
Towards practical and efficient
performance robustness:

QuePaxa and beyond
Bryan Ford – EPFL

Dagstuhl Seminar 24362
“Next-Generation Secure Distributed Computing”

September 4, 2024

QuePaxa: Escaping the Tyranny of
Timeouts in Consensus

Pasindu Tennage
EPFL

Cristina Basescu
EPFL & Digital Asset

Eleftherios Kokoris Kogias
ISTA & Mysten Labs

Ewa Syta
Trinity College

Philipp Jovanovic
UCL

Vero Galiñanes
EPFL

Bryan Ford
EPFL

2

Consensus and Replicated State Machine

 State State State

State

State

State

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

3

Consensus and Replicated State Machine

4

Dimensions of robustness in (permissioned) consensus

Failure model: crash-stop or byzantine? (This talk’s focus: crash-stop)

Threshold: tolerant of how many failures? (Typically 2f < n for crash-stop)

Network model: synchronous, partially synchronous, asynchronous?

Normal-case performance (throughput, latency) and efficiency (compute, BW)

Worst-case performance (throughput, latency) and efficiency (compute, BW)

Recovery time after failure, responsiveness, …

What we would like versus what actually gets deployed

What we would like in principle: asynchronous Byzantine consensus everywhere

● Robust to adversarial node failures and adversarial network behavior

What actually gets deployed almost everywhere: Paxos, Multi-Paxos, Raft

● Partially synchronous, crash-stop failures only

Why? Paxos et al offers:

● Low latency: 1-round-trip commit in the normal case
● Efficiency: O(n) normal-case bandwidth per commit
● Relatively simple, “good enough” for most deployment scenarios

Introducing QuePaxa – key contribution in a nutshell

QuePaxa is the first crash-stop consensus protocol that achieves:

● Same 1-round-trip normal-case commit latency as Paxos etc.
● Same O(n) normal-case bandwidth consumption as Paxos etc.
● Performance robustness of full asynchronous consensus in the worst case

○ Guaranteed liveness even during periods of asynchrony
○ Protocol makes progress at rate the network communication permits
○ O(1) expected round-trips to commit w.h.p.

● Experimentally performance-robust also in “medium-bad” but non-worst cases
○ Temporary network delays, node slowdowns, DoS attacks against minority of nodes, …

● Not much more complex/difficult to implement than Paxos etc.
○ Full pseudocode of QuePaxa algorithm fits easily on 1 page

RoadMap

● Introduction to consensus

● Tyranny of timeouts

● Parallels of QuePaxa and hedging

● QuePaxa algorithm

● Evaluation

8

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts Manually configured timeoutsTimeout based view change

9

Timeout based view change [Multi-Paxos]

R1

R2

R3

R4

View 1

Propose Accept

Commit

10

Propose Accept

Commit

Propose Accept

Commit

Propose Accept

Commit

As long as the network is synchronous, the leader will keep committing new requests

Timeout based view change [Multi-Paxos]

R1

R2

R3

R4

View 1

Propose Accept

Commit

View 2

Prepare

Promise

View Change

11

Propose

Accept

No new commands are committed during view change
Liveness depends on partial synchronous network conditions

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts Manually configured timeoutsConservative timeouts

12

Choosing Timeouts in leader based protocols

 Timeout High TimeoutLow Timeout High Timeout

13

Timeout based view change [Multi-Paxos]

R1

R2

R3

R4

View 1

Propose Accept

Commit

View 2

Prepare

Promise

View Change

14

Propose

Accept

High Recovery Time

High timeouts result in high recovery time

Choosing Timeouts in leader based protocols

 Timeout High TimeoutLow Timeout

High Recovery Time

High TimeoutHigh TimeoutLow Timeout

15

Liveness loss with low timeouts

16No commands are committed when the timeout is low

R1

R2

R3

R4

View 1 View 2

Prepare

View 3

Prepare

View 4

…

Propose

Choosing Timeouts in leader based protocols

 Timeout High TimeoutLow Timeout

High Recovery Time

High TimeoutHigh Timeout

17

Liveness Loss

Both choices of timeouts have negative consequences

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts Manually configured timeoutsManually configured timeouts

18

Manual configuration of timeouts

● Stuck with a live but slow leader replica

● Do not consider dynamic network state for leader election

19Manual timeouts are sub optimal

Are timeouts necessary for progress?

Can we eliminate the impact of timeout for liveness?

20

Do asynchronous protocols solve this problem?

● Asynchronous protocols do not depend on timeout for progress
○ Use randomization to alleviate the FLP impossibility

● Message complexity
○ In general asynchronous protocols have O(n2) / O(n3) complexity in the normal case

■ Partially synchronous protocols have O(n) complexity in the normal case
○ Less efficient than leader-based protocols
○ Hence rarely deployed

21Asynchronous protocols are slow and rarely deployed

What if multiple leaders could propose without view changes?

Leader 2

Leader 3

Leader 4

Leader 1R1

R2

R3

R4

Propose Accept

Commit

22

Propose Accept

Commit

No view
change

Accept

Commit

No view
change

Propose

Can we change leaders without view changes if the current leader is sub optimal?

What if multiple leaders could cooperate instead of interfere?

R1

R2

R3

R4

Leader 2

Leader 3

Leader 4

Leader 1

Propose

commit

Round 1

23Can we support multiple proposers to be non destructive?

RoadMap

● Introduction to consensus

● Tyranny of timeouts

● Parallels of QuePaxa and hedging

● QuePaxa algorithm

● Evaluation

24

Hedging

● Hedging is a way to curb latency variability
○ Key idea: issue the same request to multiple replicas and use the results from whichever replica responds first

Server

Store 1 Store 2 Store 3

Multiple responses
do not interfere with each
other

Can we apply hedging to consensus so that multiple proposers don’t interfere?25

RoadMap

● Introduction to consensus

● Tyranny of timeouts

● Parallels of QuePaxa and hedging

● QuePaxa algorithm

● Evaluation

26

QuePaxa Contributions

● Eliminates the “tyranny of timeouts” for consensus liveness

● First consensus protocol to support hedging in consensus

● First protocol offering efficiency with performance-robustness
○ Under normal network conditions, just as efficient as Multi-Paxos/Raft
○ Under bad/high-delay/noisy network conditions, maintains performance
○ Under worst-case adversarial network conditions, maintains liveness

27

QuePaxa RoadMap

● Operation Overview

● Abstract QuePaxa – a simplified version

● Safety and liveness of abstract QuePaxa

● Concrete QuePaxa overview

● The QuePaxa fast path

28

QuePaxa Architecture

Replica

Proposer

Recorder

Replica

Proposer

Recorder

Replica

Proposer

Recorder

Submitter Submitter

Client Requests

29

QuePaxa Log Structure

30

Slot 1

Slot 2

Slot 3

Round 1 Round 2P1 P2 P3 P4

QuePaxa Protocol Diagram

Proposer 1

Proposer 2

Recorder 1

Recorder 2

Recorder 3

Phase 0

Learn Majority Proposals

Phase 1-3

Information Propagation

31

Fast Path
Decision

Slow Path
Decision

QuePaxa has a fast path decision and a slow path decision

QuePaxa Log Structure

32

QuePaxa RoadMap

● Operation Overview

● Abstract QuePaxa - a simplified version

● Safety and liveness of abstract QuePaxa

● Concrete QuePaxa overview

● The QuePaxa fast path

33Abstract QuePaxa is a simplified version of QuePaxa

● Divide the problem in to two parts
○ Handling replica failures
○ Handling asynchrony

● First ignore asynchrony and focus on replica failures
○ Assume an abstract synchronous lock-step network

● tcast (threshold synchronous broadcast): an abstraction
providing lock-step synchrony to the consensus layer

Introducing threshold broadcast (tcast)

Asynchronous Network

tcast

Abstract QuePaxa

34Abstract QuePaxa assumes synchrony and solves the replica failure challenge

Abstract QuePaxa Algorithm

 Abstract QuePaxa is just a few lines of pseudocode! 35

tcast

Alice

Bob

Charlie
Propose A

Propose B

Propose C

Proposals Alice knows to exist

Proposals Bob knows to exist

Proposals Charlie knows to exist

● tcast property 1: each node learns the existence of a majority of proposals

● tcast property 2: each node learns some proposal that has reached all nodes

Alice knows all nodes know of proposal B

No guarantee that nodes learn the same subsets! (no consensus yet)

Bob knows all nodes know of proposal B

Charlie knows all nodes know of proposal B

36

● Ei: If Alice knows proposal P exists, then P is in her existent set Ei

● Ci: If Alice knows all nodes know P exists, P is in her common set Ci

● Ui: If Alice knows all nodes know P is common, P is in her universal set Ui

● Repeat: three tcast invocations, giving each node i sets with increasing guarantees

Towards consensus: approximating what others know

● Sets from one tcast invocation are insufficient for consensus

Key relationship for consensus: for all nodes i,j,k, Ei ⊇ Cj ⊇ Uk 37

Existenti ⊇ Commonj ⊇ Universalk

38

QuePaxa RoadMap

● Operation Overview

● Abstract QuePaxa

● Safety and liveness of abstract QuePaxa

● Concrete QuePaxa overview

● The QuePaxa fast path

39

Consensus: reaching a safe decision

40

best(ExistentX) =
best(UniversalX)

propose

Three tcast rounds

ExistentAlice ⊇ CommonBob⊇ UniversalAlice

best(ExistentAlice) = V = best(UniversalAlice)
YES

decide

Alice decides V

NO

best(CommonBob)

best(ExistentBob) ≠ best(UniversalBob)

Bob doesn’t decide, proposes V’

V’ =
best(CommonBob)

 Only possible decision in future is V’ = best(CommonBob) = best(ExistentAlice) = V

Efficiency: How many rounds until consensus

Prob (best(ExistentAlice) = best(UniversalAlice))Probability that Alice decides

Each set contains
> ½ of proposals

 Decision probability is ≥ ½ ⇒ in expectation two rounds until decision

best

41

Abstract QuePaxa

42

● Avoids timeout from liveness because the protocol is randomized

● Robust against adversarial networks

● O(n2) message complexity hence slow

● Does not support hedging

��

��

��

��

Abstract QuePaxa is robust but inefficient

QuePaxa RoadMap

● Operation Overview

● Abstract QuePaxa

● Safety and liveness of abstract QuePaxa

● Concrete QuePaxa overview

● The QuePaxa fast path

43

From abstract to concrete QuePaxa

Asynchronous Network

tcast

Abstract QuePaxa

Asynchronous Network

Interval Summary Register

Concrete QuePaxa

● O(n) complexity in the
normal case

● Robust against
asynchrony

● Support hedging

● Implementation ready
(4368 LOC)

44Concrete QuePaxa has all we need!

QuePaxa Architecture

Replica

Proposer

Recorder

Replica

Proposer

Recorder

Replica

Proposer

Recorder

Submitter Submitter

Client Requests

45

Concrete Recorder Protocol (ISR)

● Simulates lock step synchrony using a
threshold logical clock

● For each step, records the the first
value and the aggregate of the values
submitted in the previous step

● Constant space

46QuePaxa Recorder is a constant space interval summary register

Proposer Code

QuePaxa proposer uses RPC in 4 phases to contact Recorders
47

How tcast abstraction maps to concrete QuePaxa phases

QuePaxa RoadMap

● Operation Overview

● Abstract QuePaxa

● Safety and liveness of abstract QuePaxa

● Concrete QuePaxa overview

● The QuePaxa fast path

49

Hedging in QuePaxa

Proposer 1

Proposer 2

Recorder 1

Recorder 2

Recorder 3

Phase 0

Learn Majority Proposals

Phase 1-3

Information Mule

QuePaxa supports hedging because multiple proposers do not cancel each other 50

What if multiple leaders could propose without view changes?

Leader 2

Leader 3

Leader 4

Leader 1R1

R2

R3

R4

Propose Accept

Commit

51

Propose Accept

Commit

No view
change

Accept

Commit

No view
change

Propose

Can we change leaders without view changes if the current leader is sub optimal?

In QuePaxa, multiple leaders can propose without view changes

Leader 2

Leader 3

Leader 4

Leader 1R1

R2

R3

R4

Propose Accept

Commit

52

Propose Accept

Commit

No view
change

Accept

Commit

No view
change

Propose

All potential leaders propose on well-known hedging schedule

Leader 2

Leader 3

Leader 4

Leader 1R1

R2

R3

R4

Propose with
0×Δ delay

53

Propose with
1×Δ delay

Propose with
3×Δ delay

Propose with
2×Δ delay

Round 0: first leader proposes with special reserved HI priority

Leader 2

Leader 3

Leader 4

Leader 1R1

R2

R3

R4

Propose HI
0×Δ delay

Accept

Commit in 1 round-trip if first to reach a quorum of acceptors

54

Safe because HI proposal will dominate common & universal sets

First leader’s commit suppresses remaining leaders’ proposals

Leader 2

Leader 3

Leader 4

Leader 1R1

R2

R3

R4

Propose HI
0×Δ delay

55

Accept

Commit in 1 round-trip if first to reach a quorum of acceptors

DON’T
propose with
1×Δ delay

Observe commit by leader 1

Observe commit by leader 1 DON’T
propose with
2×Δ delay

DON’T
propose with
3×Δ delay

Observe commit by leader 1

Normal case: only leader 1 proposes → complexity is O(n) instead of O(n2) per slot

Performance robustness in challenging network situations

What if:

● Network experiences periods of high delay (e.g., due to congestion)?
● Network exhibits high jitter or delay unpredictability (e.g., bursty loads)?
● Timeouts or hedging delays misconfigured too low for actual network?

Multi-Paxos/Raft: can slow drastically or lose liveness entirely

QuePaxa: usually maintains full performance even in such situations

● Two or more leaders propose per round, but Leader 1 usually “wins” anyway
● Cost is only extra unnecessary messaging (bandwidth use), no extra delay!

Performance robustness in challenging network situations

R1

R2

R3

R4

Leader 2

Leader 3

Leader 4

Leader 1

Propose

commit

Round 1

57Leader 2 starts proposing concurrently, but does not interfere with Leader 1

Other Contributions

● Multi-Armed-Bandit based hedging sequence tuning for maximum performance

● Optimizations for reducing leader bandwidth bottleneck for high performance

58

RoadMap

● Introduction to consensus

● Tyranny of timeouts

● Parallels of QuePaxa and hedging

● QuePaxa algorithm

● Evaluation

59

Evaluation

● Can QuePaxa guarantee liveness under any hedging schedule?

● Under normal case, how does QuePaxa compare with leader-based protocols?

● Under adversarial conditions, can QuePaxa maintain liveness?

● Can QuePaxa converge to the best hedging schedule? – please refer the paper

60

Setup

● LAN (N. Virginia)

● WAN (Tokyo, Mumbai, Singapore, Ireland, and São Paulo)

● Replicas: c4.4xlarge
○ 16 virtual CPUs, 30 GB memory

● Submitters: c4.2xlarge
○ 8 virtual CPUs, 15 GB memory

61

Effect of Hedging in Quepaxa

62

Throughput

QuePaxa is live for any hedging delay

Effect of Hedging in Quepaxa

63

Throughput

Bandwidth Cost

QuePaxa has an additional overhead only when hedging delay < RTT

Effect of Hedging in Quepaxa

64

Throughput

Bandwidth Cost

Recovery Time

QuePaxa has low recovery time

Normal case execution in a WAN (see paper for LAN)

65QuePaxa performs comparable to Multi Paxos

Performance under adversarial networks

66QuePaxa is live under asynchrony

Conclusion

● QuePaxa eliminates timeout from liveness guarantees and supports hedging

● QuePaxa provides Multi-Paxos / Raft equivalent performance under normal case

● QuePaxa is performance robust and resilient to adversarial network conditions

● https://github.com/dedis/quepaxa

67

https://github.com/dedis/quepaxa

Supplementary

68

Hedging delay vs Timeout

● Timeouts initiate failure-recovery processes that interfere with normal progress if
triggered early

○ a premature Raft view change halts the prior leader’s progress.

● Hedging initiates non-destructive concurrency:
○ launching a second QuePaxa proposer does not prevent the first from still completing the round.

● QuePaxa hedging delays can be zero without losing liveness
○ but the cost is redundant messaging

69

tCast vs other Broadcast flavours

● Best effort broadcast: If a correct process broadcasts a message m, then every correct process
eventually delivers m.

● Reliable broadcast: : If a message m is delivered by some correct process, then m is
eventually delivered by every correct process.

● Uniform reliable broadcast: If a message m is delivered by some process (whether correct or
faulty), then m is eventually delivered by every correct process.

● Byzantine consistent broadcast: delivered m is the same for all receivers.

● Byzantine reliable broadcast: all correct parties deliver some request or none delivers any
(Bracha’s broadcast)

70

tCast

● tcast property 1: each node learns a majority of proposals
● tcast property 2: each node learns a proposal that all nodes know to exist

71

QuePaxa vs Common Core

● Common core allows all replicas to create a common core (n-f proposals), such
that each node knows that there are n-f proposals known by everyone, however,
no node exactly knows which n-f proposals are common. In the literature,
common core is used in binary consensus.

● In contrast, tcast-based QuePaxa allows nodes to not only create a common core
but also pinpoint which n-f proposals are common. Nodes reach multi-valued
consensus using the set relationship we mentioned.

72

Overhead of Multiple Proposers

73

Throughput

Bandwidth Cost

Normal Case LAN performance

74

FLP impossibility and QuePaxa

● QuePaxa uses randomization to alleviate FLP
○ However, when the network is synchronous, QuePaxa uses that to provide 1 round trip fast path

● QuePaxa uses private randomness, and that enables hedging

75

Fast path of 1 RTT in concrete QuePaxa

● How does concrete quePaxa reduce the fast path to just 1 RTT, given that one
tcast is several round trips, and one abstract QuePaxa is two tcasts?

● The first tcast of abstract QuePaxa corresponds to a spread phase in concrete
QuePaxa in 1 RTT: Each proposer records its proposal at a recorder. In contrast
to abstract QuePaxa, however, in concrete QuePaxa only a few nodes propose. If
the leader is the fastest, i.e., faster than the few other proposers, then its proposal
gets adopted by most recorders. Upon observing this, no other decision is
possible and nodes decide after the spread phase, i.e., in 1 RTT.

76

Correspondence between concrete and abstract QuePaxa (1)

77

Correspondence between concrete and abstract QuePaxa (2)

● Concrete QuePaxa phase 0

○ Computes 𝑝 = best(𝑃); in abstract QuePaxa 𝑃 is the output set of the first tcast

● Concrete QuePaxa phases 1 and 2

○ Computes 𝑎 = best(𝐸); in abstract QuePaxa 𝐸 is the first output of the second tcast

○ Computes 𝑝 = best(𝑃’), in abstract QuePaxa 𝐸 𝑃’ is the second output set of the second
tcast

● Concrete QuePaxa phases 2 and 3

○ Computes 𝑎 = best(𝐶); in abstract QuePaxa 𝐶 is the first output of the third tcast

○ Computes 𝑝 = best(𝑈); in abstract QuePaxa 𝑈 is the second output set of the third tcast
78

