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Maintaining privacy on the Internet is increasingly difficult in this ever-connected

world. In most cases, our online interactions are a highly personalized experience

and require some form of identity verification, most commonly, logging into an ac-

count. Unfortunately, people frequently give away a lot of information while ob-

taining accounts, reuse usernames and passwords across different services, or link

their accounts to take advantage of single sign-on to avoid retyping passwords. This

approach seriously blurs the line between different aspects of one’s digital life, specifi-

cally personal and professional, as services dedicated for personal use (e.g., Facebook,

bank accounts) and professional use (e.g. LinkedIn, corporate email account) become

intertwined.

Identity management, the process of making decisions about online identities or

accounts, is inherently linked to authentication, the process of creating and using

online identities. However, the link between these two critical concepts is not al-

ways clear because of the lack of understanding of these terms as well as proper

terminology to describe them. Identity management is further hindered by the lack

of privacy-preserving authentication solutions that target specific applications and

result in identities appropriate for those applications. Depending on the application,

effective solutions to manage identities can be very diverse with unique or unex-

pected properties. In certain cases allowing users to hide their identity is as valuable



as providing unforgeable identities. Nonetheless, currently deployed authentication

protocols do not reflect this approach.

In response, we make the following contributions. We carefully analyze the re-

lationships between authentication, privacy and identity management and discover

subtle yet important distinctions between the related concepts. As a result, we pro-

pose new terminology in order to clarify and draw distinctions between these critical

concepts. We identify two distinct cases of authentication and propose privacy-

preserving protocols to implement them. The protocols, PrivateEyes and DAGA,

target different applications and produce identities that balance the requirements of

their intended applications as well as their clients’ privacy and security needs.

PrivateEyes is an efficient remote biometric identification protocol. It uses

unique biometric characteristics in a privacy-preserving fashion for client verifica-

tion, producing an identity that is suitable for applications requiring a high level of

assurance of the client’s real-world identity.

DAGA is a deniable anonymous authentication protocol. It offers four proper-

ties that give clients strong security and privacy protection, making it suitable for

applications such as whistleblowing or access to sensitive resources. The properties

are anonymity, proportionality, deniability, and forward anonymity. Anonymity and

proportionality allow a client to authenticate as some group member without reveal-

ing exactly which one but only once per time period. Deniability makes it possible

to deny ever participating in a protocol, while forward anonymity ensures protection

even in case of a compromise of client’s private key.
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Chapter 1

Introduction

“Privacy is dead – get over it!” announced in 1999 Scott McNealy, the Chief Executive

Officer of Sun Microsystems. Yet 16 years later users’ expectations of privacy, greatly

fueled in the last year by the NSA’s mass surveillance activities revealed by Edward

Snowden, are stronger than ever [113]. This phenomenon dubbed by the media as

“the Snowden effect” [2, 68], has had a profound effect on people’s attitude towards

privacy. Finally privacy is becoming a priority and people want to be proactive

about it [2,68]. A recent ESET-commissioned Harris Interactive study [48,49] found

that two thirds of people embrace individual responsibility for their privacy. This

fact is supported by a finding from the same study that four out of five people have

changed the privacy settings of their social media accounts and most have made

changes in the last six months. This is a drastic change in user’s behavior. Previous

studies found that only 16% of Internet users claimed to read privacy policies of the

sites and online services with which they share their private information [135]. This

new paradigm shift in online privacy shows that users want privacy, focus more on

managing their online profiles, the information they share online and on the benefits

and risks that come from it, and are willing to adjust their online behavior in hopes

1
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of better privacy protection [73].

Maintaining privacy on the Internet is increasingly difficult in this ever-connected

world. Today people are more connected to one another than ever before due to the

explosion in the usage of digital devices coupled with the widespread accessibility to

the Internet: 2.7 billion people – almost 40% of the world’s population and 77% of

the developed countries’ population – are online [186]. Access to a computer and

a high-speed Internet connection have become a commodity people have grown to

rely on. The amount of global digital information created and shared online have

surpassed 2 zetabytes1 [75] and the value of online-accessible resources continuously

increases.

Consequently, people use the Internet, often on a daily basis, to perform a variety

of tasks, including tasks that used to be reserved for in-person interactions [90]. Social

actives as such e-mail, real-time video and audio communications, various social

media as well as entertainment such as gaming, movies, and music have been driving

forces behind today’s Internet frenzy [11, 112]. However, the Internet is no longer a

medium reserved for entertainment and social activities only; people use it to perform

tasks encompassing all aspects of life. Many people have accepted the Internet as

means to access more sensitive resources such as financial, medical or otherwise

private records. We routinely make financial transactions, access our health records

and communicate with health care providers, file taxes and interact with government

agencies, or even obtain degrees through online educational programs [45,93].

In most cases, our online interactions are a highly personalized experience [98].

We expect to access our own email or bank account, interact with our friends on

social media or even see personalized content on websites or obtain e-commerce

recommendations. In order to deliver these services, providers need (and want)

11 zetabyte = 1 trillion gigabytes
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to know who is accessing their resources. We are almost constantly prompted by

websites we visit to use or create a new account, or sign-in with a third party account

in order to see the content, or unlock all features and benefits a particular website

provides. As a result, almost every transaction a client performs online results in

some form of identity verification. Service providers perform identity verification for

reasons such as ensuring legitimate access to protected resources (e.g., email or bank

account, subscription services), enhancing client experience by providing personalized

content (e.g., news portals, recommendation system) or even trying to combat spam

or inhibit inappropriate behavior (e.g., discussion forums).

As a consequence, clients are expected to create and maintain multiple accounts,

often one per each service provider they use. Unfortunately, out of convenience and

without giving it proper consideration, people frequently give away a lot of infor-

mation while obtaining those accounts, reuse usernames and e-mail addresses across

different online services, or link their accounts to take advantage of single sign-on

to avoid retyping passwords. This approach, however, seriously blurs the line be-

tween different aspects of one’s digital life, specifically personal and professional, as

services dedicated for personal use (e.g., Facebook, bank accounts) and professional

use (e.g. LinkedIn, corporate email account) become intertwined. This might have

serious consequences when personal information inevitably surfaces in a professional

context. A barista from Washington lost his job when his boss found his blog con-

taining snarky comments about the coffee shop and customers, and a teacher from

Florida was asked to resigned when her principal found her modeling photos pub-

lished under a different name [29]. Moreover, hiring managers routinely use social

media to screen job candidates and make hiring decisions [170] making it almost

impossible to keep personal information private once shared online.

Therefore, people are charged with a daunting task — a task of maintaining their
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online accounts in the context of their personal (or private) and professional (or

public) lives. With the growing awareness of the relationship between privacy and

digital footprint, many people wish to keep their personal and professional online

activities separate and actively try to ensure that the corresponding online profiles

are kept separate [171, 173]. This approach mirrors our behavior in the real world.

We share certain information with our family members while keeping it away from

professional contacts. Conversely, we tend to or are even obligated to keep work-

related information within a certain circle of individuals.

There are some ways to limit the exposure of personal information and linkability

of accounts meant for different purposes. They range from relatively easy options

such as avoiding single sign-on, limiting the use of professional email address in

personal contexts, to more restrictive options such as abstaining from social networks,

switching from credit cards and other identifiable forms of payment to gift cards or

anonymous currencies for all online purchases, and finally using secure browsing and

anonymous communication technologies for all Internet activities. Interestingly, the

recent story of Janet Vertesi, an associate professor of sociology at Princeton who

went to the extreme to hide her pregnancy from big data, shows that the use of

privacy-preserving technologies make people more likely to stand out and even be

tagged as potentially engaged in criminal activity [147].

These examples offer only a small glimpse of how little privacy we can expect

on the Internet, and how intertwined our personal and professional information have

become. Unfortunately, identity management, the process of making decisions about

online accounts or identities, is not an easy task. People are often ill-prepared to

make those decisions. This stems from the lack of understanding of these complex

notions and a clear terminology to describe them as well as the lack of control over

mechanisms employed to create, verify and use online identities.
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Service providers struggle to provide clients with adequate tools to manage iden-

tities. In an absence of the before-mentioned understanding and terminology, service

providers may use subjective criteria, such as their own security and usability goals,

to decide on specific authentication solutions, without taking into account the privacy

needs of their clients.

Certainly, from the clients’ point of view, using online identities should be conve-

nient, secure and privacy-enhancing. Especially important to the service providers

is to have a high level of assurance that clients are indeed who they claim to be.

However, privacy aspects of online identities are not clearly defined. Intuitively,

personal information clients disclose in order to create an online identity must be

protected and preferably limited, and transactions clients perform with multiple ser-

vice providers should remain separate so clients’ actions cannot be tracked and later

on linked together revealing personal information and possibly compromising their

privacy.

Giving people control over their identities and how their identities are used is

essential to privacy protection and effective identity management. User should have

the ability to establish independent identities for specific uses, personal, professional

or other, and maintain them in a way that preserves independence and specific

properties of each identity.

Depending on the application, effective solutions to manage identities can be very

diverse with unique or unexpected properties. In certain cases allowing users to hide

their identity is as valuable as providing unforgeable identities. In applications such

as electronic voting, an identity needs to be reliably verified whereas in applications

such as anonymous data collection, an identity needs to be concealed, but at the

same time it might be desirable to enforce certain rules, such as “one user, one use”

or “one user, one account”. In the case of anonymous communication, the identity
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might be known but its link to certain actions performed using this identity must be

hidden. More interestingly, accountable anonymity systems, in which misbehaving

members are held responsible for their actions, often rely on the ability to uniquely

bind a user to his identity, so that user’s misbehavior can to be effectively punished.

Identity management is inherently linked to authentication — the process of

creating and using online identities. The notion of identity is critical to both concepts.

Identity management is concerned with making decisions regarding identities as to

achieve the goals set out by a client while meeting the needs of service providers’ who

rely on those identities to control access to their resources. On the other hand, the

specific properties of an authentication protocol define and carry over to the resulting

identity. Therefore, identity management can accomplished through appropriate

authentication mechanisms.

However, the link between these two critical concepts is not always clear because

of the lack of the before-mentioned terminology to describe them. A client can only

manage (reason and make decisions) about his identities, if he understands the life

cycle of each identity, from its conception, through usage, and finally removal in

different applications. A service provider needs the same understanding to decide on

the most suitable solution.

Moreover, authentication is not a monolithic or one-dimensional concept; al-

though it has been often treated as such. In most commonly employed authenti-

cation protocols, a client has to declare his identity and only once that identity is

sufficiently verified is he allowed to obtain access under that identity. This approach

allows each action the client performs to be linked back to that identity, which is

appropriate for some applications but not for all. For instance, a health care provider

needs to grant access to medical information only to authorized clients — e.g., pa-

tients, insurance companies, physicians — but also to keep a detailed record of who
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accessed particular information and when. On the other hand, a subscription service

— e.g., Netflix or Hulu 2 — does not necessarily need to know which specific client

is requesting access, so long as it is a paying client, in order to fulfill its primary role

of providing content.

An important observation is the fact that an identity is never static. It is not

limited to the information revealed during the enrollment process, the process of

establishing the identity. Each time an identity is used — a client logs into his account

— the service provider learns more about the client and therefore the associated

identity evolves. In the Netflix example, an identity is no longer “John Smith” but

“John Smith” who watched certain movies, wrote certain reviews, and always logs

in at a certain time. The client’s actions, in fact, become new attributes associated

with his identity and in some cases might be enough to uniquely identify the client

in a completely different context.

The idea that client’s actions indeed are a form of identifying information was

demonstrated in 2007 by a group of researchers who were able to de-anonymize a

set of clients based on their actions [140, 162]. As part of a challenge for a better

recommendation system, Netflix published 10 million movie rankings by 500,000

customers, whose data was anonymized by replacing personal details with random

identifiers. Nonetheless, the clients were de-anonymized by comparing rankings and

timestamps with public information in the Internet Movie Database (IMDb)3.

The above examples clearly show that we need to empower clients to manage their

identities and also to support service providers in responding to their clients’ privacy

needs. We no longer can take the “one-size-fits-all” approach to authentication if we

hope for an effective identity management solution. We need proper yet simple ter-

2Hulu (www.hulu.com) and Netflix (www.netflix.com) are providers of on-demand Internet
streaming media.

3www.imdb.com

www.hulu.com
www.netflix.com
www.imdb.com
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minology for authentication that is general enough to reflect the diverse requirements

of online identities. We also need specific authentication solutions that reflect the

needs of diverse applications. Specifically, we need solutions for unforgeable identi-

ties but also less demanding solutions in which clients might dissociate their unique

identity from their actions while still allowing service providers to adequately control

access to their resources.

1.1 Contributions

The goal of this thesis is explore the idea of effective identity management through

appropriate authentication mechanisms. This thesis makes the following three major

contributions.

1. Provides a careful analysis of the relationships between authentication, privacy

and identity management.

2. Proposes new terminology that draws distinctions between concepts related to

authentication.

3. Proposes privacy-preserving protocols for two distinct cases of authentication.

• PrivateEyes, a secure biometric identification protocol for privacy-preserving

identification.

• DAGA, a deniable anonymous authentication protocol for privacy-preserving

authentication.
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1.2 Analysis, Concepts and Terminology

Building upon the findings of our analysis of concepts related to authentication,

privacy, and identity management, we propose and clarify terminology for concepts

related to authentication. Specifically, we propose a new definition of authentication

that is general enough to support the concept of group or anonymous authentication.

Group authentication [36, 42, 155], the process of authenticating as one of many

eligible clients without revealing exactly which one, has been receiving more attention

as an alternative to identity verification. It offers clear privacy benefits as client’s

actions are no longer linked to her but rather to a well-defined group of people. Our

definition clarifies this easily misunderstood concept.

We define an identity with respect to a certain set of attributes that belong to a

particular entity. We then differentiate between the terms identity and group identity,

depending on the size of the set of entities associated with it. The distinctions we

draw between these terms allows us to identify two cases of authentication and in

turn, we are able to define the term identification.

We separate privacy issues related to the two distinct phases of authentication:

the creation of identities (the enrollment process) and the use of identities (the au-

thentication process). We point out that while an identity is created during enroll-

ment, it is continuously expanded during authentication by adding new attributes

which result from actions performed under that identity. This observation is im-

portant to identity management. The newly-acquired attributes might define a new

identity of the same entity, which might become linkable to other identities of that

entity across different and often unrelated systems, which is detrimental to clients’

privacy.



10

1.3 PrivateEyes: Secure Remote Biometric Iden-

tification

Biometrics has been long recognized as an excellent building block for identification

protocols. Biometrics offer multiple benefits including non-repudiation and ease of

use, and biometric data cannot be lost or forgotten and is constantly available.

However, using biometric data raises privacy issues. Firstly, a biometric template

carries a considerable amount of personal information, which often includes race,

gender and certain medical conditions. Secondly, a biometric template can be used

to identify an individual and successfully track and link her activities performed

using the same biometric identity.

We propose PrivateEyes, a secure remote biometric identification protocol that

gives strong protection to the user’s biometric data in case of two common kinds of

security breaches: a full client compromise or a full server compromise.

The novelty of our approach lies in the way we handle biometric templates. The

templates are never directly stored, transmitted during the protocol or made available

to the verifier. A client uses a token, possibly with a built-in sensor (e.g., a smart

card or a mobile device), to store a securely blinded biometric template. The secured

template changes with each attempt, rendering the information stored on the token

useless if stolen. A client is successfully identified if the verifier confirms that the

difference between the blinded template and a fresh template as computed by the

token is sufficiently close to 0. Because a client creates his identity using his biometric

template but with respect to a special blinding factor shared with the verifier, many

independent identities can be securely created using the same biometric data.

Our two-factor protocol can be combined with a broad class of existing biometric

schemes to protect the privacy of the user’s biometric data and the template derived
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from it. Our approach offers benefits such as protection of biometric data, revoca-

bility of templates, and privacy-protection with respect to users’ biometric identities

as well as actions performed using those identities. Furthermore, our protocol adds

negligible overhead and maintains the recognition performance of the underlying

biometric recognition algorithm.

PrivateEyes demonstrates an effective identification protocol that results in

strong identities yet offers privacy-preservation in the context of biometrics without

a significant performance penalty.

1.4 DAGA: Deniable Anonymous Group Authen-

tication

Authentication is used to ensure that only legitimate users are granted access to

protected resources or services. However, while it is important to limit access only

to authorized users, it may not always be needed to verify their identity and in-

stead it may be sufficient to allow users to use a well-defined group identity. This

unique property is desirable in many systems such as systems providing access to

information considered sensitive, online subscriptions, discussion forums, anonymous

data collection, and many other application that necessarily require a client to be

identified as long as certain properties of the client can be ensured in order to grant

access.

We propose DAGA, a deniable anonymous group authentication (DAGA) pro-

tocol, which illustrates a new approach to privacy-preserving authentication. To

the best of our knowledge, DAGA is the first protocol to provide these four se-

curity properties: anonymity, proportionality, deniability, and forward anonymity.

The anonymity and proportionality properties allow a client to authenticate as some
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group member (using a group identity) without revealing exactly which one but only

once per time period or even at all. Deniability makes it possible to deny ever par-

ticipating in a protocol, while forward anonymity is a stronger property that offers

protection of user’s identity and the ability to deny participation even in case of a

compromise of user’s private key.

We have built a working proof-of-concept implementation of DAGA to vali-

date its performance and practical usability. A proof-of-concept prototype validates

DAGA’s practicality, authenticating a client into a 32-member group in one second,

or into a 2048-member group in two minutes. Our evaluation suggests that DAGA

compares reasonably well to anonymous and non-anonymous authentication given

the security and privacy gains.

DAGA demonstrates an effective authentication protocol built on the concept of

group authentication that offers clients strong security and privacy protection while

preserving the ability to control access to resources, a feature important to service

providers.

Organization

This thesis is organized as follows. Chapter 2 overviews the process of authentication,

and provides an analysis of concepts related to authentication, its finding and the new

terminology. Chapter 3 provides a description, analysis, discussion, and evaluation

of PrivateEyes while Chapter 4 does so for DAGA. Chapter 5 overviews related

work. Chapter 6 concludes.



Chapter 2

Identity Management and

Authentication

Identity management is a process of controlling who has access to online identities of

a particular client or entity, when, and why. The goal of this process is to achieve the

privacy goals established by a client while meeting the needs of a service provider,

who relies on these identities to control access to its own resources. The process

of authentication is fundamental to managing identities. In its most common form,

authentication allows verifying one’s identity in order to confirm if a user is who he

claims to be, after such an identity is established. Hence, authentication encompasses

two main aspects of identities: their creation and usage.

Depending on the properties of a particular authentication protocol, the client

may or may not be able to manage her identities. This is because the properties

of the authentication protocol carry over to the identities it establishes. On the

one hand, if in order to authenticate, a client needs to reveal a significant amount

of personal information and this information is not afforded proper protection, the

client’s options are extremely limited, beyond refusing to participate. On the other

13
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hand, if authentication is accomplished through a proper, transparent process whose

goal is to minimize the exposure of client’s information, then the client can weigh

the risks and benefits of using such an identity and make an informed decision.

Authentication, however, is a process between two parties whose goals might be

competing. A client wishes to receive access to some resources while minimizing

disclosure of her information. A service provider wishes to provide access to his re-

sources while maximizing his confidence that only authorized clients will be granted

access. Intuitively, the more information the client reveals, the higher the provider’s

confidence but the greater effect on the client’s privacy. However, these seemingly

contradictory needs may be addressed through appropriate privacy-preserving au-

thentication mechanisms that target specific applications. Some applications call

for highly reliable and verified identities while other can accommodate even strong

protection to clients and their actions. All too often, however, an authentication

solution is chosen as a “one-size-fits-all” approach without considering the specific

needs of a particular application and balancing it against clients’ privacy needs.

In this chapter, we explore different aspects of authentication and identity man-

agement, carefully analyze the relationships of the related concepts, and finally pro-

pose new terminology as a result of distinctions of these concepts we are able to

provide.

2.1 Overview of Authentication

Informally, the process of verifying a client’s identity is called authentication. This

process consists of two independent steps: the enrollment process and the authenti-

cation process [188].

The goal of authentication is to link the originator of a transaction to an au-
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thorized entity for that transaction. The linkage between the originating client and

authorized entity is established using one or more authentication factors — pieces

of evidence a client needs to present — depending on the type of the authentication

process employed.

The authorized entity and the corresponding authentication factor (or factors)

are established during the enrollment process. The enrollment process precedes any

authentication attempts by a client. The process is performed between a client and

a server and results in a new account (identity) created for the client. During the

authentication process, a client makes a claim of identity he wishes to authenticate as

and provides the corresponding authentication factor. The server verifies this claim

through a protocol, which normally in some fashion compares the authentication

factor presented during authentication to the one established during enrollment. If

the factors match or are sufficiently similar, the server accepts the client’s claim and

the requested transaction is performed. Otherwise, the server rejects the client’s

claim, which concludes this process.

In describing the details of authentication, we will interchangeably use the terms

client, user, person and prover to indicate an entity that requests access to some

resources and whose identity is verified during the authentication process. We use

the terms server, service, service provider, and verifier to indicate the other party

to the authentication protocol that performs the verification of a claim made by a

client.

2.1.1 Types of Authentication Schemes

A number of authentication solutions have been proposed. They can be categorized

as knowledge-based, possession-based, or biometrics, depending on the kind of factor

they use to verify the claim of identity [19,172,174].
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Knowledge-based authentication (“something you know”) is the most popular

kind of authentication based on a shared secret (e.g., a password, PIN or a passphrase)

that a client needs to provide in order to prove his claim. Passwords are convenient

to use and virtually free to deploy in practice. However, the many drawbacks of

passwords are well known [100,110,146]. Weak passwords are easily guessed; strong

passwords are difficult for clients to remember and to supply when required [74].

In addition, username and password data must be somehow encrypted when sent

over the network since once intercepted, they are sufficient to impersonate the legit-

imate client. Passwords are also often directly stored by a verifier for the purpose

of comparison during authentication. Even if the chosen password is of a proper

strength, this approach still enables an attacker to impersonate the client and gain

an unauthorized access to multiple services as clients frequently reuse their pass-

words [50, 153, 165]. It has been long known that weak passwords are one of the

leading causes for system break-ins [44].

Possession-based authentication (“something you have”) requires a client to demon-

strate possession of a certain device (e.g., hardware token, smart card, or a mobile

device) [92,158,180] in order to authenticate. This method is convenient as it relieves

clients from remembering passwords and allows for random passwords or crypto-

graphic techniques to be easily used. However, it imposes certain costs on clients to

obtain and maintain devices. This method fails if the device is lost or stolen. Clients

can then take action to revoke the compromised token to limit possible damage since,

unlike passwords, it not likely to go unnoticed.

Biometric-based authentication (“something you are”) uses biometric character-

istics (e.g., a fingerprint, voiceprint, or hand geometry) for identity verification [17,

56,103,105]. Biometrics offer multiple benefits including non-repudiation and ease of

use. Biometric data cannot be lost or forgotten and is constantly available. Certain
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biometric characteristics never change and can be measured quickly and unobtru-

sively. On the one hand, biometric data is unique to a person and therefore is an

excellent way to define client’s identity. On the other hand, the unchangability of a

biometric datum poses a serious risk if it is ever compromised.

All three categories of authentication methods have their own advantages and

disadvantages, and all have been extensively employed in different authentication

systems [88]. Passwords have been the method of choice for client authentication

for many years [122]. Even though they do not provide sufficient security guaran-

tees, passwords are used to grant access even to sensitive services such as online

banking or medical records. The following two examples abundantly illustrate the

implications of using password-based authentication. The compromise of LinkedIn

resulted in 6.5 million passwords were leaked online [50,164] while the outage of the

Sony Playstation Network put at risk personally identifiable information from over

77 million accounts [154].

Recently, in an attempt to improve this bleak situation, companies (e.g., Twit-

ter, Google, Microsoft [87, 116]) offer and in some cases mandate two-factor or even

multi-factor authentication [30], which requires a client to present two or more au-

thentication factors. This, however, does not represent a fundamental change in

how authentication is used to provide online identities [161]. Instead, the goal is

to strengthen the current process in response to the vulnerabilities in single factor

authentication. Fortunately, this new trend shows that companies understand the

need for better authentication and are willing to deploy them in practice.

2.1.2 Defining Authentication

In our daily online interactions, we are requested to prove our identity multiple times.

Entity authentication is a basic primitive that is employed to accomplish this task
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and is often used as a building block to provide security of larger and more complex

access control systems.

Below we present several such definitions proposed by others.

• Authentication is the process of establishing confidence in the identity of users

or information systems. Authentication protocol is a well specified message

exchange process that verifies possession of a token to remotely authenticate a

claimant. [30]

• Authentication is the process of determining whether someone or something is,

in fact, who or what it is declared to be. [143]

• Authentication is the process by which one entity (the verifier) is assured of

the identity of a second entity (the claimant) that is participating in a protocol

(Identity Verification Protocol). [187]

• Authentication is the process whereby one party is assured (through the acqui-

sition of corroborative evidence) of the identity of the second party involved in

a protocol, and that the second has actually participated (i.e., is active at, or

immediately prior to, the time the evidence is acquired). [132]

• Authentication is a communication process (i.e., a protocol) by which a princi-

pal establishes a lively correspondence with a second principal whose claimed

identity should meet what is sought by the first. [130]

• The goal of an authentication scheme is to allow someone’s identity to be

confirmed. [174]

As shown above, there is no uniform and widely accepted definition of authen-

tication. Moreover, the existing definitions are often either overly vague or overly
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specific to a particular scenario where authentication might be employed. Some def-

initions focus on select goals of authentication while others focus on select ways to

accomplish authentication.

Furthermore, authentication is sometimes mistakenly referred to as identifica-

tion [183]. Many definitions consider a case where authentication can be reduced to

identification, that is, the authenticating client must make a claim of and prove his

real-world identity. This approach has clear privacy implications: if a client must

always be identified before obtaining access to some resources, then his actions are al-

ways attributed to him, preventing any form of unlinkability or separation of actions

and identities, basic building blocks for privacy-preserving authentication solutions.

Consequently, the current understanding of authentication is clearly not sufficient

and requires careful treatment in order to design authentication solutions that fit

specific needs of clients and service providers.

2.2 Authentication and Privacy

The process of authentication relates to two main concepts, establishing and using

identities in the online space, both of which give rise to different privacy issues.

When a client creates a new identity (often referred to an account), she has

to supply certain information about herself. The type of information requested to

establish an identity depends on the application; however, increasingly often people

are asked to provide information regarding their real (or offline) identity in order to

establish a new online identity. In addition to the usual email address and password,

this information may include phone number, physical address, credit card number,

date of birth, etc. While for many applications this kind of information is relevant

and often necessary, people are still expected to provide it even for applications that
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do not require the new identity to be linked to an actual human being. Rather, the

information is unnecessarily collected and often used to create a “barrier to entry”

in order to solve problems orthogonal to authentication and authorization, such as

spam or misbehavior [80].

A client establishes a new identity during the enrollment process, when certain

information associated with a client is transferred to the newly created identity.

Some, but not all, of this information is later used to verify the client during her

attempts to gain access to a system or resource. For instance, a service that requires

a name, username, physical address, phone number, email address and password

during enrollment will typically only use the email and password for verification.

This, however, does not mean that there is a separation between the online and

offline identities of the client, based on the limited information used for verification of

the identity. On the contrary, each action a client performed using an authenticated

online identity is linked to and can be attributed to the offline identity.

An identity is not a static concept. Rather, an identity is an ever-evolving set

of information about the client the identity belongs to. A newly-established identity

consists of the information revealed during the enrollment process. However, each

time a client uses such an identity, the service provider learns additional informa-

tion and often associates it with the identity, such as how often then client uses a

particular service, client’s specific actions or preferences.

We identify two main sources of information associated with an identity: the

enrollment process and the subsequent authentication process.

1. Enrollment Privacy. Information revealed during the enrollment process. This

refers to the information a client provides in order to establish a new identity

and information the provider gathers during this process.
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2. Authentication Privacy. Information revealed during the authentication pro-

cess. This refers to information acquired through the use of an identity. More

specifically, explicitly revealed information refers to new information knowingly

provided by the client. On the other hand, implicitly revealed information is

gathered from actions performed by a client under a specific identity, and may

or may not be known to the client.

Service providers choose to authenticate users for many reasons and have different

expectations about the outcome. Each application has its specific requirements as

to what the authentication process is supposed to accomplish, beyond the high-level

goal of “providing access to authorized users”. Specifically, different applications

will differently define “authorized users” depending on the level of verification or

“realness” (a correspondence to an actual human being) needed.

In some applications, checking the “realness” of an identity and then tracking

the activities performed by that identity is not only desirable but often required to

adequately provide the specific services. This includes applications providing access

to private information, such as a bank account or medical history. In this case, both,

the service provider and the client, wish to limit access only to specific individuals

and to know exactly who obtains access, what actions are performed, and when.

This class of applications requires a client to establish and use an online identity

which corresponds to a unique offline identity.

In other applications, service providers can still perform their primary duty with-

out obtaining a lot of information about their clients. This is especially applicable

to cases where a client may need to establish an identity related to an offline identity

during enrollment but confirming the linkage is not necessary when the client au-

thenticates and uses the online identity. For example, subscription services such as

Netflix or Hulu want to provide access only to their subscribers (paying customers)
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and perhaps track individual viewer’s preferences. However, this does not necessarily

imply that a client must always identify himself in order to obtain the service. In

this case, identification is a sufficient mechanism to accomplish the service provider’s

goal but not always necessary. In fact, what the service provider needs is to know

that a client requesting access to the service is a paying customer and perhaps a

viewer with browsing history labeled 1234. While the service providers does not

learn John’s or Jane’s individual preferences, he can tell them apart as a paying cus-

tomer 1’s preferences and paying customer’s 2 preferences. This approach protects

clients by allowing them to keep their actions private without adversely affecting

service providers.

In yet another class of applications, it is not only undesirable but also not nec-

essary to link the established identity to each specific action performed under an

authenticated identity. Many applications use authentication to tackle problems

orthogonal to but easily addressed using authentication. For example, discussion fo-

rums struggle with Sybil attacks [63,175] (people obtaining multiple accounts), spam

(people posting irrelevant messages), and misbehavior (people posting inappropriate

content). As a counter measure, often referred to as “real name policy”, many ser-

vice providers require clients to create an identity and insist that the identity must

be reflective of an actual human being. However, in most cases a service provider

does not need to know specific offline identities of clients wishing to participate but

rather that the online identities created within the system will “behave” in a specific

way or possess specific characteristics (e.g., will obtain only one account, does not

have history of spamming message boards, has good reputation for posting good or

appropriate content).

Users who wish to lessen the effects on their privacy of creating and using online

identities, either minimize information provided during enrollment or even provide
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false information [118, 184]. However, this approach severely impacts the value of

such an identity from the provider’s point of view as it reduces the provider’s ability

to rely on it. Still, the benefits to the clients are not clear since provider’s still have

some abilities to track the client’s activity. Hence, neither the client nor service

provider receives full utility from authenticating online identities.

Perhaps a middle ground is needed, where authentication does not always result in

verifying an offline identity but in some cases only ensures that the client requesting

access possesses characteristics of an authorized user as defined by a service provider.

This approach, if implemented properly, would allow the provider’s needs to be met

while reducing information collected from clients.

2.3 Analysis, Concepts and Terminology

In this section, we provide analysis of relationships and definitions of terms related

to authentication and therefore identity management. Specifically, we define the

following terms: attribute, group, group identity, identity, enrollment, authentication,

identification, and identity management. Our goal is to provide clear and meaningful

definitions that are useful to clients for identity management and may serve as a

foundation for formal definitions needed for rigorous security analysis.

The main observation from the previous section is the fact that authentication

need not deal with verifying specific identities of clients or identification, but rather

verifying specific, desirable properties of clients.

The terms authentication and identification are often mistakenly used as syn-

onyms. Identification is also sometimes used to describe the process of a client

stating his identity, a step that precedes authentication defined as verifying this

identity. Intuitively, however, identification must mean more than merely declaring
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an identity and perhaps something more than what authentication is defined to be.

In order to tackle this issue, we start by defining basic terms. First, we will refer

to clients as entities. We treat an entity as an atomic term following an informal

definition that it is “something that exists by itself”. An entity might refer to subjects

(e.g., people, organizations), objects (e.g., computers, servers), or more abstractly

any resources. There should not be presumption of animation, although entities will

mostly refer to humans.

An entity may be described using one or more attributes. An attribute is a prop-

erty or a characteristic of an entity. Attributes my refer to the physical characteristics

of an entity but also any other (even intangible) characteristic such as a possession

of a certain password or a set of preferences. Some attributes may be easily change-

able (e.g., an address, affiliation) while other may be difficult (e.g., a name, driver’s

license number) or impossible (e.g., DNA) to change.

Definition 1. An attribute is a property of an entity.

An entity is described by one or more attributes. Because an entity can have

multiple attributes, those attributes may be grouped together to describe different

aspects of an entity. Entities may be grouped together too. A universe is a group of

entities and represents a specific application. For this reason, there might be many

universes and each entity might belong to more than one universe.

Definition 2. A group is a subset of a universe.

Some sets of attributes will uniquely define an entity within some universe while

others will not. However, each set of attributes specifies a possibly empty group

within a universe, namely the set of entities that have those attributes in common.

Definition 3. A group identity is a set of attributes.
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A group identity specifies the group consisting of exactly those entities satisfying

all attributes the in group identity. Some sets of attributes will specify a singleton,

a group with exactly one element. For this reason, this special set of attributes can

be viewed as a unique identifier or identity for that entity as it allows to distinguish

that entity from every other entity in the universe. We say that an entity is uniquely

specified by that identity.

Definition 4. An identity is a group identity that specifies a group with exactly one

entity.

While an entity is unique to an identity, each entity can have more than one

identity, depending on a specific set of attributes used to describe it. While it is

easy to mistakenly believe that we each have only one identity, in fact, we can be

distinguished from others using different sets of attributes, depending on the set of

entities we are being compared to. For instance, a person can be identified by {name,

driver’s license number} on a state level (all other people from the same state) but

by {name, passport number} or {name, driver’s license number, state} on a federal

level (all other people from the entire country).

Within a universe, each entity is associated with a certain set of attributes. The

process of associating these attributes with an entity is performed during the enroll-

ment process. The specifics of this process depend on the type of attribute and the

application.

Definition 5. An enrollment process is a process of establishing a set of attributes

of an entity run between a verifier and that entity.

In this context, we can view authentication as a process that deals with attributes.

In fact, this process verifies that some entity or entities indeed possess a certain

attribute or a set of attributes. Above, we already distinguished between different
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sets of attributes: those that uniquely define an entity (identities) and those that

define groups of entities (group identities). Intuitively, the process of proving an

identity carries a different meaning than a process of proving a group identity.

If an entity wants to prove a specific identity, it must prove it possesses all at-

tributes of that identity. There are some attributes we often view as associated with

identities more than others. That is, attributes that are more likely to uniquely

identify an entity. Name or social security number are examples of these attributes.

We may call this special type of attribute an identifying attribute or identifier, which

can serve as a label for some identity but may or may not be sufficient to define it.

In general, authentication is not limited to verifying attributes of an identity.

Rather, authentication verifies some attributes of an entity, which may or may not

define an identity. Therefore, we can view authentication as the process of verifying

one or more attributes of an entity.

If the set of attributes does specify an identity, then we call the process of verifying

these attributes identification. If these attributes do not specify an identity, it means

that there may be more than one entity that possesses these attributes. Because these

entities share these attributes, they also are associated with the same group identity.

Therefore, either a set of attributes points to a single entity, in which case this set

forms an identity and the process of verifying these attributes results in identification,

or a set of attributes points to a group of entities and the process of verifying these

attributes results in authentication. This gives us the following definition.

Definition 6. Authentication is a process, run between an entity (a prover) and a

verifier, of verifying membership in a group.

In practice, a prover is a person. However, we do not distinguish between per-

sons and devices as mentioned before. The process of verifying membership in a



27

group refers to any process that allows a verifier to confirm that an entity indeed

possesses attributes that specify a group identity. Depending on the application, this

process may even be implemented using the standard approaches to authentication,

as described in Section 2.1.1.

Hence, a successful verification process puts the verifier into a knowledge state,

in which it is true that a client is a member of a group or the process fails. This

gives the verifier the ability to distinguish every entity that belongs to a group from

any entity not in that group. If the process fails, the verifier does not know if a

particular entity belongs to a group or not because of insufficient evidence presented

to the contrary.

Since identification, unlike authentication, is strictly concerned with verifying

identities (sets of attributes that form them), it becomes a special case of authenti-

cation. Specifically, authenticating into a group of entities of size 1 results in identi-

fication of a particular entity through claiming a particular identity and proving the

possession of attributes that specify it.

Definition 7. Identification is a process, run between an entity (a prover) and a

verifier, of verifying membership in a group that has exactly one element.

Given the above definitions, authentication refers to claiming a group identity

while identification refers to claiming an identity. This approach offers immediate

privacy and identity management benefits but also allows us to provide a more con-

crete definition of identity management.

Definition 8. Identity management is process performed by an entity of manag-

ing attributes defining identities and group identities of that entity across different

universes.

Privacy issues arise when a service provider uses identification as means to ac-
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complish authentication. Often, authentication as outlined above — ensuring prop-

erties of authorized clients without uniquely identifying them — sufficiently meets

the needs of the provider. On the other hand, there are many applications where

identification is needed. It is critical for effective identity management to distinguish

between these two cases and apply authentication and identification appropriately.

Identification prevents unlinkability of actions performed under some identity

and the corresponding entity since identification creates a link (action — identity —

entity). If a client’s authentication results in her identification, then each action she

performs is linked directly to her. Similarly, authentication provides unlinkability of

actions and a specific entity because authentication results in a link (action — group

identity — group of entities).

If a client authenticates and therefore assumes a group identity, then the actions of

a particular client are linked to the group identity since the client is indistinguishable

from other clients that use the same group identity. Moreover, authentication still

ensures authorized access but defines authorized clients in terms of specific attributes

they need to possess as opposed to specific identities.

The benefits for identity management are clear. A client can consider an au-

thentication scheme with respect to the privacy protection it provides during the

enrollment (which attributes are required) and the authentication phases (the abil-

ity to use identities and group identities).

In the next two chapters, we provide two protocols for authentication. One that

implements identification (PrivateEyes, Chapter 3), a special case of authentica-

tion, and one that implements authentication (DAGA, Chapter 4). Both protocols,

however, implement their respective goals in a privacy-preserving manner.



Chapter 3

PrivateEyes: Secure Remote

Biometric Identification1

This chapter presents PrivateEyes, a secure remote identification protocol.

3.1 Introduction

A major problem facing the Internet is “the reliance on passwords to authenticate

users” [70]. The drawbacks of passwords have long been known [110]. Weak pass-

words are easily guessed; strong passwords are difficult for users to remember and to

supply when required. In addition, username and password data must be somehow

protected when sent over the network and stored on a server since once compromised,

they are sufficient to impersonate the legitimate user.

Combining biometrics with cryptographic authentication schemes is an attractive

alternative to password authentication [71], an approach supported by the FIDO

(Fast IDentity Online) Alliance, a non-profit organization formed to promote easier

1Portions of the research reported in this chapter were done in collaboration with Michael J Fis-
cher, David I Wolinsky, Abraham Silberschatz, Gina Gallegos-Garcıa, and Bryan Ford. Preliminary
versions of this work have appeared in [178] and [179].
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to use and stronger authentication. FIDO works closely with dozens of prominent

industry partners (e.g., Bank of America, Google, Visa, RSA) and strives to reflect

the current needs and expectations of the authentication process, from clients and

services alike. In their approach, a secret key, stored on the user’s local device,

is used with a challenge-response protocol to authenticate securely to the server.

Biometrics are used to prevent the local device from being activated by any but the

legitimate user. However, the user’s device stores secret information, which becomes

problematic when the device is compromised.

Especially sensitive in any biometric scheme is the user’s biometric data which, if

compromised, can subsequently be used by an attacker to impersonate the individual

to whom it belongs. Unlike passwords, biometric data cannot be changed, so once

compromised, it becomes useless as an authentication factor.

Many techniques exist for extracting data stored on a device’s internal memory,

even from so-called “tamper-resistant” devices [8, 9]. One must assume that an

attacker who steals or otherwise gains physical possession of the user’s device also

obtains the entire contents of the device’s internal memory, including any secret keys

and biometric data stored therein. Therefore, the user’s biometric data must not be

stored on the user’s device in any form that would allow an attacker to reconstruct

it. Similar considerations apply to the server, which also must protect the user’s

biometric data even in the face of a total compromise.

3.2 Overview

We propose an efficient remote biometric identification2 protocol that gives strong

protection to the user’s biometric data in case of two common kinds of security

2 Following Definition 7, we use the more precise term identification instead of commonly (mis-
)used term authentication. See Chapter 2 for a detailed discussion of this issue.
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breaches: a full client compromise or a full server compromise. Our scheme also

allows the creation of multiple unlinkable personas in much the same way as with

passwords. (See Section 3.5.1.)

Our two-factor protocol can be combined with a broad class of existing biometric

identification schemes to protect the privacy of the user’s biometric data and the

template derived from it. It works with any biometric scheme where the result of

feature extraction can be represented by a binary feature vector, and the matching

criterion for two feature vectors is based on their Hamming distance.3 The user’s

device (or token) can insist that a scan of a biometric feature be performed each

time before beginning an identification round, ensuring that the presented biometric

template is fresh.

The token stores only an encrypted form of the reference biometric template,

which we call the blinded template. This keeps the biometric data safe even if the

token is compromised. The encryption is performed by computing the XOR of the

biometric template with a random blinding factor that is stored only on the server.

How this is accomplished is the heart of our protocol and is described in Section 3.4.

Since the blinding factor is random and carries no information about the actual

biometric template, the biometric data is safe even if the server is compromised.

Only if both token and server are simultaneously compromised is the user’s biometric

data vulnerable to exposure.

In order to perform the identification protocol, the user provides a fresh biometric

sample. A new template is constructed immediately from the fresh scan and then

XORed with the blinded template. The result is a blinded difference vector, that

is, a vector that is the XOR of the original template, the fresh template, and the

3The Hamming distance between two bit vectors is the number of indices in which the two
vectors differ.
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blinding factor. The blinded template is then sent to the server, which unblinds it to

reveal the difference vector between the two templates. The server then counts the

number of “1” bits in the difference vector to obtain the Hamming distance between

the two templates, which it then compares against the acceptance threshold of the

underlying biometric scheme in order to establish the user’s claim of identity.

Note that the blinded template itself never leaves the token. It is used only to

construct the blinded difference vector, which is sent to the server. Thus, even a

compromised server that watches a valid identification attempt can learn only the

difference between the two templates; not either of the templates themselves.

The scheme just described is not secure against replay attacks. An eavesdropper

who records the blinded difference vector could subsequently present it to the server

and have it accepted as valid.

To overcome this problem, our protocol changes the blinding factor after each

successful identification, similar to the way a rolling code used to protect some keyless

entry systems from replay attacks [191]. The idea is that both token and server use

synchronized pseudorandom number generators to produce a sequence of blinding

factors that changes after each identification round. Only if the current blinding

factors match can the identification succeed.

The rest of this chapter is structured as follows. Section 3.3 discusses biometric

identification. Section 3.4 presents our protocol and Section 3.5 provides several ex-

tensions. Section 3.6 analyzes its security properties. Section 3.7 discusses issues that

arise in deploying our protocol. Section 3.8 describes a prototype implementation

and a performance evaluation of our protocol.
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3.3 Biometric Identification

Biometrics have been long recognized as an excellent building block for identifica-

tionidentification protocols. Biometric identification offers a higher level of confi-

dence that users are who they claim to be as well as great convenience and usabil-

ity as it relieves users from the need to remember multiple user names and pass-

words.identification Biometric identification uses unique characteristics of a human

body to verify the identity of a person. There are two types of biometric characteris-

tics suitable for biometric identification: physiological (face geometry, fingerprint, iris

pattern, etc.) and behavioral (voice print, keystroke characteristics, gait, etc.) [129].

Biometric characteristics suitable for identification purposes should be universal (ev-

ery person should have it), unique (it should be different for every person), permanent

(it should not significantly change with time), and collectable (it must be possible

to quantitatively measure it) [47]. Such characteristics are exceptionally suitable for

identification purposes as they uniquely identify people and persist over time. Addi-

tionally, biometric data is constantly available and it also cannot be lost or forgotten.

However, the uniqueness of biometric data is also a source of security and privacy

concerns. Unlike passwords and other knowledge-based factors, biometric data can-

not be reset or changed. Therefore, if compromised, it is potentially unusable for

identification purposes and can be used to successfully impersonate an individual.

Additionally, user’s unique identity is embedded into a biometric template and if

used across difference service providers, it may allow to track and linked together

user’s actions over different transactions. For these reasons, the security of biometric

data has become an important issue.
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3.3.1 Remote Biometric Identification

A biometric system typically consists of five components: a sensor, feature extractor,

template database, matcher, and a decision module. A sensor obtains a biometric

sample, which the feature extractor uses to derive a biometric template. During the

enrollment phase, a client enrolls into a system by creating a reference biometric

template, a template that will be used during subsequent identification to verify the

client’s identity. The reference template is stored in a template database. During the

identification phase, the client obtains a fresh biometric template that the matcher

compares to the reference template. The decision module uses the output of the

matcher to decide whether to accept or reject the client’s claim of identity.

Each component has its specific vulnerabilities that can affect the security of

the system. A sensing device might be fooled to read a biometric sample not from

a person but an artifact, such as a fake finger. If a feature extractor does not

properly work, it can generate very similar biometric templates for different users

despite the differences in their biometric characteristics. A matcher might calculate

a high match score for two very different templates or a decision module might

not be sensitive enough to reject templates which are not sufficiently similar to the

reference template. Lastly, if a template database is not secured, then biometric

templates might be compromised. [105]

An attacker may choose to exploit individual system components or the communi-

cation channels between them [105,151]. Such attacks affect the security of a system

to a different degree, depending on the way biometric identification is performed:

remotely or on a stand-alone system (in a so called kiosk setting)

Biometric identification is a kiosk setting is performed in person. All or most

system components are in same physical location and the process is often supervised
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by humans. The biometric data is obtained and verified from the user on the spot.

This protects the biometric data from an unauthorized use and exposure, however,

it is only suitable for limited applications, such as entry systems. Disney World has

been using hand-geometry to prevent customers from reusing the same season ticket

for many years. The United Arab Emirates have deployed iris-based verification in all

ports of entry for immigration purposes. India’s national biometric ID program has

so far has enrolled about 550 million residents and aims to cover entire population

of 1.25 billion in a few years. Interestingly, using biometrics for identity verification

in not a new idea: iris-scan technology has been piloted in ATM environments in

the US, England, Japan and Germany since 1997. Unfortunately, we cannot simply

apply the same techniques in the remote scenario, where the user and the server are

in a different physical location.

Remote biometric identification refers to the process of performing a biometric

identification protocol over a network. This approach makes the identification process

more universal and flexible as the parties can be in different physical locations. How-

ever, system components are typically distributed between the proving and verifying

party. In order to perform remote identification, biometric data must be transported

over the network and biometric templates must be kept by the verifying party, which

raises several security and privacy issues.

3.3.2 Security and Privacy Issues

The perception and acceptance of biometric systems significantly depends on the

security of biometric data [7, 66]. However, the uniqueness of biometric data, a

cherished feature of biometrics, is also a source of security and privacy concerns.

A biometric template derives from characteristics, which uniquely identify an in-

dividual, and as mentioned before cannot be changed. The template has the user’s
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identity “embedded” into it and therefore there are limited defenses in case of com-

promise [148]. Typically, the proving party makes the biometric template available

to the verifying party for the purpose of comparison. In case of remote identifica-

tion, this poses a risk of serious attacks in which biometric data is intercepted during

transmission, stolen from the verifying party or even misused by the verifying party.

From the security point of view, once compromised, biometric data has limited

utility for identification purposes as it is sufficient to impersonate an individual. The

privacy issues are two fold. Firstly, a biometric template, in addition to defining a

user’s identity, carries considerable personal information, which often include race,

gender and certain medical conditions [134]. Secondly, a biometric template can be

used to identify an individual and successfully track and link his or her activities

performed using the same biometric identity across different verifying parties.

For these reasons, biometric templates security has become a crucial issue result-

ing in a high level of awareness and concern [141]. Users expect that the verifying

parties protect their biometric data and use them only for the purpose provided [17],

in order to prevent identity theft, information linkage across different providers, and

secondary uses of supplied information [133].

There are two major factors that play an important role to template security:

the way a biometric template is generated from a biometric sample and the location

where the template is stored. Attacks on templates can lead to many vulnerabilities:

a template can be replaced by an attacker’s template to gain unauthorized access,

biometric data can be retrieved from the template, or the stolen template can be

replayed to the matcher [104].

There are four main locations for storing biometric templates: portable tokens,

central databases, sensors, and individual workstations [144], with the two former

being the most popular options. A portable token, for example, a smart card or
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mobile device, allows users to secure their biometric templates and gives them a

sense of control over their personal data. However, issues arise when tokens are lost

as their content is usually unsecured. A central database makes it possible for users

to easily authenticate from multiple locations because the templates are constantly

available for verification. Such a database, however, needs to be kept secure and

may become a target of attacks because of its valuable content. Furthermore, central

storage of templates causes privacy concerns because all identification attempts go

through a single point, potentially revealing users’ actions. Storing templates directly

on a sensor used to obtain biometric samples provides for quick responses during

identification attempts. However, each sensor needs to store a copy of templates to

allow multiple location access. Individual workstations offers the benefits of storing

templates on tokens and sensors. Users are still in charge of their own personal data

and templates are available where the user would mostly use them. The downside

is the security of the workstation which is typically much lower than what a central

database would offer.

3.4 Protocol Description

In this section, we give a full description of the protocol that is described informally

in the previous section. In particular, we describe the enrollment phase, the iden-

tification phases, and the resynchronization method that is needed to recover from

failed identification attempts.

The identification process is performed over a network between an authenticating

party (Peggy, the user) and a verifying party (Victor, the server).

The protocol requires a pseudorandom number generator G “ pm,S, ι, δ, ρ, nq

whose arguments are the length of the seed m, a finite set of internal states S, an
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initial-state function ι which maps a seed z to a state s0 P S, a next-state function

δ, and an output function ρ, which produces n-bit values. We assume that δ is a

permutation on S. G is used during the protocol to generate a sequence s0, s1, s2, . . .

of states and a corresponding sequence r0, r1, . . . of pseudorandom numbers. These

in turn are used to generate a sequence of blinding factors R0, R1, R2, . . .. More

formally, s0 “ ιpzq, and for each k ě 0, rk “ ρpskq, Rk “ ‘
k
j“0rj, and sk`1 “ δpskq.

3.4.1 Enrollment Phase

During the enrollment phase, Peggy and Victor cooperate to create Peggy’s creden-

tials and to establish the shared protocol information.

The public information includes the choice of a biometric characteristic, a feature

extractor that produces a biometric template, an appropriate matching metric on

templates, and an appropriate pseudorandom number generator G. Our protocol

assumes the template is described by a Boolean vector, and the matching metric is a

function of the difference between templates. It assumes that G is cryptographically

secure and backtracking resistant. (See Section 3.6.1 for definitions.)

Since our protocol is a two-factor scheme, Peggy needs to obtain a token on which

to store her blinded biometric template and the state of the pseudorandom number

generator. Section 3.7.2 discusses the issue of tokens and obtaining them.

Peggy and Victor also need to obtain a shared secret z to be used as the seed

for G. The seed needs to be established in a secure manner in order to keep the

sequences of blinding factors secret and the blinded template secure. How the seed

is obtained will depend on the enrollment method. With face-to-face enrollment,

Victor can generate the seed and give it to Peggy. For remote enrollment, the secret

seed can be exchanged using one of the schemes to establish a shared secret, for

example a key agreement protocol [84]. Alternatively, Victor can generate the seed
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and send it to Peggy through a secure channel.

To continue the enrollment, Peggy and Victor initialize G using seed z. Peggy

obtains a biometric sample using an external sensor or a sensor built into the token

depending on the kind of token she chose as described in Section 3.7.2. She next

generates a reference template Pref . She then blinds Pref with the first blinding factor

R0 “ r0 generated using G to produce the blinded template T0 “ Pref ‘ R0. This

process binds Peggy’s biometric identity to the secret seed z established with Victor.

Victor meanwhile uses G to generate the blinding factor R0, which he stores for

future use. Both Peggy and Victor store the next state s1 of G. Finally, Peggy

securely erases her raw biometric data, the unprotected template, the secret z, the

first blinding factor r0, and the first state s0 of G. Similarly, Victor securely erases

the secret z and the first state s0 of G.

Algorithm 1 shows the steps of the enrollment process in detail.

3.4.2 Identification Phase

Peggy and Victor run the identification phase each time Peggy wishes to prove her

identity to Victor. We number the identification phases in sequence, starting with

1, and we denote the current phase number by k. Neither Peggy nor Victor need

to know the current phase number in order to carry out the protocol, but we use

the phase number to distinguish the values available to Peggy and Victor during the

phase. Thus, at the start of phase k,

• Peggy’s token stores Tk´1 “ Pref ‘Rk´1 and sk.

• Victor stores Rk´1 “ ‘
k´1
j“0rj and sk.

In order to authenticate, Peggy obtains a fresh biometric sample and generates a
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Algorithm 1 Enrollment Phase

1. Peggy obtains a token. Peggy and Victor agree on non-secret identifica-
tion information: the biometric recognition protocol and the choice of G “

pm,S, ι, δ, ρ, nq, where m defines the length of the seed, S is the finite set of
states of the generator, ι is the initial-state function, δ is the next-state func-
tion, ρ is the output function, and n is the length of biometric templates.

2. Peggy and Victor securely exchange a random seed z P t0, 1um.

3. Peggy and Victor both initialize their generator G to the initial state s0 “ ιpzq.
They use G to generate the first random number r0 “ ρps0q and the next state
s1 “ δps0q of G.

4. Peggy obtains a biometric template Pref , computes the first blinding factor
R0 “ r0, and creates a blinded template T0 “ Pref‘R0, where ‘ is the bit-wise
exclusive-OR operation. She securely erases z, Pref , R0, r0, and s0. She keeps
T0 and s1 on her token.

5. Victor computes the first blinding factor R0 “ r0. He securely erases z, r0, and
s0. He retains R0 and s1 in private storage.

To summarize, after the enrollment phase:

• Peggy’s token stores T0 “ Pref ‘R0 and s1.

• Victor retains R0 “ r0 and s1.

new template Pk from it. She then calculates an identification message

Wk “ Pk ‘ Tk´1 “ pPk ‘ Prefq ‘Rk´1.

Peggy sends Wi to Victor for verification.

Without waiting for a response from Victor, she immediately updates her token.

She uses G to compute rk “ ρpskq and sk`1 “ δpskq. She then computes

Tk “ Tk´1 ‘ rk “ Pref ‘Rk´1 ‘ rk “ Pref ‘Rk.

Finally, she securely replaces Tk´1 with Tk and sk with sk`1, and she securely erases
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Wk and all other temporary data from memory. By updating after each identification

attempt, successful or not, she ensures that the same blinding factor is never used

more than once.4

Upon receiving Wk from Peggy, Victor removes the blinding factor Rk´1 to obtain

the difference vector Vk “ Pk ‘ Pref . He applies the matching metric of the under-

lying biometric system to Vk in order to decide whether or not to accept Peggy’s

identification attempt as valid.

If valid, he updates his stored information. Using G, he computes rk “ ρpskq and

sk`1 “ δpskq. He then computes Rk “ Rk´1 ‘ rk. Finally, he securely replaces Rk´1

with Rk and sk with sk`1, and he securely erases all temporary data from memory.

3.4.3 Resynchronization

A legitimate identification attempt might fail for many reasons, for example, because

Peggy’s message never reaches Victor, or because of poor feature extraction by Peggy,

or because of Victor’s not storing the updated blinding factor before going offline,

or because of intentional malicious identification attempts by an adversary. In such

cases, Peggy advances her generator but Victor does not. This will leave Victor

unable to unblind Peggy’s future messages.

Peggy’s and Victor’s generators must be resynchronized in order for identifications

to continue. Because Peggy updates her blinded template Tk after each identification

attempt and Victor does so only after a successful identification, if the generators

are out of sync, Peggy’s generator will be ahead of Victor’s. A simple solution is for

Victor to search forward in the sequence produced by G for some limited predefined

distance looking for a blinding factor Rk1 that leads to a successful identification

4This prevents an attacker from obtaining useful information from differencing two identification
messages Wi and Wj . If they both used the same blinding factor T , the blinding factor would cancel
out, and an attacker could compute Wi ‘Wj “ pPi ‘ T q ‘ pPj ‘ T q “ Pi ‘ Pj .
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using Peggy’s current identification message Wk. After finding the correct value of

Tk, both generators will again be in sync. Such a scheme is called a rolling code

and is widely used in keyless entry systems [191]. Alternatively, Peggy and Victor

can both keep track of the current stage of their generators, and Peggy can send

it to Victor along with her identification message. Both of these schemes can be

exploited by an adversary if the distance that Victor is allowed to advance during

resynchronization is not reasonably limited.

Algorithm 2 shows the steps of the identification process in detail.

Algorithm 2 Identification Phase

1. Peggy obtains a biometric sample and generates a fresh biometric template Pk.

2. Peggy calculates Wk “ Pk ‘ Tk´1 and sends Wi to Victor.

3. Peggy uses G to compute rk “ ρpskq and sk`1 “ δpskq. She then computes
Tk “ Tk´1 ‘ rk. She securely replaces Tk´1 on her token with Tk and sk with
sk`1, and she securely erases Pk, Wk, rk, and sk from her token.

4. Victor, upon receiving Wk, computes the difference vector Vk “ Wk ‘ Rk. He
passes Vk to the matching algorithm and accepts Peggy’s identification attempt
if the match is sufficiently good.

5. If the identification attempt succeeds, Victor uses G to compute rk “ ρpskq
and sk`1 “ δpskq. He then computes Rk “ Rk´1 ‘ rk. He securely replaces
Rk´1 with Rk and sk with sk`1 in memory, and he securely erases rk, and sk.

To summarize, at the end of identification phase k:

• Peggy’s token stores Tk “ Pref ‘Rk and sk`1.

• Victor retains Rk “ ‘
k
j“0rj and sk`1.

3.5 Extensions

In this section we describe three possible extensions of our main protocol. First,

we discuss how our protocol can be used to establish independent identities (per-
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sonas). Second, we explore using digital signatures as a defense against a possible

impersonation attack in case of a server compromise. Finally, we discuss further

minimizing information leakage during the verification process through the use of

privacy-preserving private set intersection techniques.

3.5.1 Personas

In case of password authentication, during enrollment, the user creates a username

and password, with the username as the unique user identifier and the password as

the authentication factor. To authenticate, the user presents his credentials and the

server verifies that they match with the data presented at enrollment time. Passwords

permit the user to create multiple unlinkable personas, or identities, that be used

with different services. One simply chooses a different username and password for

each service.

Many biometric identification protocols create user’s identification credentials

directly based on a biometric template. As a result, if a user chooses to enroll with

multiple verifying parties using the same biometrics, then these verifying parties

can identify the user and successfully track his activities performed using the same

biometric credentials or credentials based on the same biometric features.

In our protocol, credentials are based on a user’s unprotected biometric template

but with respect to the blinding factors known to the verifying party. Therefore,

a user can create multiple, fully independent personas. Each persona is based on

the same biometric data but on a different secret shared with a verifying party.

Therefore, a persona represents a user’s unique identity as seen by the verifying

party. Users can create different personas to deal with multiple verifying parties, or

use personas for different transactions with the same verifying party. This creates a

separation and unlinkability of biometric identities and transactions performed using
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those identities. The user must perform the enrollment process once for each persona,

choosing a new secret for each. Policies and procedures controlling the enrollment

process would determine how many and what types of personas a user may acquire.

3.5.2 Digital Signatures

We consider the previously described case when Mallory compromises Victor and

therefore obtains his entire secret state. Specifically, Mallory gets the sequence of all

blinding factors needed to unblind Peggy’s next identification message. This gives

Mallory enough information to prepare a message on Peggy’s behalf and effectively

impersonate her.

This attack is easily prevented by the use of digital signatures. During the enroll-

ment phase, Victor obtains Peggy’s public verification key Kpub which corresponds

to a private signing key Ksec. During the identification phase, Peggy signs her iden-

tification message Wi using Ksec. Victor only processes messages that are properly

signed. If Mallory chooses to send an identification message without a valid signa-

ture, Victor will reject it and decline Mallory’s request since Mallory cannot produce

valid signatures without Ksec.

3.5.3 Private Set Intersection

Our protocol allows Victor to make an identification decision based on a match

function calculated from the difference vector between Peggy’s reference template

and a fresh template. Peggy securely computes the blinded difference vector and

sends it to Victor who decrypts it and uses to make an identification decision. This

approach leaks the additional information of which positions of the difference vector

differ—information that could conceivably be useful to an attacker.
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We consider the use of private set intersection (PSI) techniques [72] for directly

calculating the output of the match function. Private set intersection techniques

allow two parties holding private input sets to calculate the intersection of their sets

(elements they have in common), or the intersection set cardinality (the number of

common elements), or simply whether the intersection set cardinality exceeds a fixed

threshold. All this can be done without revealing anything else about their private

inputs.

These techniques are directly applicable to our verification process. We envision

using the PSI cardinality protocol [72] enriched with an encoding mechanism to

calculate the difference score without giving Victor access to the binary difference

vector. Using a PSI protocol would offer a greater protection against even minimal

information leakage but it would come at a computational cost at least Opk log log kq

and communication cost Opkq, where k is the size of the template in bits. Trading

performance for enhanced protection may be justified in situations which require

preventing even minimal information leakage.

3.6 Security Analysis

Our main goal and concern is the security of biometric data, not only under normal

use of the protocol, but also in case of complete compromise of either Peggy’s token

or Victor’s entire internal state. In addition, our protocol prevents an attacker who

compromises Peggy’s token from impersonating her to Victor.

We note that if an attacker compromises both Peggy and Victor, then Peggy’s

biometric template is easily obtained. Peggy’s token contains her blinded template;

Victor has the blinding factor. It is needed to unblind the difference vector, but it

will also unblind the template stored on the token.
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3.6.1 Assumptions

Peggy and Victor interact over a network, possibly in the presence of a computa-

tionally bounded adversary (Mallory, the malicious adversary). In addition to eaves-

dropping on all communication between Peggy and Victor, we assume that Mallory

can talk directly to Victor in an attempt to impersonate Peggy. In addition, Mallory

might actively attack either Peggy or Victor but not both.

In an attack on Peggy, Mallory takes possession of Peggy’s token and obtains

access to all of the data stored on it. Peggy detects the attack since her token is

physically gone. Nevertheless, our protocol guarantees that Peggy’s biometric data

remains secret and Mallory cannot impersonate Peggy to Victor.

In an attack on Victor, Mallory compromises Victor and gains access to all of his

data. Victor does not necessarily detect the intrusion. He continues processing iden-

tification requests, and Mallory sees everything that happens on the server. In this

case, Peggy’s biometric data still remains secret, but Mallory can easily impersonate

Peggy to Victor. This can be prevented by using digital signatures as described in

Section 3.5.2.

We assume that all communication occurs over an unsecured channel, so after

k identification attempts, Mallory knows the identification messages W1, . . . ,Wk,

which are blinded differences between pairs of biometric templates. Thus, Mallory

has the following information.

W1 “ P1 ‘ T0 “ P1 ‘ Pref ‘ r0

W2 “ P2 ‘ T1 “ P2 ‘ Pref ‘ r0 ‘ r1

W3 “ P3 ‘ T2 “ P3 ‘ Pref ‘ r0 ‘ r1 ‘ r2

¨ ¨ ¨ ¨ ¨ ¨

Wk “ Pk ‘ Tk´1 “ Pk ‘ Pref ‘ r0 ‘ ¨ ¨ ¨ ‘ rk´1
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Furthermore, we assume that the sensor Peggy uses to obtain biometric samples

does not directly reveal her biometric data to Mallory, prior to his possible compro-

mise of Peggy’s token. We also assume that Peggy does not use her token after it has

been compromised. Similarly, we assume that the communication channel between

the sensor and the token is trusted.

The security of our protocol depends critically on the pseudorandom number

generator G, which we assume is cryptographically secure and backtracking resistant.

We also assume that the secret seed z and the unprotected reference template Pref

are securely erased after enrollment and are not available to Mallory.

To be cryptographically secure means that the sequence of outputs are compu-

tationally indistinguishable from a similar sequence of truly random numbers. The

notion of computational indistinguishability, introduced by Yao [194], means that

any probabilistic polynomial-time algorithm behaves essentially the same whether

supplied with pseudorandom inputs or truly random inputs. See Goldreich [83] for

further details.

To be backtracking resistant means that it is not feasible to run G backwards

from a given state to recover previously-generated values.5 More formally, it means

that the sequence r0, . . . , rk is computationally indistinguishable from a truly random

sequence of the same form, where the distinguishing judge also has access to sk`1.

Cryptographically strong pseudorandom number generators that are resistant to a

previous-outputs backtracking attack exist and are proven to be secure [14].

For our protocol, backtracking resistance protects the biometric reference tem-

plate from an attack where Mallory obtains the token and has access to the blinded

reference template Tk and the state sk`1 of G. Backtracking resistance prevents

5Note that the previous values are well defined since we assume the next-state function δ is
a permutation on S. Among other things, backtracking resistance implies that δ is a one-way
permutation.
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Mallory from running the generator backwards from sk`1 to obtain rk, rk´1, . . . , r0

from which the blinding factor Rk and the reference template Pref “ Tk ‘ Rk could

be computed. The same protection holds even if Mallory has prior knowledge of

r0, r1, . . . , rk´1 (which she might) but not rk.

3.6.2 Security of Biometric Templates

Mallory compromises Victor

We assume that Mallory can compromise Victor at any time and remain undetected.

If she compromises him at phase k, she learns the current blinding factor Rk and

the next state of the generator sk`1. This enables her to compute the future random

numbers rk`1, rk`2, . . . and the future blinding factors Rk`1, Rk`2, . . .. Clearly, she

learns the most by compromising Victor at the very beginning, in which case she

recovers the exact same information that Victor receives from Peggy. From this, she

can learn all of the difference vectors, V1, V2, . . ..

The usefulness of the difference vectors depends on the underlying feature ex-

tractor. Ideally, we want a feature extractor that produces templates on repeated

scans of the same biometric that lead to small false rejection rates. When the match

function is based on the Hamming distance between two templates, small false re-

jection rates imply that most difference vectors approximate the zero vector. Hence,

Mallory only learns vectors in the neighborhood of 0. In any case, we can say that

Mallory has no other information about the template since Peggy sends nothing else

besides the blinded difference vectors.
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Mallory compromises Peggy

When Mallory obtains access to Peggy’s token, she learns the current blinded refer-

ence template

Tk “ P ‘ r0 ‘ r1 ‘ ¨ ¨ ¨ ‘ rk´1 ‘ rk

and the next state of the generator sk`1. This new information is in addition to

all identification messages W1, . . . ,Wk sent up to that point which we assume she

already knew.

Tk looks random to Mallory because of the blinding factor rk, which she does

not know. It was securely erased from the token when Tk was updated, and it was

never included in any of the messages sent. Additionally, rk cannot be recovered

using the stored state sk`1 of G and r0, . . . , rk´1 (assuming they are known) since G

is backtracking resistant and cryptographically secure. Thus, Mallory cannot obtain

any information about the blinding factor Rk, so neither Tk nor sk`1 give Mallory

any information about Pref .

We assume that Peggy’s token is not compromised at the moment she is using it,

since for a brief interval, the token contains her unprotected biometric template as

well as data from both stage k ´ 1 and stage k.

3.6.3 Impersonation

Mallory compromises Victor

As before, when Mallory compromises Victor, she getsRk and sk`1. Rk is the blinding

factor needed to unblind the next identification message. Therefore, Mallory might

be able to prepare a fake message W 1
k so that verification will succeed from Victor’s

point of view. Section 3.5.2 discusses a practical defense against this attack.



50

Mallory compromises Peggy

As before, when Mallory compromises Peggy, she gets Tk and sk`1. We argued in

Section 3.6.2 that her compromise of Peggy’s token does not give her any information

about Pref or Rk. Hence, she gets no information that would allow her to impersonate

Peggy.

3.6.4 Leakage of Information

During each identification attempt, Victor receives a difference between two biomet-

ric templates. If he has been compromised, then Mallory also receives this informa-

tion. Unlike the case of a compromise of Peggy, we assume that the compromise of

Victor might be undetected so that Mallory can collect data over time from legitimate

identification requests.

After a number of such identifications, Mallory has a set of differences between

Peggy’s templates. Those differences are binary vectors of differences between Peggy’s

reference template and the sample template used on a given identification. A differ-

ence bit of 1 indicates a discrepancy between the reference and the sample templates.

The frequency of 1’s in any given bit position represents the unreliability in that

position of the template. A low-frequency position indicates a reliable bit; a high

frequency position means that little useful information is being carried by that bit.

Mallory can compute these frequencies and thereby learn about the reliability of

each bit in the template. What information these frequencies carry about the actual

reference template or Peggy’s raw biometric data depends in detailed properties of

the sensor as well as the feature exaction algorithm. Although analyzing this kind

of information leakage for any particular sensor and feature extractor is beyond the

scope of this paper, it is well to keep in mind this possibility in designing biometric
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systems.

Low-frequency bits can arise equally well from 0’s in both reference and sample

templates or from 1’s in both, so knowing that it is low frequency says little about the

actual template bit. With a good feature extractor, we expect most difference bits

to be low-frequency, so information leakage would seem to be minimized with good

quality biometric systems. Section 3.5.3 discusses an approach to further minimize

any information leakage.

3.7 Practical Considerations

3.7.1 Suitable Biometrics

There are two main categories of biometric characteristics used in biometric systems:

physiological (e.g., a fingerprint or iris pattern) and behavioral (e.g., voice print or

signature). Characteristics must be universal (everyone has it), unique (different for

every person), permanent (it does not change with time), and collectable (it can be

quantitatively measured) [47]. In practice, fingerprints, face geometry, and iris pat-

terns have been popular choices as they can be obtained easily and non-intrusively

using a simple camera. Fingerprints tend to be prone to spoofing, however, and

the accuracy of facial recognition may be impacted by pose, expression, or light-

ing [56, 103]. An iris, on the other hand, exhibits many highly desirable properties.

Its pattern varies greatly among different people, even identical twins, and per-

sists over a lifetime. Iris-based recognition systems have been widely deployed by

many organizations including British Telecom, Panasonic, LG and IBM Schiphol

Group [25,54].

For these reasons, we chose to use an iris-based template for our implementation,

described in Section 3.8. These templates typically consist of 2048 bits to represent
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the iris pattern with any bit equally likely to be either 1 or 0. On average half of

all the bits will disagree between the templates of two different people. A study [54]

based on 9.1 million comparisons between different pairings of iris images concluded

that it is extremely improbable that two different irises might disagree in fewer than

a third of all bits. Consequently, if a difference score is less than 0.32, then a positive

match is statistically guaranteed.

Difference Score False Match
0.26 1 in 1013

0.27 1 in 1012

0.28 1 in 1011

0.29 1 in 13 billion
0.30 1 in 1.5 billion
0.31 1 in 185 million
0.32 1 in 26 million
0.33 1 in 4 million
0.34 1 in 690,000
0.35 1 in 133,000

Table 3.1: The relation between the difference score and odds of a false match [54]

An iris-based template encodes an iris pattern as a binary vector. Fingerprint

templates use the fingerprint texture as a real-valued fixed length vector. Finally face-

based templates use facial features represented again as a real-valued fixed length

vector. A match can be performed by calculating the Hamming distance (or alterna-

tively a fractional Hamming distance) for binary vectors, while a Euclidian distance

for real-valued vectors with the points defined by the set difference. Our current

protocol assumes binary biometric templates, which are suitable for all iris-based

templates, however, a binarization technique [150] can convert other types of tem-

plates into a binary vector [43,111,150] and make it usable in our protocol but likely

trading off some recognition performance for the ability to use diverse types of tem-

plates. Another promising approach is the use of private set intersection techniques,
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as briefly outlined in Section 3.5.3.

3.7.2 Enrollment Process and Tokens

The main drawback of possession-based authentication is the need to obtain and

manage tokens. Eddie, an enrolling agent, can be responsible for issuing tokens and

performing the enrollment phase, ensuring a successful bond between a token and

a biometric identity. Depending on the application-specific security requirements,

Eddie can be an independent, trusted enrollment center, Victor can assume Eddie’s

role, or Eddie’s role can be delegated to users. In the first scenario, Eddie’s services

can be offered by an organization such as VeriSign [190]. This approach would provide

a good way to issue and manage a variety of tokens. VeriSign already provides similar

services and issues security credentials (VIP Security Token or Card [189]).

Tokens and central databases are two most popular locations for storing biometric

templates [103, 144]. A token allows users to physically secure their biometric tem-

plates and gives them a sense of control over their personal data. However, issues

arise when tokens are lost or stolen. A central database makes it possible for users

to authenticate from multiple locations easily as templates are constantly available

for verification. On the other hand, the database may become a target of attacks be-

cause of its valuable content and central storage of templates raises privacy concerns

because all authentication attempts go through a single point.

Our protocol has been designed with security of biometric data in mind, we use

tokens to store biometric templates but ensure that their content is protected in case

of loss or theft.

There are two different approaches to utilizing tokens depending on the token’s

ability to obtain biometric samples.

Using a token with a built-in sensor removes security concerns related to the
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sensor and the communication channel between the token and the sensor. Mobile

devices are an obvious choice for such tokens; they are equipped with a high res-

olution camera capable of capturing images suitable for identification using several

biometric characteristics such as a fingerprint, facial geometry, or iris pattern [103].

Additionally, mobile devices make it possible to take advantage of less frequently

utilized characteristics like voiceprint, keystroke or handwriting patterns, service

utilization [46] or even gait [57].

A token without a sensor is only used to store identification information and to

perform computations. It must be paired with an external sensor to obtain a biomet-

ric sample. This implies certain level of trust that the sensor is not compromised and

the channel between the token and sensor is secure. However, such tokens are inex-

pensive and make it possible to utilize virtually any biometric characteristic. Smart

cards are the most obvious choice for such tokens. They have been extensively used

for authentication or identification as they offer enough computational power and

are relatively cheap, small, and convenient to use [169].

3.7.3 Template Generation

A biometric template is a representation of the features from a biometric sample.

A feature extractor is a component of a biometric system responsible for generating

templates. During the feature extraction process, key features of the biometric sam-

ple are located, selected, measured, encoded and then stored in form of a template.

The template quality directly impacts the performance of a biometric system. We

require that a feature extractor produces templates of high quality. More specifically,

we assume that two templates created based on a biometric sample from the same

user are “sufficiently” similar to be suitable for identification purposes. Similarly, we

require that two templates created based on biometric samples from different users
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are “sufficiently” different. The goal is to achieve an acceptable false rejection rate

(FRR) and more importantly a low false acceptance rate (FAR).

3.7.4 Verification Decision

In biometric systems, a matcher and decision module are the two components directly

involved in making the verification decision.

A matcher takes two biometric templates, the reference template created in the

enrollment phase and the freshly obtain template from the verification phase, as

input. Then, it calculates a match score which shows how similar the two templates

are [103]. In case of our protocol, the matcher functionality is embedded into the

protocol. The verifying party calculates Vi “ Tsi´1
‘ Wi which defines ∆pP, P 1i q,

the difference between two biometric templates. Therefore, the value of Vi defines

the difference score. In other biometric identification protocols, the identification

decision is based on the match score while in our it is based on the difference score.

To express the difference score in terms of the match score we can say that the

smaller the difference Vi, the higher the match score is.

The decision module takes a match score (in our case a difference score) as input

and based on a predefined threshold parameter τ decides whether the two templates

were created based on biometric samples from the same person. If the match score

is greater than a predefined threshold τ , user’s identity if verified. In our protocol, if

the difference score if lower than τ , then the two templates are accepted as coming

from the same user.

Choosing a proper value for τ is a challenging task. To have a high level of

confidence that two templates were created based on samples from the same user,

the difference should be very low. Hence, the value chosen for τ should reflect the

desired level of security as well as the sensor and feature extractor’s capabilities
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to create accurate templates. The goal is to balance the false rejection and false

acceptance rates while ensuring a proper level of security.

3.8 Evaluation

We evaluate our prototype implementation to observe the performance characteristics

of our protocol in comparison to using unprotected templates. We then analyze the

behavior of the feature extraction libraries to determine their usefulness and potential

overheads in this scheme. We used the CASIA Iris Image Database [102] as input

into our system.

3.8.1 Implementation Details

We have implemented our biometric identification system in C++ using the Qt

framework and Crypto++ cryptographic libraries. For feature extraction, we have

employed two different iris recognition libraries: Project Iris [24] and Libor Masek’s

Iris Recognition [131], both of which utilize John Daugman’s approach [54] to produce

an iris template. Project Iris uses C++ and the Qt framework; however, for Masek’s

library, we constructed a C++ to Octave6 interface. In evaluation figures, we denote

Project Iris [24] feature extraction library as C++ and Masek’s library [131] as

Octave.

We ran the evaluations on a workstation computer equipped with an Intel Core

i7-2600 processor with 4 cores, 16 GB of memory, and a Crucial 256GB SSD hard

drive. Our software ran in single threaded mode and never exceeded 12 MB of

used memory, the typical amount for an application utilizing Qt. This shows a very

6Open-source Matlab compatible system
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modest memory requirement of our implementation.

We use a Diffie-Hellman Key Agreement [84] to agree on a common key. We then

use the agreed on key to seed a provably secure Blum-Blum-Shub generator [21]

(PRBG). We used a SQLite database to store enrollment information. We set a

minimal difference score of 0.32 to ensure a low probability of a false match (1 in

26 million) [54]. In their evaluations, Masek’s scheme uses a modified hamming

distance scheme that depends on a comparison between two unencrypted templates.

Our system encrypts the templates, making use of this scheme incompatible and

hence we use traditional hamming distance.

The two feature extraction libraries we employ use a technique to further boost

the recognition performance. A single template may need to be rotated up to 8˝ in

both directions to achieve better results. In an unprotected biometric system, the

server can manipulate the template itself because it gets full access to the client’s bio-

metric template. In our system, we preprocess templates to produce these rotations

and store the resulting blinded templates on the client’s side. We do so because the

server never gets access to unprotected biometric data and therefore cannot manip-

ulate the templates itself. Then, during identification, the client uses all of the saved

templates as input to the protocol and forwards the result to the server. Therefore,

our protocol preserves the same recognition performance as schemes employing this

recognition-enhancing technique.

All CASIA database images have been converted to gray scale images. CASIA

database version 1 contains 108 individuals with 7 images each. Project Iris only sup-

ports version 1 of the CASIA database, in which images have been preprocessed by

replacing the pupils with a black (constant intensity) circle. Masek’s iris recognition

library handles CASIA database version 2, however, had trouble parsing approxi-

mately 4% of the images, though had no issue in database version 1. The libraries
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Figure 3.1: CPU time for enrollment

also differ in the resolution of their extracted features. While Project Iris extracts a

2048-bit template like Daugman [54], Masek extracts a 9600-bit template.

3.8.2 System Performance

To evaluate the enrollment phase, we created a client (Peggy) for each image in the

CASIA database version 1 and used a single server (Victor). Clients, in no particular

order, enrolled one after another. The enrollment occurred within the same process,

as a result the evaluation focuses on data processing and message serialization, i.e.,

CPU time. Our results can be found in Figure 3.1.

The clients enrollment time includes both the initial enrollment request and

the subsequent processing for a successful enrollment, both represented as a single,

summed value. The client enrollment time is negligibly larger than the server en-

rollment time. The major factor in performance appears to be the size of the stored

template(s) and the need to generate an appropriate amount of random blinding

factors. While Octave, Masek’s library, uses 17 9600-bit templates with 17 masks

resulting in 40.8 KBs of PRNG work, C++, Project Iris, uses only 8.7 KBs.
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Figure 3.2: CPU time for identification

To evaluate identification time, we had each image in the database tested against

every client for a total of 571,536 identification attempts or 756 attempts per client.

We separated the results, in Figure 3.2, into valid and invalid client and server

identifications, those that our system processed, and compared them against the

time a traditional template comparison would take.

3.8.3 Feature Extraction Reliability

To evaluate the ability of the readily available feature extraction libraries, we com-

puted the difference scores for two images extracted from the same individual as well

as different individuals and then processed them using our system. The results, as

expected, were identical, though the time to do so was different, as shown earlier

in Figure 3.2. Therefore, in this section, the evaluation primarily focuses on the

recognition performance of the feature extraction libraries, as shown in Figure 3.3.

While both libraries were able to identify common individuals relatively easily

(low false rejection rate—FRR), we were surprised to see different participants had
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such low difference scores in both systems, in particular in Masek’s. Regardless of

the reason for the discrepancy, we are satisfied that our system works equally well

as the underlying feature extraction and unprotected matching scheme.
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3.8.4 Feature Extraction Timing
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Figure 3.4: Time for feature extraction

While our system has good response time on the orders of 10s to 100s of mil-
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liseconds, depending on the template size, we discovered that feature extraction has

significant performance overheads as shown in Figure 3.4. This, along with the ability

to capture the image, plays a critical role during the clients’ identification process.

On average, the Project Iris processes images in less than 2 seconds; however,

the Masek’s library took an order of magnitude longer. Considering these costs,

our protocol has nearly negligible overhead in comparison to the cost of feature

extraction alone. Therefore, the performance of our system is very comparable to an

identification system that offers no biometric data protection.



Chapter 4

DAGA: Deniable Anonymous

Group Authentication1

This chapter presents DAGA, a deniable anonymous group authentication protocol.

4.1 Introduction

In privacy-sensitive communications, one user sometimes needs to prove to be a

member of some explicit, well-defined group, without revealing his individual iden-

tity. Consider for example a whistleblower who wishes to leak evidence of corpo-

rate or government wrongdoing to a journalist, via an anonymous electronic “drop

box” [55]. The journalist needs to validate the source’s trustworthiness, but the

whistleblower is reluctant to reveal his identity for fear their communications might

be compromised [89], or that the journalist will be coerced into testifying against the

source [159]. The whistleblower thus wishes to authenticate anonymously as a mem-

ber of some authoritative circle who plausibly has knowledge of and access to the

1Portions of the research reported in this chapter were done in collaboration with Benjamin
Peterson, David I Wolinsky, Michael J Fischer, and Bryan Ford. The preliminary version of this
work has appeared in [181].

62
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leaked information, such as a corporate board member or executive, or a government

official of a given rank.

Even if the whistleblower convinces the journalist of his authority, the journalist

may also require corroboration: e.g., confirmation by one or more other members of

this authoritative circle that the leaked information is genuine. Other members of

this authoritative circle may be just as reluctant to communicate with the journalist,

however. If a potential corroborator also demands anonymity, how can the journalist

(or the public) know that the corroborator is indeed a second independent source,

and not just the original source wearing a second guise? In general, if the journalist

knows k pseudonymous group members, how can he know that these pseudonyms

proportionally represent k real, distinct group members, and are not just k Sybil

identities [64]?

Finally, the whistleblower is concerned that once the leak becomes public, he may

be placed under suspicion – perhaps merely for being in the relevant authoritative

circle – and any of his computing devices may be confiscated or compromised along

with his private keys. Even if his keys are compromised, the whistleblower needs his

anonymity forward protected, against both the journalist and any third-parties who

might have observed their communications. Further, the whistleblower wishes to be

able to deny having even participated in any sensitive communication, including the

fact of having authenticated at all (even anonymously) to the journalist.

We present deniable anonymous group authentication (DAGA), the first protocol

we are aware of satisfying the above requirements, which we term anonymity, pro-

portionality, forward anonymity, and deniability. Like ring signatures [155], DAGA

allows a user to authenticate as an anonymous member of an ad hoc group or ring,

defined by an arbitrary list of public keys. The user can conscript other users into

a group without their participation, consent, or even knowledge. Neither ring sig-
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natures nor deniable ring authentication [139] offer proportionality, however: a ver-

ifier cannot tell whether several authentications were by the same or distinct group

members. Linkable ring signatures [125] include a tag enabling a verifier to check

distinctness, but anyone who later compromises the user’s private key can reproduce

the linkage tags in all past signatures, violating forward anonymity and deniabil-

ity. It appears likely that no purely offline anonymous signature scheme can offer

both proportionality (corroboration capability), forward anonymity, and deniability

in combination.

To resolve these apparently conflicting requirements, DAGA relies on a feder-

ation of independently operated servers that are collectively but not individually

trusted. DAGA’s security property properties are ensured as long as at least one

server operates correctly and honestly during an authentication process, even if the

client does not know which server is honest. The servers divide authentication ac-

tivity into epochs, choosing a set of fresh server-side secrets for each epoch. These

secrets collectively protect the relationship between a client’s private key and the

epoch-specific tags that DAGA produces to offer proportionality and corrobora-

tion capability. After each epoch, the honest server(s) securely erase their secrets,

preventing anyone from compromising any client’s anonymity in past authentica-

tion epochs – even if the attacker later compromises the long-term private keys of

all clients and all servers. Finally, the authentication process offers deniability by

employing only interactive zero-knowledge proofs, ensuring that any valid DAGA

communication transcript could have been synthesized independently by anyone.

We have analyzed and verified DAGA’s four key security properties of anonymity,

proportionality, forward anonymity, and deniability.

We have also built a working proof-of-concept implementation of DAGA to val-

idate its performance and practical usability. Using 2048-bit DSA keys, our DAGA
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prototype can authenticate as a member of a 32-member group to 2 servers in about

one second after consuming less than 1KB of total messaging bandwidth. Authenti-

cating in a 2048-member group takes about two minutes and consumes about 100KB

of bandwidth. Our initial prototype is currently unoptimized, and we expect its per-

formance and efficiency can be improved in many ways. Nevertheless, our results

suggest that DAGA is already practical for sensitive anonymous interactions requir-

ing maximum security, and we believe DAGA’s unique combination of proportional-

ity (corroboration), forward anonymity, and deniability features can justify this cost

in such scenarios.

We make the following key contributions:

1. Propose a new authentication scheme that offers anonymity, deniability, and

proportionality even in the case of a full compromise of private keys.

2. Propose an authentication scheme that supports evolving groups while preserv-

ing proportionality.

3. Separate the notions of deniability, anonymity and forward anonymity, and

analyze these security properties.

4. Evaluate DAGA and compares it to non-anonymous and anonymous authen-

tication methods.

Section 4.2 offers an overview of DAGA’s trust model, operation, and security

properties. Section 4.3 presents the details of the DAGA’s protocol and Section 4.4

outlines potentially useful extensions to the basic protocol. Section 4.5 outlines sev-

eral applications for which DAGA’s might be suited. Section 4.6 provides a security

analysis of DAGA’s properties. Section 4.7 outlines practical implementation and

deployment considerations. Section 4.8 presents our prototype implementation and

experimental results.
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4.2 Overview

4.2.1 Trust Model

We assume an anytrust [192,193] model, where there is a large set of n clients and a

smaller set of m reliable servers, which includes at least one honest server that runs

the prescribed protocols and does not collude with dishonest entities. The clients do

not need to assume that any particular server is trustworthy; they need only trust

that some honest server exists. We further assume that there are always at least

two honest clients; anonymity is trivially impossible if n´ 1 clients choose to collude

against only one honest client.

We assume that each anytrust server is run by a respected, reliable, and indepen-

dently managed organization, each responsible for ensuring that its server remains

online and uncompromised. We envision these anytrust servers being deployed by a

federation of organizations wishing to support responsible forms of anonymous par-

ticipation: e.g., providers of online services such as Wikipedia or Twitter, anonymity

system providers such as the Tor project, non-profit organizations whose aim is to

further online privacy and anonymity, or even for-profit organization desiring strong

guarantees and large anonymity sets for their clients.

In such a deployment scenario, we expect the servers to offer high reliability and

to offer clients with a high level of confidence that at least one honest server exists. In

practice, we hope and expect a majority of the servers to be honest, allowing for an

efficient resolution of issues related to the servers’ performance or availability, should

they arise, but we leave such availability issues outside the scope of this paper.
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4.2.2 Protocol Overview

The main idea underlying DAGA is to allow a client to authenticate anonymously,

and at the same time enforce proportionality, by enabling the servers to link authen-

tications of the same client. To achieve this goal, we use a combination of proofs

of knowledge to prove membership to a particular group and per-client linkage tags

that effectively become clients’ anonymous IDs.

Each client i authenticates using a publicly available authentication context C,

which consists of a group definition G and other per-round authentication informa-

tion. A client i prepares and sends his authentication message to an arbitrarily chosen

server who starts the collective process of producing the client’s final linkage tag by

all servers, and upon its completions responds to the client with an authentication

decision as shown in Figure 4.1.

To produce an authentication message, a client i generates an initial linkage tag

T i0 “ h
śm

k“1 sk
i , where hi is the client’s per-round generator assigned by the servers

and sk is a shared secret for every server k that a client generates in a way that

each server is able to independently reconstruct it. In addition to creating the tag,

the client proves in zero-knowledge that he correctly computed T i0 and that he is a

member of the group G and therefore he knows a private key xi that corresponds

to one of the public keys included in the group definition. A client i executes the

following interactive “OR” proof [37,52]:

PK = t_
n
i“1pI know private key xi ^ T0 is correctly based on hiqu

After completing these steps, client i securely erases his private ephemeral state and

sends to some server j his tag, proof, and all other information needed by the servers

to process his authentication request. The server who receives i’s authentication
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request, verifies the attached proof, and processes the initial tag by scrubbing from

T0 the secret sj it shares with i and adding his own per-round secret rj. Finally, server

j proves in zero-knowledge that he correctly performed these steps and generates the

following proof using a standard proof of knowledge about discrete logarithms [41,

69,163]:

PK = tpTag Tj is correct ^ I know my secret rjqu

The remaining servers repeat this process, however, also verifying that the proof

coming from the previous server is valid. Provided that the client i and the servers

correctly follow the protocol, it yields a final linkage tag T if “ h
śm

k“1 rk
i . Each final

linkage tag Tf is unique to a client and remains the same for each authentication

within the same context C as the tag depends on a client’s generator and a product

of all servers’ secrets which remain the same.

Group&Members&

Intermediate&linkage&tags,&
proofs&

Authen9ca9on&request&
{ini9al&linkage&tag,&proof}&

Accept&(final&linkage&tag)&
or&reject&

DAGA&Servers&(Anytrust)Model))

Figure 4.1: Conceptual model of DAGA

4.2.3 Security Properties

DAGA provides for a deniable and anonymous authentication scheme that maintains

its properties even if a client’s private key is compromised. A client should be able

to convince the servers that he is a unique member of a particular group, without
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disclosing his non-anonymous identity and without leaving any evidence that can

be used later on to link him to his well known identity. Anonymity and deniability

should persist even in the case of a compromise of a client’s private key after the

round completion. More specifically, DAGA maintains anonymity and deniability

as long as the private keys of at least two honest members and a private key of

at least one honest server are not compromised. To maintain forward security, the

basic DAGA protocol assumes that at least one honest server’s private key remains

secure. Section 4.4.4 proposes an extension that relaxes this requirement, however,

preserving forward secrecy even if all servers are eventually compromised.

In addition to completeness and soundness, DAGA offers four security properties:

anonymity, deniability, forward anonymity, and proportionality.

Soundness: Under the Discrete Logarithm assumption, servers only accept au-

thentication requests coming from a client who is a member of a group G specified

in his authentication context.

Anonymity: Informally speaking, we want to ensure that after a complete pro-

tocol run, an adversary cannot guess which group member has been authenticated

with a probability greater than random guessing. DAGA provides anonymity under

the DDH assumption in the random oracle model.

Forward Anonymity: We extend the anonymity property to situations in which an

adversary obtains a client’s private key but only after a protocol run has completed,

and ensure that the knowledge of even all but the honest server’s key does allow an

adversary to break any client’s anonymity.

Deniability: We want to ensure that the protocol does not leave a “paper trail”

that an adversary could use to link a client to his authentication requests based on

intercepted authentication transcripts. This guarantee persists even in the case of a

compromise of private keys yielding an interesting notion of forward deniability.
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Proportionality: We enforce that a client can authenticate as a unique member

only once given a particular authentication context and each subsequent authenti-

cation request within the same context is recognized as coming from that client. At

the same time, we ensure that client’s authentications made within two different

authentication contexts are unlinkable. Additionally, proportionality persists even

when new clients are added to a group because proportionality is independent of the

group membership.

4.3 Protocol Description

4.3.1 Notation

We denote the client i’s proof of correctness as PKclienti , the server j’s proof of

correctness as PK
serverj
1 , and the server j’s proof of a client i’s misbehavior as

PK
serverjpiq
2 . We denote the client i’s initial linkage tag as T i0, the intermediate linkage

tag created by a server j as Tj, and the client i’s final tag as T if . We will omit the

client’s ID from T i0 (T if ) and write T0 (Tf ) when it is clear from the context which

client the tag belongs to. We denote a client i’s authentication message as Mi
0 and

a server’s j message as Mj.

To simplify notation, we will omit “mod p” when performing computation on

elements of Zp and “mod q” when performing computation on exponents. We will

denote choosing a random element x from Z˚q as x PR Z˚q
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4.3.2 Building Blocks

Σ-Protocols

Zero-knowledge proofs of knowledge [85] are proofs that yield nothing beyond of the

validity of the assertion a prover P wants to convince a verifier V about. However,

such proofs normally require a large number of interactions between the prover and

verifier. A Σ-protocol [53] is a special type of an interactive zero-knowledge proof

of knowledge that requires only one interaction and always consists of exactly three

moves: given common input I (1) P sends a commitment t to V , (2) V responds

with a random `-bit challenge c, and (3) P sends back a response r. V makes

a decision based on pI, t, c, rq. By definition [53], a Σ-protocol has the properties

of completeness, special soundness and special honest-verifier zero-knowledge. The

client’s and servers’ proofs instantiated in DAGA have these properties.

“OR” Proofs

An “OR” proof of knowledge is an example of a Σ-protocol and allows a prover

to convince a verifier that he knows a secret x that corresponds to one out of two

assertions without the verifier learning which one. An “OR” proof can be easily

generalized to proving the knowledge of a witness to one of many assertions (“1-out-

of-n”) or even multiple witnesses (“k-out-of-n”).

DAGA makes use of interactive and non-interactive proofs. The client’s proof is

an interactive protocol instantiated using the techniques of Camenisch and Stadler [37]

which are an extension of the previous works on proof of knowledge [52,69,163]. The

server’s proofs uses non-interactive protocols based on Schnorr’s proof of knowledge

of discrete logarithms [163], proof of equality of discrete logarithms [41], While Σ-

protocols are interactive by nature, a heuristic proposed in [69] allows to replace the
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interaction with a verifier with a hash function modeled as a random oracle. For

simplicity, we write “proof” or “proof of knowledge” for “three-move honest-verifier

computationally zero-knowledge proof of knowledge”.

4.3.3 Assumptions

We assume that communication channels exist between all parties and a client has an

authenticated channel with every server. We assume an adversary that is polynomial-

time limited, can control a colluding subset of up to n ´ 2 clients and up to m ´ 1

servers, and can observe and record all network messages.

We assume that each client has a long-lived non-anonymous identity associated

with a public-private key pair. We define a client’s identity as his associated key

pair; therefore, a client i represents a client who owns a public key Xi. Specifically,

each client i has a long-term Diffie-Hellman (DH) key pair consisting of a private

key xi and public key Xi “ gxi and each server j has a corresponding private/public

key pair pyj, Yj “ gyjq. We assume that there is a readily available group definition

G “ p ~X, ~Y q listing clients and servers and their long-term public keys, Xi and Yj

respectively. The author of a group definition may conscript arbitrary clients knowing

only their public keys. Some of the clients listed in the group definition need not

ever participate in the protocol or even be aware that they are included. The group

definition is a part of an authentication context which defines all constants for each

authentication round.

4.3.4 Authentication Context

In DAGA, a client i anonymously authenticates as a member of a particular group

G with the help of a set of anytrust servers using a publicly available authentica-
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tion context C. An authentication context C “ pG, ~R, ~H, p, gq consists of a group

definition G, a set ~R of each server’s commitment to a per-round secret, a set ~H of

each client’s per-round generators, a safe prime p “ 2q ` 1 where q is a sufficiently

large prime, and a generator g of the order q subgroup G of Z˚p . We define a group

G as a tuple p ~X, ~Y q where ~X is a set of the n clients’ public keys and ~Y is a set

of the m servers’ public keys. To generate ~R “ pR1, . . . , Rmq, each server chooses a

secret rj PR Z˚q and publishes a commitment Rj “ grj . ~H “ ph1, . . . , hnq consists of

n unique per-round generators of G, one for each client i, such that no one knows the

logarithmic relationship between any hi and g or between hi and hi1 for any pair of

clients i ‰ i1. Section 4.7.5 describes how to find these generators and Section 4.7.3

further discusses issues related to creating and using an authentication context.

4.3.5 Client’s Protocol

A client i wishing to authenticate, obtains an authentication context C, uses it to

produce an authentication message M0
i , and sends it to one arbitrarily chosen server

listed in ~Y . Upon receiving the client’s message, all servers collectively process M0
i

and either accept or reject i’s authentication request. If i’s request is accepted, then

it results in a final linkage tag T if . It it is rejected, however, then the client’s proof

PKclienti is invalid, at least one server produces a proof PK
serverjpiq
2 of the client’s

misbehavior, or some server produces an invalid proof PK
serverj
1 .

We define an authentication round with respect to a particular authentication

context C. Each authentication request, regardless of the identity of the originating

client, belongs to the same round if it is made with respect to C. All requests within

the same round are linkable, that is, each time a client i authenticates, the servers

will be able to link these requests as coming from some client from G.
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A client i performs the following steps to create M0
i .

Step 1: Client i first picks an ephemeral private DH key zi PR Z˚q and computes

a public key Zi “ gzi . Client i keeps zi secret.

Step 2: For each server j, i computes a shared secret exponent sj “ H1pY
zi
j q “

H1pg
yjziq, where H1 : t0, 1u˚ Ñ Z˚q is a hash function and Yj is the sever j’s public

key as listed in ~Y .

Step 3: Client i computes his initial linkage tag T i0 “ h
śm

k“1 sk
i using his per-round

generator hi as listed in ~H and the secret exponents shared with all servers. Then,

for each server 1 ď j ď m, i computes ~S “ pS0, . . . , Smq, a set of commitments to a

secret sj he shares with each server j: Sj “ g
śj

k“1 sk such that S0 “ g, S1 “ gs1 , . . . ,

Sm “ g
śm

k“1 sk . Finally, client i sets S “ pZi, ~Sq.

Step 4: Now, client i proves that (i) he correctly followed the protocol, that is

his initial linkage tag T i0 is correctly constructed using hi and s “
śm

k“1 sk, and (ii)

he belongs to the group G because he knows some private key x that corresponds

to some public key X P ~X. To do so, i runs an interactive proof of knowledge as

described in Section 4.3.7. The client’s proof PKclienti looks as follows.

PKtpxi, sq : t_nk“1pXk “ gxk ^ Sm “ gs ^ T0 “ hskqu

Step 5: Client i securely erases each secret sj and zi. Finally, client i creates

and sends to an arbitrarily chosen server j his message M0
i “ pC, S, T0, P0q, where

C “ pG, ~R, ~H, p, gq is the authentication context i used, S “ pZi, S0, . . . , Smq is the

client’s ephemeral public key and the set of client’s commitments, T i0 is the initial

linkage tag, P0 is the client’s proof.
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4.3.6 Servers’ Protocol

All servers collectively process a client i’s authentication message M0
i and at the end

of this process either reject i’s authentication request or accepts it as output i’s final

linkage tag T if . A client i arbitrarily chooses some server j to whom he sends M0
i . We

denote that server j as server 1, since j is the first server to process i’s request, and

denote server 2 as j ` 1 and finally the last server m as j ´ 1. This defines a unique

order based on the list of server in ~Y in which each server processes i’s message.

The first server to process the client’s authentication requests receives the mes-

sage M0
i “ pC, S, T0, P0q. Then, each server j creates a message Mj “ pMj´1, Tj, Pjq

to pass to the next server in sequence, where Mj´1 is the authentication message M0
i

(if j “ 1) and the message received from the previous server (if j ą 1), Tj is the

linkage tag produced by j and Pj is the proof produced by j. Each Mj for j ą 1

consists of all previous messages such that each server j can verify all messages pro-

duced thus far (including the client’s original message M0
i ).

Each server j performs the followings steps to create Mj.

Step 1: Server j checks the incoming message Mj´1 and rejects it the message is

valid. Then, j checks the proof of correctness of the previous servers’ computations

(unless j “ 1) as well as the client’s proof P0. Server j proceeds only if all proofs are

valid, and aborts otherwise.

Step 2: First, server j reconstructs the secret sj he shares with the client as

sj “ H1pZ
yjq “ H1pg

yjzq. Then, j verifies the client’s commitments Sj´1 and Sj

against sj. That is, the server checks that Sj “ S
sj
j´1. If yes, then j proceeds

to Step 3 and if not, then j reveals sj together with a proof that he computed it
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correctly based on the client’s commitment Z and his public key Yj as described in

Section 4.3.9. In such a case, server j produces the following proof PKserver
2 .

PKtpyjq : pZsj “ Zyj ^ Yj “ gyjqu.

Server j creates and sends to the next server his message Mj “ Mj´1, Tj “ 0, Pj “

PKserver
2 .

Step 3: Server j computes his intermediate linkage tag Tj “ pTj´1q
prjqps

´1
j q using

his per-round secret rj and a multiplicative inverse of the shared secret sj which

results in a tag Tj “ h
śj

k“1 rk
śm

k“j`1 sk
i . Now, j produces a non-interactive proof Pj

of correctness as described in Section 4.3.8. The server proves that he correctly

computed the new tag Tj with respect to the server’s per-round commitment Rj and

the shared secret sj. Server j produces PKserver
1 as follows.

PKtprj, sjq : T
rj
j´1 “ T

sj
j ^Rj “ grj ^ Sj “ S

sj
j´1u

Step 4: Finally, server j securely erases sj, forms his outgoing message Mj “

pMj´1Tj, Pj “ PKserver
1 q, and sends Mj to server j ` 1 if j ă m, or to all servers if

j “ m.

Step 5: Server j securely erases his per-round secrets rj upon a completion of a

round, that is when the authentication context C expires.

After a successful completion of the protocol, all servers learn a final linkage tag

Tf “ h
śm

k“1 rk
i . The tag only depends on the client’s per round generator hi and a

product of all servers’ per-round secrets rj, regardless of the initial linkage tag T0.

Thus, a client can obtain only one linkage rage per round.
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4.3.7 Client’s Proof PKclienti

Each clients ı̂’s authentication message M0
ı̂ includes the following proof of knowledge

P0:

PKtpxı̂, sq : t_nk“1pXk “ gxk ^ Sm “ gs ^ T0 “ hskqu

In this proof, the client ı̂ proves that he either knows a private key x1 and his tag

T0 is correct, or that he knows x2 and T0 is correct, including an “OR” statement

for each private key included in ~X. Because ı̂ knows only one private key, namely

xı̂, he simulates the “OR” statements for all other private keys in a way that will

convince the servers that the authenticating client knows one private key and the tag

is properly formed. More specifically, client ı̂ proves that that (i) client ı̂’s linkage

tag T0 is created with respect to his per-round generator hı̂, (ii) Sm is a proper

commitment to s “
śm

k“1 sk, the product of all secrets that ı̂ shares with the servers,

and (iii) client ı̂’s private key xı̂ corresponds to one of the public keys included in

the group definition G.

Prover’s Steps The prover, a client ı̂ holding private key xı̂ and s performs the

following step to calculate P0 “ P :

1. Choose w1, . . . , wn such that wı̂ “ 0 and wi PR Z˚q for i ‰ ı̂, and choose

v1.0, v1.1, . . . , vn.0, vn.1 PR Z˚q . For each client i P G, compute commitments

ti.0 “ Xwi
i g

vi.0 , ti.10 “ Swi
m g

vi.1 , and ti.11 “ Twi
0 hvi.1i .

Set t “ pt1.0, t1.10, t1.11, . . . , tn.0, tn.10, tn.11q and send it to an arbitrarily chosen

server.

2. Upon receiving the client’s commitments, the severs collectively generate a

random challenge cs (as described in Section 4.7.4) and send cs back to the

client.
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3. Compute c “ pc1, . . . , cnq as:

ci “

$

’

’

&

’

’

%

cs ´
řn
k“1wk for i “ ı̂

wi otherwise

Compute responses r “ pr1.0, r1.1, . . . , ri.0, ri.1q as follows. Let xi.0 “ xi.1 “ 0

for all i ‰ ı̂, let xı̂.0 “ xı̂, and let xı̂.1 “ s. Compute ri.k “ vi.k ´ cixi.k for all

1 ď i ď n and k P t0, 1u. Set P “ pcs, t, c, rq.

Verifier’s Steps The verifier, one of the servers, performs the following steps to

verify the proof.

1. Check the commitments ti.0
?
“ Xci

i g
ri.0 , ti.10

?
“ Scimg

ri.1 , and ti.11
?
“ T ci0 h

ri.1
i , for

all 1 ď i ď n.

2. Check the challenge cs
?
“

řn
i“1 ci.

4.3.8 Server’s Proof: Proving Correctness of its Work

After processing an incoming tag Tj´1, each server j must prove the correctness of

its computations. That is, a server produces a proof of knowledge PK
serverj
1 that he

created the tag Tj according to the protocol specification. That is, j proves that he

(i) correctly recovered the shared secret sj, (ii) used the correct per-round secret rj

with respect to Rj P ~R, and (iii) correctly removed sj and added rj to the tag.

PKtprj, sjq : T
rj
j´1 “ T

sj
j ^Rj “ grj ^ Sj “ S

sj
j´1u

Server j can generate such a proof if it knows rj and sj. Each honest server knows

its own per-round secret rj, and the secret sj that relates Sj to Sj´1, otherwise if j
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were unable to reconstruct a correct sj, then he would have exposed the client by

producing a proof PK
serverj
2 and would have never produced his tag Tj.

Prover’s Steps The prover, server j holding sj and rj, performs the following

steps to create Pj “ P .

1. Choose v1, v2 PR Z˚q . Calculate t1 “ T v1j´1T
´v2
j , t2 “ gv1 , t3 “ Sv2j´1.

2. Calculate c “ H2pTj´1, Tj, Rj, g, Sj, Sj´1, t1, t2, t3q, where H2 : t0, 1u˚ Ñ Zp is

a hash function.

3. Calculate r1 “ v1 ´ crj and r2 “ v2 ´ csj.

4. Set P “ pt1, t2, t3, c, r1, r2q.

Verifier’s Step The verifier, another server, upon receiving Pj can verify the proof

as follows.

1. Reconstruct commitments t11 “ T r1j´1T
´r2
j , t12 “ gr1Rc

j, t
1
3 “ Sr2j´1S

c
j .

2. Check c
?
“ H2pTj´1, Tj, Rj, g, Sj, Sj´1, t

1
1, t

1
2, t

1
3q.

4.3.9 Server’s Proof: Exposing a misbehaving client

To create a tag Tj, server j needs to reconstruct and then remove the secret sj it

shares with the client from the incoming tag Tj´1. Server j calculates sj “ H1pZ
yjq

using the client’s commitment Z and its own private key yj, and verifies that the

recovered secret is correct by checking Sj “ S
sj
j´1. If the recovered secret is not

correct, then j exposed the client as dishonest by providing a proof PK
serverj
2 to

other servers. To do so, the server reveals the secret sj it computed and Zsj “ Zyj ,

the preimage of sj under H1. Then, server j prepares a proof that he (i) used his
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private key yj that corresponds to a public key Yj P ~Y , and (ii) correctly computed

Zsj by raising the client’s commitment Z to his private key yj. Server j prepares the

following proof of knowledge:

PKtpyjq : pZsj “ Zyj ^ Yj “ gyjqu.

After receiving and verifying PK
serverj
2 , each server can can reconstruct sj “ H1pZsjq,

check that indeed Sj ‰ S
sj
j´1, and

Prover’s Steps The prover, server j holding a private key yj, performs the follow-

ing steps and obtains Pj “ pZsj , P q:

1. Choose v PR Z˚q . Calculate t1 “ Zv and t2 “ gv.

2. Calculate c “ H2pZsj , Z, Yj, g, t1, t2q.

3. Calculate r “ v ´ cyj

4. Set P “ pt1, t2, c, rq.

Verifier’s Steps The verifier, either a server or the client, upon receiving Pj can

verify the proof as follows:

1. Reconstruct commitments t11 “ ZrZc
sj

and t12 “ grY c
j .

2. Check c
?
“ H2pZsj , Z, Yj, g, t

1
1, t

1
2q.

4.4 Extensions

In this section we describe several possible extensions of our main protocol. First, we

discuss ideas for improving DAGA’s performance, then we discuss trading deniability
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for verifiability, show how to give the servers the ability to collectively revoke a

client’s anonymity, show how to make DAGA secure on full clients’ and servers’ key

exposure, and lastly we present a variant of DAGA in which the client has a chance

to inspect his linkage tag before it is revealed to the servers.

4.4.1 Improving Efficiency

Currently, the computation and communication overhead of DAGA grows linearly

in the number of members in a group G. Ideally, we would like to improve the

efficiency from Opnq to Op1q to make it independent from the group size n.

One possibility is to use a cryptographic accumulator [67] (or a dynamic accumu-

lator [34] to retain support for evolving groups) that makes it possible to accumulate

multiple values into a single one such that for each accumulated value there is a proof

that the value was correctly incorporated. Therefore, instead of using a 1-out-of-n

“OR” proof, we could first accumulate all public keys and then prove that a client’s

public key is indeed a part of the the resulting short accumulator. Similar ideas

were used to design a short linkage ring signature scheme [10], for example. Another

possibility is to use more efficient proofs of knowledge [36] and new, efficient batching

verification techniques for proofs of partial knowledge [94, 95, 145]. We fully expect

to obtain a much efficient protocol using the outlined ideas.

4.4.2 Trading Deniability for Verifiability

DAGA offers a strong zero-knowledge notion of deniability; the protocol does not

leave a ‘paper trail” that one could use to prove that some, and therefore at least

one, member participated in the protocol. DAGA achieves deniability by using

an interactive rather than non-interactive zero-knowledge proof on the client’s side.
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An interactive proof is not transferable and only “convinces” the party directly in-

volved in the proof. In a non-interactive proof, the verifier is replaced with a hash

function [69] to create an unpredictable challenge that a prover cannot anticipate

in advance. Therefore, anyone can verify the non-interactive proof, even after the

protocol’s completion. This property, while useful, goes against the notion of deni-

ability we set out to achieve. However, certain applications might benefit from the

transferability of the proof that would allow for a third-party verifiability that some

user or a certain number of users indeed authenticated.

Consider an anonymous voting scenario, where voters want to remain anonymous

but wish for a third-party verifiable proof (independently of the election results) that

a specific number of voters participated. A small change to DAGA, changing the

client’s proof from interactive to non-interactive, easily achieves this goal and each

voter’s authentication message M0 becomes such a proof.

Interestingly, trading deniability for verifiability does not affect other properties,

specifically forward anonymity and proportionality. Moreover, DAGA still retains

a weaker notion of plausible deniability: since DAGA is anonymous and a group G

can be created without the listed members’ participation or knowledge, any member

can plausibly deny participating in the protocol.

4.4.3 Optional Anonymity Revocation

DAGA provides clients with a strong notion of anonymity. However, the ability to

revoke a client’s anonymity might be a desirable feature but only if it is done carefully

so that the client’s anonymity is not inadvertently or maliciously compromised.

Any client’s anonymity can be revoked if each server j reveals his per-round secret

rj, in which case the anonymity of all clients is compromised, or each server reveals

his secret sj shared with a client in question, breaking the rule of retaining private



83

input secret, however. Therefore, we wish for a protocol which explicitly allows for

anonymity revocation.

To achieve this goal, we use a threshold version of the ElGamal encryption scheme

to encrypt the client’s ephemeral private key zi under a public key that is a product of

all servers’ commitments to their per-round secrets r (if we want to limit anonymity

revocation to the lifetime of an authentication context) or under a public key that

is a product of all servers’ long-term public keys (if we want the ability to revoke

clients’ anonymity at any point).

After encrypting his ephemeral key zi under a shared public key Kall of all servers,

a client i produces a modified version of the PKclienti proof which includes a proof

that EKall
pziq is an encryption of an element committed to as Zi, using a standard

technique of proving a property of a ciphertext from [35]. To reveal a client’s identity,

all servers collectively decrypt EKall
pziq, retrieve zi and use it to recover all secrets

the client shares with the servers’ finally recovering a per-round generator, which

corresponds to a unique client i as defined by ~H.

This modification does not affect the properties offered by DAGA. Specifically,

the anonymity and forward anonymity properties are still guaranteed, unless ex-

plicitly revoked, assuming that there is always one honest and never compromised

server.

4.4.4 Secure on Full Key Exposure

Currently, the forward anonymity property holds as long as the honest server’s pri-

vate key is protected. If the long term private key zh of the honest server is known,

an adversary who controls all other servers can recover the ephemeral secret shared

with a client i and calculate sh. Then, if the adversary has access to the previous

authentication messages that include the initial linkage tags, the adversary can triv-
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ially calculate T
1i
0 “ hs1...smi for every hi P ~H and compare with the initial linkage

tags. Knowing the association of a client’s identity with a per-round generator, the

adversary breaks the anonymity and forward anonymity of every client for whom he

finds a matching tag.

We can avoid this (rather unlikely but not impossible) attack by adding a server-

side per-round randomness into the secret a client shares with each server. This

way even if the adversary compromises the server’s private key, the additional secret

included in sh has been forgotten.

To do so, we extend the authentication context C to include an additional a

vector ~A “ A1, . . . , Am, where Aj “ gaj and modify Step 2 of the client’s protocol

described in Section 4.3.5 as follows. For each server j, i uses both Aj and Yj to

compute a shared secret exponent sj “ H1pA
zi
j , Y

zi
j q “ H1pg

ajzi , gyjziq. Then, each

server j recovers sj as H1ppZ
aj , Zyjq “ H1pg

ajzi , gyjziq.

The protocol works as follows.

1. Client i encrypts his ephemeral key zi under RS “
śm

j“1Rm: as follows: i

chooses ` PR Z˚q and calculates ERS
pziq “ pA “ gr, B “ ziR

`
Sq.

2. Then, client i creates a modified version of the PKclienti proof appending to it

a proof that ERS
pziq is an encryption of an element committed to as Zi using

a technique of proving a property of a ciphertext from [35].

In order to reveal an identity of a client, the servers perform the following steps.

1. Each server j calculates and publishes Aj “ Arj “ g`rj as well as a proof of

knowledge that DLpAjq “ DLpRjq, that is j correctly computed Aj by raising

it to its private key yj.

2. All servers retrieve zi “ Bp
śm

j“1Amq
´1.
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3. For each server i P G, j calculates si “ HppY qix
ziq.

4. The client’s identity is reveled by removing all secrets the client shares with the

servers from a particular tag was created to: pT0q
śm

i“1 s
´1
i and deciding which

generator the result is equal to.

PKtpxi, s, ziq : t_nk“1pXk “ gxk ^ Sm “ gs ^ T0 “ hskq ^B “ zig
řm

j“0 rju

While we recognize that the client’s identity can be revealed if each server reveals

their secret shared with the client, we wish to be able to do so in a way that guarantees

that a client is aware of this possibility (by creating a modified proof of knowledge).

This modification does not affect the properties offered by DAGA. Specifically, the

anonymity and forward anonymity properties are still guaranteed assuming that

there is always one honest and never compromised server.

4.4.5 Delayed Revealing of Final Linkage Tags

After a successful authentication, the severs immediately learn the client’s final link-

age tag. However, the client might want to have an opportunity to “inspect” the

tag first before finishing authentication. This way a client could check if the servers

already seen such a tag by looking it up in a server-published list of the linkage tags

seen in a particular authentication context C thereby avoiding the potential risk of

unintentionally trying to authenticate twice in a linkage context, for example.

This can be easily accomplished by delaying the removal of the client-side secret

s from the linkage tag until the client can verify T0 “ hsri . That is, a client allows

the servers to incorporate their per-round secrets r, then verifies the resulting tag,

and if the tag is correct, he removes his secret s, proves in zero-knowledge that he

did so correctly and sends the final tag back to the servers.
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To do so, a client creates the initial linkage tag as before, T0 “ hsi , however now

s is a single secret known by the client, not a product of all secrets i assigns to the

servers, and i produces a proof PKclienti as before.

Upon receiving the client’s message M0, the servers iteratively incorporate their

per-round secrets rj as before, but this time without removing the client’s secret,

finally yielding a final linkage tag Tf “ h
s

śm
k“1 rk

i . Each server j prepares a simplified

proof of its correctness:

PKtprjq : Tj “ T
rj
j´1 ^Rj “ grj

After all servers process the tag, the last server sends Tj and the proofs of its cor-

rectness back to the client, who can verify the proofs and calculate the client’s final

linkage Tf “ pTjq
´s. This way the client has a chance to inspect the tag before mak-

ing it available to the servers. If the client decides to complete the authentication,

he can prove the correctness of Tf with respect to Tj as follows

PKtpsq : Tf “ T sj ^ S “ gsu

While this approach gives the client more control over his authentication requests, it

requires an additional communication round, but might be suitable for applications

where clients are limited to a certain number of authentications within a certain

authentication context and authenticating more than the allowed number of times

has negative consequences.
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4.5 Applications

DAGA may be useful in many conventional applications such as online surveys, vot-

ing, subscription services but also whistleblowing and access to sensitive resources.

DAGA is most suitable for authentication into well-defined, closed groups of man-

ageable size, and when guarantees of deniability and forward security are needed.

Below we overview several non-conventional applications we envision for DAGA.

4.5.1 Distributing Keys for Group Anonymity Systems

Most anonymity systems fall into two categories: mix networks [40] (mix-nets) mask

the identity of the sender by forwarding messages through multiple relays, and Dining

Cryptographers networks [39] (DC-nets) leverage secrets exchanged within a well-

defined group of members to anonymize messages. While mix-nets based systems

(e.g., Tor [58]) are efficient, they do not provide unconditional anonymity and traffic

analysis resistance as DC-nets based systems (e.g., Dissent [51, 192], Herbivore [79,

168]) do.

To provide accountability – the ability to identify and expel members that attempt

to disrupt group communication – Dissent requires each member to have a long-term

signing key. This key, if well-known, links the intermediate output of the protocol to

the key’s owner, and links the protocol’s entire output to a particular group of keys.

If a client’s identity is defined by a long-term non-anonymous key pair, a compromise

of the client’s private key could retroactively compromise the user’s anonymity in all

past exchanges.

Therefore, an anonymity system such as Dissent can leverage DAGA to set up

ephemeral pseudonyms (signing keys) for participating group members, breaking the

link between the client’s long-term key (and identity) and the anonymous exchanges,
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while ensuring fairness via DAGA’s proportionality property. Additionally, we can

achieve a larger anonymity set and plausible deniability for the anonymous commu-

nication if we draw ephemeral pseudonyms from a much larger group of members

than those who actively participate: e.g., many “members” may be conscripted into

the group without their participation or knowledge.

4.5.2 Anonymous Voting with Deniability

DAGA may lend itself to certain forms of anonymous voting. Anonymity (to pre-

serve voter’s privacy) and proportionality (to enforce one-voter one-vote rule) is

generally required in any anonymous voting scheme. Many anonymous e-voting

schemes [3, 97, 107, 119] provide additional properties such as coercion-resistant and

receipt-freeness, which offer a weaker notion of deniability. DAGA’s deniability

property ensures that once an election has ended, the resulting communication tran-

script leaves no verifiable proof that the vote even occurred. DAGA may thus be

attractive for voting in a “dissident forum” under repression from an authoritarian

regime, for example.

4.5.3 Secure Access to Sensitive Resources

We can envision using DAGA to distribute access tokens to resources, in particular

to sensitive resources, in a way that gives access to a certain group of clients while

providing deniability of ever requesting those sensitive resources.

Additionally, because DAGA provides proportionality, the servers can keep track

of requests made by a particular anonymous user based on his final linkage tag. This

gives the servers the ability to limit access to resources as desired (to one or k times)

without exposing a client who inadvertently makes k ` 1 requests as done in many
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k-show credential systems [117]

4.5.4 Server-provided Signatures

After a client has been successfully authenticated as a unique group member, he

might request that the servers collectively perform a specific action on his behalf, for

example to sign a message anonymously and deniably.

This might be accomplished in several ways. Servers might sequentially sign a

message as they process the client’s tag provided that the client’s proof is valid.

At the end of a successful authentication, the servers might endorse a collective

ephemeral signing key and produce a signature on the provided message. Alterna-

tively, a client-defined subset of servers might issue a threshold DSS signature [76,77].

4.5.5 Supporting Anonymous Federated Login

Crypto-Book [128] provides for a privacy-preserving and accountable digital identi-

ties. It leverages the existing digital identity providers, such as Facebook or Twitter,

and the use of public-key encryption and linkable ring signatures. Linkable ring sig-

natures [125,126] allow a group member to anonymously sign a message in a way that

hides his identity but allows others to verify that the signature was produced by a

group member and to link all future signatures as coming from the same, anonymous

member.

DAGA can be used in place of any linkable ring signature scheme as it pro-

vides the same functionality (anonymity and linkability) while adding deniability

and forward security.
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4.6 Security Analysis

This section describes and analyzes DAGA’s security properties.

4.6.1 Assumptions

We assume that the Discrete Logarithm (DL) and Decisional Diffie-Hellman (DDH)

assumptions hold, that is, any probabilistic polynomial algorithm solves the DL

problem and the DDH problem respectively only with a negligible probability [22].

DAGA assumes a cyclic multiplicative group G of prime order q, where p “ 2q ` 1,

where the Discrete Logarithm and Decisional Diffie-Hellman assumptions hold in

G [22].

4.6.2 Properties of the Proofs of Knowledge

In this section we show that the client’s and server’s proofs of knowledge have

the properties of completeness, special soundness and special honest-verifier zero-

knowledge [53]. Note that H is modeled as a random oracle.

Definition 9 (Σ-protocol [53]). A protocol P is said to be a Σ-protocol for relation

R if:

• P is of the 3-move form, and if P, V follow the protocol, the verifier always

accepts (completeness).

• From any x and any pair of accepting conversations on input x, pt, c, rq, pt, c1, r1q

where c ‰ c1, one can efficiently compute w such that px,wq P R (special sound-

ness).

• There exists a polynomial time simulator Szk, which on input x and a random

e outputs an accepting conversation of the form pt, c, rq, with the same proba-
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bility distribution as conversations between the honest P, V on input x (special

honest-verifier zero-knowledge).

PKclient: Client’s Proof of Knowledge

Completeness. If a prover and verifier faithfully follow the protocol on common input

C and prover’s private input x, then the verifier always accepts the proof generated by

the prover. Assume that the proof P0 is generated by a client i who knows a solution

xi, his private key, and s, the product of all secrets shared with the servers. The

verifier checks the commitment t and the challenge cs. For client i, the commitment

verification proceeds as follows.

ti.0
?
“ Xci

i g
ri.0

gvi.0 “ Xci
i g

ri.0

gvi.0 “ gcixigvi.0´cixi

gvi.0 “ gcixigvi.0g´cixi

gvi.0 “ gvi.0

ti.10
?
“ Scimg

ri.1

gvi.1 “ Scimg
ri.1

gvi.1 “ hcisi gvi.1´cis

gvi.1 “ gcisgvi.1g´cis

gvi.1 “ gvi.1

ti.11
?
“ T ci0 h

ri.1
i

hvi.1i “ T ci0 h
ri.1
i

hvi.1i “ hcisi hvi.1´cisi

hvi.1i “ hcisi hvi.1i h´cisi

hvi.1i “ hvi.1i
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For every client j ‰ i, the commitment verification proceeds as follows.

tj.0
?
“ X

cj
j g

rj.0

X
wj

j gvj.0 “ X
cj
j g

rj.0

X
wj

j gvj.0 “ X
wj

j gvj.0

tj.10
?
“ Scjmg

rj.1

Swj
m gvj.1 “ Scjmg

rj.1

Swj
m gvj.1 “ Swj

m gvj.1

tj.11
?
“ T

cj
0 h

rj.1
j

T
wj

0 h
vj.1
j “ T

cj
0 h

rj.1
j

T
wj

0 h
vj.1
j “ T

wj

0 h
vj.1
j

The challenge verification proceeds as follows.

cs
?
“ c

cs “
n

ÿ

i“1

ci

cs “
k

ÿ

i“1

wk ` cs ´
k

ÿ

i“1

wk

cs “ cs

As shown above, the verifier will be able to successfully verify the commitments t

and c based on the challenge cs, hence, the proof is complete.

Special Soundness. Given common input i and two transcripts of successful

conversations pt, c “ pc1, . . . , cnq, r “ pr1, . . . , rnqq and pt, c1 “ pc11, . . . , c
1
nq, r

1 “

pr11, . . . , rnqq, where c ‰ c1, client i’s private input xi and s can be successfully

computed as follows:

ri.0 “ vi.0 ´ cixi

r1i.0 “ vi.0 ´ c
1
ixi

xi “
ri.0 ´ r

1
i.0

ci ´ c1i

ri.1 “ vi.1 ´ cis

r1i.1 “ vi.1 ´ c
1
is

s “
ri.1 ´ r

1
i.1

ci ´ c1i
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Special Honest Verifier Zero-Knowledge. There exists a polynomial time sim-

ulator Szk, which on common input I generates a conversation transcript that is

computationally indistinguishable from a transcript generated by a prover. The sim-

ulator Szk works as follows:

1. Choose w1, . . . , wn PR Z˚q for all i and v1.0, v1.1, . . . , vn.0, vn.1 PR Z˚q for all i.

Compute commitments ti.0 “ Xwi
i g

vi.0 , ti.10 “ Swi
m g

vi.1 , and ti.11 “ Twi
0 hvi.1i for

each i.

Set t “ pt1.0, t1.10, t1.11, . . . , tn.0, tn.10, tn.11q,

2. Compute cs “
řn
k“1wk. Set ci “ wi for each i and set c “ pc1, . . . , cnq.

3. Compute responses r “ pr1.0, r1.1, . . . , ri.0, ri.1q using ri.k “ vi.k for all 1 ď i ď n

and k P t0, 1u.

4. Set P “ pcs, t, c, rq.

The verification of the proof works as follows for every i:

ti.0
?
“ Xci

i g
ri.0

Xwi
i g

vi.0 “ Xci
i g

ri.0

Xwi
i g

vi.0 “ Xwi
i g

vi.0

ti.10
?
“ Scimg

ri.1

Swi
m g

vi.1 “ Scimg
ri.1

Swi
m g

vi.1 “ Swi
m g

vi.1

ti.11
?
“ T ci0 h

ri.1
i

Twi
0 hvi.1i “ T ci0 h

ri.1
i

Twi
0 hvi.1i “ Twi

0 hvi.1i

cs
?
“

n
ÿ

k“1

ck.

n
ÿ

k“1

wk “
n

ÿ

k“1

wk
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PKserver
1 : Proving correctness of its work

Completeness. The verifier reconstructs the commitments as follows:

t11 “ T r1j´1T
´r2
j

“ T
v1´crj
j´1 T

´pv2´csjq
j

“ T v1j´1T
´crj
j´1 T

´v2
j T

csj
j

“ T v1j´1T
´v2
j

“ t1

t12 “ gr1Rc
j

“ gv1´crjgcrj

“ gv1g´crjgcrj

“ gv1

“ t2

t13 “ Sr2j´1S
c
j

“ S
v2´csj
j´1 S

csj
j´1

“ Sv2j´1S
´csj
j´1 S

csj
j´1

“ Sv2j´1

“ t3

Given that t11 “ t1, t12 “ t2 and t13 “ t3, we have

c
?
“ HpTj´1, Tj, Rj, g, Sj, Sj´1, t

1
1, t

1
2, t

1
3q

c “ c

Special Soundness. Given common input i and two transcripts of successful con-

versations pt1, t2, t3, c, r1, r2q and pt1, t2, t3, c
1, r11, r

1
2q, where c ‰ c1, server j’s private
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input rj and sj can be successfully computed as follows:

r1 “ v1 ´ cyj

r11 “ v1 ´ c
1yj

rj “
r1 ´ r

1
1

c´ c1

r2 “ v2 ´ cisj

r12 “ v2 ´ c
1
isj

sj “
r2 ´ r

1
2

c´ c1

Special Honest Verifier Zero-Knowledge. The simulator Szk accepts h as input

and performs the following steps to produce Pj “ P :

1. Choose v1, v2 PR Z˚q .

2. Set c “ h.

3. Calculate t1 “ T v1j´1T
´v2
j , t2 “ gv1Rc

j, t3 “ Sv2j´1S
c
j .

4. Set r1 “ v1 and r2 “ v2.

5. Set P “ pt1, t2, t3, c, r1, r2q.

The verification of the proof works as follows:

t11 “ T r1j´1T
´r2
j

“ T v1j´1T
´v2
j

“ t1

t12 “ gr1Rc
j

“ gv1Rc
j

“ t2

t13 “ Sr2j´1S
c
j

“ Sv2j´1S
c
j

“ t3

Then, we verify the challenge c
?
“ h, which gives h “ h.
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PKserver
2 : Exposing a misbehaving client

Completeness. The verifier reconstructs the commitments as follows:

t11 “ ZrZc
sj

“ Zv´cyjZcyj

“ ZvZ´cyjZcyj

“ Zv

“ t1

t12 “ grY c
j

“ gv´cyjgcyj

“ gvg´cyjgcyj

“ gv

“ t2

Given that t11 “ t1 and t12 “ t2,

c
?
“ HpZsj , Z, Yj, g, t11, t12q

HpZsj , Z, Yj, g, t1, t2q “ HpZsj , Z, Yj, g, t11, t12q

Special Soundness. Given common input i and two transcripts of successful con-

versations pt1, t2, c, rq and pt1, t2, c
1, r1q, where c ‰ c1, server j’s private input yj can

be successfully computed as follows:

r “ v ´ ciyj

r1 “ v ´ c1iyj

yj “
r ´ r1

c´ c1

Special Honest Verifier Zero-Knowledge. The simulator Szk accepts h as input

and performs the following stepts to produce Pj “ pZsj , P q:

1. Choose v PR Z˚q . Calculate c “ h.
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2. Calculate t1 “ ZvZc
sj

and t2 “ gvY c
j .

3. Set r “ v

4. Set P “ pt1, t2, c, rq.

The verification of the proof works as follows:

t11 “ ZrZc
sj

“ ZvZc
sj

“ t1

t12 “ grY c
j

“ gvY c
j

“ t2

Then, we verify the challenge as follows:

c
?
“ h

h “ h

4.6.3 Completeness

We require that servers accept a properly formed authentication request from every

honest client i who belongs to a group G defined by a particular authentication

context C, unless the protocol is aborted because of a discovered misbehavior of

some server. A client i belongs to a group G if he knows a private key xi such that

Xi “ gxi P ~X.

Definition 10. An authentication protocol offers the completeness property, if for

any client i P G “ p ~X, ~Y q who correctly follows the prescribed protocol, the servers

accept i ’s authentication request with an overwhelming probability.

Theorem 1. DAGA offers the completeness property.
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Proof. Under our assumptions, a client i belongs to a group G, is in a possession

of a private key xi such that Xi “ gxi and Xi P ~X. Further, we assume that i

is in possession of a well-formed authentication context C “ pG, ~R, ~H, p, gq where

G “ p ~X, ~Y q is the group definition, H “ phi, . . . , hnq is a set of per-round generators

for clients, and R “ pR1, . . . , Rmq is server-published randomness. From the trust

model it follows that all servers participate in the round and all server’s but one can

behave arbitrarily dishonestly.

In order to make an authentication request, a client i must prepare an au-

thentication message M0
i “ pC, S, T0, P0q, where C is the authentication context,

S “ pZ, ~S “ S0, . . . , Smq consists of the client’s ephemeral public key and the set

of client’s commitments, T0 is the initial linkage tag, and P0 is a proof of correct-

ness for T0. We will show that client i is able to produce a valid message M0
i and

that this message will be accepted by the servers and therefore result in an accepted

authentication request.

To produce a valid message M0
i , client i needs to produce all of its components.

• Authentication context C. Client i obtains C before making an authentication

request.

• Ephemeral key and commitments S. Client i can produce S since it depends

on i’s randomly chosen key and information included in C.

• Linkage tag T0. The tag T0 “ hs1s2...smi depends on i’s publicly available per-

round generator hi and secrets s1, s2, . . . , sm created in the previous step.

• Proof P0. The proof P0 depends on the knowledge of xi and s. Based on

the completeness property of the underlying proof of knowledge, a client i can

always produce a valid proof if he’s in possession of the private information
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he tries to prove knowledge of. In our case, i creates a proof of knowledge

PKpxi, sq, where xi is i’s private key and s “ s1s2 . . . sm.

Therefore, i can produce a valid message M0
i “ pC, S, T0, P0q. Now, we will show

that this message will be accepted by the servers with an overwhelming probability

and therefore result in an accepted authentication request.

After creating M0
i , i sends it to an arbitrarily chosen server j. Each server j

verifies the message M0
i and either (i) accepts it and produces an outgoing tag Tj

and a proof PK
serverj
1 of correctness of its own work or (ii) rejects it and produces

a proof PK
serverjpiq
2 of the client i’s misbehavior. By the soundness property of the

underlying proof of knowledgePKserver
2 , none of the servers can expose i as dishonest

and therefore reject i’s authentication request, except with a negligible probability,

given that i’s M0
i is valid. By the soundness property of PKserver

1 , none of the servers

can produce a valid proof of correctness if they did not follow the protocol, except

with a negligible probability. Therefore, if the protocol is not terminated and a faulty

server discovered, each server produces a valid intermediate tag Tj, which results in

a valid final tag T if . Consequently, i’s authentication request is accepted with with

an overwhelming probability.

4.6.4 Soundness

We require that DAGA is a sound authentication protocol, that is, servers only

accept properly formed authentication requests from members who belong to a par-

ticular group G as defined in an authentication context C.

This means that it should offer soundness and not allow forgeries, where the

notions of forgeability from [86] apply.

Typically, the soundness property of a non-anonymous authentication protocol



100

is defined with respect to “legitimate” users that have established credentials with

a verifier. In case of DAGA, we define legitimate users as users who belong to a

particular group G. Any client that possesses a correct long-lived well-known key

pair associated with a non-anonymous identity can belong to any G, even without

their knowledge. This is true because any member i can be listed in G if their public

key is publicly available since there is no action required on the client’s side in order

to be added to G.

We assume that honest clients keep their private keys secret and dishonest clients

can arbitrarily share their private keys. In such a case, we note that if i is in posses-

sion of a private key ı̂ such that Xı̂ “ g ı̂ and Xı̂ P ~X, then i can successfully imper-

sonate ı̂ by authenticating as a legitimate client and does not violate the soundness

property.

Definition 11. An authentication protocol offers the soundness property if an au-

thentication request from any client i R G is rejected with an overwhelming probability.

Theorem 2. DAGA offers the soundness property.

Proof. Assume that a client i does not belong to a group G, that is, i’s public key

Xi is not included in ~X. Therefore, i does not know any xı̂ such that Xı̂ “ gxı̂

and Xı̂ P ~X. To successfully authenticate as a member of G, i needs to prepare

a message M0
ı̂ on behalf of some ı̂ P G. To do so, i must prepare a valid message

M0
ı̂ “ pC, S, T0, P0q without the knowledge of xı̂, such that each server accepts i’s

authentication request.

We will show that i cannot produce a valid message M0
ı̂ , except with a negligible

probability, and each message M
10
ı̂ i can produce will be rejected by the servers

because of the invalid proof. Hence, i’s authentication requests will be denied with

an overwhelming probability.
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In order to forge a message M
10
ı̂ , a client i must forge its individual elements, that

is C, S, T0 and P0.

• Authentication context C. C is publicly available and so i has access to a valid

authentication context.

• Ephemeral key and commitments S. Client i can produce a valid S since it

does not depend on xı̂. To do so, i chooses z PR Z˚q and calculates S “ pZ, ~Sq,

where ~S “ S0, . . . , Sm, since it only depends on the knowledge of z, a generator

g and the set of servers’ public keys ~Y included in C.

• Linkage tag T0. To calculate the tag T0 “ hs1s2...smı̂ , i uses hı̂ included in C and

and secrets s1, s2, . . . , sm created in the previous step.

• Proof P0. The last piece i must produce is the proof PKclient which depends

on the knowledge of xı̂ and s. i knows one of the secrets, namely s, but he does

not know client ı̂’s private key xı̂.

By the soundness property of the underlying proof of knowledge PKclienti , i can-

not produce a valid proof P0 on behalf of some ı̂ P G, except with a negligible

probability. Therefore, i must forge P0 and create an authentication message M
10
ı̂

that includes the forged proof. By the anytrust assumption, there exists at least one

honest server and therefore i’s message will be eventually rejected. If i can forge a

proof P0, however, such that each honest server j accepts the proof as coming from

a member ı̂ with non-negligible probability, then i must be able to find x1ı̂ such that

Xı̂ “ gx
1
ı̂ . This, however, is impossible under the Discrete Logarithm assumption,

except with a negligible probability. Therefore, each authentication request from

i R G is rejected with an overwhelming probability.
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4.6.5 Anonymity

Informally, we want to ensure that an adversary cannot guess which member has

been authenticated with a probability greater than random guessing. We will show

that DAGA provides anonymity under the Decisional Diffie-Hellman assumption in

the random oracle model [13].

We argue that in order to break a client i’s anonymity, an adversary must leverage

the linkage tags because he cannot infer the client’s identity based on a proof PKclient

under the zero-knowledge property of the proof.

An adversary cannot infer the identity of a client based on a proof of knowledge

PKclient because the proof is zero-knowledge and does not leak the identity of its

creator. Consequently, the adversary must focus on the initial, intermediate or final

tags of a particular client in hopes of discovering the client’s identity. After observing

a protocol run, the adversary sees the initial tag T0, all the intermediate linkage tags

Tj, a final linkage tag Tf , and all partial intermediate tags of the servers he controls.

By using per-round secrets rj and sj of every dishonest server j, the adversary obtains

T0 “ hshı̂ and Tf “ hrhı̂ , two tags protected by the per-round secrets rh and sh of

an honest server. For simplicity, assume that there are only two clients ti, ju P G,

hence, the adversary’s goal is to decided whether ı̂ “ i or ı̂ “ j based on the tags

he obtained but without the knowledge of either sh or rh. Because both hi and hj

are generators of G, then both generators generate the entire group G when raised to

x P t1, . . . , qu. Therefore, hshi , h
sh
j P G as well as hrhi , h

rh
j P G, and each element is a

random and indistinguishable element of G. Moreover, by the properties of G, there

exists s1, s2, r1, r2, h1, h2 P G such that hs1i “ hs2j and hr1i “ hr2j , hence, the tag can

be created with respect to hi and hj equally likely.

Definition 12. An authentication protocol is anonymous if for any probabilistic
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polynomial time adversary A, the probability ppnq that A wins the anonymity game

is negligible s.t. |ppnq ´ 1
2
| “ neglpnq.

The following anonymity game is played between the adversary A and the chal-

lenger C.

1. The challenger C randomly generates all private and public keys for every client

i P G and for every server j P G, pXi “ gxi , xiq and pYj “ gyj , yjq respectively.

2. The adversary chooses two honest members i and j, both of which belong to

G.

3. The challenger gives the adversary the public keys of all clients and all servers,

and the private keys of the n´2 dishonest clients (Gzti, ju) and m´1 dishonest

servers.

4. The adversary is allowed to run the protocol polynomially-many times for any

member k P Gzti, ju.

5. The challenger chooses a bit b P t0, 1u uniformly at random. If b “ 0, then the

challenger chooses member i to participate in the protocol and chooses member

j otherwise.

6. The challenger participates in the authentication protocol playing the role of

all honest servers and the chosen honest member. The adversary participates

in the authentication protocol playing the role of the dishonest members and

the dishonest servers.

7. After the challenge protocol run, the adversary is allowed to run the protocol

polynomially many times for any member k P Gzti, ju. Finally, the adversary

outputs his guess b1 “ t0, 1u. The adversary wins the anonymity game if b1 “ b.
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Theorem 3. DAGA offers the anonymity property.

We will show that if there exists a polynomial time adversary Aanon that breaks

the anonymity property with non-negligible property, then we can use this adversary

to create an adversary Addh that solves the Decisional Diffie-Hellman problem with

non-negligible probability.

Proof. An adversary A has two choices for his behavior: (1) A can play the role

of the dishonest entities and deviate from the protocol in an arbitrary way, or (2)

A can follow the prescribed protocols and try to break the anonymity property by

observing the protocol runs. Briefly, DAGA requires that each entity produces a

proof of correctness, hence, if the adversary does not follow the protocol, he will fail

to produce the required output by the soundness property of the underlying proofs of

knowledge, and the protocol will abort. Therefore, in order to break the anonymity

property, A follows the prescribed protocols.

Assume that there exists a probabilistic polynomial time Aanon that breaks

the anonymity property with a non-negligible probability and therefore has a non-

negligible advantage εanon in the anonymity game. We will show that if Aanon exists,

then we can use Aanon as a subroutine to another probabilistic polynomial time

adversary Addh that solves the DDH problem with non-negligible probability.

Addh plays the DDH game, receives a challenge tuple pg, ga, gb, gcq from the DDH

challenger, and outputs 0 if pga, gb, gcq is a Diffie-Hellman tuple, that is c “ ab,

otherwise Addh outputs 1. Addh uses Aanon as a subroutine and therefore must

simulate the Aanon’s view of its interaction with the challenger in the anonymity

game. Because all the client’s and server’s proof of knowledge are zero-knowledge,

Addh can efficiently simulate all proofs in the random oracle model [13]. Therefore, we

omit the proofs in the description below keeping in mind that they can be simulated
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and correctly verified. Addh simulates the view of Aanon as follows.

Step 1: Addh creates an authentication context C as prescribed in the protocol

except that he uses ga from the DDH challenge tuple as the public key Yh of the

honest server h. Addh sets the generator g of C to be the same as g from the DDH

tuple.

Step 2: Addh proceeds to simulate the initial linkage tag T i0 by first setting gb from

the DDH tuple as the client’s ephemeral key Zi. Now Addh generates an ephemeral

secret sk for every server k ‰ h as follows: sk “ Hppgbqykq, which he can do because

he possesses all private keys of dishonest servers, and Addh uses gc for the ephemeral

secret sh client i shares with the honest server h. Then, Addh generates the initial

linkage tag T i0 “ h
śm

k“1 sk
i .

Step 3: For every server k ‰ h, Addh processes the tag T i0 as prescribed in the

protocol. For server h, Addh uses gc for sh and Th “ pTh´1q
p´shqprhq, finally outputting

a final linkage tag T if .

Now, that Addh correctly simulated the view of Aanon, Aanon outputs his guess

b1anon P t0, 1u, which Addh copies and outputs as his own guess b1ddh “ b1anon.

Addh correctly simulates the view of the challenger in the anonymity game with

probability 1
2

when the challenge tuple is a Diffie-Hellman tuple. Hence, Addh’s

advantage is 1
2

of the advantage of Aanon. Following our assumption, Aanon has a

non-negligible advantage εanon in the anonymity game and therefore Addh’s advantage

εddh “
εanon

2
, which is also non-negligible. Hence, a contradiction.

4.6.6 Forward anonymity.

Informally, an authentication protocol is forward anonymous if an adversary cannot

break any client’s anonymity even if the adversary is in possession of some (or even

all) group members’ private keys obtained after the protocol round completed. Recall
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that a protocol run is defined in terms of an authentication context. The reason that

we can only ensure forward anonymity after the protocol round has ended is because

an adversary who possesses the private keys of the clients can run the protocol himself

using some private key xi, successfully impersonating a client i. After a successful

authentication request, the adversary would learn the final linkage tag T if that would

allow him to distinguish all previous authentication requests made by i as the linkage

tag persists throughout the protocol round.

Definition 13. An authentication protocol is forward anonymous if for any prob-

abilistic polynomial time adversary A, the probability ppnq that A succeeds at the

forward anonymity game is negligible s.t. |ppnq ´ 1
2
| “ neglpnq.

The forward anonymity game is played between the adversary and the challenger

and is exactly as the anonymity game defined in the previous section except that in

Step 7 the adversary is given the private keys pxi, xjq of both honest members.

Theorem 4. DAGA offers the forward anonymity property.

Proof. Following that DAGA offers anonymity, we know that an adversary Aanon

has a negligible advantage in the anonymity game. The only difference between the

anonymity and forward anonymity games is the fact that Afa receives the clients’

private keys. Because the linkage tags and per-round generators are independent of

the private keys, Afa can at most do as well as Aanon by using Aanon as a subroutine

and simply not using the private keys. Hence, Afa advantage εfa “ εanon, which is

negligible.

The only element of any authentication message M0 that depends on the private

key is the proof PKclient . This is because each client would use the same authenti-

cation context C, ~S is generated based on z PR Z˚q and ~Y P C. We can easily show
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that a proof P0 from M0 could have been produced using any private key in question

(xi or xj), and the knowledge of both keys does not aid Afa.

Recall the prover’s steps to prepare PKclient described in Section 4.3.7. P0 “

pcs, t, c, rq, where cs is the random challenge t and c are the sets of commitments,

and r is the set of responses as follows

1. t “ pt1.0, t1.10, t1.11, . . . , tn.0, tn.10, tn.11q for each i P G, where ti.0 “ Xwi
i g

vi.0 ,,

ti.10 “ Swi
m g

vi.1 , and ti.11 “ Twi
0 hvi.1i .

2. c “ pc1, . . . , cnq, where

ci “

$

’

’

&

’

’

%

cs ´
řn
k“1wk for i “ ı̂

wi otherwise

3. r “ pr1.0, r1.1, . . . , ri.0, ri.1q, where ri.k “ vi.k ´ cixi.k for all 1 ď i ď n and

k P t0, 1u, and xi.0 “ xi.1 “ 0 for all i ‰ ı̂, xı̂.0 “ xı̂, and xı̂.1 “ s.

We observe that a private key xı̂ of some prover ı̂ is only used once to calculate

rı̂.0 “ vı̂.0´ cı̂xı̂ since for each i ‰ ı̂, ri.0 “ v1.0. Hence, in order to decide the value of

b, Afa needs to decide that rk.0 for some position k is equal to rı̂.0, where ı̂ P ti, ju,

in which case the adversary would have to distinguish an element of form vı̂.0 ´ cı̂xı̂

from vk.0.

However, both vı̂.0 and cı̂ are random and unknown to the adversary since they

were securely deleted. Thus, even with the knowledge of xı̂, all elements are indistin-

guishable. Alternatively, Afa can solve each rı̂.0 “ vı̂.0 ´ cı̂xı̂, using both xi and xj.

In this case, however, Afa obtains two sets of valid, and therefore indistinguishable,

solutions. Hence, the knowledge of the private keys does not aid the adversary.
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4.6.7 Proportionality

Intuitively, the proportionality property ensures that within an authentication con-

text C each client i can authenticate only once as a particular anonymous client and

each subsequent authentication request within the same context will be recognized

as coming from that client. Therefore, the verifier will be able to recognize when

the same client authenticates but without knowing that client’s identity. We achieve

this property by assigning a unique linkage tag Ti “ h
śm

j“1 rj
i to each client i in a way

that ensures that the tag is always the same for each authentication request within

the same context C.

The linkage tags enjoy an additional property of unlinkability between different

authentication contexts. That is, the same client i receives a different and unlinkable

tag Tf within some context C2 as long as C1 ‰ C2 such that ~R P C1 ‰ ~R P C2.

This property is important to ensure that clients remain anonymous and unlinkable

even after performing authentications within different authentication contexts. It is

straightforward to see that two linkage tags of client i from two different contexts

are two independent elements of the underlying group G.

Definition 14. An authentication protocol offers the proportionality property if each

member i receives exactly one unique final linkage tag T if within the same authenti-

cation context C.

Theorem 5. DAGA offers the proportionality property.

Proof. We will show that each client i’s final linkage tag is unique, and that during

each authentication within the same authentication context C, i’s final linkage tag

is the same.

First, however, we will consider the constraints placed on the behavior of each

client i and each server j by the fact that they need to produce a proof of correctness
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of their work and other assumptions. By the soundness property of the underlying

proof of knowledge PKclient and the assumption that no client knows x such that

gj “ gxi for any i, j, any client i must generate his initial linkage tag T0 with respect to

his per-round generator hi. That is, T0 “ hsi for some s. By the soundness property

of the underlying proof of knowledge PKserver
1 , each server j must correctly remove

the ephemeral secret sj assigned by a client and add the correct server’s ephemeral

secret rj. That is, each server j calculates Tj “ T
s´1
j rj

j´1 , where s´1
j is a multiplicative

inverse pmod qq of sj “ HpZyjq and rj “ loggpRjq.

Each client’s final linkage tag is unique. The fact that each client’s final linkage

tag is unique, that is, T if ‰ T jf for any j ‰ i P G, follows from the basic number

theoretic properties of G. Assume the contrary, that is for i, j such that i ‰ j

T if “ T jf . Then it must be so that hri “ hrj where hi ‰ hj, and r “
śm

j“1 rj. Because

hi is a generator of G, then by definition every element of G can be expressed as hxi

for some x P t0, . . . , q ´ 1u, where q is the order of G. Then, we have hrj “ hxri .

Consequently, hri “ hxri only if r “ xr pmod qq. Because |hi| “ q, then it must be

so that x “ q. Then, r “ qr pmod qq and r “ r pmod qq. This contradicts the

assumption that hi ‰ hj.

Each client i’s final linkage tag is the same for each accepted authentication

request. The fact that each client i’s final linkage tag is the same is straightfor-

ward. Assume two distinct authentication requests from i using the same C that

result in two initial linkage tags T
1

0 and T
2

0 such that T
1

0 “ hs
1

i and T
2

0 “ hs
2

i ,

where each s1 ‰ s2. The servers will collectively process both tags as follows:

T
1

f “ pT
1

0q
s
1´1r “ phs

1

i q
s
1´1r “ hri and T

2

f “ pT
2

i q
s
2´1r “ phs

2

i q
s
2´1r “ hri .

Therefore, each client i receives exactly one unique final linkage tag for each

accepted authentication request.
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4.6.8 Deniability

The deniability notion that DAGA provides follows the zero-knowledge notion of

deniability first formalized in the context of authentication in [65]. Informally, we

can say that an authentication protocol is deniable if after a complete protocol run

there is no proof that any client participated in the protocol given an authentication

transcript of a protocol run and all public information.

The notion of deniability is closely related to anonymity, however, the subtle

differences between these two properties might make a significant difference and make

a protocol that provides both properties more suitable for certain situations where

the mere fact that some client from a particular group authenticated anonymously

reveals useful information. In case of anonymity, an adversary should not be able to

tell which member authenticated while in case of deniability the adversary should

not be able to tell whether any member authenticated based on the authentication

transcripts. We can achieve anonymity by ensuring that two valid transcripts Ti and

Tj of members i, j P G respectively are indistinguishable from one another. On the

other hand, we achieve deniability by ensuring that a valid transcript Ti of client i

is indistinguishable from a simulated transcript Ts that was computed without the

help of any member i P G.

DAGA inherently offers a weak notion of deniability in the sense that any mem-

ber listed in G can plausibly deny being an active client because anyone can conscript

an arbitrary group G using publicly available public keys and without any help or

knowledge of the listed members. However, as pointed out above, this might not be

sufficient because the fact that a valid authentication transcript exists implies that

at least one of the clients in G authenticated.

DAGA achieves deniability by using an interactive rather than non-interactive
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zero-knowledge proof. This is because an interactive proof is not transferable and

only “convinces” the party involved in the proof. In a non-interactive proof the

verifier is replaced with a hash function to create an unpredictable challenge that

a prover cannot anticipate in advance. Therefore, anyone at any point, even much

later, can verify the non-interactive proof and be convinced (or not) that the prover

knows his secret. This property, while useful, goes against the notion of deniability.

Definition 15. An authentication protocol is deniable if for any client i P G there

exists a simulator SD produces a transcript TRsim of a protocol run such that TRsim is

indistinguishable from a real transcript TRi that resulted from i’s run of the protocol.

Theorem 6. DAGA offers the deniability property.

Proof. We will show that there exists a polynomial-time simulator SD that produces

a transcript TRSD
that is computationally indistinguishable from a client generated

transcript. We assume that SD produces a transcript “on behalf” of some client i

using an authentication context C “ pG, ~R, ~H, p, gq without the knowledge of any

private key xi that corresponds to some public key Xi P ~X. The simulator SD

works as follows. First, SD produces a linkage tag T0 using the client i’s prescribed

per-round generator hi P ~H exactly as client i would. Since SD has all required

information (the per-round generator hi and the product of all ephemeral secrets

shared with the servers) the simulator reproduces the exact tag T0 as follows.

1. Choose z PR Z˚q and compute Z “ gz.

2. For each server j, compute sj “ HpY z
j q.

3. Compute T0 “ hs1s2...smi . Then, for each 1 ď j ď m compute Sj “ gs1s2...sj such

that S0 “ g, S1 “ gs1 , . . . , Sm “ gs1s2...smq. Set ~S “ pZ, S0, . . . , Smq.
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At this point SD has computed ~S and T0. Next, S must produce a proof P0,

however, without the knowledge of i’s private key xi (or any other key). To do

so, we leverage the fact that PKclienti is zero-knowledge and therefore there exists

a polynomial-time simulator Szk that produces computationally indistinguishable

transcripts of PKclienti . SD uses Szk as a subroutine to produce P0. Szk takes as

input the authentication context C and works as follows.

1. Choose w1, . . . , wn PR Z˚q for all i.

2. Choose v1.0, v1.1, . . . , vn.0, vn.1 PR Z˚q for all i.

3. Compute commitments ti.0 “ Xwi
i g

vi.0 , ti.10 “ Swi
m g

vi.1 , and ti.11 “ Twi
0 hvi.1i for

each i.

Set t “ pt1.0, t1.10, t1.11, . . . , tn.0, tn.10, tn.11q,

4. Compute cs “
řn
k“1wk.

5. Set ci “ wi for each i and set C “ pc1, . . . , cnq.

6. Compute responses r “ pr1.0, r1.1, . . . , ri.0, ri.1q using ri.k “ vi.k for all 1 ď i ď n

and k P t0, 1u.

7. Output P “ pC,Rq.

After obtaining P , SD sets P0 “ P .

It is straightforward to see that the tag produced by SD is identical to a tag a

client i would have produced, hence, it will be accepted by servers. Also, the proof

P0 is correct and can be successfully verified with respect to the simulated challenge.

Ti.0
?
“ Xci

i g
ri.0

Xwi
i g

vi.0 “ Xci
i g

ri.0

Xwi
i g

vi.0 “ Xwi
i g

vi.0

Ti.10
?
“ Scimg

ri.1

Swi
m g

vi.1 “ Scimg
ri.1

Swi
m g

vi.1 “ Swi
m g

vi.1
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Ti.11
?
“ T ci0 h

ri.1
i

Twi
0 hvi.1i “ T ci0 h

ri.1
i

Twi
0 hvi.1i “ Twi

0 hvi.1i

cs
?
“

n
ÿ

k“1

ck.

n
ÿ

k“1

wk “
n

ÿ

k“1

wk

Finally, SD prepares an authentication message M0 “ pC, S, T0, P0q and sets TRSD
“

M0.

Now we argue that the transcript TRSD
“ pC, S, T0, P0q is computationally in-

distinguishable from a client generated one.

• C, the authentication context, has an identical distribution,

• ~S, client’s ephemeral key and commitments, has an identical distribution,

• T0, the linkage tag, has an identical distribution,

• P0 is produced by a simulator Szk that produces proofs that are computation-

ally indistinguishable from a client generated one as the underlying proof of

knowledge is honest-verifier zero-knowledge.

4.6.9 Forward Deniability

One of the goals of DAGA is to retain anonymity even under the exposure of the

clients’ long term private keys. This raises an interesting idea to apply the same

requirement of forward security to the deniability property. That is, we would like to

ensure that a pair of transcripts TRsim and TRreal generated using an authentication

context C, remains indistinguishable even given the additional knowledge of the

compromised private keys. We call this notion of deniability forward deniability.

Intuitively, forward deniability should hold given that deniability holds as we were
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able to show that we can generate an indistinguishable transcript Tsim without the

knowledge of any private key. The proof of forward deniability follows similarly to

the proof of forward anonymity where we argue that the additional knowledge of the

private key does not aide the adversary in distinguishing the transcripts.

Definition 16. An authentication protocol is forward deniable if for any client i a

simulated transcript TRSD
remains (computationally) indistinguishable from a real

transcript TRi that resulted from i’s run of that protocol even given a private key xj

of every client j P G.

Theorem 7. DAGA offers the forward deniability property.

Proof. Assume we have an authentication context C and two transcripts TRi and

TRSD
where each transcript consists of an authentication message Mi

0 “ C, ~S, T0, P0

and MSD
0 “ C 1, ~S 1, T 10, P

1
0 respectively created using C. We previously argued, in the

proof of deniability, that these two transcripts are (computationally) indistinguish-

able. Now we wish to revisit this claim and verify if the knowledge of all private keys

xi aids to distinguish the two transcripts.

• C “ C 1 are identical and therefore have an identical distribution.

• ~S and ~S 1 are randomly generated based on z, z1 PR Z˚q and have an identical

distribution, and do not depend on a client’s private key.

• T0 and T 10 have an identical distribution and also do not depend on a client’s

private key.

• P0 is produced by a simulator Szk without the knowledge of any private key

and P 10 is a client generated transcript using his private key xi.
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Therefore, the only element of the transcript that could be affected by the knowl-

edge of the private keys is the proof of knowledge P0 as P0 is created using xi and

P 10 without xi. Therefore, we observe the following differences in the set of responses

of r and r1: ri.0 “ vi.0 ´ cixi and r1i.0 “ v1i.0. In order to distinguish between P0 and

P 10, it must be possible to distinguish between ri.0 and r1i.0. However, both vi.0 and ci

are random and unknown and therefore even with the knowledge of xi ri.0 and r1i.0

are indistinguishable.

4.7 Practical Considerations

4.7.1 Servers’ Liveness

DAGA depends on a set of servers to process each authentication request. Therefore,

if a server goes offline or refuses to process a message, the protocol stalls or aborts.

While we cannot guarantee that DAGA terminates if one of the above happens, we

can employ a wrapper protocol that uses gossip techniques such as those used in

PeerReview [91] to ensure liveness.

4.7.2 Dealing with Dishonest Servers

Before processing an incoming authentication message, each server j verifies all proofs

of correctness of every server that comes before j. If an invalid proof PKserverk
1

or PK
serverkpiq
2 for some server k is discovered, the authentication must be aborted

and the client cannot be authenticated. We assume that the issue of dealing with

dishonest servers within the anytrust set is done administratively [192,193].
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4.7.3 Authentication Context

Generating an authentication context In order to establish a new authenti-

cation context, the servers need to define the clients who belong to a group G and

establish servers’ per-round secrets and clients’ per-round generators.

Step 1: First, the servers choose a safe prime p “ 2q ` 1 where q is a sufficiently

large prime a generator g of a prime order q group G.

Step 2: Each server j picks a per-round secret rj PR Z˚q , which is kept secret, and

then j sends to other servers a commitment Rj “ grj .

Step 3: Servers collectively establish a random per-round generator hi for each

client i such that no one knows the logarithmic relationship between hi and g, or

between hi and hi1 for any pair of clients i ‰ i1, for example using a technique

described in Section 4.7.5.

Step 4: Servers create a set of the servers’ commitments ~R “ pR1, . . . , Rmq and

clients’ generators ~H “ ph1, . . . , hnq. Then, the servers publish an authentication

context C “ pG, ~R, ~H, p, gq.

Validity of an authentication context An authentication context might be one

time, where each client is expected to make exactly one authentication request or a

context may remain valid for certain period of time or some maximum number of

authentications made by a single clients or all of clients in G. Since the servers can

keep track of each anonymous client’s authentication request, a client may be allowed

to make up to k requests so that each request beyond that is rejected regardless of the

validity of the supplied authentication message. After a context expires, all servers

securely erase their per-round secrets r making it impossible to process authentication

messages within this context.
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Updating an authentication context DAGA supports the evolution of the

clients is a particular group G included a context C in a way that preserves the

proportionality property within that context. A new client k may be efficiently

added to G, by simply adding his public key Xk to ~X and adding a new generator

hk to ~H. The proportionality property is preserved, because each client’s linkage

tag only depends on the client’s generator and the servers’ per-round secrets making

it independent of the membership of G. After the context is updated, each client

would create PKclienti with respect to the new group G. Care needs to be taken to

propagate the updated context to all clients to avoid accidentally compromising the

identity of the newly added client as he would be the only one using the updated

context.

4.7.4 Challenge Generation

A client i produces a proof of knowledge using an interactive honest-verifier zero-

knowledge proof of knowledge as described in Section 4.3.7. Because the proof is

interactive, a client i must obtain a random challenge cs from the servers after sub-

mitting his commitments. Additionally, because the proof is honest-verifier, the

challenge must be indeed randomly chosen. This can be ensured by requiring all

servers to collectively generate cs so that each server, which would include at least

one honest server, contributes its randomness towards cs.

One approach to collectively establish cs is as follows.

Step 1: Upon receiving a client’s request, server j assumes the role of a leader

and requests that the other servers generate a new challenge cs for client i.

Step 2: Each server i chooses ci PR Z˚q and then calculates a commitment Ci.

Server i signs and publishes Ci.

Step 3: Upon receiving Ci from every other server i, server j verifies if all Ci are
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of valid form and properly signed, and if yes server j publishes an opening cj of his

commitment Cj and requests other serves to open their commitments.

Step 4: Upon receiving an opening ci from every other server i, server j verifies if

every ci is indeed a valid opening of Cj. If yes, server j calculates cs “ c1` ¨ ¨ ¨ ` cm.

Server j collects all commitments Ci, openings ci, and the calculated challenge cs and

forwards to server j ` 1 who signs cs after verifying that it was correctly calculated.

Step 5: Upon receiving cs signed by every other server, server j forwards cs for

the client along with a proof that every other server calculated the same value.

Under our assumption, there is at least one honest server h who will randomly

choose his cj and therefore guarantee that the collective challenge cs is properly

generated.

4.7.5 Per-Round Generators

For each protocol round, defined by the same context C, we require that there is a set

~H “ ph1, . . . , hnq of n per-round generators of G, where there is one unique generator

hi for each client i. The proportionality property depends on the uniqueness of the

final linkage tags. Each client i’s linkage tag T if is unique and remains fixed within

the same C, precisely because each client i creates the initial tag T 0
i with respect to

the same but unique per-round generator hi.

As defined in Section 4.3.4, G is a multiplicative cyclic group of prime order q.

Therefore, all elements of G, except for the identity element, are generators of G so

generating ~H reduces to choosing n random elements of G.

However, it is important that ~H is chosen randomly to ensure that the assumption

no one knows the logarithmic relationship between any hi and g or between hi and hi1

for any pair of clients i ‰ i1 holds. Therefore, the anytrust servers must collectively

choose ~H in a way that ensures that none of the servers know the aforementioned
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logarithmic relationships. An efficient method to find generators is to use a hash

function H : t0, 1u˚ Ñ Z˚q to map a per-round fixed string pi, ~Rq into each client i’s

generator.

4.8 Evaluation

4.8.1 Implementation

We have implemented DAGA within the context of Dissent [192] using C++ with the

Qt framework and the CryptoPP cryptography library. The prototype implements

both the client and server aspects of DAGA, but currently does not support exposing

misbehaving clients nor any of the extensions to DAGA, discussed in Section 4.3.9

and Section 4.4, respectively. The prototype assumes that all keys derive from the

same modulus and subgroup, and that all participants have used an outside channel

to agree upon a common set of authentication servers and an authentication context.

With the introduction of DAGA, Dissent now includes a modular authentication

framework that supports pre-exchanged keys using Stinson’s two-way authentication

protocol [174] (Protocol 9.6), linkable ring signatures (LRS) [125], and DAGA.

4.8.2 Micro benchmarks

We evaluate DAGA in comparison to pre-exchanged keys and LRS. The evaluations

were performed on a 64-bit x86 machine running Ubuntu 12.04. This evaluation

simulates the authentication of a client to one or more servers within a single process.

All communication between parties occurs through bytestreams as if they were sent

over the network. Both the authentication time for a single client and the amount

of data transmitted during this authentication were recorded. All client and servers
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Figure 4.2: Time and traffic comparison among DAGA, LRS, and pre-exchanged
key authentication

keys derive from a common 2048-bit DSA key. For both DAGA and LRS, the

number of clients varied from 2 to 32768 by powers of 2. Only DAGA depends

on more than one server for authentication. Both the LRS and DAGA depend on

a linkage context. For this evaluation, we assume that the administrators of the

authentication systems have agreed upon and distributed the linkage context along

with the set of the group’s public keys.

Figure 4.2d shows the total system traffic during a single client authentication for

the various forms of authentication and group configurations. The traffic results have

been broken down into client to server, server to client, and server to server traffic in

figures 4.2a, 4.2b, and 4.2c, respectively. As expected, pre-exchanged key authenti-

cation does not depend on the number of clients in the group. DAGA authentication

transfers more data in all three cases and uniquely has the requirement that servers
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communicate with each other during an authentication. LRS authentication involves

a non-interactive zero knowledge proof, therefore has constant traffic from server to

client. Finally, all forms of DAGA traffic grow linearly in the number of clients and

nearly linearly in the number of servers, while only LRS client to server traffic grows

linearly.

The time for authentication, Figure 4.2e, exhibits similar characteristics to that

of the traffic for the respective authentication techniques. In this scenario, however,

unlike traffic, DAGA and LRS computation time remain competitive, particularly

when using 4 or less DAGA servers.

While DAGA compares well with other anonymous authentication schemes, like

LRS, the performance concerns remain. In order to remain anonymous among k indi-

viduals, anonymous authentication systems traditionally require linear computation.

Using more efficient DSA keys, such as, those derived from elliptic curves, would

reduce computation and traffic load for these style of protocols including DAGA and

LRS.



Chapter 5

Related Work

This chapter provides related work for both protocols described in this thesis: Pri-

vateEyes and DAGA.

5.1 PrivateEyes

Many biometric authentication protocols offer protection of biometric data. Unlike

our protocol, however, those protocols frequently protect the biometric data at the

cost of a degraded recognition performance, higher complexity, or a lack of mecha-

nisms to create unlinkable personas.

Standard cryptographic solutions for protecting passwords or other secrets, such

as encryption or hashing, are difficult to use for protecting biometric templates be-

cause even if two templates are generated using two samples of the same biometric

characteristic, they are never exactly the same. Homomorphic encryption [78] and

secure two-party computation techniques [121] offer good security and privacy guar-

antees but they normally come at a high performance cost.

There are two main categories of schemes for protecting templates: biometric

cryptosystems (BC), and template transformation [104,137].

122
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Biometric cryptosystems such as fuzzy extractors [59, 61], fuzzy vaults [108]

and fuzzy commitments [109], use a template as well as helper data to extract

a cryptographic key, with the resulting key validated by verifying its correctness.

Helper data generally consists of a biometric template (secure sketches and fuzzy

extractors [59, 61]) and optionally an external key (fuzzy vaults [108] and fuzzy

commitments [109]). The helper data in BC systems, however, unavoidably leaks

data [62, 101]. While BC offers additional features such as reliable cryptographic

key generation, they come at the cost of performance and complexity. They heav-

ily rely on error correction codes, which limits their recognition performance to the

error-correcting capability of the employed code [104, 152]. Furthermore, BC has

not been designed with reusability and revocability in mind [104, 137]. Attacks on

multiple records in BC may lead to a full recovery of the secret key and/or the bio-

metric template [26, 160, 167]. To achieve reusability and unlinkable personas, BC

schemes must be strengthened by adding auxiliary information, for example pass-

words [12, 138]. This adds to their complexity, limits user convenience, and in some

cases may still be insufficient [99].

Template transformation schemes use a transformation function, either invertible

(BioHashing [106]) or non-invertible (cancelable biometrics [151]), and apply it to

biometric data during the enrollment phase. For the authentication phase, they apply

the same transformation and compare the resulting template against the reference

template. In case of invertible transformations, users need to supply, and therefore

remember or keep secure, a password or a key, which impacts their convenience. A

compromise of this additional information can yield further vulnerabilities [115,127].

This is in contrast to our protocol where a compromise of the user’s token does

not expose her biometric data. In the case of non-invertible transformations, the

recognition performance is affected because the matching is applied to degraded
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transformed templates [152]. However, unlinkable personas can be achieved [104,137].

Finally, it has been shown that in some cases it is possible to recover biometric data

from transformed biometric templates [4, 5, 96, 157]. Additionally, both schemes

are vulnerable to intrusion and linkage attacks using information recovered from

transformed templates [136].

Table 5.1 provides a comparison of our scheme and other template protection

systems with respect to personas (providing unlinkability, reusability, renewability)

[104, 129, 152], recognition performance, secret information required in addition to

biometrics, type of the resulting authentication protocol (single request as opposed

to more complex challenge-response like designs) and known attacks.

Scheme Per- Recognition Secret Single Known attacks
sonas performance infor- request

mation authen-
required tication

PrivateEyes Yes Preserved No Yes
Fuzzy vault [108] No Affected No No Attack via record

multiplicity [20, 167];
brute force attack [6].

Fuzzy commitment [109] No Affected No No Leakage of information [62,101];
Attacks via record
multiplicity [20, 167].

Secure sketch and No Affected No No Attacks via record multiplicity,
fuzzy extractor [59,61] attacks via key

compromise [20,26,160,167]
Hardened fuzzy Yes Affected Yes No Attacks via record
extractors [12,20,138] multiplicity (select

schemes) [99]
Biohashing [106] Yes Preserved Yes Yes Intrusion and linkage attacks,

recovery the original
features [4, 5, 96, 127,136,157];
Attack via compromised
secret information [115,127].

Canceable Yes Affected No Yes Intrusion and linkage attacks,
biometrics [151] recovery of the original

template [4, 5, 96, 136,149,157]

Table 5.1: A comparison of different biometric template protection schemes
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5.2 DAGA

There are many approaches to anonymous and deniable authentication, a broad class

of schemes offering varying sets of properties. Some focus on providing properties,

such as unlinkability or anonymity revocation by a third party, that contradict to

the properties DAGA is designed to achieve.

Deniable schemes Deniable authentication [65] defines the idea of deniability in

the context of authentication. Their notion of deniability assures that the protocol

does not leave any paper trail, however, the scheme is not anonymous. Deniable Ring

Authentication [139] combines deniable authentication with ring signatures [155].

While it offers protection against compromised private keys, it still lacks propor-

tionality. [176, 177] makes the protocol of [139] non-interactive. [114] proposes an-

other protocol to achieve deniable ring signature, however, the deniability property

is viewed as non-frameability of honest client. Off-the-record [23,81] (OTR) messag-

ing is a two-party communication protocol that allows confidentiality, repudiability,

and forward security. OTR does not aim to provide anonymity and its repudiabil-

ity property is weaker than deniability we set out to achieve. In fact, OTR is not

deniable as users must use their long-term keys for one-time authentication of ses-

sion keys. OTR for group conversation [18] is an early attempt at OTR, however,

it requires a trusted peer who acts as a virtual server responsible for processing and

delivering all messages. Multi-party off-the-record messaging [82] (mpOTR) extends

OTR to a true group setting. mpOTR leverages a two-party authentication protocol.

Consequently, in order to offer plausible deniability, a subset of users must collude

which might be problematic if the group consists of users unlikely to do so. Group

off-the-record messaging [123] (GOTR) furthers the concept of OTR to provide two

strong notions of online and offline deniability, however, it still lacks, even optional,
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anonymity.

Group and ring signatures Group signatures [36, 42] allow a member to anony-

mously sign a message on behalf of a pre-defined group. However, user’s anonymity is

revocable by a group manager. Ring signatures [1,15,16,28,60,155,156] offer greater

flexibility by allowing ad-hoc group creation thereby supporting a weaker notion of

deniability. Linkable ring signatures [125,126] and short linkable signatures [10,185]

further improve upon ring signatures by adding linkability. The schemes of [1, 155]

support heterogeneous keys. Threshold signatures [166] are useful for collective (“k

out of n” members) corroboration.

E-cash E-cash schemes [27,32,38,40] are designed with anonymity (also referred

to as untraceability) in mind and often achieve deniability as well. However, normally

these schemes prevent double-spending as using a coin twice reveals the owner’s iden-

tity, rendering the schemes useable for one-time authentication only. Many anony-

mous e-voting schemes [3,97,107,119] provide coercion-resistant and receipt-freeness

which offer a weaker notion of deniability.

Anonymous credentials The credential system proposed in [33] allows users to

obtain credentials from organizations and later demonstrate their possession in an

anonymous and unlinkable way as many times as desired. The lack of linkability was

later addressed by one-time credentials [124] in form of coins that if spent twice would

reveal user’s identity. The schemes proposed in [31,117,142,182] bridge this gap and

offer credentials that a user can show up to k times, offering limited linkability

which in case of [31] applies to certain periods of time. AnonPass [120] is a system

that builds upon blacklistable anonymous credentials that allow to enforce a form of

proportionality. The system, however, is not concerned with deniability and forward

security as these properties are not critical to its usage model.



Chapter 6

Conclusions

This thesis makes three major contributions in response to the critical need for better

privacy online and approaches for managing digital footprint. We carefully analyze

the complex and often misunderstood relationships between authentication, privacy,

and identity management. We then propose a better terminology and clarifications

of concepts related to authentication. Specifically, we identify two distinct cases of

authentication that are critical to effective identity management. We provide users

with two privacy-preserving approaches, PrivateEyes and DAGA, to implement

these two cases of authentication. These approaches, which we summarize below,

target different applications and allow to produce online identities in a privacy-

preserving fashion.

Our goal is to better equip clients to actively engage in managing their online

presence through a better understanding of this process and ways to accomplish

it. We hope that the contributions of this thesis will enable people to be better

prepared to take control of their digital footprint and achieve the privacy protection

they desire.

PrivateEyes. Protecting sensitive biometric data is critically important to re-
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mote biometric identification, because once compromised, the biometric data be-

comes unusable for identification purposes. PrivateEyes offers a new and secure

approach to using biometrics for identification, making them an attractive alternative

to passwords and other currently deployed methods. In particular, biometric data is

never stored on the server, only on the user’s token, and then only in encrypted form.

The token itself requires no secure storage; the biometric data cannot be recovered

even if an attacker has full and complete access to everything stored on the token.

A lost token also cannot be used to impersonate its owner.

Our method is computationally efficient and has the same recognition perfor-

mance as the underlying feature extraction scheme. It also allows the creation of

independent identities to provide enhanced privacy of users’ actions across different

verifying parties.

DAGA. In our online interactions, we need not always reveal our identity in or-

der to obtain access to some resources or services. DAGA is a new anonymous group

authentication protocol that offers a unique set of properties: anonymity, deniability,

proportionality, and forward anonymity. The anonymity and proportionality prop-

erties allow a client to authenticate as some group member (using a group identity)

without revealing exactly which one but only once per time period or even at all.

Deniability makes it possible to deny ever participating in a protocol, while forward

anonymity is a stronger property that offers protection of user’s identity and the

ability to deny participation even in case of a compromise of user’s private key.

To resolve these apparently conflicting requirements, DAGA relies on a federation

of independently operated servers that are collectively but not individually trusted.

DAGA’s security property properties are ensured as long as at least one server

operates correctly and honestly during an authentication process, even if the client

does not know which server is honest.
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We have analyzed and verified DAGA’s four key security properties and have

also built a working proof-of-concept implementation of DAGA to validate its per-

formance and practical usability. Our evaluation suggests that DAGA compares

reasonably well to LRS and non-anonymous authentication given the functionality

gain.
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