Towards practical and efficient
performance robustness:
QuePaxa and beyond

Bryan Ford — EPFL
Dagstuhl Seminar 24362

“Next-Generation Secure Distributed Computing”
September 4, 2024

QuePaxa: Escaping the Tyranny of
Timeouts 1n Consensus

Pasindu Tennage Cristina Basescu Eleftherios Kokoris Kogias Ewa Syta
EPFL EPFL & Digital Asset ISTA & Mysten Labs Trinity College
Philipp Jovanovic Vero Galifianes Bryan Ford

UCL EPFL EPFL

Consensus and Replicated State Machine

'

~

Consensus and Replicated State Machine

?

Google Chubby lock service | Jf Aveche ook

Paxos Made Simple Viewstamped Replication: A New Primary Copy Method to .

Support Highly-Avallable Distributed Systems

I @ dragonboat
-
Generalized Consensus and Paxos Spanner

: . . . n
Leslie Lamport Semi-Decentralized Geo-replicated T I KV
— 3 March 2004 te Machines
revised 15 March 2005 . .
There I corrected 28 April 2005 2“3"1“ Zhang Zhl Ya‘ng .
icrosoft Research Peking University
Zh i ft.com yangzhi@pku.edu.cn
Tulian Morz . oy
Cavia Ming Wu Yafei Dai
Microsoft Research Shenzhen Key Lab for Information o,
1 miw@microsoft.com Centric Networking & Block Chain ey

WPax S-Paxos: Offloading the Leader for High

@ NebulaGraph

PigPaxos: Devouring the Communication Bottlenecks in
Distributed Consensus

SCFASTACK

Aleksey Charapko® Ailidani Ailijiang Murat Demirbas 4
University of New Hampshire Microsoft University at Buffalo, SUNY r—
Aleksey.Charapko@unh.edu Ailidani. Ailijiang@microsoft.com demirbas@buffalo.edu

Dimensions of robustness in (permissioned) consensus

Failure model: crash-stop or byzantine? (This talk’s focus: crash-stop)
Threshold: tolerant of how many failures? (Typically 2f < n for crash-stop)
Network model: synchronous, partially synchronous, asynchronous?
Normal-case performance (throughput, latency) and efficiency (compute, BW)
Worst-case performance (throughput, latency) and efficiency (compute, BW)

Recovery time after failure, responsiveness, ...

What we would like versus what actually gets deployed

What we would like in principle: asynchronous Byzantine consensus everywhere
e Robust to adversarial node failures and adversarial network behavior

What actually gets deployed almost everywhere: Paxos, Multi-Paxos, Raft
e Partially synchronous, crash-stop failures only

Why? Paxos et al offers:

e Low latency: 1-round-trip commit in the normal case
e Efficiency: O(n) normal-case bandwidth per commit
e Relatively simple, “good enough” for most deployment scenarios

Introducing QuePaxa — key contribution in a nutshell

QuePaxa is the first crash-stop consensus protocol that achieves:

Same 1-round-trip normal-case commit latency as Paxos etc.
Same O(n) normal-case bandwidth consumption as Paxos etc.

Performance robustness of full asynchronous consensus in the worst case
o Guaranteed liveness even during periods of asynchrony
o Protocol makes progress at rate the network communication permits
o O(1) expected round-trips to commit w.h.p.
Experimentally performance-robust also in “medium-bad” but non-worst cases
o Temporary network delays, node slowdowns, DoS attacks against minority of nodes, ...
Not much more complex/difficult to implement than Paxos etc.
o Full pseudocode of QuePaxa algorithm fits easily on 1 page

RoadMap

e Introduction to consensus

e Tyranny of timeouts

e Parallels of QuePaxa and hedging
® (QuePaxa algorithm

e FEvaluation

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts Manually configured timeouts

Timeout based view change [Multi-Paxos]

Commit Commit Commit Commit

\4 WYY
N Propose\\/ %\ccept ProposW%ccept Propos&\\//%cept Propos&\\//%cept
VY

View 1

As long as the network is synchronous, the leader will keep committing new requests

Timeout based view change [Multi-Paxos]

Commit| ////

O

R1 P A
4
repare oronlee

o o | o [\

N VAR Y

View Change

View 1 View 2

No new commands are committed during view change
Liveness depends on partial synchronous network conditions

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts

Manually configured timeouts

12

Choosing Timeouts in leader based protocols

{ Low Timeout }< Timeout

L

13

Timeout based view change [Multi-Paxos]

wly Commit ,////

S/
% repare e
s da iy
R
R3
R4 \/ \ / \ /

View Change

O

View 1 View 2

< High Recovery Time >
High timeouts result in high recovery time

Choosing Timeouts in leader based protocols

- < Timeout > High Timeout

| High Recovery Time

15

Liveness loss with low timeouts

FREEZN 230
o °,r”°.°‘5~"‘ el
L

R1

Propo it /‘
R2 : '

. Prepare one K

{ IR \@\

R3 5 ; P
; \ repare

R4 5 _
View 1 5 View 2 | View 3 | View 4

No commands are committed when the timeout is low

Choosing Timeouts in leader based protocols

Low Timeout < Timeout > High Timeout

Liveness Loss | | High Recovery Time

Both choices of timeouts have negative consequences

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts

Manually configured timeouts

18

Manual configuration of timeouts
e Stuck with a live but slow leader replica

e Do not consider dynamic network state for leader election

Manual timeouts are sub optimal

Are timeouts necessary for progress?

Can we eliminate the impact of timeout for liveness?

20

Do asynchronous protocols solve this problem?

e Asynchronous protocols do not depend on timeout for progress

o Use randomization to alleviate the FLP impossibility

e Message complexity
o In general asynchronous protocols have O(n?) / O(n*) complexity in the normal case
m Partially synchronous protocols have O(n) complexity in the normal case
o Less efficient than leader-based protocols
o Hence rarely deployed

Asynchronous protocols are slow and rarely deployed

What if multiple leaders could propose without view changes?

<1 Leader | Commit / / / ///

%% - /\ 4
kit Pro
Leader 2 0-\ = /
//
L d 3 \\ // Propos¥\ /%cept Prop% \ccept

R3 caacr

Commit
~4 Leador 4 \/ \/ \/

No view No view
change change

Can we change leaders without view changes if the current leader 1s sub optimal?

What if multiple leaders could cooperate instead of interfere?

R1 Leader 1 commit

Propose [& 3
Leader 2 o . J .
R2 \/ p-.) - e
R3 Leader 3 W - e
R4 Leader 4 %

Round 1

Can we support multiple proposers to be non destructive?

RoadMap

e Introduction to consensus

e Tyranny of timeouts

e Parallels of QuePaxa and hedging
® (QuePaxa algorithm

e FEvaluation

24

Hedging

e Hedging is a way to curb latency variability

o Key idea: issue the same request to multiple replicas and use the results from whichever replica responds first

do not interfere with each

Multiple responses [Server }
other

/ \

Store 1 Store 2 Store 3

Can we apply hedging to consensus so that multiple proposers don’t interfere?.s

RoadMap

e Introduction to consensus

e Tyranny of timeouts

e Parallels of QuePaxa and hedging
e QuePaxa algorithm

e FEvaluation

26

QuePaxa Contributions

e Eliminates the “tyranny of timeouts” for consensus liveness
e First consensus protocol to support hedging in consensus

e First protocol offering efficiency with performance-robustness
o Under normal network conditions, just as efficient as Multi-Paxos/Raft
o Under bad/high-delay/noisy network conditions, maintains performance
o Under worst-case adversarial network conditions, maintains liveness

27

QuePaxa RoadMap

e Operation Overview

e Abstract QuePaxa — a simplified version
e Safety and liveness of abstract QuePaxa
e Concrete QuePaxa overview

e The QuePaxa fast path

28

QuePaxa Architecture

Submitter

Proposer

y

Recorder

Replica

Submitter

lient Requests

Proposer

—]

Recorder

Replica

Proposer

Recorder

Replica

29

QuePaxa Log Structure

Slot 1

Slot 2

Slot 3

P1

P2

P3

P4

Round 2

30

QuePaxa Protocol Diagram

Fast Path Slow Path
Decmon Decision
hase 0 % ¢ Phase 1-3 S
Learn MeI] orlt}/ Proposals r Inilarmatlon Propagal

. w AV 'w
o\ ﬂ\\/ b N\
Y. oA

Proposer 2 V\ W\ V\
QuePaxa has a fast path decision and a slow path decision

QuePaxa Log Structure

Slot 1: first consensus decision or SMR state change

Round Round 1 Round 2 Round 3 Round 4

Phase [1 (= 3 | O | 1 =W 3 | O | 1 [3 | O | 1 (g2 3

Sttp 4,5 6 .7 8 9 10 11 12 13 14,15 16 17 18 19

/potential leader-based .
,4,,,_ - consensus decision

Slot 2: second consensus decision or SMR state change

Round Round 1 Round 2 Round 3 Round 4

Phase |0 1 281 3 |0 |1 (29 3|0 1293|0129 3]..

Step 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

‘ » » » » »

... (slots for successive consensus decisions or state changes)

32

QuePaxa RoadMap

e Operation Overview

e Abstract QuePaxa - a simplified version
e Safety and liveness of abstract QuePaxa
e Concrete QuePaxa overview

e The QuePaxa fast path

Abstract QuePaxa 1s a simplified version of QuePaxa

Introducing threshold broadcast (tcast)

e Divide the problem in to two parts

o Handling asynchrony

Abstract QuePaxa

e Firstignore asynchrony and focus on replica failures

o Assume an abstract synchronous lock-step network

e tcast (threshold synchronous broadcast): an abstraction
providing lock-step synchrony to the consensus layer

Abstract QuePaxa assumes synchrony and solves the replica failure challenge

Abstract QuePaxa Algorithm

Algorithm 1: Abstract QuePaxa consensus algorithm
Input: v < value preferred by this replica

I——mpaa‘ peilorate-thiough-rounds
" ; I ; et ;

I (F,_) « tcast({p}) /I propagate our proposal
(E,P’) « tcast(P) // propagate existent sets

(C.U) « tcast(P’) // propagate common sets

v « best(C).value // next candidate value

if best(E) = best(U) then // detect consensus

|_ deliver(v) // deliver decision

Abstract QuePaxa is just a few lines of pseudocode!

35

Proposals Bob knows to exist Bob

Alice knows all nodes know of proposal B

Bob knows all nodes know of [proposal B

Charlie knows all nodes know|of proposal B

Propose A Propose C

Alice || " Charlie

!
, , Proposals Charlie knows to exist
Proposals Alice knows to exist P

e tcast property 1: each node learns the existence of a majority of proposals

e tcast property 2: each node learns some proposal that has reached a// nodes

No guarantee that nodes learn the same subsets! (no consensus yet) .

Towards consensus: approximating what others know

e Sets from one tcast invocation are insufficient for consensus

e Repeat: three tcast invocations, giving each node 7 sets with increasing guarantees
e [E.:If Alice knows proposal P exists, then P 18 in her existent set E,
° Cl.: If Alice knows a/l nodes know P exists, P i1s in her common set Cl.

o U: If Alice knows al/l nodes know P 1s common, P 1s in her universal set U.

Key relationship for consensus: for all nodes i,j,k, E, 2 CJ 2 U

Existenti = Commonj) Universalk

QuePaxa RoadMap

e Operation Overview

e Abstract QuePaxa

e Safety and liveness of abstract QuePaxa
e Concrete QuePaxa overview

e The QuePaxa fast path

39

Consensus: reaching a safe decision

best(Common,,) Bob doesn’t decide, proposes V’
~ propose _ .
| best(Existent,,) # best(Universal,)
Three tcast rounds
V=
best(CorTmonBob)

best(Existent,) =
best(Universal,)

Existent " = Common_ . =2 Universal .
ice Bob Alice

l Alice decides V l

best(Existent, .) = V = best(Universal, .)

decide

Only possible decision in future is V’ = best(Common,,)= best(Existent, .)=V

Efficiency: How many rounds until consensus

Probability that Alice decides Prob (best(Existent,,.)= best(Universal, .))

Each set contains
> 15 of proposals

Decision probability is > 72 = in expectation two rounds until decision

41

Abstract QuePaxa
e Avoids timeout from liveness because the protocol is randomized
e Robust against adversarial networks
e O(n?%) message complexity hence slow

e Does not support hedging

Abstract QuePaxa is robust but inefficient

QuePaxa RoadMap

e Operation Overview

e Abstract QuePaxa

e Safety and liveness of abstract QuePaxa
e Concrete QuePaxa overview

e The QuePaxa fast path

43

From abstract to concrete QuePaxa

e (O(n) complexity in the
normal case

e Robust against

asynchrony

Abstract QuePaxa Concrete QuePaxa

e Support hedging

e Implementation ready
(4368 LOC)

Concrete QuePaxa has all we need!

QuePaxa Architecture

Submitter

Proposer

y

Recorder

Replica

Submitter

lient Requests

Proposer

—]

Recorder

Replica

Proposer

Recorder

Replica

45

Concrete Recorder Protocol (ISR)

e Simulates lock step synchrony using a

Algori ’ ' threshold logical clock
State ; eent logical clock step, initially 0

State | F[s] §rst value recorded at each step, default nil
State | A[s] §ggregate of values in each step, default nil e For each step, records the the first
record (s,0) — (s', f',a’): // handle an invocation value and the aggregate of the values
if s > S then // advance to a higher step . . .
Ses // update current step number submitted in the previous step
F[s] « o // record first value in this step
if s = S then // aggregate all values e (Constant space

| Als] < aggregate(A[s],) // seen in this step

| return (S, F[S],A[S - 1]) /[return a summary

QuePaxa Recorder 1s a constant space interval summary register

Algorithm 4: Protocol for QuePaxa proposer i

Propo S er COde Input: v preferred value of this proposer i

s—4X1+40 // start at round 1, phase 0
p «— (H, iv) // initial proposal template
repeat

pj < p for all recorders j /I prepare proposals

if s mod 4 = 0 and (s > 4 or i is not leader) then

L pj.priority < random(1..H — 1) forall j
Send record(s, p;) in parallel to each recorder j
Await R « quorum of replies (s]/.,fj’, a})

’

if s mod 4 = 0 then // phase 0: propose
if fj'.priority = H in all replies then
L return f,.’.valuefmm any reply in R
p < best; ()t'fj’ from all replies in R
if s mod 4 = 1 then /l phase 1: spread E
L /I no action required
if s mod 4 = 2 then // phase 2: gather E, spread C
if p = best; ofa;. from all replies in R then
| return p.value /I report decision

if s mod 4 = 3 then // phase 3: gather C
L p < best; of a} from all replies in R

se—s+1 // advance to next step

else if any reply in R has s’; > s then
L S, p s;.,fj’ // catch up to step s;.

QuePaxa proposer uses RPC in 4 phases to contact Recorders

How tcast abstraction maps to concrete QuePaxa phases

Phase 0
(Step s+0)

teast((p}) ~ (P, _)
~ spread {p}

\ first proposalz}
*_ recorded by |
each ISF?_,...-"'

F[s+0]
Als-1] A[s+0]
ISR state

Phase 1
(Step s+1)

e tcast(P) —
spread E

. majority of
. all existent
proposals

- F[s+1]
LN
A[s+0] A[s+1] -
ISR state

— A[s+1]

Phase 2
(Step s+2)

(E P)
gather E

~ tcast(P) —
spread C

| Fls+2]
Y,
A[s+2] -
ISR state

\ final

Phase 3
(Step s+3)
(G U
gather C
: ..‘.,__‘ﬂ_.‘f/na/ Fs+3]
-~ A[s+2] A[s+3]

ISR state

QuePaxa RoadMap

e Operation Overview

e Abstract QuePaxa

e Safety and liveness of abstract QuePaxa
e Concrete QuePaxa overview

e The QuePaxa fast path

49

Hedging in QuePaxa

Phase 0 % Phase 1-3

> >

Learn Majority Proposals Information Mule

N % M VERY

U Y A

S

QuePaxa supports hedging because multiple proposers do not cancel each other ~ *°

What if multiple leaders could propose without view changes?

<1 Leader | Commit / / / ///

%% - /\ 4
kit Pro
Leader 2 0-\ = /
//
L d 3 \\ // Propos¥\ /%cept Prop% \ccept

R3 caacr

Commit
~4 Leador 4 \/ \/ \/

No view No view
change change

Can we change leaders without view changes if the current leader 1s sub optimal?

In QuePaxa, multiple leaders can propose without view changes

L "

%\ /// /\ VAV
@y Pro
Leader 2 % o\ Commit /
//

I:’mpOs cept
) Leader3 \\// \/% Pr09/Z \\Ccept
/ \/ Commit
R4 LZaZlgr4

No view LI
change change

52

All potential leaders propose on well-known hedging schedule

<1 Leader | D) /1] /// /[//
Propose with [/ P /17
gibiy 0xA delay
) Leader 2 o /// ///
\JPropose with / // /77
iy 1xA delay
R3 Leader3 Q\‘D ///
Propose with/ I/
gibin 2xA delay
R4 Leader4 ~
5

Propose with
3xA delay

53

Round 0: first leader proposes with special reserved HI priority

@t At

R1 Leader 1

Propose HI
OxAdelay Commitin 1 round-trip if first to reach a quorum of acceptors

@t At

Accept
Safe because HI proposal will dominate common & universal sets

Leader 2
2
R3 Leécier 3 \\ //
R 4 Leécier 4 \ /

54

First leader’s commit suppresses remaining leaders’ proposals

ey Propose HI
R Leader 1 OXA delay Commit in 1 round-trip if first to reach a quorum of acceptors
Accept
Wy Observe commit by leader 1
) Leader 2 P

~ DON’T

R
el propose with
R3 Leader 3 \// E > 1xA delay oD

N
Observe commit by leader 1 DON’T

ey propose with
R4 Leader 4 §> 2xA delay oo
Observe commit by leader 1 ~ DON’T
propose with
3xA delay

Normal case: only leader 1 proposes — complexity is O(#) instead of O(n?) per slot

Performance robustness in challenging network situations

What if:

e Network experiences periods of high delay (e.g., due to congestion)?
e Network exhibits high jitter or delay unpredictability (e.g., bursty loads)?
e Timeouts or hedging delays misconfigured too low for actual network?

Multi-Paxos/Raft: can slow drastically or lose liveness entirely
QuePaxa: usually maintains full performance even in such situations

e Two or more leaders propose per round, but Leader 1 usually “wins™ anyway
e Costis only extra unnecessary messaging (bandwidth use), no extra delay!

Performance robustness in challenging network situations

R1 Leader 1 commit

Propose

Leader 2 oD

R2 —/
R3 Leader3 W
R4 Leader 4 %

Round 1

Leader 2 starts proposing concurrently, but does not interfere with Leader 1

Other Contributions

e Multi-Armed-Bandit based hedging sequence tuning for maximum performance

e Optimizations for reducing leader bandwidth bottleneck for high performance

58

RoadMap

e Introduction to consensus

e Tyranny of timeouts

e Parallels of QuePaxa and hedging
® (QuePaxa algorithm

e Evaluation

59

Evaluation
e (Can QuePaxa guarantee liveness under any hedging schedule?
e Under normal case, how does QuePaxa compare with leader-based protocols?
e Under adversarial conditions, can QuePaxa maintain liveness?

e (Can QuePaxa converge to the best hedging schedule? — please refer the paper

60

Setup
e [LAN (N. Virginia)
e WAN (Tokyo, Mumbai, Singapore, Ireland, and Sao Paulo)

e Replicas: c4.4xlarge

o 16 virtual CPUs, 30 GB memory
e Submitters: c4.2xlarge

o 8 virtual CPUs, 15 GB memory

dWS

\./‘7

61

Effect of Hedging in Quepaxa
25000 = = 1' - }(—x—x—/Fmi_ I

4000
1000 4 —— QuePaxa

—+— Multi-Paxos
—— Raft

Throughput

(cmd/sec)

50 100 200 300 500
Leader Timeoutf Hedging Delay (ms)

QuePaxa 1s live for any hedging delay

Effect of Hedging in Quepaxa

25000 | =
94000 A
v 1000 1+ —e—
Throughput = QuePaxa
£ —#— Multi-Paxos
= —>»— Raft
5 4 — ! : —
o :
€9 4f : —e— QuePaxa
Sus 1 Round trip
Bandwidth Cost g &% 4| : latency
(V)] .
E Y— 1F - 1 T
o o :
z —t : | —
50 100 200 300 500

Leader Timeout / Hedging Delay (ms)

QuePaxa has an additional overhead only when hedging delay < RTT

Effect of Hedging in Quepaxa

25000 A

4000 A

Throughput .

(ch/séc)

Ul
1

—e— QuePaxa
—#+— Multi-Paxos
—¢— Raft

T T T T T T

Bandwidth Cost

Average number
of steps per
slot
=N W

—e— QuePaxa
Round trip

latency

3000

—~ 1000 -
V)]

. 'E
Recovery Time ~ 300

[——

T
— BRI

100 | T Y T 1 T y
50 100 200 300 500
Leader Timeout / Hedging Delay (ms)

QuePaxa has low recovery time

Normal case execution in a WAN (see paper for LAN)

800 /
= 700-
E
> 6001 —— QuePaxa
E, —+— Multi-Paxos
© 5004 —<— Epaxos-commit
g Epaxos-exec
S 400
=
300

0 50 100 150 200 250 300
Throughput (x 1k cmd/sec)

QuePaxa performs comparable to Multi Paxos

Performance under adversarial networks

a

—eo— (QuePaxa
—fe— Multi-Paxos
—>¢— Raft

Median latency (ms)
on
S

0 I I I I I I I
0 10 20 30 40 50 60 70

Throughput (x 1k cmd/sec)

QuePaxa 1s live under asynchrony

Conclusion
e (QuePaxa eliminates timeout from liveness guarantees and supports hedging
e (QuePaxa provides Multi-Paxos / Raft equivalent performance under normal case
e (QuePaxa is performance robust and resilient to adversarial network conditions

e https://github.com/dedis/quepaxa

GitHub

67

https://github.com/dedis/quepaxa

Supplementary

Hedging delay vs Timeout

e Timeouts initiate failure-recovery processes that interfere with normal progress if
triggered early
o apremature Raft view change halts the prior leader’s progress.

e Hedging initiates non-destructive concurrency:

o launching a second QuePaxa proposer does not prevent the first from still completing the round.

e (QuePaxa hedging delays can be zero without losing liveness

o but the cost is redundant messaging

69

tCast vs other Broadcast flavours

e Best effort broadcast: If a correct process broadcasts a message m, then every correct process
eventually delivers m.

e Reliable broadcast: : If a message m is delivered by some correct process, then m is
eventually delivered by every correct process.

e Uniform reliable broadcast: If a message m is delivered by some process (whether correct or
faulty), then m 1s eventually delivered by every correct process.

e Byzantine consistent broadcast: delivered m is the same for all receivers.

e Byzantine reliable broadcast: all correct parties deliver some request or none delivers any
(Bracha’s broadcast)

70

tCast

e tcast property 1: each node learns a majority of proposals
e tcast property 2: each node learns a proposal that all nodes know to exist

Que Sera Consensus:
Simple Asynchronous Agreement with
Private Coins and Threshold Logical Clocks

Bryan Ford', Philipp Jovanovic?, and Ewa Syta®

'Swiss Federal Institute of Technology Lausanne (EPFL)
*University College London (UCL)
*Trinity College Hartford

71

QuePaxa vs Common Core

e Common core allows all replicas to create a common core (n-f proposals), such
that each node knows that there are n-f proposals known by everyone, however,
no node exactly knows which n-f proposals are common. In the literature,
common core is used in binary consensus.

e In contrast, tcast-based QuePaxa allows nodes to not only create a common core
but also pinpoint which n-f proposals are common. Nodes reach multi-valued
consensus using the set relationship we mentioned.

72

Overhead of Multiple Proposers

Throughput

Bandwidth Cost

-

25000 {+# *
94000 A
% 1000 4 —e— Quepaxa
£ —#— Multi-Paxos
2 —>»— Raft
5 L 1 L] L3 L ¥ I T 1
g,
gg_ 3- — gueP:ia.
n = ound trip
o 3o 27 \ """ latency
OQ
E Y— 1 - i T T
o ©
é T T T T T T T T T T
50 100 200 300 500

Leader Timeout / Hedging Delay (ms)

73

Normal Case LAN performance

7 7
—_— 6]
0
Exe
>
c
g4
93 QuePaxa
& —+— Multi-Paxos
g 2 —— Epaxos-commit
= 1 Epaxos-exec

—— Rabia
0 . . .
0 200 400 600

Throughput (x 1k cmd/sec)

FLP impossibility and QuePaxa

e (QuePaxa uses randomization to alleviate FLP

o However, when the network is synchronous, QuePaxa uses that to provide 1 round trip fast path

e (QuePaxa uses private randomness, and that enables hedging

75

Fast path of 1 RTT 1n concrete QuePaxa

e How does concrete quePaxa reduce the fast path to just 1 RTT, given that one
tcast 1s several round trips, and one abstract QuePaxa is two tcasts?

e The first tcast of abstract QuePaxa corresponds to a spread phase in concrete
QuePaxa in 1 RTT: Each proposer records its proposal at a recorder. In contrast
to abstract QuePaxa, however, in concrete QuePaxa only a few nodes propose. If
the leader 1s the fastest, 1.e., faster than the few other proposers, then its proposal
gets adopted by most recorders. Upon observing this, no other decision is
possible and nodes decide after the spread phase, i.e., in 1 RTT.

76

Correspondence between concrete and abstract QuePaxa (1)

Phase 0
(Step s+0)

tcast({p}) - (P,_)
spread {p} b

first proposal
recorded by
- each ISR

A

F[s+0]

Als-1] A[s+0]
ISR state

Phase 1
(Step s+1)

tcast(P)
spread E

majority of
all existent
proposals

F[s+1]

\
A[s+0] A[s+1]
ISR state

Phase 2 | Phase 3
(Step s+2) (Step s+3)
- (E, P)
v
gather E

tcast(P) - (C, U)
v
spread C gather C
;

final J F[s+2] * final F[s+3]
— Als+1] A[s+2] = A[s+2] A[s+3]
ISR state ISR state

77

Correspondence between concrete and abstract QuePaxa (2)

® Concrete QuePaxa phase 0
O Computes p = best(P); in abstract QuePaxa P is the output set of the first tcast
® Concrete QuePaxa phases 1 and 2
O Computes a = best(E); in abstract QuePaxa E is the first output of the second tcast

O Computes p = best(P’), in abstract QuePaxa E P’ is the second output set of the second

tcast

® Concrete QuePaxa phases 2 and 3
O Computes a = best(C); in abstract QuePaxa C is the first output of the third tcast

O Computes p = best(U); in abstract QuePaxa U is the second output set of the third tcast

78

