a logical ring, and agree upon the same deterministic
hash function (e.g., SHA-1), and m hash functions (for MinHash). Each provider i
has its own public key used for commutative encryption, and its own permutation
function used to shuffle the items in its local data set.
Steps:

1. Each provider pi (i = 0, ..., k − 1)

• computes Si = {〈h(j)min(Di), j〉}mj=1 using the m hash functions, if MinHash
option is on;
generates Si = Di, if MinHash option is off.

• makes elements in Si unique. Any element a ∈ Si appearing b times in Si is
encoded as {a ‖ 1, ..., a ‖ b}, with element included only once.

2. Each provider pi (i = 0, ..., k − 1)

• generates a hash value for each individual item in its local data set Si,
obtaining Ĥ(Si);

• encrypts each individual hash value in Ĥ(Si) under its commutative public

key, obtaining Êi(Ĥ(Si));

• randomly permutes all the encrypted items in Êi(Ĥ(Si)), obtaining

Pi(Êi(Ĥ(Si)));

• sends Pi(Êi(Ĥ(Si))) to the successor in the ring, i.e., p(i+1) mod k, who has not
yet encrypted and permuted the data set.

3. Each provider p(i+1) mod k, (i = 0, ..., k − 1)

• receives the data set Pi(Êi(Ĥ(Si))) from its predecessor pi;

• encrypts each individual item in Pi(Êi(Ĥ(Si))) under its commutative public

key, obtaining ̂E(i+1) mod k(Pi(Êi(Ĥ(Si))));

• randomly permutes all the encrypted items in ̂E(i+1) mod k(Pi(Êi(Ĥ(Si)))),

obtaining P(i+1) mod k( ̂E(i+1) mod k(Pi(Êi(Ĥ(Si)))));

• sends P(i+1) mod k( ̂E(i+1) mod k(Pi(Êi(Ĥ(Si))))) to the successor in the ring,
i.e., p(i+2) mod k, who has not yet encrypted and permuted the data set.

4. The process repeats until each provider pi receives its own data set whose
individual items have been encrypted and permuted by all providers in the ring.

5. All providers share their respective encrypted and permuted data sets, so that they
can count the number of common unique items in these data sets to compute the
set intersection cardinality, | ∩i Si| = δ.

6. Each provider pi finally computes Jaccard similarity by J(S0, S1, ..., Si−1) = δ/m.
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dancy deployments involving pi. After collecting these Jaccard similarities from all

cloud providers, the auditing agent generates an auditing report ranking all the re-

dundancy deployments based on the Jaccard similarities, and finally sends this report

to the auditing client. For an n-of-m redundancy deployment (n ≤ m), the auditing

agent needs to obtain the Jaccard similarity across all the n cloud providers and the

similarity across all the m cloud providers, then generate the auditing report.

At the client side, since the auditing client receives only a list ranking all potential

redundancy deployments, she obtains no proprietary information about the partici-

pating cloud providers’ internal infrastructures other than the information produced

intentionally to describe their degree of independence.
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Chapter 7

Limitations and Practical Issues

This chapter discusses a few INDaaS’s limitations and areas for further exploration (§7.1).

In addition, we also describe some practical issues regarding INDaaS deployment

(§7.2).

7.1 Limitations and Potential Solutions

7.1.1 Complex Dependency Acquisition

Our current software dependency collector takes only static software dependency

data into account. In practice, many cloud outages have been caused by more tricky

bugs within complex cloud software stacks [13, 19, 60, 64]. Collecting such software

dependency data would be challenging, and we are not aware of any existing system-

atic solutions. A potential solution may need to access the logs generated by various

cloud components, and their configuration scripts. For example, we might be able to

adapt software failure detection techniques based on mining console logs [83]. Zhao

et al. [90] developed a tool that discovers static dependencies between Java programs

by parsing these programs’ code. In addition, traffic-aware optimizations, e.g., the
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UDS, BDS and ASD mechanisms proposed by Li et al. [53, 54], can greatly reduce

the workload of the network dependency acquisition.

7.1.2 Dependencies Outside Control

INDaaS’s utility directly relates to the level of detail and accuracy of the dependency

information. Some important dependencies (e.g., fibre-optic, power cables, as well

as network and power loads) may lie outside cloud providers’ controls or may be

inaccessible due to insufficient privilege. Capturing these dependencies is critical

to discovering unknown RGs. For example, the Baltimore tunnel fire in 2001 [65]

had a significant effect on Internet traffic due to the wide-spread use of the passage

way for laying fibre-optic cables. One possible solution to this limitation may be

open standards for sharing information on third-parties infrastructures that manually

collect this type of information.

7.2 Practical Issues

The motivation for auditing clients to use INDaaS is straightforward: they can choose

redundancy deployments with better independence property, and can understand

unexpected common dependencies which may lead to correlated failures. On the

other hand, especially in the PIA case the cloud providers who offer data sources

may not explicitly benefit from honestly participating in such a process. We now

discuss what incentives the cloud providers have to join PIA, and how they deal with

dishonest cloud providers.
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7.2.1 Do cloud providers have incentives to join?

By participating in PIA, a cloud provider has the opportunity to better understand

its potential dependency issues in relation to other cloud providers. While the cloud

provider may not learn which specific components overlap with others, it can learn

to what extent common dependencies exist between itself and other cloud providers.

PIA thus gives cloud providers the opportunity to improve the independence of their

deployments. Another potential incentive is that cloud providers not participating in

PIA will not appear among the alternative cloud providers that PIA offers to auditing

clients. As a result, the clients may be less likely to learn or consider these non-

participating alternatives while evaluating various redundancy deployments. These

non-participating cloud providers may lose potential customers due to the lack of the

PIA “reliability label” or merely due to not being on the PIA “certified provider list”.

Finally, PIA offers cloud providers the opportunity to improve their reputation for

transparency and reliability, without risking significant leaks of proprietary secrets

about their infrastructure. Joining PIA offers cloud providers a privacy-preserving

way to increase the effective transparency of their infrastructures.

7.2.2 Will cloud providers behave honestly?

Some cloud providers might execute PIA dishonestly, for example, by declaring a

subset of their actual component-sets. In doing so, these providers might benefit

from their dishonesty by appearing to have a smaller set intersection and hence

greater independence than other providers. Thus, dishonest cloud providers might

be ranked higher in the resulting ranking list. To address this issue, we could use

the trusted hardware (e.g., TPM) to remotely attest whether cloud providers are

performing PIA as required. Recent efforts such as Excalibur [67] have deployed
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TPM into some cloud platforms successfully.

A less technical solution is to rely on the common business practice of “trust but

leave an audit trail.” For most executions of PIA, the auditing client simply trusts

the participating cloud providers to feed honest and accurate information into the

protocol, but the providers must also save and digitally sign the data they used. If an

auditing client suspects dishonesty, or during occasional “spot-checks,” a specially-

authorized independent authority – analogous to the IRS – might perform a “meta-

audit” of the provider’s PIA records, so that a persistently dishonest participant

risks eventually getting caught.
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Chapter 8

Implementation and Deployment

We have built an INDaaS prototype system written in a mix of Python and Java.

As written, the code is generally unoptimized and we make no claims that it is the

“best” implementation of an INDaaS architecture and deployment. In this chapter,

we first focus on the implementation and deployment of SIA (§8.1), followed by PIA

(§8.2).

8.1 Structural Independence Auditing

Figure 8.1 shows the key components of an INDaaS prototype in the SIA sce-

nario. SIA implementation uses three INDaaS prototype components: INDaaS client,

INDaaS agent and dependency acquisition module.

Auditing client. Our auditing client software, currently written in Python, is

deployed on a machine maintained by the cloud provider itself, e.g., Node A in

Figure 8.1. The auditing client communicates with the auditing agent to send the

specification and receive the auditing report.
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Figure 8.1: Implementation and deployment of SIA.

Dependency acquisition. The dependency acquisition modules, written in Python,

are deployed on each worker machine to support the audited redundancy deploy-

ment in a cloud, e.g., Node C-E in Figure 8.1. Our current dependency acquisition

implementation includes three open-source tools: NSDMiner [59], lshw [6], and apt-

rdepends [3], which are used to collect network, hardware, and software dependencies,

respectively. Each node’s dependency module is responsible for recording all of its

dependency information in a XML file, and then sends the file to the agent. Since

each worker machine executes its local dependency acquisition modules separately,

the dependency acquisition process can be parallelized.

Auditing agent. The auditing agent, written in Python with the NetworkX li-

brary [10], is deployed on another machine, e.g., Node B in Figure 8.1. The agent

has implemented all the SIA designs mentioned in §5. It collects the dependency

data from the dependency acquisition modules on each worker machine over the

SSH channels. The agent then audits the collected dependency data, and returns
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the auditing report back to the auditing client. The current agent implementation

is a centralized component running on a single machine.

Parallelizing SIA process. The data acquisition and analysis modules in SIA

implementation may benefit from some form of parallelization. Each data source

begins by locally generating sub-fault graph representing its own dependency struc-

ture. Then data sources in each redundancy deployment randomly elect a “leader”

data source for collecting the sub-fault graphs of other data sources in the same re-

dundancy deployment, establishing a whole fault graph, i.e., using an AND gate to

connect all the sub-fault graphs. Finally, the leader data source in each redundancy

deployment sends the fault graph to the agent. This optimization in principle dis-

tributes fault graph generation tasks to each data source, thus parallelizing the fault

graph generation and even analysis operations.

8.2 Private Independence Auditing

Figure 8.2 presents the key components of our INDaaS prototype in the PIA scenario.

Auditing client and auditing agent. In PIA, the auditing client and auditing

agent are implemented and deployed in a similar way as in SIA, except that the

auditing agent is deployed on a machine maintained by a third-party auditor, i.e.,

not by any audited cloud provider. More specifically, the two differences are, first,

the machine running the agent is maintained by a third-party auditor who should

not be any of audited cloud providers, and, second, the agent in the PIA case does

not need to use functions for the SIA case, e.g., the RG determination algorithms.
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Figure 8.2: Implementation and deployment of PIA.

Dependency acquisition and proxy. For each cloud provider, there are three

dependency acquisition modules deployed on each of its worker machines, as in SIA.

The implementation of the dependency acquisition module in the PIA case is the

same as the one in the SIA case. Moreover, we implemented a proxy in Java for

each cloud provider. The proxy first collects dependency data from the dependency

acquisition modules deployed in its own cloud, and then runs the private set inter-

section cardinality protocol (P-SOP) together with the proxies operated by other

cloud providers. In particular, we implemented the P-SOP protocol with MD5, Java

permutation, and the commutative RSA encryption scheme [70].
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8.2.1 Comparison: Kissner and Song Protocol

In order to compare with P-SOP, we additionally implemented a well-known private

set intersection cardinality protocol, Kissner and Song (KS) [51].

KS protocol. KS allows a group of k parties with multisets S1, ..., Sk to compute

privately | ∩i Si|, the number of elements they have in common, without learning the

specific elements in ∩iSi. In addition, KS needs to use a homomorphic encryption

scheme such as the Paillier cryptosystem [62]. At the initial phrase of the protocol,

the k parties use a homomorphic cryptosystem to share a secret key sk amongst

themselves, while the corresponding public key pk is known to all parties. With the

above keys in hands, the protocol computes | ∩i Si| as follows. First, each party

pi encrypts a polynomial Pi whose roots are the elements of its local input data

set Si. The encrypted polynomials are essentially added together, thus yielding a

polynomial P whose roots are the elements in the union sets of all the parties. Each

party pi, then, evaluates P on the elements eij of its local data set Si, yielding values

vij = P (eij); however, since sk is shared, no individual party can decrypt the vij. The

k parties securely re-randomize and shuffle the vij based on the approach [61], such

that each party learns all the vij but cannot tell which party it came from. Finally,

The k parties jointly decrypt the vij. If there are n elements in the intersection, this

would yield n · k zeros; thus, each party can compute the final result by dividing the

number of zeros by k.

Implementation of KS. Following the above description, we have implemented

KS in Java, and have deployed KS for comparing with P-SOP. To the best of our

knowledge, this is the first effort implementing a practical system based on KS. In our

implementation, we used MD5 for hashing operations, and use the thep library [7]
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to implement Paillier cryptosystem.
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Chapter 9

Evaluation

This chapter evaluates the practicality (§9.1) and performance (§9.2) of INDaaS.

9.1 Practicality Evaluation: Case Studies

This section evaluates INDaaS’s practicality through three small but realistic case

studies with respect to unexpected common network, hardware, and software depen-

dencies, respectively.

9.1.1 Common Network Dependency

Our first case study targets a scenario similar to the example given in the introduc-

tion. A data center operator, Alice, wants to deploy a new service S in her data

center, and replicates the critical states of S across two servers within her data cen-

ter. Before service deployment, Alice uses INDaaS to structurally audit the data

center network in order to avoid potential correlated failures resulting from common

network dependencies. We used a real data center topology [22] to model Alice’s

data center network. As shown in Figure 9.1, this data center has many Top-of-
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Figure 9.1: Case study for common network dependency.

Rack (ToR) switches (i.e., e1-e33) each of which is connected to an individual rack.

There are four core routers (i.e., b1, b2, c1, and c2) connecting ToR switches to the

Internet.

The INDaaS first collects network dependencies, and then executes the SIA pro-

tocol to provide auditing at the fault graph level. The auditing report generated by

our prototype, based on the failure sampling algorithm (which we ran for 106 rounds)

and the size-based ranking algorithm, suggests that {Rack 5, Rack 29} is the most-

independent deployment in this scenario. Without INDaaS, it is highly possible that

Alice builds a two-way replication with unexpected RGs. For instance, if she uses

redundancy {Rack 4, Rack 7}, the failure of C1 would invalidate her efforts.

A formal analysis indicates that there are 190 different two-way redundancy de-

ployments, among which 27 do not have unexpected RGs. This means, without

INDaaS, a random selection leads to only 14% probability for Alice to avoid cor-
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Figure 9.2: Case study for common hardware dependency.

related failures. Furthermore, if we assume the failure probability of all network

devices is 0.1, the redundancy deployment {Rack 5, Rack 29} is indeed the one with

the lowest failure probability.

9.1.2 Common Hardware Dependency

As shown in Figure 9.2, we have built a simple IaaS cloud in the lab with four

servers and four switches. While perhaps not an impressive cloud, this configuration

as will be shown sufficiently exercises the INDaaS prototype. We used OpenStack

to support the automatic virtual machine (VM) management, and deployed various

services on VMs for different uses. OpenStack automatically handles the allocation

of resources, and thus Alice simply provides virtual machine images containing the

services to the cloud. In particular, we deployed an S3-like Riak [11] cloud storage

service. For redundancy, Riak was run on two VMs (VM7 and VM8).
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Table 9.1: A RG-ranking list obtained by minimal RG algorithm and size-based
ranking metric. SIA randomly orders RGs with the same size.

NO. Minimal RGs RG-size

1 {Server2} 1
1 {Switch1} 1
3 {Core1 & Core2} 2
3 {VM7 & VM8} 2
5 ... ... ...

Before releasing the Riak storage service for public use, we ran SIA to check

whether there would be any unexpected RGs. The SIA process is executed as follows:

1) collecting network, hardware and software dependency information; 2) building a

fault graph with the information; and 3) generating a ranking list containing RGs

for this service. We chose to use the minimal RG algorithm and the size-based

ranking algorithm. The top 4 RGs in the RG ranking list generated by our prototype

are: {Sever2}, {Switch1}, {Core1 & Core2}, and {VM7 & VM8}. Note that SIA

randomly orders RGs with the same size. With this list, we noticed that we had failed

to improve the reliability of Riak service via redundant VMs, because the automatic

placement module in OpenStack placed the two redundant VMs on the same server

(a shared hardware source). As a result, the failure of that server would undermine

the redundancy effort. The fundamental cause is that the OpenStack’s automatic

virtual machine placement policy randomly selects from the least loaded resources

to host a VM.

To make the most effective redundancy deployment, we consulted INDaaS for

an auditing report on the independence of all potential redundancy deployments.

According to the report, which suggests {Server2 and Server3}, we re-deployed the

two redundant VMs for the Riak storage service.
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Table 9.2: Ranking lists of two- and three-way redundancy deployments based on
Jaccard similarities. Cloud1, 2, 3, and 4 are equipped with Riak, MongoDB, Redis,
and CouchDB, respectively.

Rank Two-Way Redundancy Deployment Jaccard
1 Cloud2 & Cloud4 0.1419
2 Cloud2 & Cloud3 0.1547
3 Cloud1 & Cloud4 0.2081
4 Cloud1 & Cloud3 0.2939
5 Cloud3 & Cloud4 0.3489
6 Cloud1 & Cloud2 0.5059

Rank Three-Way Redundancy Deployment Jaccard
1 Cloud2 & Cloud3 & Cloud4 0.1128
2 Cloud1 & Cloud2 & Cloud4 0.1207
3 Cloud1 & Cloud3 & Cloud4 0.1353
4 Cloud1 & Cloud2 & Cloud3 0.1536

9.1.3 Common Software Dependency

The last case study targets a scenario where INDaaS offers private independence

auditing across multiple cloud providers. In particular, a service provider, Alice,

wants a reliable storage solution leveraging multiple cloud providers, e.g., iCloud

uses Amazon EC2 and Microsoft Azure for its reliable storage. Suppose Alice has

found four alternative cloud providers: Cloud 1-4, each of which offers a key-value

store. Alice then consults INDaaS for a redundancy deployment to avoid correlated

failures caused by any shared software dependency [36].

Here, we chose four popular key-value storage systems, i.e., Riak, MongoDB,

Redis, and CouchDB. As shown in Figure 9.3, we assigned each one to a cloud

provider as follows, Cloud1: Riak, Cloud2: MongoDB, Cloud3: Redis, and Cloud4:

CouchDB. Suppose each cloud provider has used our prototype to automatically

collect the software dependencies of the packages and libraries in its storage sys-

tem. Our PIA protocol privately computes the Jaccard similarity for each potential

redundancy deployment. Table 9.2 shows the ranking lists of various two- and three-
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Figure 9.3: Case study for common software dependency.

way redundancy deployments. We obtain Jaccard similarity without using MinHash

option for accurate independence scores.

9.2 Performance Evaluation

We evaluate INDaaS’s two major components: SIA and PIA. The performance eval-

uation was conducted on a research cluster of 40 workstations equipped with Intel

Xeon Quad Core HT 3.7 GHz CPU and 16 GB RAM [14].

9.2.1 SIA: Efficiency v.s. Accuracy

We first explore the efficiency/accuracy trade-off between SIA’s two algorithms for

analyzing a dependency graph: the minimal RG algorithm and the failure sampling

algorithm (see §5.3). The former is able to produce a complete set of all minimal
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(a) Topology A: 1, 344 devices.
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(b) Topology B: 4, 176 devices.
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(c) Topology C: 30, 528 devices.

Figure 9.4: Performance evaluation of the minimal RG algorithm and the failure
sampling algorithm in SIA.
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Table 9.3: Configurations of the generated topologies.

Topology A Topology B Topology C
# switch ports 16 24 48
# core routers 64 144 576
# agg switches 128 288 1,152
# ToR switches 128 288 1,152
# servers 1,024 3,456 27,648
Total # devices 1,344 4,176 30,528

RGs but does so within NP-hard complexity. The failure sampling algorithm, on

the other hand, cannot guarantee completeness but runs in linear time. We generate

three topologies from a small-scale cloud deployment to a large-scale deployment,

based on the three-stage fat tree model [57]. These topologies include the typical

components within a commercial data center: servers, Top-of-Rack (ToR) switches,

aggregation switches, and core routers. Table 9.3 gives the detail of these generated

topologies.

We compare the computational overhead of the accurate but NP-hard minimal

RG algorithm to that of the failure sampling algorithm with various sampling rounds

(103 to 107). Figure 9.4 shows the result that the failure sampling algorithm runs

much more efficiently than the minimal RG algorithm while achieving a reasonably

high accuracy. For example, in topology B, the failure sampling algorithm uses

90 minutes to detect 92% of all the minimal RGs with 106 sampling rounds, in

comparison to 1046 minutes for the minimal RG algorithm.

9.2.2 PIA: System Overheads

To better understand the performance of PIA, we compare P-SOP with KS from

both aspects of bandwidth and computation.

For a private independence auditing system, the cryptographic operations tend

to be the major bandwidth and computational bottleneck. Thus, we evaluate the
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Figure 9.5: Bandwidth overhead evaluation of PIA. P-SOP (k) and KS(k) mean that
there are k cloud providers participating in the P-SOP and KS protocols, respectively.
The commutative encryption in P-SOP uses a 1024-bit key, and the homomorphic
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performance of PIA by comparing the bandwidth and computational overheads of

P-SOP protocol with KS protocol. Specifically, the cryptographic primitives of P-

SOP are hashing, commutative encryption, and permutation. The KS protocol is

mainly built on hashing, homomorphic crypto operations, and permutation.

In the evaluation, there are k cloud providers with n elements in each provider’s

local dataset. We set k to 2, 3 and 4, and vary n between 1, 000 and 100, 000 to cover

a wide range of real-world settings. We measure and compare P-SOP with KS in

terms of their bandwidth and computational overheads at each such cloud provider.

Figure 9.5 and 9.6 show the bandwidth overhead and computational overhead, re-

spectively.

With a small number of cloud providers (e.g., k = 2), the bandwidth overhead of

KS is comparable to that of P-SOP. However, with an increasing number of cloud

providers, KS’s bandwidth overhead increases much faster than P-SOP’s. With re-

spect to the computational overhead, P-SOP outperforms KS by a few orders of
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magnitude although both protocols’ computational overheads increase almost lin-

early with the number of elements in each cloud provider’s dataset. Altogether, the

evaluation shows that our PIA system can efficiently handle large cloud providers

each with even hundreds of thousands of system components.

In particular, in a three redundancy deployment, an alternative service provider

owning a local data set with 100, 000 elements can finish all the computation opera-

tions with about 200 seconds, if the provider is using P-SOP. Regarding bandwidth,

we concede KS protocol is less than P-SOP in the two redundancy deployment case.

However, P-SOP is more efficient than KS in other two cases.

9.2.3 Comparison: SIA Versus PIA

Compared with the SIA where there is a trusted auditor, we would also like to

understand how much extra overhead the PIA approach incurs to preserve the secrecy

of each participating cloud provider’s data. Assume each cloud provider maintains a
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Figure 9.7: Performance comparison between SIA and PIA. Each cloud provider
maintains a 10,000-element dataset.
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local dataset containing 10, 000 elements. To preserve secrecy for each cloud provider,

an auditing client relies on either the PIA system or the comparable KS-based system

to determine the most independent redundancy deployment. For a comparison, we

also assume another setting where there exists a trusted auditor who knows all cloud

providers’ datasets. This trusted auditor runs SIA at the component-set level of

detail based on the minimal RG algorithm or the failure sampling algorithm with

106 rounds.

The motivation we construct the above scenario is to compare our auditing al-

gorithms in a “hybrid” auditing task case. Our experiments measure computational

by changing n = 5, 10, 15 and 20 (n is the number of alternative cloud providers).

We assume that the trusted auditor, can get all cloud providers’ datasets, then gen-

erates a dependency graph at component-set level of detail with the collected data,

and finally performs the auditing algorithms on the graph.

Figure 9.7a and 9.7b show the computational overheads of these independence

calculations for all potential two- and three-way redundancies, respectively. As shown

in Figure 9.7a and Figure 9.7b, preserving the secrecy of cloud providers’ data does

incur extra overhead. Surprisingly, this cost is not as high as might be expected: we

see that the computational overhead of “PIA based on P-SOP” is less than twice

that of “SIA based on sampling (106 rounds)”. The SIA sampling scheme does

implement a more general analysis than PIA, supporting fault graphs rather than

just component sets. Unsurprisingly, both “PIA based on KS” and “SIA based on

minimal RG Alg” do not scale well.
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Chapter 10

Related Work

Providing audits for clouds is a well-known approach to increase reliability [68]. Prac-

tical and systematic cloud auditing, however, still remains an open problem. To the

best of our knowledge, INDaaS is the first systematic effort to enable independence

audits for cloud services.

10.1 Auditing Systems

As the earliest advocate of cloud auditing, Shah et al. [68] proposed auditing tech-

niques could be used to build trust between cloud consumers and cloud storage

services. They classify storage service auditing into two categories: internal au-

diting and external auditing. The former checks internal structures of services and

assesses whether the services fail to meet their SLAs, while the latter makes use of

privacy-preserving approaches to assist consumers to detect integrity of their stored

data.

Privacy-preserving auditing systems. Following the auditing concept proposed

by Shah et al. [68], many privacy-preserving auditing systems have been proposed
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extending this approach [69,76–79,84].

Similar to PIA, iRec [87] and Xiao et al. [82] also focused on analyzing corre-

lated failures resulting from the common infrastructure dependencies across multiple

cloud providers. These efforts proposed using the private set intersection cardinality

protocol [34] and the secure multi-party computation protocol [85] to perform the

dependency analysis in a privacy-preserving fashion, respectively. These initial ef-

forts did not scale to handle realistically large cloud datasets, however, and have not

been implemented or deployed, even in a lab environment.

10.2 Diagnosis and Accountability Systems

Diagnosis systems, unlike auditing, attempt to discover failures after they occur. For

example, many inference-based diagnosis systems [19,29,44,49] have been proposed

to obtain the network dependencies of a cloud service when a failure occurs. Unlike

existing diagnosis systems, NetPilot [81] aimed to mitigate these failures rather than

directly localize their sources.

Accountability systems attempt to place blame after failures occur, whereas our

auditing system attempts to prevent failures in the first place. Haeberlen [38] pro-

posed using third-party verifiable evidence to determine whether the cloud customer

or the cloud provider should be held liability when a failure occurs.

10.3 Private Set Operations

There have been many private set operational protocols proposed in the past years.

Secure multi-party computation (SMPC) [85] is a general approach to supporting

computation on private data including set operations. However, current circuit-
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based SMPC protocols are too expensive and scale poorly to large computations.

Arawal et al. [17] proposed a private set intersection cardinality protocol based on

commutative encryption. This protocol was limited to two-party cases, however.

Vaidya and Clifton [72] extended this protocol to support more than two parties,

and optimized its efficiency. Similar to PIA, a two-party private Jaccard similarity

computation protocol was proposed by Blundo et al. [24]. However, to the best of

our knowledge, all the above protocols have not been implemented systematically

yet.1

The first private set intersection cardinality protocol based on homomorphic en-

cryption was proposed by Freedman et al. [34], which could privately compute the

number of elements common to two datasets (called PSI-CA). The protocol has

a communication complexity within O(N) and a computational complexity within

O(N ln lnN) for each party and can be efficiently used only for two party set in-

tersection cardinality computations. Nevertheless, a multi-party solution based on

Freedman et al.is not obvious [51]. Hohenberger et al.proposed optimized version of

PSI-CA [43], and Kiayias and Mitrofanova [50] proposed another version of PSI-CA

to efficiently handle malicious provers [43]. Kissner and Song proposed multi-party

private set operations based upon homomorphic encryption and polynomial genera-

tion [51].

1The only practical tool based on those techniques is SeFaSI developed by Zander et al. [86];
however, the effort only focuses on limited scenarios for particular purposes.
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Chapter 11

Conclusion

This thesis has presented INDaaS, an architecture to audit the independence of future

or existing redundant systems for services in the cloud. INDaaS employs pluggable

dependency acquisition modules to collect the structural dependency information

of redundant systems, and provides various auditing algorithms to quantify the in-

dependence of redundant systems with varying performance, precision, and data

secrecy trade-offs. Our proof-of-concept prototype and experimental results suggest

that INDaaS could be both practical and effective in detecting and heading off po-

tential common dependencies resulting in unexpected correlated failures before the

service outages occur.

Beyond our basic goal, INDaaS’s techniques may be useful for improving diagnosis

and recommendation systems as well as making clouds more easily insurable.
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