
Abstract

Deterministic OpenMP

Amittai F. Aviram

2012

Researchers widely agree that determinism in parallel programs is desirable. Al-

though experimental parallel programming languages have long featured determin-

istic semantics, in mainstream parallel environments, developers still build on non-

deterministic constructs such as mutexes, leading to time- or schedule-dependent

heisenbugs. To make deterministic programming more accessible, we introduce

DOMP, a deterministic extension to OpenMP, preserving the familiarity of tradi-

tional languages such as C and Fortran, and maintaining source-compatibility with

much of the existing OpenMP standard. Our analysis of parallel idioms used in 35

popular benchmarks suggests that the idioms used most often (89% of instances in

the analyzed code) are either already expressible in OpenMP’s deterministic subset

(74%), or merely lack more general reduction (12%) or pipeline (3%) constructs.

DOMP broadens OpenMP’s deterministic subset with generalized reductions, and

implements an efficient deterministic runtime that acts as a drop-in replacement for

Gnu’s widely used conventional OpenMP support library GOMP, on mainstream

Unix platforms. We evaluate DOMP with several existing OpenMP benchmarks,

each requiring under 50 source line changes and a majority requiring none, as well

as several benchmarks we ported to OpenMP/DOMP. We find DOMP’s efficiency

and scalability comparable to GOMP in 7 of 11 benchmarks, suggesting that a de-

terministic model for mainstream parallel programming may be well within reach.

Deterministic OpenMP

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Amittai F. Aviram

Dissertation Director: Bryan A. Ford

December 2012

Copyright c© 2012 by Amittai F. Aviram

All rights reserved.

ii

Contents

1 Introduction 1

2 Background and Related Work 6

2.1 Deterministic Parallel Computing . 7

2.2 The Reduction Construct . 13

2.3 Programming Languages . 17

2.4 Deterministic Scheduling . 19

2.5 Record and Replay Systems . 22

2.6 Debugging Tools . 22

2.7 Transactional Memory . 23

3 Analysis of Synchronization 25

4 Design and Semantics 33

4.1 Working-Copies Determinism . 34

4.2 Accessible WCD . 42

4.3 API . 43

4.3.1 Retained OpenMP Constructs 43

4.3.2 Excluded OpenMP Constructs 44

4.3.3 Extending OpenMP . 44

iii

5 Extended Reductions 50

5.1 API and Semantics . 51

5.2 Converting Nondeterministic Code 53

6 Implementation 57

6.1 User-Level WCD . 58

6.1.1 Threading Model . 58

6.1.2 Heap Memory . 60

6.1.3 Using libgomp’s Internal API 63

6.1.4 Work Sharing . 65

6.2 Reducing Cost . 66

6.2.1 Copy on Write . 67

6.2.2 Merge or Copy As Needed . 69

6.2.3 Parallel Merge . 70

6.2.4 Thread Pool . 72

6.3 Simple Reductions . 76

6.4 Extended Reductions . 82

6.5 Data Structures . 83

6.6 Limitations . 90

7 Evaluation 92

7.1 Performance and Scalability . 92

7.2 Adapting Code for DOMP . 96

7.3 Discovering Concurrency Bugs—Or Not 97

8 Conclusion and Future Work 98

iv

List of Figures

2.1 Execution quantum scheme in deterministic schedulers such as DMP

and CoreDet. 20

3.1 Types and uses of synchronization abstractions in SPLASH, NPB-

OMP, and PARSEC programs. Items in green are naturally determin-

istic constructs. Items in yellow are uses of nondeterministic primitives

to achieve deterministic higher-level goals. 27

3.2 Invocations of synchronization abstractions in source code of SPLASH,

NPB, and PARSEC benchmark programs, broken down into natu-

rally deterministic constructs, uses of nondeterministic primitives to

build deterministic idioms, and genuinely nondeterministic idioms. No

OpenMP benchmarks studied had any nondeterministic idioms. . . . 28

3.3 Naturally nondeterministic synchronization constructs, classified by

idiom in which they are used. 29

3.4 Types and uses of synchronization abstractions in those benchmarks

that use OpenMP. 31

4.1 The “parallel swap” construct under Workspace Consistency 34

v

4.2 Pairing of releases and acquires following the Workspace Consistency

model. The pair (thread, event number) appears to the left of each

synchronization event (blue rectangle) and identifies it uniquely. Each

event has as its argument the identifier of the partnered event in an-

other thread. 36

4.3 Pairing of releases and acquires in a barrier. 38

4.4 Nondeterministic network . 39

4.5 Kahn process network . 39

4.6 Working-copies determinism with 2 threads 40

4.7 Sequence of events in a DOMP team of threads 41

4.8 A simple or classic “conveyor belt” pipeline. 45

4.9 A slightly more complex pipeline. The controlled alternation of output

from Thread 0 to Threads 2 and 3 and of inputs from those to Thread

4 maintains determinism. 46

6.1 Naive implementation of merge loop. 59

6.2 Structure of DOMP heaps allocated before any parallel execution. . . 61

6.3 Comparison of libgomp’s and libdomp’s respective call sequences, us-

ing GCC’s automatically-generated wrapper call. 64

6.4 DOMP merge scheme for (a) 7 and (b) 8 threads. Efficiently parallel

evaluation of reductions can coincide with merging. 71

6.5 Minimal example program with a standard OpenMP reduction. . . . 77

6.6 Standard GCC’s transformation of main in Figure 6.5. 78

6.7 Standard GCC’s transformation of the parallel block in Figure 6.5. . . 79

6.8 Disassembly (x86) of the code representing the parallel block in Fig-

ure 6.5. 79

vi

6.9 DOMP-enabled GCC’s transformation of the parallel block in Figure 6.5. 80

6.10 The global vars t data structure. 84

6.11 The segment t data structure. 84

6.12 The func t data structure. 85

6.13 The domp thread t data structure. 86

6.14 The reduction var t data structure. 87

6.15 The common value t union type, used in the reduction var t data

structure’s value field. 88

6.16 The thread record t data structure. 89

7.1 Benchmark running times, relative to standard (GOMP) times for the

same benchmark and number of threads. A value of 1 means equal

running times for DOMP and GOMP. IS (NPB) is a pathological outlier. 93

7.2 Speedups for all nine benchmarks under DOMP. Closer to the ideal

curve is better. DC (NPT) appears slightly “better” than ideal be-

cause of mere noise. 94

7.3 Benign data race in blackscholes. 97

vii

List of Tables

3.1 The majority of idioms using synchronization in the analyzed bench-

marks could be expressed with deterministic OpenMP constructs. . . 29

6.1 Which threads can do what with variables from whose heap during

and after a parallel block. 61

7.1 Number of pages written when running single-threaded: maximum

over all parallel blocks, and total over the whole program. 95

7.2 Lines of code changed in adapting OpenMP programs to DOMP. To-

tal: total lines of code in the original program, before modification.

DOMP Changes: lines inserted, deleted, or replaced in any orig-

inal source file. Module: size of external module supporting an

extended reduction. %: Portion of total included in modification

((changed + total)/total). 96

viii

Acknowledgments

Above all, I wish to thank my advisor, Bryan A. Ford, for his guidance, inspiration,

help, and collaboration throughout this project. I also thank the other members of

my dissertation committee for their helpful comments and advice: Emery Berger,

Ramakrishna Gummadi, and Zhong Shao. At an earlier stage of the project, James

Aspnes, Paul Hudak, Drew McDermott, and Yang Richard Yang provided helpful

guidance. I was privileged to work alongside brilliant classmates and colleagues,

including Antonios Stampoulis, Andreas Voellmy, Alex Vaynberg, Bandan Das, Yu

Zhang, Liang Gu, and all other members of the Yale Decentralized and Distributed

Systems (DeDiS) lab group. Finally, I thank my family and friends for their un-

yielding support and encouragement: Octavio Zaya, Blake Gilson, Rachel Aviram,

Mariva Aviram, Amalia Kessler, Adam Talcott, and Alex Demac.

This material is based upon work supported by the National Science Foundation

under Grant No. CNS-1017206.

Chapter 1

Introduction

The proliferation and continual widening of commodity multicore hardware have

increased the importance of parallel computing [8, 52, 80]. A major challenge that

this development introduces, particularly for shared memory parallelism, is how to

ensure that execution will be deterministic. Nondeterministic execution of a buggy

program can make certain bugs manifest themselves only unpredictably on some

runs; such hard-to-reproduce “heisenbugs” hamper debugging and development [71,

74]. By contrast, determinism goes beyond eliminating heisenbugs: it implies the

guaranteed ability to replicate execution sequences exactly, which, in turn, lies at

the core of techniques for fault tolerance [27] and accountability [46]. Determinism

may even provide a basis for timing channel control [12].

To address this challenge, researchers have developed new programming lan-

guages, record-and-replay systems, and thread management schemes.

Experimental languages such as Cilk [20], SHIM [36], Parallel Haskell [28], and

Deterministic Parallel Java [22] have explored the appeal and benefits of “determinis-

tic by default” programming models [68, 21]. However, new deterministic languages

require developers to adopt unfamiliar coding styles, type systems, and/or synchro-

1

nization constructs, however, and to rewrite or extensively modify existing code.

Deterministic record-and-replay systems such as ReVirt [35], LReplay [29], and

Karma [15] are helpful for finding heisenbugs, but software-based systems are gen-

erally too slow for continuous deployment, while sufficiently fast systems require

custom extensions to hardware.

In the area of thread management schemes, deterministic schedulers [33, 77, 18,

17, 70] can execute existing software reproducibly by imposing artificial thread in-

terleaving schedules, but their programming model remains nondeterministic: any

program, input, compiler, or scheduler change may yield a different schedule and

reveal heisenbugs. The experimental operating system Determinator [13] offers a

deterministic, race-free programming model compatible with existing languages, but

supports only hierarchical fork/join synchronization and requires adoption of a new

OS.

Many common parallel programming idioms yield naturally deterministic syn-

chronization behavior [11, 88]: e.g., fork/join, barriers, tasks, pipelines, futures [49],

and write-once structures [7]. Conventional models such as pthreads, however, leave

to the developer the burden of implementing these deterministic idioms correctly atop

nondeterministic low-level primitives, such as mutexes and condition variables. Even

frameworks such as OpenMP, offering higher-level block-structured synchronization,

also include nondeterministic primitives that developers often mix into programs:

e.g., atomic and critical sections, and flush memory barriers used in ad-hoc synchro-

nization [101].

We therefore ask, how indispensable are these nondeterministic primitives in par-

allel software? Could most mainstream parallel software rely mostly or exclusively

on deterministic constructs, given the right language and system capabilities? And

could a purely deterministic programming model accommodate legacy parallel pro-

2

grams, originally written without determinism in mind?

As a step toward answering these questions and making deterministic program-

ming models mainstream, we analyzed three parallel benchmark suites (SPLASH,

NPB-OMP, and PARSEC), hand-counting the instances of synchronization con-

structs and classifying each according to its use in the program. We find that 66%

of synchronization instances already use deterministic constructs such as fork/join

and barrier, and a further 25% of instances used nondeterministic primitives such

as mutexes as building blocks to express higher-level idioms that are, in fact, natu-

rally deterministic. These latter cases reflect situations in which the programming

language apparently lacked the means to express the deterministic parallel idiom

the developer intended. The largest such class was reductions (12% of instances), in

languages that had no such construct, or, in OpenMP, where language restrictions

failed to support the desired reductions, such as vector addition. In a few cases,

the programmer used nondeterministic primitives to build pipelines (3%) or task

queues (4%), which are also expressible deterministically with appropriate language

support. Only 9% of instances contributed to algorithms we found to be genuinely

nondeterministic, such as user-level scheduling or load balancing. Although these

results cover only a limited benchmark code-base and may not fully represent larger

parallel applications, they nevertheless suggest that a vast majority of parallel idioms

in realistic software should be expressible given appropriate deterministic constructs.

To test this hypothesis, we developed Deterministic OpenMP (DOMP), as first

proposed in [9], an adaptation of the popular (but nondeterministic) OpenMP en-

vironment [78], to offer a practical deterministic parallel programming model, while

retaining familiarity and code compatibility. DOMP is implemented as a user-level

library that serves as a drop-in replacement for Gnu OpenMP (GOMP) [45], and

supports most of OpenMP’s familiar block-structured parallel constructs in both C

3

and Fortran, with the added guarantees of deterministic execution and freedom from

data races. DOMP follows the Working-Copies Determinism (WCD) programming

model [11], which enforces determinism by providing each thread an isolated log-

ical copy of shared state at fork events, and deterministically merging changes at

joins or barriers. As a side-effect, DOMP consistently and deterministically detects

and reports conflicting writes by parallel threads, which, in a traditional OpenMP

environment, would yield nondeterministic races. In addition, DOMP includes an ex-

tended reduction mechanism for arbitrary types and operations alongside OpenMP’s

existing value-type reductions. Both the standard and extended reductions maintain

determinism, not only in the final outcome, but also in the intermediate evaluation

steps, making it possible to reduce correctly over operations that are associative but

not necessarily commutative.

Experiments indicate that, on many standard benchmarks, DOMP’s determin-

istic machinery incurs relatively modest overheads compared with nondeterministic

execution using GOMP: under 12% overhead in 5 of 11 benchmarks on 16 CPUs,

and under 65% overhead in 9 of 11 benchmarks. Scaling patterns largely follow

those of the reference implementation. It is not DOMP’s aim to improve on the

performance or scalability of the many prior approaches to deterministic paral-

lelism [33, 77, 18, 17, 13, 70]. Nevertheless, our results suggest that it may be

reasonable to expect future versions of familiar, mainstream parallel environments

such as OpenMP to include an expressive deterministic parallel programming model

as a subset, and to offer a deterministic, race-free, and conflict-detecting execution

mode of the type DOMP implements, which developers can enable in production or

only for debugging, as performance considerations permit.

Our contributions include, to our knowledge, the first analysis of the uses of non-

deterministic synchronization primitives in standard benchmarks; a new, determin-

4

istic version of OpenMP; a deterministic extended reduction construct for OpenMP;

and a demonstration that programs currently written using nondeterministic syn-

chronization mechanisms could, in principle, be converted so as to conform to a

thoroughly deterministic programming model with fairly small changes and only

modest additional overhead in many cases.

The rest of this paper proceeds as follows: Chapter 2 gives a broader background

for the DOMP project, including discussion of related work; Chapter 3 reports on our

analysis of the uses of synchronization in parallel programs; Chapter 4 presents the

design and semantics of DOMP; Chapter 5 describes DOMP’s extended reduction

feature in greater detail, with examples of replacing nondeterministic code with de-

terministic equivalents using this feature; Chapter 6 provides details on our DOMP

implementation; Chapter 7 evaluates DOMP’s performance; and Chapter 8 con-

cludes.

5

Chapter 2

Background and Related Work

The DOMP project contributes both a user-level scheme for ensuring parallel deter-

minism and, within that scheme, a new extended reduction feature. In this chapter,

we review both the research context for the overall project of deterministic paral-

lelism and that of the more specific reduction construct. Following this, we review

areas of research closely connected to the DOMP project, including other solutions

to the problem of nondeterministic parallel computing. These research areas fall into

several categories:

• Programming languages

• Record and replay systems

• Debugging tools

• Transactional memory systems

First, however, we place DOMP in general, and extended reductions in particular,

in a conceptual context.

6

2.1 Deterministic Parallel Computing

A parallel program is deterministic if the input alone determines the output, re-

gardless of extrinsic events such as the OS’s thread scheduling. The contrary of this

condition is nondeterminism. Note that nondeterminism is distinct from underspec-

ification. A programming language or library, for instance, may leave some details

unspecified, and yet the system may execute the program deterministically, in the

sense that the same input always results in the same output and behavior. In such a

case, some other elements of the runtime system, “downstream” from the program,

are sufficiently specified so as to fill in the semantic gaps that the program has left

indeterminate. We call an execution nondeterministic if the output or behavior de-

pend in some way on events, such as thread scheduling or hardware timing, over

which the program has no control, and that no programmer would be able to predict

based on the program and the input. Underspecification in a system allows such

nondeterminism to occur.

If any two threads have access to the same location in shared memory, and at least

one such access is a write, the definite ordering of such accesses is essential. Such

a condition is a conflict in accesses, which may be either a read-write conflict (one

thread reads from the same location that another thread updates) or a write-write

conflict (two threads write different values to the same location). A lack of order

on conflicting accesses, where the sequence of accesses and data visibility changes

differs from one run to the next, is a prime manifestation of nondeterminism in the

system. We call this condition a data race. In a data race, the reading thread may

get either the old or the updated value, depending on timing or scheduling factors

not prescribed in the program. Thus any data race is likely to cause a heisenbug,

since it will likely result in different outcomes on different runs, at least one of which

7

is unwanted and erroneous, but, by the same token, not reliably reproducible.

By itself, the above definition of determinism allows for a range of behaviors,

depending on the synchronization and memory consistency models.

Synchronization is naturally deterministic if program logic alone determines how

and at what points different threads interact, depending only on computation state

and not on timing. A fork deterministically creates a child thread at a program-

defined point in the parent’s execution, for example. Similarly, a join determin-

istically combines the parent’s and child’s flows at program-defined points in both

threads. Other common constructs, such as mutex locks, condition variables, semaphores,

monitors, and OpenMP’s atomic, critical, and flush, are semantically nondetermin-

istic: they allow a thread to signal or wake up an unspecified, nondeterministic

recipient—e.g., the next holder of a lock—or to wait for an event from a nondeter-

ministic source—e.g., any of several threads that might signal a condition variable.

The choice of the recipient or source thread in such cases depends on the runtime

scheduler or some other agent, not on what the program itself specifies.

In a similar way, a memory consistency model is deterministic if program logic

alone determines the order in which threads update shared memory and in which

each thread sees such updates. A naturally deterministic memory consistency model

precludes data races, since it by definition orders all memory accesses to shared

memory in which any done thread can affect another.

Classic memory consistency models, including sequential consistency [65, 89] and

relaxed models [43, 86], introduce nondeterminism, by leaving memory access inter-

leavings underspecified. That is, even if a program uses only deterministic synchro-

nization abstractions (e.g., fork/join) and runs on sequentially consistent hardware,

data races and execution timing can make the program exhibit any one of an expo-

nentially large variety of sequentially consistent memory access interleavings.

8

A sequentially consistent program, for instance, meets the following require-

ments [65]:

• “The result of any execution is the same as if the [memory] operations of all

the processors [or threads] were executed in some sequential order,” implying

that every thread in the program sees the same updates to shared memory in

the same order (but not at all necessarily at the same time)

• The order in which every thread sees these shared memory updates corresponds

to the order in which the program specifies them.

Thus if the program has Thread A update x twice, first to the value 1 and to the

value 42, Thread B reads x twice, but its first read operation returns 42, the system

violates sequential consistency. Now suppose that the system is indeed sequentially

consistent (so that Thread B reads 1 first). After these operations, both Thread

A and Thread B increment x (whose current value is 42). Suppose that, in their

respective non-atomic increment operations, both threads read x before either one

writes to x. Each thread sees the same sequence of updates, i.e., from 42 to 43

(erroneously), and thus they do not violate sequential consistency. The same applies

if Thread A writes 43 back to x before Thread B reads x: in this case, both threads

see the same sequence of two updates to x. Thus the classic example of a data race

can easily occur under in a sequentially consistent system.

Weaker memory consistency models impose more constraints on the synchroniza-

tion operations—here, the fork before and the join after any of the memory accesses

mentioned—but even fewer constraints on other operations. Thus the same data

race could occur a fortiori.

Transactional memory [52], whether implemented in software [34, 53] or in hard-

ware [54], may assume that the underlying memory architecture implements either

9

sequential consistency or a more relaxed memory consistency model. Transactional

memory ensures the atomicity of groups of memory accesses within a transaction,

and therefore prevents data races within the transaction unit. It does not, how-

ever, specify the order of transactions among threads, but leaves this specification

to the programmer, much as do low-level synchronization primitives such as mutex

locks and condition variables. By itself, then, transactional memory effectively al-

lows higher-level data races [5] at the larger scale of transactions, though it prevents

them at the level of particular read or write accesses.

By contrast, workspace consistency [11] requires that every write to shared mem-

ory be associated with the ensuing read or reads according to a prescribed pattern

that the programmer could therefore deduce by examining the program, with knowl-

edge of the ordering rules of the system. We examine workspace consistency further

in 4.1.

Several research efforts have focused on running a nondeterministic program,

perhaps containing data races, deterministically. Deterministic schedulers such as

DMP [33] and CoreDet [17] execute a semantically nondeterministic program re-

peatably, by artificially synthesizing one particular (arbitrary) interleaving of the

program’s synchronization and memory access events. Deterministic scheduling can

reproduce races once detected, but it neither eliminates races nor guarantees that

they will be detected. A program’s behavior may still depend on the (deterministic)

execution schedule in subtle ways not explicit in program logic, as in this example:

// Thread A:

{

if (input_is_typical)

do_a_lot();

x++;

}

10

// Thread B:

{

do_a_little();

x++;

}

Under “typical” program inputs, abstracted here via ‘input_is_typical’, a deter-

ministic scheduler may always cause thread B to reach its increment of x while thread

A is executing its long-running and non-conflicting do_a_lot(). But some partic-

ular “rare” input, which unit tests may not have covered, may cause the threads’

increments to line up in the deterministic execution schedule, resulting in a classic

data race and an “input-dependent heisenbug.”

Another scheduling approach, Kendo [77], enforces deterministic synchronization

by ordering lock acquisitions and releases, but does not constrain memory accesses,

so that programs containing data races (through a failure to lock) will run nondeter-

ministically.

Grace [18] is a deterministic scheduler that emulates sequential consistency by

means of speculative execution and transactional memory techniques. Determina-

tor [13] and Revisions [26] avoid the complexity of speculative execution by straying

from sequential consistency. These projects achieve acceptable overhead for some

workloads, but constrain programs to a minimal set of deterministic synchronization

primitives such as fork/join and barrier. Revisions, moreover, a C# library, does

not directly support legacy code written in C-like languages.

Another deterministic scheduling system that avoids both the input sensitivity

described above for quantum-based systems and the overhead of speculative execu-

tion and rollback is Tern [31], which memoizes execution schedules for reuse. This

solution, like all deterministic schedulers, solves a related but distinct problem from

11

the one that both Determinator and DOMP solve: the former allow racy programs

to run reproducibly, while the latter eliminate data races by enforcing a deterministic

programming model.

Aside from deterministic scheduling, record and replay systems, such as Re-

cap [79], Instant Replay [67], DejaVu [30], and ReVirt [35], as well as many others,

at least enable the user to reproduce any bug on demand. These systems, however,

generally impose too much overhead to work feasibly on deployment systems, or else

require special hardware.

Deterministic parallel functional programming languages have long been avail-

able [56, 85], including dataflow languages [1, 39] and parallel Haskell [2, 28, 62, 96].

Following in the dataflow tradition is the recent Concurrency Collections (CnC) lan-

guage [23], which specifies the parallel execution of code “kernels” (routines), which

may, in turn, be written in any of a wide range of languages, including conventional

imperative ones such as C++ or Java. All of these languages derive their determin-

ism from the “single assignment rule”: a variable is undefined until a thread defines

it with a value, at which point it is also immutable. In this way, data races are im-

possible. Programmers have been slow to adopt the functional language paradigm,

however, and CnC, which accommodates conventional programming for the (serial)

“kernels”, presupposes a division of labor between the “domain experts” who develop

the “kernels” and the “tuning experts” who parallelize it using CnC’s relatively un-

familiar notation and concepts.

Some recent languages support deterministic parallelism while allowing for a con-

ventional imperative style. The SHIM language [36, 37, 94] implements a determin-

istic message passing model, avoiding the challenges of making shared memory de-

terministic, but also foregoing the programming convenience of the shared memory

abstraction and requiring programmers to marshal data into explicit messages. De-

12

terministic Parallel Java [22] offers shared memory, but requires the programmer to

adopt a new Java type system, and to “prove” statically via typing rules that parallel

code is race-free. Array Building Blocks [44] promise deterministic parallelism, but

their proprietary nature hampers detailed inspection.

DOMP has many architectural similarities to Dthreads [70]. Like Grace and

DOMP, the Dthreads scheme supports programs in C-like languages, written using a

standard parallel API. Like Determinator and DOMP, Dthreads do not require specu-

lative execution and rollback, and therefore achieve good performance. Dthreads’ ef-

ficiency, however, depends on their imposition of an arbitrary shared memory commit

order—a form of deterministic scheduling—which allows racy programs to execute

deterministically. By contrast, DOMP offers a way to allow conventional programs to

conform, as much as possible, to a purely deterministic programming model, which

treats data races as errors.

DOMP’s approach has most in common with that of Determinator [13] and Re-

visions [26], operating in the workspace consistency model [11], while supporting a

wider range of naturally deterministic synchronization abstractions to increase com-

patibility with legacy code.

2.2 The Reduction Construct

In addition to supporting OpenMP’s core features, DOMP offers a generalized re-

duction construct. A reduction (or right fold in functional programming) is a higher-

order function that applies a binary combining operation first to an initial value and

the first element of a list, and then iteratively to the results of the previous iteration

and the next element of the list, until every element has been consumed. For example,

if the list contains integers and the combining operation is addition, a reduction over

13

the list will give the sum of the integers. In parallel programming, each “element”

of the “list” is a single thread’s instance of a shared variable; reduction aggregates

the values of this variable across threads according to the combining operation.

The standard OpenMP reduction construct takes the form of a clause modifying

the OpenMP directive that stands at the head of a structured block and specifies

that the ensuing block be executed in parallel. Within the block, the variable (or

variables) listed in the clause will be updated using conventional updating syntax as

in sequential programming, as in the following example:

int x = 0;

#pragma omp parallel reduction(+:x)

{

x += 42;

} // x == 42 * num_threads

This reduction has the special semantic feature that it produces the same results even

if the program disregards the OpenMP directives, e.g., if the programmer compiles

without OpenMP support. (With GCC, this means compiling without the -fopenmp

flag.) Unfortunately, OpenMP’s reduction construct only supports a handful of arith-

metic, bitwise, and logical operations, and only scalar, value types. This means that

such simple operations as vector addition and matrix multiplication, as well as more

complex and algorithm-specific ones, are unsupported. Furthermore, the OpenMP

specification does not stipulate an evaluation order. In general, implementations

such as the one in GOMP evaluate the reduction in a nondeterministic order, using

low- or machine-level mutex locks.

Before and outside of OpenMP, reductions have a long history in programming

language theory [59], and are a key concept in a theoretical understanding of parallel

14

programming in a functional programming language [91]. Thus DOMP’s extended

reduction is not a new concept, but its conformity to OpenMP reduction semantics,

and its use in bridging the gap between conventional parallel programming and a

purely deterministic programming model, are among its contributions.

A wide range of modern programming languages, both functional and impera-

tive, support reductions in sequential programs in one way or another, including

C#, C++, D, Haskell, JavaScript, Lisp, ML, Perl, PHP, and Python. The C++

std::accumulate library routine, for instance, allows the programmer to reduce over

an iterable sequence, using an initial value and an arbitrary combining operation—or

sum by default, if the programmer supplies no operation (see pp. 682 – 3 in [93]):

template <class In, class T, class BinOp>

T accumulate(In first, In last, T init, BinOp op) {

while (first != last) init = op(*first++);

}

This amounts to mere syntactic sugar for iterating over the sequence and repeatedly

applying the operation, since it implies no parallel execution and cannot be readily

adapted to parallel programming.

The MapReduce algorithm’s second, reduce, phase applies a reduction across

large lists of data entries in the nodes of a distributed system[32]. First, the map

phase, running in parallel on many nodes, takes the input and returns a set of

key-value pairs. In the shuffle phase, the system redistributes the key-value pairs

among the reducer nodes, so that each node has a subset, or list, of such key-

value pairs to reduce. Like the mappers, the reducer nodes work independently and

in parallel, although the MapReduce algorithm does not require parallelism within

the reducer node itself. Moreover, the algorithm is not embedded within a larger

15

scheme of parallel execution as is the OpenMP reduction. The Phoenix project [82]

ports MapReduce to the multicore platform, but, likewise, launches and terminates

parallel execution for the special purpose of the MapReduce problem alone. Neither

the original MapReduce nor Phoenix defines a deterministic order for evaluating the

reduction.

CnC has a proposed new reduction construct [24], which, like the rest of CnC, is

provably deterministic [23]. This reduction works with arbitrary combining opera-

tions but requires the same unfamiliar notation and programming paradigm as the

rest of CnC.

Intel’s Threading Building Blocks C++ library (TBB) [58] defines a parallel reduce

template function, bearing some similarities to C++ std::accumulate, but provid-

ing for parallel execution of the reduction. Like the latter and unlike OpenMP’s

reduction clause, parallel reduce allows for arbitrary types and operations. Its

data argument is an object of the Range template class, which is more general than

the iterable object supplied to std::accumulate; having instead a split function,

to split the data into two parts, recursively. Like Phoenix and unlike OpenMP’s re-

duction clause, this reduction spawns and terminates its own parallel team of threads

rather than working within a larger parallel block, although TBB does support nested

parallelism. TBB’s parallel reduce recursively splits the data as far as possible

and then applies the combining operation to pairs of data entries along a binary tree

in the process of joining threads—a pattern similar to the workings of DOMP’s ex-

tended reduction, as further explained in 5.1 and 6.4. However, in contrast to DOMP,

TBB’s order of splitting the data and thus the shape of the resulting evaluation tree

are explicitly nondeterministic.

* * *

16

The design of DOMP should be seen within the broader context of various relevant

areas of research. We turn to these next.

2.3 Programming Languages

The functional programming language research community has been interested in

parallelism at least since the 1980s [81]. Parallelism and functional programming

make a good fit because functional programming languages can express computations

guaranteed to be devoid of side effects. (Languages such as Haskell and ML do

provide special features to express side effects separately from pure functions, e.g.,

monads in Haskell and references in ML.) A program written in a purely functional

language, devoid of side effects, or in the purely functional subset of a functional

language, is deterministic by nature, since it does not allow any interactions among

concurrent processes: the result of a parallel program will always be the same for

a given input, and also the same as that of its sequential version [50]. Moreover,

functional languages do not generally include an assignment operation, since such

an operation is defined as exerting a side effect upon the value of the left-hand

operand. For this reason, functional languages are also called “single-assignment”

languages: the definitional expression let x = 42 means that x will forever have

the value 42 in the given scope and no other value. This “single-assignment rule” is

another aspect of what makes functional languages deterministic when parallelized:

the concept of updating a variable has no place here, so data races are impossible.

(The functional programming language ML has a parallel version, CML [83].

However, CML seems to have been developed specifically to make certain kinds of

nondeterminism possible in interactive systems.)

Early research focused primarily on implicit parallelism, in which the compiler

17

could easily infer from the function what elements of it could be computed indepen-

dently and therefore in parallel, as in Id [76], pH (a parallel dialect of Haskell) [2], and

pHluid [40]. This focus continues with Manticore [41]. At the same time, Paul Hudak

developed a system of annotations whereby a programmer could nudge the compiler

to parallelize particular regions of code and in what configuration [56], which made

better performance possible for a wider range of programs, while at the same time

separating off parallelization from core algorithmic concerns [95].

Dataflow languages are functional programming languages developed specifically

for dataflow architectures [99], which are machine architectures designed to exploit

parallelism by circumventing the bottlenecks believed inherent in the von Neumann

architecture [6, 61]. Moreover, their determinism is evident in that they follow the

model of the Kahn process network in the transfer of data among (physical or virtual)

processors [39]. Dataflow languages are compiled into dataflow graphs, which the

system uses to control the flow of data. Languages such as Cajole [51], Lucid [98],

and LUSTRE [47] are textually based and treat the data flow graph as an internal

representation. But other dataflow languages have visual external representations for

the benefit of clarity and ease in software engineering. These include the commercial

products LabVIEW [57] and, more recently, Simulink[72], which is widely used today

for the design of control systems. These languages can run on any modern platform,

but are specialized in their purposes. As a whole, dataflow languages are clearly

both deterministic and useful, but limited with respect to use cases.

A number of more conventionally imperative-style languages have emerged in

recent years that offer deterministic parallelism. SHIM [36, 94, 37] is a deterministic

parallel programming language with C-like syntax and in the imperative style, whose

parallelism follows the message-passing paradigm. It was developed particularly for

the design of embedded systems. Deterministic Parallel Java (DPJ) [22] uses shared-

18

memory parallelism, but requires the programmer to annotate data according to a

type and effect system that determines which data are visible and otherwise accessible

to which threads at various points in the program. Guava [14], presented as a

“dialect of Java without data races,” uses a comparable annotation system, and

restricts programs so as to allow concurrent threads to have access to data only

if such accesses are properly synchronized. Although this principle might at first

appear to eliminate data races, it seems to us to leave open the possibility of the

“higher-level data races” [5] mentioned in ?? with regard to transactional memory.

Like DPJ and Guava, Jade [84] involves the annotation of data to make access

permissions explicit, but uses this information to parallelize serial code automatically,

working with an original source in a conventional language such as C. Jade’s promise

is to preserve sequential semantics in parallel execution, something to which standard

OpenMP aspires in principle, but without the latter’s excluding nondeterminism.

Another programming language based on C and providing for parallelism through

annotations is Cilk [20, 69, 42], which also strives to provide the same semantics

under sequential and parallel execution, but which, like standard OpenMP, does not

actually prevent nondeterminism.

2.4 Deterministic Scheduling

The approach of imposing a deterministic schedule on a possibly nondeterministic

and even racy or buggy program has interested many research groups. DMP [33] and

CoreDet [17] divide program “time” into uniform units, or quanta, consisting of a

fixed number of instructions, with each quantum divided between an initial parallel

phase and a sequential phase. Through static analysis, the compiler detects and

marks potentially conflicting accesses to shared memory. The runtime system shifts

19

Figure 2.1: Execution quantum scheme in deterministic schedulers such as DMP and
CoreDet.

from parallel to sequential execution as soon as it encounters the first such conflicting

instruction within a quantum. Figure 2.1 illustrates this scheme. In the sequential

portion, of course, the runtime imposes an arbitrary but consistent order on threads’

accesses to shared memory, which ensures the deterministic outcome of the program.

Grace [18] does not follow the same quantizing model as DMP and CoreDet, and,

indeed, it shares many elements with DOMP: it implements threads as separate pro-

cesses, each working within its own address space; it tracks writes (and also reads)

using access protection and a signal handler; it eliminates mutex locks, converting

those that occur in source code into no-ops. Grace threads write their updates to

shared memory to local copies, as in DOMP, and the runtime commits those updates

as transactions at synchronization points, which are any points where threads fork

or join. A major difference from DOMP, however, is that Grace threads update

shared memory speculatively : at synchronization points, they attempt to commit,

but if a thread’s attempt has the wrong version number, kept in a global data struc-

ture, execution aborts and restarts the commit sequence. The resulting sequence of

changes to shared state is always the same, and therefore deterministic, but aborted

and restarted transactions could waste resources. Dthreads [70] combines ideas such

as threads-as-processes for thread isolation and protection and trapping to track

20

writes from Grace with the quanta divided into parallel and sequential phases and

a deterministic “write token” that orders writes to shared memory in the sequen-

tial phase from DMP and CoreDet. Dthreads also achieves remarkable efficiency

by means of tricks such as minimizing writes by “diffing” them against the original

state, a technique borrowed from TreadMarks [4] and Munin [16]. It also minimizes

false sharing, resulting in performances sometimes better than those of the reference

pthreads implementation. And unlike both Grace and DOMP, Dthreads supports

parallel programs that do not conform to the simple fork/join model.

Kendo, like DMP, CoreDet, and Grace, uses performance counters to compute a

deterministic schedule; but unlike these solutions, it concentrates exclusively on the

deterministic ordering of lock acquisitions. It therefore does not have to quantize

execution and is both simpler and more efficient than DMP or CoreDet. However,

a program that has a data race—arising from a failure to use mutual exclusion

locks where necessary—will remain racy and nondeterministic under Kendo. Thus

Kendo can only guarantee that a race-free program will always execute with the same

schedule, a guarantee of some usefulness, especially in Byzantine fault tolerance and

other systems that require exact replication of computations.

Revisions [26] follows a model very close to that of DOMP: threads are processes,

each one working in its own, isolated copy of shared state. However, Revisions re-

solves memory access conflicts according to the isolation type of each conflicting

object, rather than, as in DOMP, by signaling a race condition error. This ap-

proach can only work in a strongly typed language that can record additional type

information—and, of course, it does not assume a deterministic programming model,

but rather the deterministic execution of a strongly typed programming model.

21

2.5 Record and Replay Systems

An approach to deterministic parallelism entirely different from programming lan-

guages or deterministic schedulers is to have the system monitor the execution of

a parallel program, log every event important to parallel execution, and then make

it possible to replay the execution, using the log, with the exact same interleav-

ing, resulting in the same output and behavior. This approach is called record and

replay, and it can be of great use in debugging parallel code that may contain heisen-

bugs [3, 64, 92], as well as in intrusion detection [35]. Record and replay systems

present a difficult trade-off between cost and performance. Software record and re-

play systems, such as DejaVu [30], ReVirt [35], and Doubleplay [97] are inexpensive,

but tend to slow application performance down to the point where it would not be

feasible to run them continually on high-use deployment systems such as Web servers.

By contrast, systems including special hardware, such as Karma [15] and FDR [102]

are very efficient but expensive. Research continues in this area to develop a record

and replay system that is at once fast and affordable.

2.6 Debugging Tools

A number of debugging tools and systems are available to help programmers to cope

with nondeterminism in their parallel programs. Cilk has its own special debug-

ging tool to help catch data races [69]. For more general purposes, RacerX [38]

can find concurrency bugs, both data races and deadlocks, through static analysis.

The Valgrind project’s concurrency bug detector Helgrind also works through static

analysis—in particular, by building a graph of “happens-before” relations [75]. In

our own, admittedly slight experience with Helgrind, however, we found it to pro-

duce so many false positive results as to be of limited usefulness. Eraser [87] detects

22

concurrency bugs dynamically, by monitoring all shared memory references, making

it somewhat resemble record and replay systems.

2.7 Transactional Memory

As mentioned in 2.1, transactional memory ensures atomicity of updates to shared

memory but does not, in and of itself, prevent data races in the program. However,

transactional memory shares some techniques with DOMP, and provides a partial

model for addressing some of DOMP’s central issues: thread isolation and the min-

imization of synchronization overhead. Herlihy and Moss’s hardware transactional

memory [55], for example, uses a slight modification of the standard “snoopy” cache

coherence protocol to enable the cache to detect transaction conflicts. In so doing,

it minimizes synchronization overhead, essentially to setting or clearing bits in the

cache directory. This design takes care to allow normal memory accesses to proceed

without interference, as if isolated from the transactions. Moreover, both this system

and Shavit and Touitou’s software transactional memory (STM) [90], whose design

is based on the former, avoid locks and blocking entirely. These two and other STM

systems generally assume that multiple processes will be sharing the same transac-

tional memory but not the same address space, i.e., that they work essentially in

isolation except when interacting through a transaction [34, 53, 52]. This model, in

which the memory serves as a lock-free synchronization manager, resembles the role

of the runtime library in DOMP. However, DOMP does not resolve or retry conflict-

ing memory accesses, but rather signals an error in the program in such cases.

* * *

Among deterministic parallel programming solutions that support C-style lan-

guages, Determinator and DOMP are unusual in requiring that the program conform

23

to a deterministic programming model that does not allow data races and that pre-

cludes the use of such low-level synchronization primitives as muteness and condition

variables, which assume an underlying nondeterministic model. This approach raises

a question: how important or necessary are such nondeterministic language elements

to real-world programming? In order to approximate an answer to this question, we

pursued the analysis that follows in Chapter 3.

24

Chapter 3

Analysis of Synchronization

How crucial are nondeterministic synchronization abstractions to the logic of parallel

programs? To find out, we manually counted invocations of synchronization abstrac-

tions in the programs of three parallel benchmark suites—SPLASH [100], NPB-OMP

[60], and PARSEC [19], choosing OpenMP versions of programs whenever possible

and pthreads versions otherwise. This analysis extended and refined earlier work by

[9].

Our working hypothesis that the practices and patterns in these benchmarks re-

flect those found in the larger software world remains, admittedly, unproven. Ideally,

we would have analyzed larger, real-world OpenMP programs, but hand analysis of

these was impractical.

We counted some matching pairs of events as single instances:

• A fork and its corresponding join

• A lock acquisition and its corresponding release

• A condition variable “wait” and “broadcast” statements, along with associated

lock acquisition

25

In this way, we attempted to overcome some of the heterogeneity involved in com-

paring OpenMP with pthreads programs.

We counted the locations where code invoked the naturally deterministic abstrac-

tions fork/join and barrier, and recorded each count directly, along with work sharing

and reduction constructs in the case of OpenMP code. Invocations of nondetermin-

istic abstractions—locks, condition variables, and OpenMP’s atomic, critical, and

flush—we grouped by the idioms in which they were used, for which we identified

five classes:

• Work sharing : pthreads only, since OpenMP has work sharing constructs

• Reduction: pthreads, and OpenMP with unsupported types or operations

• Pipeline: pthreads and OpenMP

• Task Queue: pthreads and OpenMP—assigning tasks to threads as the former

appear and the latter become available

• Legacy : pthreads, in SPLASH only; these are utilities to make I/O and heap

allocation thread safe, from a time before thread safety became standard in

the C library, and are now obsolete

• Nondeterministic idioms: pthreads and OpenMP, for any genuinely nondeter-

ministic algorithm, such as simulated user interactions, user-level scheduling,

or load balancing.

Figures 3.2 and 3.1 summarize our findings. “Work-sharing” idioms occur in pthreads

programs, which lack OpenMP’s higher-level constructs; e.g., they lock a global in-

teger and save its value as a thread ID for later task assignment, before incrementing

and unlocking it. Likewise, pthreads code has to use locks to update variables to

26

Figure 3.1: Types and uses of synchronization abstractions in SPLASH, NPB-OMP,
and PARSEC programs. Items in green are naturally deterministic constructs. Items
in yellow are uses of nondeterministic primitives to achieve deterministic higher-level
goals.

achieve the equivalent of reductions. As Figure 3.3 shows, in the majority (74%) of

cases of the use of these naturally nondeterministic synchronization constructs, the

programmer was building a higher-level deterministic idiom.

Furthermore, we find that the majority of synchronization idioms used in all

benchmarks taken together could be expressed using the deterministic set of OpenMP

constructs, the same set to which DOMP restricts itself, as shown in Table 3.1. Of

course, the standard OpenMP implementation of the deterministic set of its con-

structs is not, itself, deterministic. This is where DOMP comes in: DOMP provides

a guarantee of deterministic semantics for this subset.

Note also that we include in Table 3.1 task queues because OpenMP has a task

construct (currently available only in Fortran), which, in principle, could be imple-

mented in a deterministic manner. In fact, none of the analyzed benchmarks using

task queues implement them by means of the OpenMP task construct. Rather,

27

Deterministic Deterministic

Constructs Idioms

O
p
en
M
P

fo
rk
/j
oi
n

b
ar
ri
er

w
or
k
sh
ar
in
g

re
d
u
ct
io
n

w
or
k
sh
ar
in
g

re
d
u
ct
io
n

p
ip
el
in
e

ta
sk

q
u
eu
e

le
ga
cy

N
on

d
et
er
m
in
is
ti
c

barnes 1 6 - - 2 1 - - 1 2
fmm 2 13 - - 1 1 3 - 15 8
ocean 1 40 - - 1 3 - - - -
radiosity 3 5 - - 2 5 - 7 - 23
raytrace 1 1 - - 5 - - - 6 2
volrend 5 15 - - 5 - - - 1 6
water-nsquared 1 9 - - 1 7 - - - -
water-spatial 1 9 - - 1 4 - - 1 2
cholesky 1 4 - - 1 - - 2 4 -
fft 1 7 - - 1 - - - - -
lu 2 10 - - 2 - - - - -
radix 1 7 - - 1 - 2 - - -

BT
√

12 - 37 - - 2 - - - -
CG

√
7 8 20 6 - - - - - -

DC
√

1 - - - - 1 - - - -
EP

√
3 - 1 1 - 1 - - - -

FT
√

8 - 8 1 - - - - - -
IS

√
7 1 11 - - 1 - - - -

LU
√

12 4 71 3 - 2 5 - - -
MG

√
11 - 16 2 - - - - - -

SP
√

13 - 38 - - 2 - - - -
UA

√
60 - 78 4 - 80 - - - -

blackscholes
√

2 - 2 - - - - - - -
bodytrack

√
5 - 5 - - - - - - -

facesim 2 - - - - - - 14 - -
ferret 1 - - - 2 - - 9 - -
fluidanimate 13 14 - - - - - - - 15
freqmine

√
7 - 21 - - 7 - - - -

raytrace 1 3 - - - - - 2 - -
swaptions 3 - - - - - - - - -
vips 1 - - - - - - - -
x264 2 - - - - - - - - 6
canneal 1 1 - - 1 - - - - -
dedup 5 - - - - - 17 - - -
streamcluster 5 34 - - - - 4 - - -

Figure 3.2: Invocations of synchronization abstractions in source code of SPLASH,
NPB, and PARSEC benchmark programs, broken down into naturally determin-
istic constructs, uses of nondeterministic primitives to build deterministic idioms,
and genuinely nondeterministic idioms. No OpenMP benchmarks studied had any
nondeterministic idioms.

28

Figure 3.3: Naturally nondeterministic synchronization constructs, classified by id-
iom in which they are used.

In OpenMP? Idiom % Sync

Deterministic
construct already in
OpenMP

fork/join 17.87
barrier 14.79
work sharing 35.54
simple reduction 1.81
task queue 3.62
Subtotal 73.63

Extensions to
OpenMP

extended reduction 11.70
pipeline 3.30

TOTAL 88.62

Table 3.1: The majority of idioms using synchronization in the analyzed benchmarks
could be expressed with deterministic OpenMP constructs.

29

they all manage their task queues at the user level by assigning tasks to threads

nondeterministically as the latter become available. Alternatively, the task queue

idiom could use a task abstraction such as OpenMP’s current one, but that would be

implemented deterministically. For instance, the runtime can start a new thread for

each task, leaving it to the OS’s scheduler to assign threads to processors as usual.

OpenMP’s reduction construct only supports built-in scalar types and simple

operations, such as summing over an integer. This leaves many common, even simple,

use cases unsupported. For example, the NPB benchmarks BT, EP, LU, and SP use

a vector (array) to hold the sum of the threads’ local vectors, with code such as this

(from BT):

do m = 1, 5

!$omp atomic

rms(m) = rms(m) + rms_local(m)

enddo

Likewise, DC finds the maximum over one object field and sums over several others

dependent on this maximum. PARSEC freqmine finds a maximum over a field,

freeing the non-maximal objects as a side effect.

DOMP’s extended reduction construct expresses such idioms succinctly, while its

deterministic implementation guarantees a fixed evaluation order, dispensing with

atomic and other such nondeterministic constructs. Moreover, all non-OpenMP

benchmarks that use reduction idioms would require an extended reduction if rewrit-

ten using OpenMP or DOMP, generally because they reduce on pointer types.

Figure 3.4 focuses in on the subset of analyzed benchmarks written in OpenMP,

which includes all those in the NPB suite, as well as three in PARSEC. This chart

highlights the relative importance of extended reductions to the project of a deter-

ministic OpenMP.

30

Figure 3.4: Types and uses of synchronization abstractions in those benchmarks that
use OpenMP.

Both pthreads and OpenMP lack a high-level construct to represent a pipeline,

having instead to resort to ad-hoc synchronization, for which OpenMP code uses the

nondeterministic flush construct (NPB LU). Deterministic pipeline and task object

constructs remain attractive DOMP extensions for future work.

The few remaining uses of synchronization abstractions, 8.7% in aggregate, may

be irreducibly nondeterministic, and comprise a miscellany of idioms, from simulated

user-program interactions (vips) to simulated particle interactions (fmm, fluidani-

mate) to user-level scheduling not formally implemented as a work queue (radiosity,

volrend). Whether one might achieve the same goals using deterministic idioms is

beyond our present scope.

The need for extended reductions and deterministic pipeline constructs account

together for all instances of nondeterministic OpenMP constructs in the OpenMP

benchmarks we studied. In NPB, they contribute 16.5% and 1% of total synchro-

nization instances, respectively, thus again highlighting the potential usefulness of

31

extended reductions for a deterministic OpenMP.

Our analysis suggests, first, that a deterministic OpenMP, with an API consisting

of the deterministic subset of OpenMP’s constructs and an implementation that

guarantees deterministic semantics, is a reasonable goal. It further suggests that

generalizing OpenMP’s reduction construct could substantially increase the portion

of parallel applications that DOMP would support with its strictly deterministic

abstractions. We describe this extension in Chapter 5, after a review of DOMP’s

overall design.

32

Chapter 4

Design and Semantics

DOMP builds on OpenMP [78] to offer a parallel programming model with both

an expressive API and race-free, naturally deterministic semantics. DOMP retains

most OpenMP core constructs, but excludes OpenMP’s few nondeterministic ones.

DOMP further extends OpenMP’s API with a deterministic generalized reduction,

which can replace the most common uses of its excluded nondeterministic constructs.

By “naturally deterministic,” we mean such that program logic alone determines

at what point in each thread’s execution sequence it synchronizes with another

thread—immune to the effects of the scheduler and hardware timing. The program

defines a function from the input to the output and behavior. In order to support

this level of determinism, DOMP follows the Working-Copies Determinism (WCD)

programming model [11]. Since WCD is the theoretical foundation of DOMP, we

here discuss WCD and its basis in the Workspace Consistency memory consistency

model. Next we consider the rationale for implementing a deterministic version of

the OpenMP API with Workspace Consistency semantics in the form of a user li-

brary. Finally, we review the features of DOMP, pointing out how they manifest

WCD semantics.

33

4.1 Working-Copies Determinism

DOMP enforces determinism according to the Working-Copies Determinism (WCD)

programming model [11]. This model guarantees, not only that execution will al-

ways produce the same output and behavior on the same input, but that a program

containing a data race will fail to execute to completion. WCD provides this guar-

antee by limiting communications between threads to the parent-child relation and

to program-specified synchronization points such as fork, join, and barrier. Synchro-

nization is then thoroughly deterministic. This arrangement follows the Workspace

Consistency memory and programming model (WC) [11].

The essence of Workspace Consistency can be gleaned from a consideration of

the “swap assignment” operation available in some languages, including Perl and

JavaScript:

(x, y) := (y, x)

This construct implies no parallelism, but its semantics require, crucially, that both

x and y on the right side be evaluated before either x or y on the left side receives

its new value. Under Workspace Consistency, we get exactly the same results from

a “parallel swap,” as illustrated in Figure 4.1a. The runtime under WC ensures that

(a) Semantics (b) Memory consistency model

Figure 4.1: The “parallel swap” construct under Workspace Consistency

34

x sees the old value of y and vice versa. The crucial point is that x “hands its value

off,” in effect, to y, and vice versa.

To explain this model both more generally and in greater detail, we use the tra-

ditional terminology for describing memory consistency models [43, 73]. Memory ac-

cesses in parallel programs fall into the two categories: shared and private, the former

of which are the only ones requiring special treatment. Shared accesses, in turn, are

competing if more than one thread accesses the same location and at least one such

access is a write; otherwise, they are non-competing. Again, competing accesses are

the ones of special concern, because only they could result in data races. Then, some

competing accesses are synchronizing, while others are non-synchronizing. Synchro-

nizing accesses ensure the safety of other competing accesses—-generally, by using

some location in memory as a means to pass a message from one thread to another,

as, for instance, when one thread sets a flag to signal that other threads may read

the (data) value at location x.

Finally, we may classify a synchronizing access as either an acquire or a release.

A thread performs an acquire in order to gain (non-synchronizing) access to some

other location in memory, typically storing data; in a release, a thread signals that

some other location in memory is available for access by one or more other threads.

An acquire always involves a read. In a spinlock, for instance, the thread seeking

access checks a flag repeatedly in a loop until the flag’s value changes (say, from set

to clear). The change in value signals the waiting thread that it has permission to

access the desired memory location (holding data); this read is the acquire per se.

As soon as the thread receives this signal, it writes to the flag again so as to signal

other threads that they may not have access to the data and must wait. This write

is considered non-synchronizing, since it does not signal that a memory location is

available. When the current thread finishes, it must write again, clearing the flag so

35

Figure 4.2: Pairing of releases and acquires following the Workspace Consistency
model. The pair (thread, event number) appears to the left of each synchronization
event (blue rectangle) and identifies it uniquely. Each event has as its argument the
identifier of the partnered event in another thread.

that some other thread may obtain the lock; this second write is a release. A release

always involves a write. In an even simpler, non-exclusive scenario, a team of threads

spins on a synchronization variable until one thread broadcasts to all of them that

the data in some location are available, by setting a flag. The issuing thread’s write

to the flag is the release; each thread’s read when the flag is set is its acquire.

Under Workspace Consistency, program logic pairs each release to a specific ac-

quire, as illustrated in Figure 4.1b. In addition, one thread’s writes do not become

visible to any other thread until the next synchronization event, the release-acquire

pair in which the writing thread releases the data. Synchronization accesses are

36

sequentially consistent (or, more precisely, processor consistent), meaning that the

order of releases and acquires follows program logic and that all threads observe the

same order. Finally, if two threads perform conflicting (non-synchronizing) writes,

the implementation handles this condition deterministically, e.g., by always signaling

it as a data race error.

Figure 4.2 illustrates Workspace Consistency in the fork-join synchronization con-

struct with a team of four threads. The master thread (Thread 0) signals to each

other thread in turn that all shared data are accessible at the same time that it

creates those threads by calling fork. At the join, each thread in turn signals to the

master that its version of shared data is ready for the master to read. In practice, for

efficiency, we implemented the join in a binary tree pattern to increase parallelism

(see 6.2). Figure 4.3 shows the corresponding synchronization pattern for a barrier,

where the master’s releases are not combined with the fork call.

Because synchronization in Workspace Consistency controls the visibility of data

updates, this model constrains the flow of data to follow a strictly deterministic

pattern. Returning to our example of the “parallel swap” (Figure 4.1b), before the

barrier, Thread 0 sees the previous, not updated, value of y (say, 0), and Thread

1 does the same for x. After the barrier, x has the value 42 and y has the value

33 for both threads. Then, when each makes its respective assignment, the swap is

complete.

Workspace Consistency gives us, in effect, both the convenience of shared-memory

parallelism and the determinism of a message-passing system that takes the form of

a Kahn process network [63]. The key feature of a Kahn network that makes it

deterministic is that, at any given time, no node (processor, thread) is allowed to

receive data from more than one communication channel. Whereas a system with

shared channels (Figure 4.4) requires mutex locks to prevent data races and allows

37

Figure 4.3: Pairing of releases and acquires in a barrier.

data to flow nondeterministically, a Kahn process network (Figure 4.5) constrains

communication in such a way that the order in which data flows over time is always

the same from one run to the next. Figure 4.5 shows nodes sending on only one

channel at a time, but this is not strictly necessary. In fact, a single-producer,

multiple-consumer data propagation pattern is compatible both with Kahn networks

and with Workspace Determinism [11].

Working Copies Determinism then isolates data for each thread between syn-

chronization events, in order to comply with Workspace Consistency’s data visibility

requirements. Every concurrent thread receives its own, private logical copy of shared

state at the fork, and the restriction on communication prevents read-write conflicts.

At the fork, the DOMP runtime also creates an additional reference copy of shared

state, to remain untouched until a barrier or the join. At the barrier or join, the

38

Figure 4.4: Nondeterministic network

Figure 4.5: Kahn process network

39

Figure 4.6: Working-copies determinism with 2 threads

parent thread compares and merges its own and its children’s versions of shared

state with the reference copy, signaling any conflicting write as an error. A barrier is

effectively a join followed by a new fork, with the same number of threads resuming

execution immediately after the barrier.

Figure 4.6 illustrates this sequence of events and its consequences on the visibility

of data to threads.

DOMP, then, implements Working Copies Determinism while supporting most

of the OpenMP API. In order to detect changes between synchronization points

and to check for data races while merging updated versions of shared state, DOMP

creates, not only a logical copy for each concurrent thread, but an extra reference

copy. Figure 4.7 illustrates the role of these data versions in forking and merging.

DOMP’s treatment of race conditions as errors is not the only possibility within

a deterministic system. Alternatively, one may choose a scheme for resolving write

conflicts in some known order, perhaps requiring programmer annotations, as in

40

Figure 4.7: Sequence of events in a DOMP team of threads

Revisions [26]. In the WCD model, however, a write-write conflict is likely a sign of

an error in program logic, which should not be silently resolved.

Because DOMP follows WCD, a programmer can retrofit legacy code, whether

a sequential program to be parallelized or a standard OpenMP application, and

uncover hidden data races that may be “benign” on test inputs but lead to incorrect

results or heisenbugs when the code is deployed and encounters different inputs, or

when it undergoes further development.

The WCD mechanism as described presupposes a particular granularity of com-

parison and merging. At the join, the runtime may compare and merge the various

threads’ copies of shared state by byte, by word, etc. Any choice of granularity will

risks some false positives as well as false negatives. If we choose byte granularity, for

instance, a program with a shared bitfield can raise a false positive. Meanwhile, sup-

pose two threads share a 4-byte integer at location x, where the reference copy has

0, thread A has 1, and thread B has 16. Ignoring this race, the runtime will merge

41

bytes to produce 17 silently at location x. Ideally, a WCD system would be able to

apply the granularity appropriate to each shared variable’s type. In our prototype,

we abstract granularity to make it easy to change, and use the byte as the default.

WCD’s orientation toward hierarchical, fork-join parallelism makes for a con-

venient fit with OpenMP’s general design. With its exclusion of the few nonde-

terministic features defined in OpenMP and its inclusion of generalized reductions,

DOMP takes advantage of this design compatibility while affording the programmer

a thoroughgoing deterministic parallel programming framework.

4.2 Accessible WCD

Workspace Consistency and Working-Copies Determinism serve as the foundation for

the Determinator operating system [13], which has shown acceptable performance

on a number of parallel programming benchmarks. One limitation of Determinator

is in the narrowness of the API it can support—essentially, fork, join, and barrier

only. We could have chosen to build a deterministic version of OpenMP, then, as

a library for Determinator applications, to broaden its programming options. Such

a choice would have presented us with considerable advantages, namely, that the

DOMP support library would not have to manage the WCD runtime, including

thread forking and joining, merging data while checking for data races, etc. (see 6.2).

Since Determinator already implements copy-on-write at the OS level, we could have

avoided the trapping, bookkeeping, and other complexities associated with user-level

copy-on-write.

Implementing DOMP for Determinator remains, in our view, an important and

realistic goal. However, the primary focus of the current project is to make WCD

more accessible to programmers using familiar tools, environments, and platforms.

42

For this reason, we chose to implement DOMP first as a library for ordinary Linux

systems, specifically as a modified version of GCC’s OpenMP support library, lib-

gomp. In so doing, naturally, we also hope to have solved some of the core design

problems sure to be encountered in the development of a Determinator-based li-

brary, such as the proper semantics for DOMP’s constructs and a workable way

of integrating both deterministic simple and extended reductions into the merging

process (see 5.1 and 6.2).

4.3 API

Building on the foundation of Working Copies Determinism, DOMP then implements

most of the standard OpenMP API, including those constructs compatible with

deterministic execution and excluding those that are not, while extending OpenMP

with a generalized reduction construct. We here review these features.

4.3.1 Retained OpenMP Constructs

DOMP retains OpenMP’s parallel, work-sharing (loop, sections, and barrier), and

combined parallel work-sharing directives. In both OpenMP and DOMP, the parallel

directive and its combined work-sharing variants represent a fork-join pair enclosing

a structured block, creating and then joining a team of concurrent threads. Under

DOMP, however, between any two synchronization points, no two concurrent threads

may write a new value to the same shared variable (whether directly or through a

pointer); the execution runtime treats such a data race as an error. Moreover, each

thread’s writes to shared variables remain invisible to all concurrent threads until

the next synchronization point—such as a barrier or the closing join. These rules

guarantee the controlled flow of data from thread to thread, as in a Kahn process

43

network, which is provably deterministic [63].

The master directive is naturally deterministic, since it appoints a single thread,

the “master” (parent of the other team threads), to execute the code, and since

OpenMP’s implied barrier at the end controls data transfer to the team. Since

single allows the scheduler to appoint an arbitrary thread to execute the block,

which may differ from run to run, DOMP imposes deterministic semantics on single

by making it synonymous with master. Moreover, if the programmer disables the

implicit closing barrier with a nowait clause, the master’s changes remain invisible

to the team until the next explicit synchronization point.

4.3.2 Excluded OpenMP Constructs

DOMP’s semantics excludes OpenMP’s atomic, critical, and flush constructs as natu-

rally nondeterministic, since they imply that concurrent threads can have conflicting

memory accesses. As we have just seen in Chapter 3, programmers often use these

nondeterministic constructs as low-level components of higher-level, deterministic

idioms for which the parallel environment lacks suitable abstractions.

4.3.3 Extending OpenMP

In order to make it possible to express as many parallel programs as possible in a

way compatible with strict determinism, DOMP offers a generalized reduction library

function.

Standard OpenMP already has a reduction construct in the form of a clause mod-

ifying the directive opening a parallel block, but the reduction clause only supports

built-in scalar types and simple arithmetic, bitwise, and logical operations. DOMP

offers an extended reduction that accepts arbitrary types passed by reference and

44

Figure 4.8: A simple or classic “conveyor belt” pipeline.

arbitrary, user-defined combining operations.

Since introduction of this feature accounts for the bulk of instances where we

would wish to replace nondeterministic with deterministic code, we devote Section 5

to it.

The DOMP project would further benefit from two more extensions in the future:

a distinct pipeline construct and a task object to facilitate deterministic work queues.

Together, these extensions and the current core features would allow us to recast all

OpenMP benchmarks we analyzed so as to use only deterministic constructs and to

run deterministically under DOMP.

A pipeline is a sequence of repeated tasks, each dependent on the completion

of a cycle of the task before it. With each task assigned to a different thread,

data pass from thread to thread deterministically as each thread waits for input,

processes it, and passes the output on, repeatedly until the pipeline is empty. Each

sequence of task cycles performed on a given data item may be viewed as a single

sequential operation merely divided into segments and rotated for processing from

one thread to the next, and is therefore as naturally deterministic as a sequential

program. Figure 4.8 shows a simple, “conveyor belt”-style pipeline, which we may

regard as typical or classic. However, pipelines can have more complex structures

and still retain it determinism for the same reason, as illustrated with a slightly more

complex pipeline in Figure 4.9. For far richer examples of complex pipelines, see [37].

45

Figure 4.9: A slightly more complex pipeline. The controlled alternation of output
from Thread 0 to Threads 2 and 3 and of inputs from those to Thread 4 maintains
determinism.

The design of a pipeline construct could take one of a number of possible forms.

OpenMP already has an ordered construct, which, when embedded in a parallel

loop, causes the ordered block to be executed in the order of loop iterations, as if it

were in a sequential loop. The first thread to encounter an ordered construct may

execute it immediately, but every other thread must wait for the thread before it to

finish the ordered block before it begins the block. Thus we could build a naturally

deterministic pipeline by enclosing a loop with an ordered block within a larger loop

handling the data flow into and out of the pipeline. OpenMP implies no barrier at

the end of the parallel loop, so each thread is free to jump to the next iteration and

wait only for the completion of the previous task on that iteration. For this to work,

however, we would need to create a special version of the outer parallel loop that

implies no work sharing but simply iterates over the data set:

#pragma omp parallel for pipeline ordered

for (i = 0; i < num_elements; i++) {

fetch_element(i);

switch(omp_get_thread_num()) {

#pragma omp ordered

case 0:

46

do_task_A();

break;

case 1:

do_task_B();

break;

// Etc.

}

store_element(i);

}

This approach requires modifications both to the standard OpenMP outer parallel

loop and the ordered construct itself. OpenMP syntax requires the outer loop for an

ordered construct, but it normally distributes iterations among threads according

to either a default or a specified “chunking” schedule. Here, the outer loop must

iterate over the data set, but the ordered block must “iterate” over threads rather

than us the outer loop’s iteration variable.

Alternatively, we could build a pipeline construct atop a modified version of

OpenMP’s task and taskwait constructs, which are nondeterministic in OpenMP’s

design. In particular, the OpenMP standard allows the thread that encounters a

task either to execute it or defer it for another thread, nondeterministically. With

the taskwait construct, whichever thread has created the task now waits for its

completion. Instead, DOMP would have a designated thread that encounters a task

construct, such as the master, fork a new child thread in order to execute the task.

Then task wait would have similar semantics to those of the current standard, but

the thread that waits would always be the same.

A further modification could name the task object and allow the creating thread

to wait for its completion by name. This would enable DOMP to express futures [49]

47

and other non-hierarchical dependency graphs:

omp_task my_task;

#pragma omp task(my_task)

{ /* Task code ... */ }

// Other tasks

#pragma imp taskwait(my_task)

Then, any node in a pipeline graph, however complex, could express the task

upon which it depends through the task and task wait constructs. This approach,

while somewhat less intuitive and potentially more complex in implementation, also

provides a more general solution for pipelines having arbitrary designs.

For the programmer, however, the tasks of a pipeline might seem most closely to

match those of sections in the OpenMP sections construct, suggesting an intuitive

API along the following lines:

#pragma omp sections pipeline

{

while(more_work()) {

#pragma omp section

do_task_A();

#pragma omp section

do_task_B();

// ...

}

}

An implementation could use this API as mere syntactic sugar for one of the mech-

anisms discussed above, or manage low-level synchronization between sections di-

rectly.

48

DOMP could implement a deterministic work queue similarly to how it would

the modified task and taskwait described above. The master thread would simply

spawn a new thread for each task in the queue and would wait for each task in the

same order. This approach effectively moves the nondeterminism of assigning phys-

ical processors to tasks away from the program and over to the operating system’s

scheduler, where it belongs, and where it should have no effect on the program’s

observable execution trace.

* * *

Although deterministic pipelines and work queues remain only imagined extensions

to enable DOMP to accommodate as much existing OpenMP as possible, we have

implemented the extended reduction, which addresses the largest missing element

in the standard OpenMP API’s ability to express deterministic idioms. Hence we

describe this extension in greater detail in the next chapter.

49

Chapter 5

Extended Reductions

In addition to the standard reduction for scalar types and simple operations, DOMP

includes a new library function to express an extended, generalized reduction over

an arbitrary type, passed by reference, applying a user-defined combining operation.

In addition, DOMP guarantees that it evaluates both standard and extended re-

ductions in a fixed order, one that, provided the combining function is associative,

corresponds intuitively to the order of evaluation the program would apply if the par-

allelizing directives were removed and the code were sequential. This semantic rule

makes extended reductions useful for combining operations that are associative but

not necessarily commutative, such as matrix multiplication, or floating-point compu-

tations on vectors. In all other respects, DOMP standard and extended reductions

conform to the semantics of standard OpenMP reductions, but this conformity places

special constraints on DOMP’s extended reduction API and the combining operation

the user supplies. We explore each of these points below, and then give an exam-

ple of replacing nondeterministic with deterministic code using a DOMP extended

reduction. These features implement concepts proposed in [10].

As discussed in 2.2, reductions have a long history [59], including in deterministic

50

parallel programming models [24], and we make no claim that DOMP’s particular

approach to reductions is either conceptually novel, or necessarily the “right” design

for generalized reductions in OpenMP. We present this approach merely as one design

point that attempts to remain consistent with OpenMP’s design philosophy, and

to balance various practical challenges such as flexibility, efficiency, determinism,

support for multiple languages (C and Fortran), and equivalence of serialized and

parallelized versions of code (i.e., “eraseability” of OpenMP pragmas).

5.1 API and Semantics

DOMP’s syntax for reductions already supported by standard OpenMP is identical

to the standard: a clause

reduction(op :var list)

where op is one of the supported operators (such as +, ∗, or &) and var list is a

list of one or more variables, previously declared and initialized, to be subjected to

reduction. The OpenMP standard further stipulates some behind-the-scenes manip-

ulations so as to ensure a semantic equivalence between the reduction operation as

a whole when run sequentially and in parallel, an equivalence that serves as one of

OpenMP’s guiding design principles. We return to these implementation details in

Section 6.4.

OpenMP does not specify the order in which the implementation updates the orig-

inal variable, so the order may well be—and typically is (as in GCC)—nondeterministic.

Since all standard OpenMP supported operations are commutative as well as associa-

tive, however, this nondeterminism does not affect the result. Under debugging, how-

51

ever, this nondeterminism may leave intermediate states hard to reproduce. DOMP,

by contrast, evaluates the reduction in a fixed order that, for an associative opera-

tion, corresponds exactly to the order the reduction would follow in sequential code,

i.e., with the OpenMP parallelizing directive removed. Aside from easier debugging,

this guarantee helps programmers to reason about error accumulation when reducing

over floating-point types.

In order to preserve OpenMP’s principle of sequential-parallel semantic equiv-

alence, DOMP’s extended reduction requires a user-defined identity element. For

instance, for matrix multiplication, this would be the identity matrix of the same di-

mension as the reduction variable; for vector addition, a 0-vector of the same length.

The requirement of an identity element for the user-defined combining operation’s

domain places an implicit constraint on possible operations, though typically not a

burdensome one in our experience. Moreover, DOMP evaluates the reduction in a

fixed order regardless of the operation’s associativity or commutativity; associativity

is required only to guarantee equivalence between sequential and parallel semantics.

DOMP’s extended reduction API takes the form of a library function:

domp xreduction(void*(*op)(void*,void*), void** var, void* idty, size t size);

where op is the address of a user-defined combining operation, var is the address of a

pointer to the reduction variable object, and idty is the address of the identity object.

The user must create the var object in a contiguous block of memory, and likewise

for idty. This is necessary in order for DOMP to integrate the reduction operation

with its general merge-and-check operation as described in 4.1. The parameter size

is the size of the reduction variable object, which, of course, should be the same as

that of the identity object.

52

The first argument, op, is the address of a user-defined function that takes two

arguments, each a generic pointer, and returns the first. The first argument always

points to an object that serves as the accumulator for the operation. The function

op always has the side-effect of updating this accumulator object. For instance, to

compute the sum of real vectors (arrays of doubles) of dimension DIM, we would

have:

void* vec_add(void* x, void* y) {

double* a = (double*)x;

double* b = (double*)y;

double* end = a + DIM;

while (a != end) *a++ = *b++;

return x;

}

We explain the rationale for these design choices further in Section 6.4.

5.2 Converting Nondeterministic Code

For an example of OpenMP code that uses a nondeterministic construct as a mere

component to build an extended reduction in the absence of language support for

one, we turn to the NPB benchmark program EP (source ep.f). The program

declares two double precision arrays, q and qq, both of size nq, with the former

global (in a Fortran common block) and the latter thread-private. EP initializes q

to 0 before the parallel block. Within the block, it assigns values to elements of qq

from a pseudorandom function. Then, execution loops through the indices of both

arrays, adding the value of the local array element to the corresponding element in

the global array:

do 155 i = 0, nq - 1

53

!$omp atomic

q(i) = q(i) + qq(i)

155 continue

Clearly, the programmer intended the array q to serve as a reduction variable, ac-

cumulating the sum of the thread-local vectors qq. The atomic construct prevents

data races on q, but fits only in a nondeterministic programming model. Moreover,

the evaluation order depends on OpenMP’s assignment of outer loop iterations to

threads, which is opaque to the programmer and may, itself, depend nondeterminis-

tically on a scheduler.

To convert this code easily to work with DOMP, we placed all necessary definitions

in a separate file (helper.c), which we could then re-use for other programs having

the same pattern (such as DC). We wrote this code in C merely because it was

more familiar than Fortran, though DOMP supports generalized reductions in either

language. The definitions include the following:

• An identity 0 array of size n1 on the heap, assigned to a global pointer idty.

• A vec add function similar to the one shown above.

• A simple wrapper for domp xreduction, shown below.

The C wrapper function is, in essence,

void xreduction_add(void ** input) {

domp_xreduction(&vec_add,

input, (void *)idty,

nq * sizeof(double));

}

In ep.f, we defined a Cray pointer to q:

54

double precision q_val

pointer(q_ptr, q_val)

q_ptr = loc(q)

Cray pointers are a nonstandard but widely supported extension to Fortran 77 that

permits declaration of a variable containing the address of another variable.

Then, before the omp parallel directive shown above, we inserted

call xreduction_add(q_ptr, nq)

Finally, we replaced the atomic assignment loop shown at the beginning with a

simple call:

call vec_add(q_val, qq)

Unfortunately, we could not simply leave the loop statement in place minus the

atomic construct, because of peculiarities in the semantics of Cray pointers.

Although the procedure described above required several steps, it is easy to imag-

ine labor simplifications. First, since many cases of extended reductions will be

devoted to arithmetic operations on arrays, it would be simple enough to provide

convenient library routines and data structures with all the necessary machinery be-

hind the scenes, allowing the programmer to convert code from standard OpenMP

or sequential to DOMP almost trivially in such cases. As it happens, the NPB

benchmarks BT and EP use the same idiom, so we adapted them with the identical

extended reduction. It might also be possible, in many cases, to infer automatically

some of the manual changes shown here. We leave this possibility for future research.

In a slightly more complex case, less adaptable to a library API, we converted a

critical block in the NPB benchmark DC that accumulates values in a global data

structure g of type g t:

55

#pragma omp critical

{

if(g->tm_max<tm0) g->tm_max=tm0;

g->failure += l->failure;

if (!l->failure)

g->num += l->num;

}

Although the values for these assignments come from two different sources—the

thread-local data structure l of type l t and the variable tm0 of type double—the

extended reduction’s combining operation must express the same logic with a single

data source, the second argument, of type g t:

void* update_op(void* a_ptr,

void* b_ptr) {

g_t* a = (g_t*)a_ptr;

g_t* b = (g_t*)b_ptr;

if (a->tm_max<b_tm_max)

a->tm_max = b->tm_max;

a->failure += b->failure;

if (!b->failure)

a->num += b->num;

return a_ptr;

};

We pass update op to domp xreduction before the parallel block, and simply remove

the #pragma omp critical annotation.

In all cases, the logic of converting from nondeterministic code to deterministic

extended reductions was straightforward.

56

Chapter 6

Implementation

We implemented DOMP by altering the Gnu OpenMP support library, libgomp,

which comes packaged with GCC, as well as by making some changes to the OpenMP-

handling code in GCC itself. The resulting DOMP support library is called libdomp.

This approach makes it easy for a programmer to create or adapt code in a deter-

ministic paradigm while using familiar tools and platforms. Moreover, we leveraged

many elements of libgomp’s internal API so as to concentrate on WCD-related com-

ponents.

We shall first describe our basic threading framework and the machinery we used

to implement Working Copies Determinism in user space. Given this approach, our

major implementation challenges were (a) reducing the cost of the WCD algorithm

described in Section 4.1 so as to allow acceptable performance; (b) providing back-

ward compatibility of standard (simple) reductions with deterministic semantics; and

(c) supporting the new extended reductions API. We review each in turn. Finally,

we consider the limitations of our current implementation and how these might be

resolved in the future.

57

6.1 User-Level WCD

In this section, we describe the threading model we use to support WCD, as well as

our approach to heap memory, and, finally, our integration of DOMP code with the

appropriate “hooks” in the libgomp’s internal interface.

6.1.1 Threading Model

Working Copies Determinism requires that the runtime provide each thread with its

own isolated logical copy of shared state, and also produce a reference copy, at the

fork, as well as that it merge these copies while checking for write-write conflicts

at the join (see 4.1). Thus for the underlying threading infrastructure, lightweight

threads such as pthreads would present an ill fit: each thread’s view of the address

space should be the same, but the data held at a given location should be private to

that thread.

The implementation of threads marks one of the many important differences

between libdomp and libgomp. In libgomp, the underlying thread mechanism is

pthreads, which all share the same address space. GCC transforms each parallel block

into a separate function that accepts as its argument a pointer to a data structure

holding copies of all shared stack and heap variables to which the function needs

access. In turn, libgomp passes this function and data structure to pthread create.

While this design could, in principle, isolate each thread’s copy of value-type variables

in a manner consistent with WCD, it would have no way of preventing concurrent

threads from writing to the same location by way of a pointer field in the data

structure passed in as the argument, nor from similarly writing to the same global

variable. For this reason, we chose to represent DOMP’s threads by means of separate

underlying processes created by Unix (or Linux) fork. At creation, then, each thread

58

for each data segment seg in (stack, heap, bss)
for each byte b in seg
writer = WRITER NONE
for each thread t
if (seg [t][b]] 6= reference copy [b])

if (writer 6= WRITER NONE)
race condition exception()

writer = t
seg [MASTER][b] = seg [writer][b]

Figure 6.1: Naive implementation of merge loop.

gets its own complete and isolated copy of its parent’s address space “for free” as

part of the semantics of Linux fork. DOMP later joins these threads to the parent

thread with waitpid. As in libgomp, the parent (or “master”) thread creates, for a

team of n threads, n− 1 children, since it serves, itself, as one of the team members.

In this sense, DOMP adopts virtual memory techniques similar to those of Grace [18]

and Dthreads [70] in order to achieve determinism; but, unlike these deterministic-

scheduling-based projects, DOMP uses VM machinery for thread isolation following

the WCD model.

Not only does Linux fork create a logical copy of shared state “for free,” it

even manages copy on write at system level, leaving the task of merging alone to

libdomp. In a naive implementation, without further cost reductions, the merge

routine requires three nested loops, as shown in Figure 6.1: it must examine each of

the three distinct data segments of the shared address space—the stack, the heap,

and the region for static variables (both initialized and uninitialized). Then, it must

iterate over each unit of data (e.g., byte) in each data segment, and each thread’s

version of each unit. We discuss ways to reduce the cost of this operation and others

in the next section. Important to note here is that, although Linux manages copy

59

on write for each independently-running thread, it does not do so, naturally, for

DOMP’s reference copy. Therefore, before creating the threads to make the team,

the parent thread would have to make and set aside a full copy of all of its data

segments.

6.1.2 Heap Memory

The parent thread, then, before spawning any children, must determine the bounds

of its stack, heap, and static variables segments, and copy them (using, e.g., memcpy)

to create the reference copy. The heap presents a potential problem in this case: pop-

ular implementations of malloc and its relatives, such as Doug Lea’s dlmalloc [66],

set memory aside for the heap in a “lazy” fashion, only upon the first call to an

allocating function, and increase the size of the heap only incrementally. Thus we

might easily encounter the case where the first parallel block of the program starts

with no previous heap allocation calls in the program, and therefore no memory

set aside for the heap. Suppose, then, that the program declares a pointer variable

before the parallel block, but has one child thread allocate memory to it within the

block. This works perfectly well in standard OpenMP, where all threads share the

same address space, and it should likewise work in DOMP if the latter is to serve as

a drop-in replacement for the former. However, in this scenario, at merge time, the

child has a heap of some size, whereas the parent has none. How would the parent

know to copy the child’s heap into its address space and what the bounds of that

heap are? Of course, we must also provide for the case where the parent allocates

heap memory for a variable that a (single) child modifies in the parallel block.

The solution we chose was to allocate a fixed range of addresses for the parent’s

heap, and another one for each child, all before the parent creates the first child

thread. In particular, we map a space sufficient for all of these heaps together with

60

Figure 6.2: Structure of DOMP heaps allocated before any parallel execution.

In/After Heap Can Do with Variables
Block Owner See Allocate Free

in
master all threads all threads all threads
child owner owner owner

after
master master master master
child master (none) master

Table 6.1: Which threads can do what with variables from whose heap during and
after a parallel block.

61

a single mmap call, thus minimizing system overhead. We set the MAP PRIVATE flag,

which gives the heap the same system copy-on-write semantics as the stack and static

variables have after fork. The parent uses the heap bounds from this partitioned

mmaped region to create the appropriate reference copy at thread creation time and

to find its own and its children’s respective heaps at merge time. Since we found,

in practice (e.g., in our benchmarks), that child threads update or merely read the

parent’s heap-allocated variables much more often than they allocate memory to

pointers that they inherit, we apportioned more space to the parent’s heap (as “main”

heap) than to any child’s heap. The specific proportions, however, were a result of

trial and error and mere guesswork: 16 MB (224 bytes) for the parent and 256 KB

(218 bytes) for each of a maximum of 31 children, giving a total of 24,903,680 bytes

to be mmapped. A better approach would entail the rigorous study of heap usage

in a sample of a range of popular programs. Note, however, that the total space to

be allocated by mmap under the standard C library implementation we used (glibc

2.11.1) must not exceed the maximum value of its size t length parameter, or 28−1

on the Linux x86-64 system we used. Figure 6.2 represents this arrangement, while

Table 6.1 summarizes which threads have which capabilities with respect to which

heap variables both within and after a parallel block.

Having each thread need to refer to its own heap space for heap operations leads

us to define a global data structure for each thread, thread record t, one of whose

fields is a pointer to that thread’s heap. We list and discuss this and other fields

and data structures below, in 6.5. Moreover, since any thread may call free on any

variable whose space was allocated by itself or any other thread, the merging thread

may encounter a conflict in malloc bookkeeping structures at merge time, if these

consist of counters or bitfields, as is the case with the dlmalloc that provides the

basis for DOMP’s implementation of the heap. To prevent such spurious data races,

62

DOMP implements free by placing the address to be freed onto a queue belonging

to the thread that owns the heap containing that address. This queue, then, is stored

in the queued frees field of a data structure accessible to all threads, as described

further in 6.5.

Given Linux’s copy-on-write behavior, examining child threads’ address spaces at

merge time poses its own challenges. For instance, the parent thread, which runs the

merge routine represented in Figure 6.1, has no direct access to a list of the pages

that the system has copied on write for each child thread. If it attempted to examine

every page in the address range of the data segment, it would very likely provoke a

segmentation fault by looking for a nonexistent page in memory. Instead, it would

have to obtain the list of pages copied on write by examining the contents of the

child thread’s /proc/<pid>/maps file in the Linux proc pseudo-filesystem, where

<pid> stands for that child thread’s process ID. (Of course, the parent must first

halt each child thread using the Linux ptrace call, as any thread must do in any

scenario in which it examines the address space of another thread.)

The requirements of creating an appropriate “snapshot” reference before parallel

execution and of examining child threads’ data efficiently are easier to fulfill with

the mechanism of trapping and trap handling that we describe in Section 6.2 as a

cost-saving measure. Thus DOMP’s implementation requirements intertwine cost

reduction with basic practicality.

6.1.3 Using libgomp’s Internal API

When GCC compiles OpenMP source code, it transforms the code of an internal

block into a separate function, using a name mangling scheme to give it a unique

name. In the containing function, then, in place of the block, it inserts a sequence of

calls to GOMP parallel start, the newly-defined function, and GOMP parallel end,

63

Figure 6.3: Comparison of libgomp’s and libdomp’s respective call sequences, using
GCC’s automatically-generated wrapper call.

in that order. In this way, the main (master) thread starts parallel execution for the

rest of the team, then executes the parallel code itself as a member of the team, and,

finally, waits for the rest of the team to finish.

GCC’s generated code passes several arguments to DOMP parallel start, includ-

ing a pointer to the newly-created separate function and a pointer to an ad-hoc data

structure whose members correspond to all the shared variables to which the function

will require access. Of course, this function-data pair is tailored to fit the API of

pthread create, libgomp’s underlying threading framework. GOMP parallel start

then calls the libgomp function domp team start with the same arguments, which,

in turn, calls pthread create once for each thread on the team besides the mas-

ter, passing the same function and data pointers. It is then a fairly simple matter

to switch libgomp’s call inside GOMP parallel start from gomp team start to our

own domp team start, as shown in Figure 6.3.

64

6.1.4 Work Sharing

We implemented the loop and sections OpenMP work sharing constructs, leaving

the task construct for future work. Naturally, DOMP’s implementation must be

deterministic, meaning that the assignment of tasks to threads must be the same on

every run of the same program with the same input.

In the case of the loop construct, fortunately, GCC’s thread scheduling scheme is

already deterministic, and GCC expresses this scheme directly in its generated code,

by inserting instructions to have each thread query the total number of threads

and its own ID with omp get num threads and omp get thread num, respectively.

Then, with the default “static” scheduling setting, each thread divides the number of

iterations by the number of threads and then assigns to itself the appropriate “chunk”

of iterations based on its ID. OpenMP also offers a “dynamic” scheduling option,

which is by nature nondeterministic (to allow load balancing), but we altered GCC’s

interpretation of the OpenMP parallel block’s schedule clause so that dynamic

means the same thing as static.

In the case of sections, things were not quite so simple: GCC assumes a dy-

namic schedule, with code that is awkward to alter in order to achieve a deterministic

result. (The OpenMP standard stipulates that ”[t]he method of scheduling struc-

tured blocks [i.e., the individual section blocks] among the threads in the team is

implementation defined” [78]. However, we could still use GCC’s internal API. In

the object code, GCC emits calls to GOMP sections start and GOMP sections end

at the beginning and end of the sections block, respectively, in a way analo-

gous to GOMP parallel start and GOMP parallel end. Then, the special func-

tion representing the overall parallel block calls GOMP sections next in a loop,

and uses the integer return value to determine the location to which to jump to

65

execute the appropriate section code, until GOMP sections next returns 0. We

simply replaced libgomp’s code for GOMP sections start and GOMP sections next

with calls to libdomp’s domp sections start and domp sections next. The for-

mer simply assigns the total number of sections (which GCC computes statically

and passes as an argument to DOMP sections start to a field, num sections, in

the (globally scoped) thread-local thread record t data structure. Another field,

sections done, starts out at zero. After this initialization, domp sections start

simply calls domp sections next for the first section assignment. DOMP’s domp sections next

assigns sections based on the thread ID, and adds the total number of threads to

sections done. If there are more sections to be done than there are threads, the

next iterative call to domp sections next will return sections done plus thread ID.

If this sum exceeds num sections, domp sections next returns 0 instead, which en-

ables the executing thread to break out of the sections loop.

In this case, we clearly sacrifice some performance benefit from dynamic thread

scheduling in order to uphold determinism. As it happens, none of the benchmarks

we considered used the sections construct, so testing to measure this performance

sacrifice remains for future work.

6.2 Reducing Cost

In a naive implementation, the most costly elements of DOMP are thread/process

creation and merging. Thus the time cost of a program grows as a function of the

number of parallel blocks (or iterations over a given block), the number of parallel

threads per block (each with its thread creation overhead), and the size of the shared

data to be compared and merged. This cost may be hard to offset with the benefit

of parallelism.

66

Standard efficiency techniques improve this situation:

• Copy on write at page granularity

• Merge or copy pages only as needed

• Merge in parallel along a binary tree

• Create and keep a thread pool, to be destroyed at program end.

With thread creation now a one-time cost, overall cost grows with the log of the

number of threads times the number of shared pages.

We discuss the details of each improvement technique in the following subsections.

6.2.1 Copy on Write

To create the reference copy, we use standard techniques to implement copy on write

at the user level. At the start of a parallel block, in an initialization phase, the

master thread finds the address bounds for the three shared data segments that will

be in scope for the ensuing parallel execution: the stack from the contents of the

stack pointer upon the call to GOMP parallel start up to a suitable upper limit,

such as the glibc-defined symbol libc stack end; the heap, including the entire

mmapper range that contains both the main heap and the child heaps, as described

in 6.1.2, and the static variables (or “bss”) region. In order to make the bounds of

the bss segment visible to DOMP’s initialization code, we resort to a simple linker

trick: we define the symbols domp bss start and domp bss end in two separate files,

head.s and tail.s, respectively, and then link them to positions before and after

the executable code, respectively.

Also during initialization, the main thread (at that point, the only thread) cre-

ates an array, called threads, of data structures called domp thread t to keep track

67

of such things as each thread’s writes. Because sach thread will have to write to the

domp thread t representing it and the master thread will have to read the whole ar-

ray at merge time, the main thread creates the array in an mmapped region accessible

to all threads existing or subsequently created. When the master thread creates the

child threads of the team, it increments a global thread count, which serves as the

new thread’s thread ID, starting with 1. This thread ID also serves as the index in

the threads array to the domp thread t representing that thread.

Still during initialization, the main thread opens three files to hold the reference

copies for the three data segments, storing their file descriptors in a globally-visible

array, ref copies, to which all threads will have access.

At the fork, then, we write-protect the data segments that represent shared data

in scope for the concurrent threads. More precisely, we impose write protection on

the heap and the bss segments, but not the stack, since write protecting the stack

introduces too many runtime complications. Instead, we always assume that we must

always merge stacks, and the main thread creates the reference copy for the stack

during initialization. In practice, we find that this involves no more than two pages.

On the heap and bss segments, we impose write protection at the last moment,

for reasons that will be clearer when we describe the thread pool in 6.2.4. Thus,

immediately after calling fork, the master thread calls mprotect on all three data

segments. Each new thread does the same on its own version of the data segments

after it is created and just before it starts executing the parallel code.

During parallel execution, when any thread writes for the first time (i.e., for its

first time) to a given page of shared data, the write provokes a SIGSEGV segmentation

fault signal. DOMP’s trap handler then finds the trapping address, rounds it down

to the page boundary (using a page size of 4096 bytes), and lifts write protection for

that page. It also stores the page address in the pages written field (an array of

68

off ts) of the domp thread t whose index in the threads array corresponds to its

thread ID. Next, it determines to which data segment the page belongs, and creates

a reference copy of that page—but only if no thread has done so before. To prevent

such duplication (and to prevent any possible undefined behavior when two threads

write the same copy “at the same time” to the same place in the reference copy

file), the signal handler first checks a bit field representing reference-copied pages,

ref copy locks, which is unique and globally visible to all threads, as explained

further in 6.5 below. It uses an atomic bit-test-and-set instruction to check the bit

corresponding to the trapped page. If the bit is clear, this instruction sets it—and

the signal handler then copies the page to the reference copy file corresponding to

the appropriate data segment, at the offset in the file equal to the offset of the page

address from the start of the segment. This offset scheme prevents any possible

conflicts between two threads writing to the same address range in any reference

copy file.

When the signal handler returns, the trapping thread is now free to write to the

page in question, and the reference copies file for that page’s data segment has a

copy of the page in its state before any writes have occurred.

6.2.2 Merge or Copy As Needed

The “lazy” approach exemplified by copy on write applies equally well to the merge

operation: we need only merge data together if we know that they may differ. More

precisely, the master need only examine and merge with a given page of its own

address space the corresponding page in any other thread’s address space to which

that thread has written—and, thanks to our copy on write mechanism, we have a

record of these writes, one set for each thread, in the pages written field of the

domp thread t object representing that thread in the threads array.

69

For clarity’s sake, we describe the merge operation here as if we had not imple-

mented parallel merge, to be discussed later in 6.2.3. Before actual merging, the

merge routine inserts the stack pages into each thread’s pages written array, in-

cluding that of the master. It also sorts the individual pages written arrays of all

the respective threads, again including that of the master. Then, it goes through all

the pages written arrays together. If it finds a unique entry not belonging to the

master, this means that only a single thread has written to that page. Therefore, the

whole page can safely be copied over from its source to the master thread’s address

space. Only if it finds two or more entries for the same page must it execute the

merge loop as shown in Figure 6.1—replacing “for each byte b in seg” with “for each

byte b in page.”

6.2.3 Parallel Merge

We found that an implementation with only the foregoing efficiency measures still

provided unsatisfactory performance on the few benchmarks we tested. (We unfortu-

nately did not keep records of these experiments, but we recall a worse than twofold

slowdown.) The next major improvement came from merging updates in parallel.

This not only enabled DOMP to parallelize the workload across more processors, it

also reduced the workload and code complexity of each merge operation, since now

each such operation only involves, at most, three sources of data: the current thread

(or self, one other thread (other), and the reference copy. We then organized the

parallel merge operation along a binary tree. For instance, for two threads, Thread

0 (the master) merges Thread 1. For four threads, Thread 0 merges Thread 1 while

Thread 2 merges Thread 3; then Thread 0 merges Thread 2.

Figure 6.4 illustrates the pattern DOMP follows for parallel merging, with the

root node of each (non-leaf) subtree labeled by the thread that merges data from

70

another thread into its own address space. Since now the master is not the only

thread engaged in merging data into its own address space, we use the terms up-

buddy and down-buddy for the self and other involved in each component merge

operation, respectively. As we just noted, each merge now involves only a three-way

comparison of the up-buddy, the down-buddy, and the reference copy. This removes

one level of the nested loop in Figure 6.1.

0

0 4

0 2 4 6

0 1 2 3 4 5

(a)

0

0 4

0 2 4 6

0 1 2 3 4 5 6 7

(b)

Figure 6.4: DOMP merge scheme for (a) 7 and (b) 8 threads. Efficiently parallel
evaluation of reductions can coincide with merging.

In general, each even-numbered thread will serve as an up-buddy at least once,

whereas odd-numbered threads can only be down-buddies. The down-buddies, by

thread ID d, for a given up-buddy with even thread ID u in a team of n threads are

given by the formula:

d = 2p + u,with integer p ≥ 1, d < n, and

2p < n, if u = 0,

2p < u if u 6= 0.

In order for the up-buddy to merge or copy data from the down-buddy, it first calls

ptrace and waitpid on the down-buddy to synchronize with it, and then opens

the down-buddy’s address space as a file, using Unix’s (Linux’s) /proc/<pid>/mem

pseudo-file. It stores the file descriptor in the mem fd field of the threads entry

representing the down-buddy, and closes the file at the end of the merge process. It

71

then copies data page by page into a local buffer for use in merging or copying into

its own address space.

The initialization process remains the same as before, as described above in 6.2.1,

since this design makes it possible for all threads to see each other’s domp thread t

in the globally-visible threads array. One small but important difference from

the merge routine as described above, however, is how each up-buddy accumulates

records of pages written before finishing and allowing itself, in turn, to serve as

down-buddy to the lower-numbered thread that is its up-buddy. When an up-buddy

thread finishes merging its down-buddy’s data into its own address space, it inserts

the addresses for pages that it has merely copied from its down-buddy (because only

the down-buddy has written to those pages) into its own pages written array. That

is, although the up-buddy did not write directly to this page during parallel execu-

tion, it has, in effect, written to the page now by copying its down-buddy’s updates

onto it. Thus records of pages written filter up through the parallel merge process,

at the end of which the master has a full list of all pages to which any thread has

written in the foregoing parallel block.

6.2.4 Thread Pool

OpenMP is designed to allow an arbitrary number of parallel blocks within a pro-

gram, and it is also possible to iterate over a parallel block. For example, the

PARSEC benchmark blackscholes iterates over its one parallel block 100 times; the

NPB benchmark EP has three within the main routine, and BT has 12 spread across

various subroutines. With the design described thus far, every parallel block would

incur the overhead of creating a new team of threads, with all of its attendant ini-

tializations. To avoid this overhead, we implemented a thread pool: the main thread

initializes the global data structures and heaps and then creates the threads for the

72

team once for the program. When a child thread reaches the end of a parallel block,

it waits for a signal from the master to restart or exit. If the message is to restart,

the thread executes the function, with argument, to which the function field of the

global vars t object points (see 6.5. If the message means to exit, the thread exits.

At the end of the program, a clean-up routine that we register using the atexit call

waits for each child thread (process) to exit and closes open files and pipes (to be

discussed below in this section) before program termination.

We provide for changes in the number of threads from one parallel block to

the next, although, in practice, none of the programs we encountered called for this

feature. The feature depends on the main thread’s initialization routine creating data

structure entries and heaps for some global constant maximum number of threads

(currently 32). Given that no program seems to need to change the number of threads

from one block to the next, we could, in a future version of DOMP, improve memory

efficiency by apportioning only the data structures and heaps necessary for the initial

number of threads, which is generally known at program start.

Adding a thread pool to the design introduces the need for a whole new layer

of inter-thread communication, which we support by means of Unix (Linux) pipes.

When the main thread creates a new thread, it opens two pipes, one for messages

from the child thread to its up-buddy and the other from the master to the child

thread. Each message consists of a single byte to minimize overhead. The sequence

of messages and related actions at the end of a parallel block, i.e., when a child thread

returns from the special function representing that parallel block, is as follows:

1. If the thread is an up-buddy, it does the following for each of its down-buddies:

(a) It waits for a “ready-to-merge” signal from the down-buddy.

(b) When it receives the signal, it synchronizes with the down-buddy (using

73

ptrace and merges the down-buddy’s data updates with the data in its

own address space.

2. It sends a “ready-to-merge” signal to its up-buddy.

3. It waits for a “restart” signal from the master.

The master thread performs step 1 with respect to its down-buddies in domp team end

(see 6.3), but does not take the steps 2–3, since, naturally, it lacks an up-buddy.

The master sends the “restart” message in domp team start (see 6.3), in place

of initialization and creating the new threads, on subsequent parallel blocks after

the first. Before doing so, it assigns to a global variable (the function field of

the global vars t object—see 6.5) a pointer to the function to be executed in

parallel. This is the special function that GCC has created to represent the cur-

rent parallel block, a pointer to which GCC’s emitted code passes as an argument

to GOMP parallel start, which passes it to domp team start. Every thread, on

restart, executes whatever function this field points to.

When the pooled threads restart, they must work with a fully updated version of

the shared data, which they get from the master, since the master has updated its

data at the last domp team end call. To support this data transfer, the master creates

yet another globally-visible file at initialization, the scratch file. Furthermore, it

creates an extra entry in the threads array to hold cumulative update information.

(This is the “scratch” entry, and includes, among other things, a pages written

field.) Then, in domp team start, when it is called a second or later time, before

the master sends out the “restart” signal, DOMP transfers the updated data from

master to child threads as follows:

1. The master calls copy out. This routine takes the following steps:

74

(a) The master copies its pages written array to the pages written field of

the “scratch” entry in the threads array. Up to this point, the master has

left its pages written array untouched since its last call to domp team end,

so this array contains a cumulative record of all pages updated in the pre-

vious parallel block.

(b) It clears its own pages written field.

(c) Using the “scratch” pages written array as a guide, it copies all pages

updated in the previous parallel block from its own address space to the

scratch file.

2. Each child thread calls copy in, which takes the following step:

(a) Using the “scratch” pages written field as a key, it copies each page from

the scratch file to the appropriate place in its own address space.

A further new complication is that the master thread may update shared data

between parallel blocks. In order to accommodate this possibility in our copy-on-

write scheme, the master must therefore write-protect its heap and bss segments

at the end of domp team end, trap its writes as if in parallel mode, and record

them—without making a reference copy. When the master calls copy out in the next

execution of domp team start, its pages written array will include these records,

along with those of pages updated during the previous parallel block. Of course,

this does mean incurring the overhead of mprotect and trapping even after the end

of the last parallel block of the program, but it is hard to avoid this waste without

more advanced static analysis that will mark the final domp team end call for special

treatment.

* * *

75

The foregoing efficiency improvement techniques all have some effect on the book-

keeping data structures DOMP uses to manage threading, synchronization, and

merging. But, in addition to a core functionality made reasonably efficient by these

methods, DOMP also supports both simple (OpenMP-style) and extended (general-

ized) reductions, which also require their own bookkeeping data fields. We therefore

describe our data structures only after discussing DOMP’s support for these two

types of reduction.

6.3 Simple Reductions

While offering a new generalized reduction, DOMP naturally must also support the

standard OpenMP reduction, with no changes to application source code, and with

deterministic semantics. The OpenMP standard stipulates that the implementation

must create, for each reduction variable, a private copy within the parallel block,

initialized to the identity value for the given operator. Then, at the end of the

parallel block, the implementation updates the original reduction variable with each

new private copy, using the given combining operator again. This behind-the-scenes

manipulation ensures the sequential-parallel semantic equivalence discussed in Sec-

tion 5.1.

We were able to leverage GCC’s compile-time handling of variable copying and

initialization. The key change in DOMP was to replace GCC’s nondeterministic,

atomic update mechanism with a deterministic, fixed-order evaluation at merge time.

GCC updates the shared reduction variable by simply turning the instruction repre-

senting the combining operation—say, ADD—into an atomic operation—e.g., LOCK

ADD. In the x86 context, this means adding the LOCK prefix to the instruction for

the combining operation. Instead, in place of the LOCK-plus-operation instruction,

76

int main(void) {

int x = 0;

int y = 2;

#pragma omp parallel num_threads(4) reduction(+:x)

{

x += y;

}

return x;

}

Figure 6.5: Minimal example program with a standard OpenMP reduction.

we have GCC emit a call to a new “built-in” function that we add to GCC’s reper-

toire, DOMP reduction info. GCC passes to DOMP reduction info the following

four arguments:

1. An integer that uniquely identifies the combination of the type of the reduction

variable and the operation, e.g., integer addition.

2. An integer that uniquely identifies the type of the reduction variable. Although

this information is redundant, it simplifies later lookups.

3. A void pointer to the local variable that GCC creates to take the value to be

combined with the reduction variable. For instance, if the source code has x

+= y, this is a pointer to y (or to a variable GCC creates to represent y after

various transformations).

4. A void pointer to the field representing the reduction variable in the data

structure that GCC creates and passes to the special function representing the

parallel block.

To illustrate our use and alteration of GCC’s emitted code, we turn to a minimal

example, whose source code is given in Figure 6.5. Figures 6.6 and 6.7 show an

intermediate stage in standard GCC’s transformations, simplified and edited for

77

main ()

{

int y;

int x;

struct .omp_data_s.0 .omp_data_o.1;

x = 0;

y = 2;

.omp_data_o.1.x = x;

.omp_data_o.1.y = y;

GOMP_parallel_start (main.omp_fn.0, &.omp_data_o.1, 4);

main.omp_fn.0 (&.omp_data_o.1);

GOMP_parallel_end ();

x = .omp_data_o.1.x;

y = .omp_data_o.1.y;

return x;

}

Figure 6.6: Standard GCC’s transformation of main in Figure 6.5.

readability. Figure 6.6 shows the transformation of the main function, including the

calls to GOMP parallel start and GOMP parallel end, as described in 6.1.3. The

the third argument to GOMP parallel start is the number of threads, in this case

4. Figure 6.7 shows the special function GCC creates to encapsulate the parallel

block in the original source in Figure 6.5. Note in particular the call GCC inserts

into this special function to the atomic function sync fetch and add 4. The 4

in this function’s name refers to the number of bytes in the operands, which is, of

course, appropriate for the 32-bit integer reduction variable. In turn, libgomp defines

this atomic function and its many relatives as inline, enabling its replacement with

a single atomic instruction. FIgure 6.8 shows the disassembly of the entire special

function representing the parallel block, as compiled with standard GCC on an x86

machine running Linux, where it is easy to see the “lock add” instruction.

Figure 6.9 gives the corresponding intermediate representation of the special func-

tion from our altered, DOMP-enabled version of GCC. (The intermediate represen-

78

main.omp_fn.0 (struct .omp_data_s.0 * .omp_data_i)

{

int x;

x = 0;

x = x + .omp_data_i->y;

__sync_fetch_and_add_4 (&.omp_data_i->x, x);

}

Figure 6.7: Standard GCC’s transformation of the parallel block in Figure 6.5.

<main.omp_fn.0>:

push %rbp

mov %rsp,%rbp

mov %rdi,-0x18(%rbp)

movl $0x0,-0x4(%rbp)

mov -0x18(%rbp),%rax

mov (%rax),%eax

add %eax,-0x4(%rbp)

mov -0x18(%rbp),%rax

lea 0x4(%rax),%rdx

mov -0x4(%rbp),%eax

lock add %eax,(%rdx)

leaveq

retq

Figure 6.8: Disassembly (x86) of the code representing the parallel block in Fig-
ure 6.5.

79

main._omp_fn.0 (struct .omp_data_s.0 * .omp_data_i)

{

int x;

x = 0;

x = x + .omp_data_i->y;

DOMP_reduction_info (30, 4, &x, &.omp_data_i->x);

}

Figure 6.9: DOMP-enabled GCC’s transformation of the parallel block in Figure 6.5.

tation of main is identical in this version.) Note in particular DOMP’s replacement

of sync fetch and add 4 with the libdomp function DOMP reduction info.

The libdomp function DOMP reduction info stores the information from all four

arguments in a reduction var t object, which has four corresponding fields. The

reduction var t object, in turn, is an element of the thread’s reduction vars array,

which is, itself, a field in the domp thread t object representing that thread in the

global threads array. (See 6.5 below.)

In the case of the third variable—a pointer to the variable holding the value

to be aggregated to the reduction variable—the current thread dereferences it and

stores its value in the value field of the reduction var t. The value field must

accommodate the value of a variable of any type and size allowed for an OpenMP

reduction. Its therefore has a union type (a common value t, and the unique type

identifier (DOMP reduction info’s second argument) enables DOMP reduction info

to select the right member of the common value t by serving as an index into an array

of functions, each of which casts the void pointer to the right type, dereferences it,

and stores it in the appropriate common value t field of the next entry in the current

thread’s reduction vars array.

In a somewhat similar fashion, during the merge process, the up-buddy goes

through all of its own and its down-buddy’s reduction variables (which should be

matching lists) and combines their respective values using the appropriate operation.

80

This time, it finds the right operation by using the integer stored from the first

argument to DOMP reduction info as an index into another array of functions, each

function corresponding to one variable type, one variable size, and one combining

operation. The array contains all the combinations of types, sizes, and combining

operations allowable for a standard OpenMP reduction.

After the master has performed these reduction operations with respect to all of

its down-buddies, as a final step, it goes through the same list of reduction variables

and combines the current value of the reduction variable with its original value, ac-

cessible through the pointer stored as the fourth argument to DOMP reduction info,

and stores the result in the latter location. This completes the reduction.

As just noted, the intermediate evaluation steps of reductions are mixed in with

the merging process. As it happens, the binary tree pattern we use for efficient

merging lends itself conveniently to the fixed-order evaluation of both standard and

extended reductions, since the order in which data are merged from one thread to

another follows the order of threads numbered from 0 (the parent or master). Thus,

suppose we have 8 threads. Let z be the reduction variable, with zf being its final

value after reduction, and z0 . . . zn−1 corresponding to the respective values of the

local versions of variable z at the end of the parallel block (but before merging) for

threads 0, . . . , n− 1. We use � to represent the combining operation. Then

zf = (((z0�z1)� (z2�z3))� ((z4�z5)� (z6�z7)))

Note that this evaluation order does not move the elements from their original order

as in a sequential version of the program. The programmer can reason about the

evaluation of a reduction using the “�” operation, without the “�” operator having

to be commutative, though it must be associative for this equivalence to hold.

81

If the number of threads is fewer than the number of parallel loop iterations or

sections in which a reduction occurs, GCC by default assigns threads to iterations

(or sections) in contiguous chunks. For instance, if two threads execute eight parallel

iterations, thread 0 gets iterations 0 through 3 and thread 1 gets the rest. Within

each chunk, the code executes sequentially ; and, given DOMP’s compliance with

OpenMP’s sequential-parallel semantic equivalence, the results would be

zf = ((z0�z1�z2�z3)� (z4�z5�z6�z7))

This again preserves sequential order for associative operations.

6.4 Extended Reductions

To allow for arbitrary types and operations, we could not leverage GCC’s compile-

time machinery as we could for standard reductions, and must implement more of the

required behind-the-scenes actions to occur at runtime. The DOMP built-in function

domp xreduction makes a copy of the identity object on the heap, a scratch object,

and re-points the pointer to the reduction variable object var to point to this scratch

object. (This is why the first argument to domp xreduction has type void**.) It

also records address and type information about the variable, identity, and scratch

objects. At the fork, each thread gets a copy of the scratch object, and, during

parallel execution, when any thread calls the combining operation, what looks like

the first argument of that operation, the reduction variable, is actually a pointer

to the scratch object, which is a copy of the identity object, so the result will be

the same as the second argument. Therefore, this call to the combining operation

effectively just copies the second argument to the scratch object. But, like any write,

82

this act of copying the second argument onto the scratch object traps, causing the

signal handler to record the page.

At merge time, the up-buddy goes through all pages written by itself and its

down-buddy. Before merging the data, it first resolves any extended reductions for

that page, this time using the up-buddy’s scratch object as the combining operation’s

first argument, the accumulator. Once within the merge loop, the up-buddy skips

over the address ranges of the scratch objects, which otherwise appear as write-write

conflicts.

Finally, the master thread calls the combining operation, this time with the orig-

inal reduction variable as the first (accumulator) argument and its scratch object

as the second. It restores the pointer back from the scratch object to the reduction

variable, and deletes the scratch object.

This sequence fulfills the stipulations of the OpenMP standard for simple reduc-

tions, thus providing sequential-parallel semantic equivalence for associative combin-

ing operations, while ensuring an efficient, deterministic evaluation order.

6.5 Data Structures

In the foregoing sections, we have referred to several data structures used for various

kinds of bookkeeping. Here, we review these data structures in detail.

DOMP uses three data structures that are global in some sense:

• A global vars t object, g, which the master creates in a separate mapped file

before creating the thread pool, and which is therefore visible to all threads,

at global scope.

• The threads array of domp thread t objects, which is a field of g and is thus

also visible to all threads, at global scope.

83

typedef struct global_vars_t {

struct segment_t data_segments[NUM_SEGS];

struct func_t function;

struct domp_thread_t * threads;

int num_threads;

int ref_copies[NUM_SEGS]; // Open file descriptors.

int * ref_copy_locks[NUM_SEGS];

struct xreduction_var_t xreduction_vars[DOMP_MAX_REDUCTION_VARS];

int num_xreduction_vars;

int scratch; // Open file descriptor.

bool in_parallel;

} global_vars_t;

Figure 6.10: The global vars t data structure.

typedef struct segment_t {

off_t start;

size_t length;

} segment_t;

Figure 6.11: The segment t data structure.

• A thread record t object, one at global scope for each thread, whose values

are different for each thread, and which is visible only to the thread to which

it belongs.

The definition of the global vars t type is given in Figure 6.10.

The segment t data structure has two fields, as shown in Figure 6.11.

The data segments field has one such structure for each of the three shared data

segments—stack, heap, and bss—which the threads use for mprotect calls to support

copy on write and to guide merging (6.2.1).

The function field’s func t data structure also has two fields, as shown in Fig-

ure 6.12.

These two fields hold pointers to the current function and its argument data

structure, respectively. Recall that, when GCC creates a special function to represent

84

typedef struct func_t {

void (*fn)(void *);

void * data;

} func_t;

Figure 6.12: The func t data structure.

the parallel block, it also packages the variables from the outside scope to which the

block refers into a data structure, and it passes pointers to both function and data

structure to DOMP parallel start. (See 6.2.4.)

The threads array is composed of domp thread t objects, each representing a

single thread, including the master, with an extra one at the end of the array to

hold data the master uses for its copy out routine (6.2.4. We return to this data

structure below, after completing our tour of global vars t.

The ref copies field is an array of three file descriptors for the three files holding

the reference copy pages, which are global for all threads. The ref copy locks field

is a bit field that the signal handler uses to ensure that any page is reference-copied

only once, thus also preventing data races in the process of writing reference copy

pages. (See 6.2.1.)

The xreduction vars array holds global information about extended reductions,

inserted before the parallel block in which the reductions occur, and therefore not

subject to any data races. Concurrent threads read this information but do not write

to it. (See 6.4.)

The scratch field is the file descriptor of the “scratch” file, which master and

pooled threads use to transfer data before thread restart using copy out and copy in

(6.2.4).

Finally, the signal handler uses the in parallel flag to determine whether to

make a full reference copy for a trapped page or merely to record it. The master

85

typedef struct domp_thread_t {

int pid;

struct pipes_t pipes;

struct segment_t heap;

void * heap_mspace;

int mem_fd;

off_t * pages_written;

int num_pages_written;

int num_reduction_vars;

struct reduction_var_t reduction_vars[DOMP_MAX_REDUCTION_VARS];

int num_queued_frees;

struct queued_free_t free_queue[DOMP_MAX_QUEUED_FREES];

} domp_thread_t;

Figure 6.13: The domp thread t data structure.

sets in parallel to true in domp parallel start and clears it (sets it to false) in

domp parallel end. (See 6.2.4.)

We now turn to the domp thread t structure that forms each element of the

global threads array, whose definition is shown in Figure 6.13.

Each up-buddy uses the pid field in order to find the /proc/<pid>/mem pseudo-

file representing the down-buddy’s address space. Later, the master uses the pid field

in the atexit clean-up code to wait for each child thread’s exit. (See 6.2.3, 6.2.4.)

The pipes field holds file descriptors for both ends of the pipe to communicate

between the thread and its up-buddy and between the thread and the master. This

arrangement allows the up-buddy to find the read end of its down-buddy’s pipe to

wait for its “ready-to-merge” signal. It also enables the master to iterate through

the threads array when signaling all threads either to restart or to exit. (See 6.2.4.)

The heap and heap mspace fields enable threads to avoid trampling on malloc-

related bookkeeping structures in copy in and merging, respectively.

The mem fd field holds the file descriptor of the named file that the up-buddy

opens with the contents of the down-buddy’s /proc/<pid>/mem pseudo-file. (See

86

typedef struct reduction_var_t {

void * orig; /* Used only by the master */

int index;

int type_index;

union common_value_t value;

} reduction_var_t;

Figure 6.14: The reduction var t data structure.

6.2.4.)

The pages written array holds a list of page addresses of the pages to which

this thread has written—or to which any of its down-buddies have written, after it

has merged those down-buddies’ changes into its own data. (See 6.2.1.)

DOMP’s implementation of simple reductions (as in standard OpenMP) uses the

reduction vars field, an array, as described in 6.3. Each element of this array is

a reduction var t data structure, shown in Figure 6.14. The orig field holds a

pointer to the “original” reduction variable. (It actually points to the field in the

data structure GCC creates to pass to the special function representing the parallel

block; GCC also emits code to transfer the value back from this field to the original

variable.) The fields index and type index hold the integers uniquely identifying

the type-size-and-operation combination and the variable type by itself, respectively.

The value field holds the value to be aggregated to the reduction variable from the

thread that this domp thread t data structure represents. The value field is a union

type in order to hold the value of a variable of any of the types and sizes allowed for

a standard OpenMP reduction. We show this union type in Figure 6.15.

Finally, the domp thread t’s free queue array holds addresses and their respec-

tive heaps for freeing at merge time. More particularly, as noted in 6.1.2, calls to

free do not execute the usual memory freeing routines, but rather place the “order

to free” onto a queue. Later, the master thread calls free queues in domp team end

87

typedef union common_value_t {

bool val_bool;

int8_t val_int8;

int16_t val_int16;

int32_t val_int32;

int64_t val_int64;

uint8_t val_uint8;

uint16_t val_uint16;

uint32_t val_uint32;

uint64_t val_uint64;

float val_float;

double val_double;

struct complex_t val_complex;

struct double_complex_t val_double_complex;

} common_value_t;

Figure 6.15: The common value t union type, used in the reduction var t data
structure’s value field.

for the queue belonging to each thread in the threads array. This technique pre-

vents spurious data races in dlmalloc’s bookkeeping structures (such as bitfields) that

might otherwise occur during parallel merge. It also resolves in WCD fashion what

would otherwise be a genuine data race, when one thread frees a variable to which

another thread writes within the same parallel block: the write always comes first,

since the free is delayed until the very end of synchronized events, after merging is

complete.

Having reviewed the global vars t data structure and the domp thread t struc-

ture that populates the former’s threads array, we finally turn to the thread-local

data structure thread record t, shown in Figure 6.16.

The id field holds the thread’s ID, numbered sequentially from 0 for the master

and 1 for the first child.

DOMP uses the num sections and sections done fields in order to support the

sections construct deterministically, as detailed in 6.1.4 above.

88

typedef struct thread_record_t {

int id;

unsigned num_sections;

unsigned sections_done;

void * heap;

uint64_t down_buddies; // Bit field.

uint64_t max_down_buddy;

int pipe_master;

int pipe_up_buddy;

struct sigaction old_act;

int reduction_var_index_0;

int reduction_var_index_1;

int xreduction_var_index_0;

int xreduction_var_index_1;

struct domp_thread_t * this_thread;

} thread_record_t;

Figure 6.16: The thread record t data structure.

The heap field points to the start of the range in the mmapped file for heaps that

contains this thread’s heap.

DOMP uses the down buddies bitfield and max down buddy in order to store

the identities of this thread’s down-buddies (if there are any) so that they can be

computed only once per parallel block and then used efficiently to find down-buddies

in the merge process.

The fields ending in ” index 0” or ” index 1” provide handy storage when an

up-buddy evaluates reductions (both simple and extended) in the merge process.

The merge process goes by ascending page address, and the indices represent the

start and end addresses of reductions within a given page.

Finally, the current thread uses its this thread pointer to get convenient access

to the threads entry representing it.

89

6.6 Limitations

The current implementation of DOMP supports its core features and enables us to

perform experiments, as detailed in Chapter 7. However, it also has limitations that,

in particular, hamper its potential for scaling to arbitrary numbers of threads and

arbitrary input data sizes.

One of the main issues is the data structures DOMP currently uses for thread and

shared memory bookkeeping, described in 6.5 above. In order for such metadata to

be visible to all threads—useful in particular during parallel merge—DOMP stores

these data structures in mapped files, which the parent thread must create before

it spawns any other threads in the pool. In order to accommodate possible changes

in the number of threads in different parallel blocks of the same program, we had

to set an arbitrary maximum number of threads and initialize the data structure for

that number. Thus a maximum number of threads is hard coded into DOMP, and

can only be changed at the cost of recompiling. Clearly, there are further trade-offs:

as the global data structures increase in size, the arrays containing them lose more

cache locality.

Similarly, the parent thread carves its own heap and those of all possible future

child threads out of a single region of virtual memory space, a mapped file. We

use Linux’s copy-on-write semantics for the MAP PRIVATE flag to facilitate WCD

semantics for the heap. As with the global data structures, DOMP maps this region

once near the start of the program so that the parent’s heap will remain visible to

threads in the pool in second and later parallel blocks, and so that child heaps will

be visible to the parent and to each other during parallel merge. This design is

somewhat rigid, since it requires that we set aside some estimated maximum space

for all heaps at program start, which the program cannot alter later on.

90

These constraints seem difficult to avoid in a user-level implementation, and high-

light the advantages that Determinator has by implementing WCD at the OS level,

since the OS routinely maintains bookkeeping for all processes and can manipulate

address spaces more easily than user processes can. One possible option would be

to have each child thread allocate its own heap (as a normal process would do) and

write its contents to a named file before exiting. In addition, it would record the

mapping of pointers to heap addresses and length of allocated space for each pointer

and save these data in a file as well (which could be the same file). The up-buddy

would then open and read the file and, in effect, reproduce the down-buddy’s heap

by allocating space in its own heap and copying each of its down-buddy’s allocated

blocks. Threads could take a similar approach to bookkeeping.This approach seems

both complex and likely to be costly, but only experiments would establish the precise

trade-off between these costs and the benefit of additional flexibility.

As we mentioned in 6.1.4, DOMP currently supports loop and sections work

sharing constructs, but it does not support the task construct or its associated

taskwait construct. We must leave these for future work.

The current implementation also does not support nested parallelism. In the

standard benchmarks, this turns out not to pose a problem. However, it excludes

a large class of potential parallel programs, including one so simple as a parallel

quicksort following the natural pattern where recursion requires nesting.

The proposed solution for global data structures and heaps, though awkward,

could also support nested parallelism.

* * *

Our current implementation, despite its limitations, enabled us to conduct ex-

periments to evaluate DOMP’s performance, which we describe in the next chapter.

91

Chapter 7

Evaluation

Our evaluation of DOMP included experiments to measure performance and scal-

ability, as well as experiences in converting nondeterministic OpenMP to DOMP-

compatible code. Because of the costs of enforcing determinism in the working-copies

model, we do not expect DOMP to be competitive to GOMP in scalability and per-

formance for all parallel applications. We hope to verify, however, that some parallel

applications can be run under DOMP with little or no overhead compared with

nondeterministic execution execution under GOMP. For applications with higher

overheads, DOMP may still be useful during software development and debugging,

even if the application is run in a nondeterministic environment on deployment for

performance reasons: this should be possible for any DOMP application provided

DOMP’s extended reductions are “back-ported” to conventional nondeterministic

OpenMP runtimes.

7.1 Performance and Scalability

In order to evaluate the performance and scalability of DOMP, we tested it against

the standard libgomp implementation on one homemade, one novel, and nine stan-

92

Figure 7.1: Benchmark running times, relative to standard (GOMP) times for the
same benchmark and number of threads. A value of 1 means equal running times
for DOMP and GOMP. IS (NPB) is a pathological outlier.

dard parallel benchmarks: matrix multiplication (2048 × 2048 matrices) (home-

made); Mandelbrot set graphics creation (800×600 pixels, 50, 000 iterations) [48];

the PARSEC benchmarks blackscholes (10M input) and swaptions (128 swap-

tions, 1M trials); the NPB (3.3) benchmarks BT (input class “A”), DC (“A”),

EP (“A”), and IS (“B”); and the SPLASH-2 “kernel” benchmarks FFT (m = 18),

LU-contiguous-blocks (n = 2048), and LU-non-contiguous-blocks (n = 2048). Mat-

Mult, Mandelbrot, blackscholes, and the NPB benchmarks were already written in

OpenMP; we converted the others from pthreads to OpenMP. We ran the programs

with 1 thread and doubled the thread number up to 32, for IS, which had technical

problems at 32 threads.

SPLASH2, NPB, and PARSEC are standard parallel benchmarks used for sys-

tems research. We tried to run a much larger range of these benchmarks, but,

unfortunately, we ran into technical problems having to do with our malloc imple-

mentation, adapted from dlmalloc. We hope to be able to resolve these problems

in a follow-up and have more benchmark results.

Figure 7.1 shows comparisons of DOMP’s running times against those of the ref-

93

Figure 7.2: Speedups for all nine benchmarks under DOMP. Closer to the ideal curve
is better. DC (NPT) appears slightly “better” than ideal because of mere noise.

erence implementation (GOMP), normalized to the latter. Six of the 11 benchmarks

scale well relative to GOMP, deviating from its performance by < 10%. MatMult

performs less well with 2 and 16 threads, but well for 32, perhaps because of how

the application splits the input matrix among threads. The three SPLASH-2 bench-

marks do not scale well, increasing in running time relative to GOMP as the thread

number increases, to almost 3x for 16 threads for FFT.

The most egregiously poor performer, IS, shows pathological scaling, with the 16-

thread running time taking about 1.6 times that of 2 threads. Profiling with gprof

shows that DOMP-related data copying between threads during the merge process

accounts for about 56% of execution time. By contrast, in swaptions, BT, DC, and

94

EP, where DOMP performs well, these activities account for less than 1% of total

time.

To investigate further, we instrumented the DOMP library to record the maxi-

mum number of distinct memory pages to which the master thread (thread 0) writes

in any parallel block, as well as the total number of pages to which the master has

written over the course of the program, running it with a single thread. As Table 7.1

shows, IS had both the highest maximum number of page writes to any parallel block

and the greatest overall number of page writes. Matrix multiplication had a compa-

rable per-block maximum, but this program has only a single parallel block, whereas

IS has three. One of these latter, moreover, contains a barrier, further increasing the

time spent copying and merging from thread to thread, as suggested in 4.1. This

accounts for IS’s high total of pages written. FFT has 7 barriers and the LU variants

Benchmark Max Pages Total Pages
MatMult 24578 24578
Mandelbrot 1 1
BT 4 1911
DC 2 3
EP 2 4
IS 34778 90100
blackscholes 9768 9768
swaptions 677 677
FFT 5 5
LU-cont 7 7
LU-non-cont 7 7

Table 7.1: Number of pages written when running single-threaded: maximum over
all parallel blocks, and total over the whole program.

5, whereas DC, EP, and swaptions have none, perhaps helping to explain the former

group’s poor scalability as compared with the latter’s.

95

7.2 Adapting Code for DOMP

DOMP served as a drop-in replacement for standard OpenMP with libgomp in 7

of the 11 benchmarks. BT and EP contain atomic, and DC critical, constructs,

all of which we were able to replace with extended reductions, as described in 5.2.

For better modularity, we wrote the extended reduction identity elements, combin-

ing functions, and associated wrappers in a separate file in C, with which we were

more familiar than Fortran, though the reduction code could just as easily have been

written in Fortran. Putting the extended reduction code in a separate file allowed us

to re-use code, following the idea of a potential library of common extended reduc-

tions suggested in 5.2. Table 7.2 summarizes the extent of our changes to benchmark

DOMP
Total Changes Module %

MatMult 109 0 0 0
Mandelbrot 105 0 0 0
BT 3589 16 30 1
DC 2809 3 48 2
EP 228 16 30 20
IS 634 0 0 0
blackscholes 359 0 0 0
swaptions 1780 0 0 0
FFT 1504 0 0 0
LU-cont 2484 0 0 0
LU-non-cont 1890 0 0 0

Table 7.2: Lines of code changed in adapting OpenMP programs to DOMP. Total:
total lines of code in the original program, before modification. DOMP Changes:
lines inserted, deleted, or replaced in any original source file. Module: size of
external module supporting an extended reduction. %: Portion of total included in
modification ((changed + total)/total).

source code in order to enable it to run with DOMP and extended reductions. We

did not include makefiles or test-running scripts in these figures. In counting changed

lines, we did not include those changes necessary to port pthreads benchmarks to

96

pragma omp parallel for

for (i=0; i<numOptions; i++) {

price = BlkSchlsEqEuroNoDiv(sptprice[i], strike[i],

rate[i], volatility[i], otime[i],

otype[i], 0);

prices[i] = price;

}

Figure 7.3: Benign data race in blackscholes.

OpenMP, since these changes were equally necessary for both GOMP and DOMP.

DOMP-specific changes amount to 2% or less of the total lines of code, except in EP,

where the original source is unusually short but requires two extended reductions.

7.3 Discovering Concurrency Bugs—Or Not

We had somewhat expected to uncover hitherto latent concurrency bugs by running

DOMP on these well-known benchmarks, but found that they must have been long

sifted enough to be rid of them. Early in development, we did discover a benign race

in PARSEC blackscholes, represented in Figure 7.3.

The data race is on the variable price, which is defined outside of the parallel

block and therefore shared. This was in an earlier version of PARSEC. We reported

the data race to the PARSEC team, and they removed it in the next version by

simply assigning directly to the elements of the prices array.

We did, however, test DOMP with artificial programs that had data races, and

obtained the required error response.

97

Chapter 8

Conclusion and Future Work

Our analysis of synchronization in existing code bases suggests that a rigorously

deterministic parallel programming model may be practical for much otherwise con-

ventional software, using familiar platforms, languages, environments, and tools.

Our encouraging experience with DOMP supports Working-Copies Determinism as

a promising approach to realizing this goal.

In the short term, the DOMP project could go further in at least two direc-

tions. First, DOMP would benefit from the inclusion and implementation of pipeline

and task queue constructs, as discussed in 4.3.3, as well as perhaps the OpenMP

task construct itself. Such extensions would advance research further by solving

the practical problems involved in making deterministic parallelism as accessible as

possible. Secondly, changes in DOMP’s design could possibly address at least some

of its current limitations discussed in 6.6: a static limit on the number of allowable

threads and a rigid heap mechanism that does not well accommodate the wide range

of different demands that various programs place on this type of storage.

Pipelines, which appear as just another possible construct, could in turn open

the way for a wide range of explorations of efficient deterministic processing, be-

98

cause of their kinship with dataflow languages and, underlying those, Kahn process

networks. A DOMP implementation that could support a flexible range of different

sorts of pipelines, extending to arbitrary execution graphs, could allow the program-

mer to express a program in any one of a number of different ways, all of which are

deterministic—whether conceiving of the program as a distribution of tasks among

workers or as a pattern of data flow or a combination of the two.

A deterministic task queue construct would undercut the programming assump-

tion most likely to result in nondeterminism, which is the assumption that adaptive

nondeterminism is necessary to maximize efficiency.

Another area of potential benefit for DOMP would be further improvements in

DOMP’s error output when it encounters a race condition. We currently print the

address and data segment in which the race occurs and the pair of threads involved

in the first race encountered. It would be far more useful to the programmer to have

more clues as to the variable to which the address corresponds in the source code.

We already have the structure in place easily to report the parallel block (identified

by number in sequence from program start). Perhaps it would be useful to have a

command line switch available to the programmer to cause DOMP to gather much

richer information, such as the source code line number, using the same data as GDB

uses. Thus, when the programmer encounters a race, he or she could re-run the code

with the switch set, which might incur a higher overhead, but would be worthwhile

in a debugging context.

The implementation of DOMP presented here as a library for Linux has the

advantages of accessibility that we have noted. However, an implementation of the

same API and underlying concepts to run on the Determinator operating system [13]

would potentially expand the accessibility and appeal of Determinator for program-

mers and contribute to its further development as a full-scale operating system.

99

An implementation of DOMP for a strongly-typed language, perhaps specifically

a language with a managed runtime virtual machine such as Java or C#, would open

up attrractive possibilities. We could avoid the dilemmas inherent in the granularity

of comparison during the merge operation as described in 6.6, since we could adjust

the granularity to be appropriate to each type. Furthermore, such an implementation

could be far more efficient than our current one, if it can restrict its comparing and

merging to a list of known objects rather than to entire pages or address ranges. In

principle, standard OpenMP can be implemented for such a language, as shown by

JOMP, the implementation for Java [25].

Another area of future exploration is the exploitation of hardware in the present

and future in order to make DOMP more efficient and scalable, for use in large many-

core systems. Could some processors be set aside for synchronization and merging

operations, and would we gain anything in performance? Although the merge opera-

tion must, as a whole, come sequentially after parallel execution (or between parallel

blocks), elements of the merge process itself might be open to parallelization. For in-

stance, processing of the reduction variables might go on at the same time as merging

of pages (or objects). The possibility of custom, dedicated hardware might also be

worth exploring. For instance, hardware that records which process has written to

a location in memory could obviate the need for memory protections and trapping,

with its attendant overhead.

These are a few possible avenues to explore. Nevertheless, the current state of

the DOMP project has at least provided a reasonably practical instance of acces-

sible deterministic parallelism, sufficient to conduct performance and development

experiments. We hope that the resulting insights will benefit further research into

practical and accessible parallel determinism.

100

Bibliography

[1] W.B. Ackerman. Data flow languages. Computer, 15(2):15–25, Feb 1982.

[2] Shail Aditya, Arvind, Lennart Augustsson, Jan-Willem Maessen, and

Rishiyur S. Nikhil. Semantics of pH: A parallel dialect of Haskell. In Paul

Hudak, editor, Proceedings of the Haskell Workshop, La Jolla, CA, pages 35–

49, June 1995.

[3] H. Agrawal, R.A. De Millo, and E.H. Spafford. An execution-backtracking

approach to debugging. IEEE Software, 8(3):21–26, May 1991.

[4] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu,

Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. TreadMarks:

Shared memory computing on networks of workstations. IEEE Computer,

29(2):18–28, February 1996.

[5] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. In

Workshop on Verification and Validation of Enterprise Information Systems

(VVEIS), Angers, France, pages 82–93, April 2003.

[6] Arvind and Rishiyur S. Nikhil. Executing a program on the MIT tagged-

token dataflow architecture. IEEE Transactions on Computers, 39(3):300–318,

March 1990.

101

[7] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: data struc-

tures for parallel computing. ACM Transactions on Programming Languages

and Systems, 11(4):598–632, October 1989.

[8] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer,

John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John

Wawrzynek, David Wessel, and Katherine Yelick. A view of the parallel com-

puting landscape. Communications of the ACM, 52(10):56–67, October 2009.

[9] Amittai Aviram and Bryan Ford. Deterministic OpenMP for race-free par-

allelism. In 3rd USENIX Workshop on Hot Topics in Parallelism (HotPar),

Berkeley, CA, May 2011.

[10] Amittai Aviram and Bryan Ford. A generalized reduction construct for de-

terministic OpenMP. In 3rd Workshop on Determinism and Correctness in

Parallel Programming (WoDet), London, England, March 2012.

[11] Amittai Aviram, Bryan Ford, and Yu Zhang. Workspace Consistency: A pro-

gramming model for shared memory parallelism. In 2nd Workshop on Deter-

minism and Correctness in Parallel Programming (WoDet), Newport Beach,

CA, March 2011.

[12] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. Determi-

nating timing channels in compute clouds. In ACM Cloud Computing Security

Workshop (CCSW), Chicago, IL, October 2010.

[13] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient system-

enforced deterministic parallelism. In 9th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), Vancouver, BC, Canada, October

2010.

102

[14] David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: a dialect of Java

without data races. In 15th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), Minneapolis,

MN, pages 382–400, 2000.

[15] Arkaprava Basu, Jayaram Bobba, and Mark D. Hill. Karma: scalable deter-

ministic record-replay. In International Conference on Supercomputing (ICS),

Tucson, AZ, pages 359–368, 2011.

[16] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: distributed shared

memory based on type-specific memory coherence. In 2nd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP),

Seattle, WA, pages 168–176, 1990.

[17] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman.

CoreDet: A compiler and runtime system for deterministic multithreaded exe-

cution. In 15th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), Pittsburgh, PA, March

2010.

[18] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: Safe

multithreaded programming for C/C++. In 24th ACM SIGPLAN Confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), Orlando, FL, October 2009.

[19] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PAR-

SEC benchmark suite: Characterization and architectural implications. In

17th International Conference on Parallel Architectures and Compilation Tech-

niques (PACT), Toronto, ON, pages 72–81, October 2008.

103

[20] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded

runtime system. In 5th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP), Santa Barbara, CA, pages 207–216, 1995.

[21] Robert L. Bocchino Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir.

Parallel programming must be deterministic by default. In Workshop on Hot

Topics in Parallelism (HotPar), Berkeley, California, March 2009.

[22] Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen

Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin

Sung, and Mohsen Vakilian. A type and effect system for deterministic parallel

Java. In 24th ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), Orlando, FL, October 2009.

[23] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney,

Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlim-

bach, and Sağnak Taşirlar. Concurrent collections. Scientific Programming,

18(3):203–217, January 2010.

[24] Zoran Budimlić, Michael Burke, Kathleen Knobe, Ryan Newton, David

Peixotto, Vivek Sarkar, and Edwin Westbrook. Deterministic reductions in

an asynchronous parallel language. In 2nd Workshop on Determinism and

Correctness in Parallel Programming (WoDet), Newport Beach, CA, March

2011.

[25] J. M. Bull and M. E. Kambites. JOMP—an OpenMP-like interface for Java.

In ACM 2000 Conference on Java Grande, San Francisco, CA, pages 44–53,

June 2000.

104

[26] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent pro-

gramming with revisions and isolation types. In 25th ACM SIGPLAN Confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 691–707, October 2010.

[27] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.

In USENIX Symposium on Operating Systems Design and Implementation

(OSDI), New Orleands, LA, February 1999.

[28] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,

Gabriele Keller, and Simon Marlow. Data Parallel Haskell: a status report. In

Workshop on Declarative Aspects of Multicore Programming (DAMP), Nice,

France, pages 10–18, 2007.

[29] Yunji Chen, Weiwu Hu, Tianshi Chen, and Ruiyang Wu. Lreplay: a pending

period based deterministic replay scheme. SIGARCH Computer Architecture

News, 38(3):187–197, June 2010.

[30] Jong-Deok Choi and Harini Srinivasan. Deterministic replay of Java multi-

threaded applications. In SIGMETRICS Symposium on Parallel and Dis-

tributed Tools (SPDT), Welches, OR, pages 48–59, 1998.

[31] Heming Cui, Jingyue Wu, and Junfeng Yang. Stable deterministic multithread-

ing through schedule memoization. In 9th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), Vancouver, BC, Canada, Octo-

ber 2010.

[32] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing

on large clusters. Communications of the ACM, 51(1):107–113, January 2008.

105

[33] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Deter-

ministic shared memory multiprocessing. In 14th international Conference on

Architectural Support for Programming Languages and Operating Systems (AS-

PLOS), Washington, DC, March 2009.

[34] Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-STM: scheduling-based

collision avoidance and resolution for software transactional memory. In 27th

ACM Symposium on Principles of Distributed Computing (PODC), Toronto,

Canada, pages 125–134, 2008.

[35] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and

Peter M. Chen. ReVirt: Enabling intrusion analysis through virtual-machine

logging and replay. In 5th USENIX Symposium on Operating Systems Design

and Implementation, Boston, MA, December 2002.

[36] Stephen A. Edwards and Olivier Tardieu. SHIM: A deterministic model for

heterogeneous embedded systems. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 14(8):854–867, August 2006.

[37] Stephen A. Edwards, Nalini Vasudevan, and Olivier Tardieu. Programming

shared memory multiprocessors with deterministic message-passing concur-

rency: Compiling SHIM to Pthreads. In Design, Automation, and Test in

Europe, Munich, Germany, March 2008.

[38] Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of race

conditions and deadlocks. In 19th ACM Symposium on Operating Systems

Principles (SOSP), Bolton Landing, NY, October 2003.

106

[39] A. A. Faustini. An operational semantics for pure dataflow. In Ninth In-

ternational Colloquium on Automata, Languages and Programming, Aarhus,

Denmark, pages 212–224, July 1982.

[40] Cormac Flanagan and Rishiyur S. Nikhil. pHluid: the design of a parallel

functional language implementation on workstations. In 1st ACM SIGPLAN

International Conference on Functional Programming (ICFP), Philadelphia,

PA, pages 169–179, May 1996.

[41] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly

threaded parallelism in Manticore. Journal of Functional Programming,

20:537–576, November 2010.

[42] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation

of the Cilk-5 multithreaded language. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), Montreal, QC,

Canada, pages 212–223, 1998.

[43] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,

Anoop Gupta, and John Hennessy. Memory consistency and event ordering in

scalable shared-memory multiprocessors. In 17th International Symposium on

Computer Architecture, Seattle, WA, pages 15–26, May 1990.

[44] Anwar Ghuloum, Amanda Sharp, Noah Clemons, Stefanus Du Toit, Rama

Malladi, Mukesh Gangadhar, Michael McCool, and Hans Pabst. Array

Building Blocks: A flexible parallel programming model for multicore and

many-core architectures. http://http://www.drdobbs.com/parallel/

array-building-blocks-a-flexible-paralle/227300084, September

2010.

107

[45] Gnu. Gnu libgomp. http://gcc.gnu.org/onlinedocs/libgomp.

[46] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview: Prac-

tical accountability for distributed systems. In 21st ACM Symposium on Op-

erating Systems Principles (SOSP), Stevenson, WA, October 2007.

[47] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data

flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–

1320, September 1991.

[48] Brian “Beej Jorgenson” Hall. Command-line mandelbrot set generator with

openmp support. https://github.com/beej71/goatbrot, 2011.

[49] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic compu-

tation. ACM Transactions on Programming Languages and Systems, 7(4):501–

538, October 1985.

[50] Kevin Hammond. Parallel functional programming: An introduction. In In-

ternational Symposium on Parallel Symbolic Computation, Hagenberg/Linz,

Austria, Hagenberg/Linz, Austria, September 1994. World Scientific.

[51] C. L. Hankin and H. W. Glaser. The data flow programming language CAJOLE

– an informal introduction. ACM SIGPLAN Notices, 16(7):35–44, July 1981.

[52] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory. Morgan

& Claypool, 2nd edition, 2010.

[53] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III.

Software transactional memory for dynamic-sized data structures. In 22nd

Symposium on Principles of Distributed Computing (PODC), Boston, Mas-

sachusetts, pages 92–101, 2003.

108

[54] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural

support for lock-free data structures. In 20th International Symposium on

Computer Architecture, San Diego, CA, pages 289–300, May 1993.

[55] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural

support for lock-free data structures. In 20th International Symposium on

Computer Architecture (ISCA), San Diego, California, pages 289–300, 1993.

[56] P. Hudak. Para-functional programming. Computer, 19(8):60–70, August 1986.

[57] National Instruments. LabVIEW. http://www.ni.com/labview.

[58] Intel Corporation. Intel R© Threading Building Blocks reference manual, Jan-

uary 2012.

[59] Kenneth Iverson. A programming language. In AIEE-IRE Spring Joint Com-

puter Conference, San Francisco, CA, pages 345–351, May 1962.

[60] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation of NAS parallel

benchmarks and its performance. Technical Report NAS-99-011, NASA Ames

Research Center, October 1999.

[61] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances

in dataflow programming languages. ACM Computing Surveys, 36(1):1–34,

March 2004.

[62] Mark Jones and Paul Hudak. Implicit and explicit parallel programming

in Haskell. Research Report YALEU/DCS/RR-982, Yale University, New

Haven, Connecticut, Aug 1993. http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.125.3273&rep=rep1&type=pdf.

109

[63] Gilles Kahn. The semantics of a simple language for parallel programming. In

Information Processing, pages 471–475, Amsterdam, Netherlands, 1974. North-

Holland.

[64] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating

systems with time-traveling virtual machines. In USENIX Annual Technical

Conference, pages 1–15, April 2005.

[65] Leslie Lamport. How to make a multiprocessor computer that correctly ex-

ecutes multiprocess programs. IEEE Transactions on Computers, 28(9):690–

691, September 1979.

[66] Doug Lea. A memory allocator. http://g.oswego.edu/dl/html/malloc.

html, 2000.

[67] Thomas J. Leblanc and John M. Mellor-Crummey. Debugging parallel pro-

grams with instant replay. IEEE Transactions on Computers, C-36(4):471–482,

April 1987.

[68] E.A. Lee. The problem with threads. Computer, 39(5):33–42, May 2006.

[69] Charles E. Leiserson and Aske Plaat. Programming parallel applications in

Cilk. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.

3848&rep=rep1&type=pdf, 1997.

[70] Tongping Liu, Charlie Curtsinger, and Emery Berger. Dthreads: efficient de-

terministic multithreading. In 23rd ACM Symposium on Operating Systems

Principles (SOSP), pages 327–336, October 2011.

[71] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mis-

takes — a comprehensive study on real world concurrency bug characteristics.

110

In 13th international Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), Seattle, WA, pages 329–339,

March 2008.

[72] The MathWorks. Simulink. http://www.mathworks.com/products/

simulink.

[73] David Mosberger. Memory consistency models. SIGOPS Operating Systems

Review, 27(1):18–26, January 1993.

[74] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, and Gerard Basler. Finding

and reproducing Heisenbugs in concurrent programs. In 8th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI), San Diego,

California, pages 267–280, 2008.

[75] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. ACM SIGPLAN Notices, 42(6):89–100, 2007.

[76] Rishiyur S. Nikhil. An overview of the parallel language Id (a foundation for ph,

a parallel dialect of Haskell). Technical report, Digital Equipment Corporation,

Cambridge Research Laboratory, 1993.

[77] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient

deterministic multithreading in software. In 14th International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), Washington, DC, March 2009.

[78] OpenMP Architecture Review Board. OpenMP application program interface

version 3.0. http://www.openmp.org/mp-documents/spec30.pdf, May 2008.

111

[79] Douglas Z. Pan and Mark A. Linton. Supporting reverse execution of paral-

lel programs. In Workshop on Parallel and Distributed Debugging (PADD),

Madison, Wisconsin, pages 124–129, 1988.

[80] D. Patterson. The trouble with multi-core. Spectrum, IEEE, 47(7):28 – 32, 53,

July 2010.

[81] Simon L. Peyton Jones. Parallel implementations of functional programming

languages. The Computer Journal, 32(2):175–186, 1989.

[82] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Eval-

uating MapReduce for multi-core and multiprocessor systems. In IEEE 13th

International Symposium on High Performance Computer Architecture, 2007,

pages 13 – 24, February 2007.

[83] John Reppy. Concurrent ML: Design, application and semantics. In Peter

Lauer, editor, Functional Programming, Concurrency, Simulation and Auto-

mated Reasoning, volume 693, pages 165–198. Springer, 1993.

[84] Martin C. Rinard and Monica S. Lam. The design, implementation, and eval-

uation of Jade. ACM Trans. Program. Lang. Syst., 20(3):483–545, 1998.

[85] Paul Roe. Parallel Programming using Functional Languages. PhD thesis,

University of Glasgow, February 1991. http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.46.7763&rep=rep1&type=pdf.

[86] Vijay A. Saraswat, Radha Jagadeesan, Maged Michael, and Christoph von

Praun. A theory of memory models. In 12th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP), San Jose, CA,

pages 161–172, New York, NY, 2007. ACM.

112

[87] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas

Anderson. Eraser: a dynamic data race detector for multithreaded programs.

ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[88] Michael L. Scott and Li Lu. Toward a formal semantic framework for determin-

istic parallel programming. In 2nd Workshop on Determinism and Correctness

in Parallel Programming (WoDet), Newport Beach, CA, March 2011.

[89] Ali Sezgin and Ganesh Gopalakrishnan. On the definition of sequential consis-

tency. Information Processing Letters, 96(6):193 – 196, 2005.

[90] Nir Shavit and Dan Touitou. Software transactional memory. Distributed

Computing, 10(2):99–116, February 1997.

[91] David Skillicorn. Foundations of Parallel Programming. Cambridge University

Press, 2005.

[92] Sudarshan Srinivasan, Srikanth Kandula, Christopher Andrews, and Yuanyuan

Zhou. Flashback: a lightweight extension for rollback and deterministic replay

for software debugging. In USENIX Annual Technical Conference, Boston,

MA, June 2004.

[93] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd

edition, June 1997.

[94] Olivier Tardieu and Stephen A. Edwards. Scheduling-independent threads and

exceptions in SHIM. In 6th Conference on Embedded Software, Seoul, Korea,

pages 142–151, October 2006.

113

[95] P. W. Trinder, K. Hammond, H.-W. Loidl, and Simon L. Peyton Jones. Algo-

rithm + strategy = parallelism. Journal of Functional Programming, 8(1):23–

60, January 1998.

[96] P.W. Trinder, H-W. Loidl, and R.F. Pointon. Parallel and distributed Haskells.

Journal of Functional Programming, 12(4&5):469–510, 2002.

[97] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang,

Peter M. Chen, Jason Flinn, and Satish Narayanasamy. DoublePlay: paral-

lelizing sequential logging and replay. ACM SIGPLAN Notices, 47(4):15–26,

March 2011.

[98] WilliamW. Wadge and Edward A. Ashcroft. Lucid, the Dataflow Programming

Language. Academic Press, 1985.

[99] P.G. Whiting and R.S.V. Pascoe. A history of data-flow languages. Annals of

the History of Computing, IEEE, 16(4):38 –59, Winter 1994.

[100] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The SPLASH-2 programs: Characterization and methodological

considerations. In 22nd International Symposium on Computer Architecture

(ISCA), pages 24–36, June 1995.

[101] WeiWei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhiqiang

Ma. Ad hoc synchronization considered harmful. In 9th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI), Vancouver,

BC, Canada, October 2010.

[102] Min Xu, Rastislav Bodik, and Mark D. Hill. A “flight data recorder” for

enabling full-system multiprocessor deterministic replay. In 30th International

114

Symposium on Computer Architecture (ISCA), San Diego, California, pages

122–135, June 2003.

115

