

Consensus for
Decentralized Ledgers

Prof. Bryan Ford
Decentralized and Distributed Systems (DEDIS)
School of Information and Communications (IC)

dedis@epfl.ch – dedis.epfl.ch

Dagstuhl seminar
“Rigorous Methods for Smart Contracts”

October 25, 2021

mailto:dedis@epfl.ch
https://dedis.epfl.ch/

Talk Outline

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model

Alice 5 BTC

Bob 2 BTC

Charlie 3 BTC

...

Distributed Ledgers or Blockchains

Problem: we don't want to trust any designated,
centralized authority to maintain the ledger

Solution: “everyone” keeps a copy of the ledger!
– Everyone checks everyone else's changes to it

Alice 5 BTC

Bob 2 BTC

Charlie 3 BTC

...

Alice's copy
Alice 5 BTC

Bob 2 BTC

Charlie 3 BTC

...

Bob's copy

Alice 5 BTC

Bob 2 BTC

Charlie 3 BTC

...

Charlie's copy

Applications of Distributed Ledgers

Can represent a distributed electronic record of:
● Who owns how much currency? (Bitcoin)
● Who owns a name or a digital work of art?
● What are the terms of a contract? (Ethereum)
● When was a document written? (notaries)
● What is the provenance of a part? (supply chain)
● Who are you? (self-sovereign identity)
● Who used data for what purpose? (access logs)
● …

https://bitcoin.org/
https://namecoin.org/
https://www.digitalcatapultcentre.org.uk/art-and-the-blockchain/
https://www.ethereum.org/
https://www.cryptocoinsnews.com/crypto-public-notary-uses-bitcoin-block-chain-notarize-digital-content/

Consensus for Ledgers

Key considerations and often-desired goals
● Security against adversarial network, nodes
● Commitment finality
● Commitment latency
● Scalability to high transaction load
● Scalability to many participants
● Bandwidth, computation, power efficiency
● Open “permissionless” participation
● Equitable, “fair” distribution of power/rewards

Talk Outline

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model

there was Paxos

Paxos (Leslie Lamport)

Ubiquitous, practical for small consensus groups
● Assumes well-defined group (“permissioned”)
● Not robust to adversarial nodes or networks

Robustness to adversarial nodes

Practical Byzantine Fault Tolerance (PBFT)
● Tolerates <1/3 adversarial group members
● Reasonably practical for small groups
● Leader-driven: vulnerable to DoS attacks

Open “Permissionless” Consensus

Bitcoin’s consensus - groundbreaking in 2 ways:
● Allow “anyone” to participate via proof of work
● Scalable to thousands of participants, not 3-10

Bitcoin’s openness had many costs

● Transaction delay
– Any transaction takes ~10 mins minimum in Bitcoin

● Weak consistency/finality:
– You’re not really certain your

transaction is committed until
you wait ~1 hour or more

● Low throughput:
– Bitcoin: ~7 transactions/second

● Proof-of-work mining:
– Enormous energy wasted in useless arms race

Talk Outline

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model

Scaling Blockchains is Not Easy

Many Approaches to Scaling

Scalable BFT

Horizontal Sharding

Sidechains

Payment Networks

L

share window of size w

L

keyblock (co-signed)

microblock (co-signed)

share

miner (co-signer)

leader

Keyblocks

Microblocks

Miners

Transactions

Shard 1
Shard 2

Shard 3

ByzCoin: scaling PBFT to open systems
Use PoW to pick rotating groups [USENIX Security ‘16]

● Permanent transaction commitment in seconds

● 700+ TPS demonstrated (100x Bitcoin, ~PayPal)

Closely-related: Hybrid Consensus by Pass/Shi

1 2 3

1 2 3 4 5

...

5-10 sec

Bitcoin
Cothority

Miner
Witnesses

Key-Block

Micro-Block

depends on

6

Co-Signature

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias

ByzCoin Consensus Windows

Keeps Bitcoin’s proof-of-work (PoW), but mining
yields temporary membership share in a
gradually-rotating consensus group

Why PBFT Doesn’t Readily Scale

Three phase: pre-prepare, prepare, commit

In prepare & commit, leader must get at least
two-thirds of all participants to “sign-off”
● Nodes sign-off via broadcast: O(N2)

PBFT with Collective Signing (CoSi)

Builds on CoSi, presented in [IEEE S&P ‘16]

ByzCoin runs collective signing (CoSi) rounds
to implement PBFT prepare, commit phases
● Efficient tree-structured communication
● Sign-offs compressed into 1 signature

Reduce round cost from O(N2) to ~O(N)

Announce Commit Challenge Response

http://dedis.cs.yale.edu/dissent/papers/witness-abs

ByzCoin transaction throughput

~100x improvement for similar block size
● higher throughput than PayPal
● scales to >1000 consensus peers

Excess redundancy in blockchains

Miners redundantly replicate all consensus effort
in today’s open blockchains like Bitcoin, Ethereum
● Storage: each stores a complete copy forever
● Processing: each re-executes all contracts
● Cost: transaction fees pay for everyone’s work

– So Bitcoin/Ethereum transactions are expensive

Capacity doesn’t “scale out” as participation grows

Horizontal Scaling via Sharding

OmniLedger: A Secure Scale-Out Ledger [S&P 18]
● Break large collective into smaller random subgroups
● Builds on scalable bias-resistant randomness protocol

(IEEE S&P 2017)
● Commit transactions cross-shard w/ 2-phase protocol

Transactions

Shard 1
Shard 2

Shard 3

https://eprint.iacr.org/2017/406.pdf
https://www.ieee-security.org/TC/SP2018/
https://eprint.iacr.org/2016/1067

OmniLedger Throughput

Wide range of performance/security settings

Two interesting sub-problems

● How to get secure public randomness?
– For sharding or many consensus algorithms

● How to follow a blockchain efficiently?
– Without requiring active gossip, even offline

Subproblem: public randomness

Vietnam War Lotteries (1969)

https://www.nytimes.com/interactive/2018/05/03/magazine/money-issue-iowa-lottery-fraud-mystery.html

RandHound/RandHerd

“Scalable Bias-Resistant Distributed
Randomness” [IEEE Security & Privacy ‘17]
● Standard t-of-n

threshold model
● Efficient, scales to

thousands of parties
● Compatible with

ByzCoin, OmniLedger
blockchains

(c,r)

collective
randomness

CLCL

TSS group 1 TSS group 2

TSS group 0

GLGLGLGL

(c,r0)

(c,r1) (c,r2)

https://www.ieee-security.org/TC/SP2017/

The League of Entropy

Public randomness beacon based on RandHerd
● Launched by EFPL-DEDIS, Cloudflare,

Kudelski, University of Chile, Protocol Labs
● Simplifications, BLS instead of Schnorr signing

https://www.cloudflare.com/leagueofentropy/
https://www.cloudflare.com/leagueofentropy/

Subproblem: following a ledger

How does a (lightweight) client securely know
what has (or hasn’t) been committed to ledger?
● Contract/payment status, certificate validity, …
● PBFT: ask a 2/3 quorum of consensus nodes
● PoW: actively gossip at least block headers
● Bandwidth, latency, power, and safety costs

Can we follow a ledger without communication?

Secure offline blockchain verification

Collectively-signed SkipChains [CHAINIAC]
● Efficiently-verifiable cryptographic traversal

both forwards and backwards in time

Disconnected
verification of
software
updates,
credentials,
certificates,
…

Time

Backward hash links, embedded in blocks at commit time

Collectively signed forward links, added later once target exists

B3

B2

B1

F1

F2

F3

Level

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin

Talk Outline

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model

Resilience to Adversarial Networks

Most practical consensus today is leader-based
● Relies on synchrony assumptions and timeouts
● Paxos, Raft, PBFT, HotStuff, …

But a leader can be slow or a DoS attack target
● Slow everything to just below timeout threshold
● DoS attacks focused on current leader:

Resilience to performance attacks is hard!

Asynchronous Consensus

Wouldn’t it be nice if consensus
● Always proceeded as quickly as network

conditions permit, however fast that is?
● Was (provably) immune to any slowdown of

any (arbitrary) minority of participants?

That’s what asynchronous consensus achieves…
● (in principle)

Practical asynchronous consensus?

Most asynchronous consensus protocols are
complex, slow, many layers, rarely implemented
● Often build multi-valued Byzantine consensus

atop n instances of binary Byzantine consensus
● Examples: CKPS ‘01, HoneyBadgerBFT

What is time, or a clock, anyway?

Tell the time Wake you up

Clocks in distributed systems

Real-time systems define fixed event schedules
based on real (wall-clock) time and deadlines.

Clocks in distributed systems

General-purpose distributed systems, however,
we often prefer to be self-timed.
● Should progress as quickly as conditions permit
● Typically, as network packet delivery permits

We typically have
some control over
the nodes
but not over
the network.

Logical clocks in self-timed systems

Represent logical, not wall-clock, notions of time

● How many logical events have passed?

● Under what conditions should the next start?

Examples:

● Lamport clocks, vector clocks, matrix clocks

● Van Jacobsen congestion control for TCP

Lamport clocks only “tell time”

Global event counters approximate causal history

[credit: Paul Krzyzanowski, Rutgers]

https://www.cs.rutgers.edu/~pxk/rutgers/notes/clocks/index.html

Threshold Logical Clocks (TLC)

Like Lamport clocks, global integer metric of time

Unlike Lamport clocks, also offer pacing or “alarm”

Simulate lock-step synchrony atop async network

Que Sera Consensus (QSC)

Goal: make asynchronous consensus practical
● Not too complex, not too much overhead

Key idea: decompose safety & liveness problems
● Consensus layer: ensures safety (consistency),

atop a simple synchronous network abstraction
● Clocking layer: ensures liveness (progress)

through threshold asynchronous coordination

Consensus Layer (QSC)

Clocking Layer (TLC)

A Lock-Step Network Abstraction

QSC assumes a syncast network primitive:

(received, delivered) ← syncast(message)

Each syncast operation:
● Takes exactly one logical time-step (s=1, 2, 3…)
● Tries to send message to other group members
● received: some subset of messages sent in step
● delivered: some subset all members received

deliveredi ⊆ receivedj, and |deliveredi| >= threshold

QSC Algorithm Summary

H0 ← genesis block

for time-step s = 1, 2, 3, … do:
– Ps ← (proposed_block(), random_int(), hash(Hs-1))
– (E, D) ← syncast(Ps)
– (C, U) ← syncast(any best proposal in set D)
– Hs ← any best proposal in set C
– If Hs is in U and is uniquely best in E, commit

That’s it!

How QSC works, in brief

Each node has a tentative chain head (like BitCoin)
● Each time-step, add 1 block with random priority
● Call syncast twice to produce 3 proposal sets:

– Existent (E): proposed chains known to exist
– Common (C): chains that all nodes know to exist
– Universal (U): chains all nodes know are common

● Choose any highest-priority common (C) chain
Hs to build on in next time-step s+1

● Commit when all nodes can only choose Hs

Byzantine QSC

To tolerate Byzantine nodes, must ensure:
● Hide honest nodes’ priorities until end of round

– Achievable with Shamir secret sharing

● All nodes must choose random priorities fairly
– Enforceable via JVSS or VRFs

Result: at least 1/3 chance of commit each round
● Even with adversarial message scheduling

Consensus Layer (QSC)

Clocking Layer (TLC)

Implementing syncast abstraction

Simple scatter/gather approach with threshold t:

1.Scatter: distribute at least t nodes’ messages
to at least t nodes each

2.Gather: collect fully-scattered messages
from at least t nodes

All fully-scattered messages reach all nodes
if/when they successfully complete the time-step

• Provided t ensures quorum overlap property

Implementing syncast abstraction

procedure syncast(m):

1. Send [echo, s, m] by signed echo broadcast
• Receivers sign & record m in their acked (A) set

2. sigs ← wait for threshold t of signatures on m

3. send [done, s, m, sigs] by normal broadcast

4. D ← wait for first t [done, s, m, sigs] messages

5. R ← union of t nodes’ acked (A) sets

6. Return (R, D)

For more detailed information

Older (slightly different) formulations:
● Threshold Logical Clocks for Asynchronous

Distributed Coordination and Consensus
– https://arxiv.org/abs/1907.07010

● Que Sera Consensus: Simple Asynchronous
Agreement with Private Coins and Threshold
Logical Clocks
– https://arxiv.org/abs/2003.02291

https://arxiv.org/abs/1907.07010
https://arxiv.org/abs/2003.02291

Talk Outline

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model

Any human organization need a way to decide:
● Who holds a stake in decision-making
● How much

influence each
stakeholder
wields

● How decisions
are a actually
agreed on:
consensus

Without stake & consensus, organizations fail

Membership, Stake, and Influence

Alternative Foundations for Stake

Permissioned: prove you’re in a meatspace club

Proof-of-Work: prove you’re wasting energy

Proof-of-Stake: prove you’re already rich

Proof-of-Storage: prove you have a big disk

Proof-of-*: prove you have a lot of *’s

Proof-of-Personhood: prove you’re a real person

[credit: me.me]

https://me.me/market?meme_id=9156534

Membership in Blockchain Systems

Any organization must have a way to define:
● Who are the members involved in decisions?
● How much power does each member wield?

Example: how does Bitcoin define membership?
● Permissionless: open to anyone, in principle…
● But only if you constantly expend useless effort

just to prove you did it.
– Much like a hazing ritual for fraternity membership!

Equity in decentralized systems

Today’s open blockchains are investment-based
● Proof-of-work: prove you wasted lots of energy
● Proof-of-storage: prove you bought big disks
● Proof-of-stake: prove you bought existing coin

None satisfy democratic fairness or inclusiveness
● More money buys more votes in consensus
● Most people can’t compete with big investment

Environmental Costs

Proof-of-work = “scorched-earth” blockchains
● Bitcoin makes BTC scarce by making miners

prove they wasted energy
● Serves no purpose except to prove they did it
●

Alternative: Proof-of-Stake (PoS)

● Proof-of-Stake: assigns consensus shares in
proportion to prior capital investment
– Could address energy waste problem
– Many nontrivial design challenges

● Securing proof-of-stake
is a nontrivial, interesting,
but mostly-solved problem
– e.g., Orobouros, Algorand
– Also implementable with

CoSi + SkipChains +
OmniLedger + RandHound

Key Challenges with Proof-of-Stake

Implementing proof-of-stake securely requires:
● Agreement on current set of stake-holders

– e.g., list of public keys with number of “shares” each

● Randomness to sample future “minters” or
consensus group members securely & fairly

● Verifiability of current state of the system
– allow parties to distinguish the “one true blockchain”

& avoid “nothing-at-stake” problem (chain mining)

All these tools are available as modules in
ByzCoin, RandHerd, Chainiac, OmniLedger

Modular Proof-of-Stake

Assume we have a ByzCoin-like consensus group
● Use PBFT to agree on transactions and stake

– List of stakeholders, # shares each, their validators

● After epoch, RandHound-sample next group
– Old group collectively signs new, forms SkipChain

Epoch 1 blocks, transactions

Consensus Group 1

Epoch 2 blocks, transactions

Consensus Group 2

ID

Stakeholder
Database
Stake Validator

ID Stake Validator
… … …

CoSi

public
RandHound

sampling

Is Proof-of-Stake What We Want?

A Proof-of-Stake cryptocurrency is essentially an
automated analog of a shareholder corporation.
● May help hasten the takeover of automation,

but won’t fix the world.

It’s all just “Proof-of-Investment”

Proof-of-Work, Proof-of-Stake, Proof-of-* are all
Proof-of-Investment, aka investment capitalism.
● The more * you invest, the greater your reward.

All prone to re-centralization, aka rich get richer
● Larger stakeholders always in a better position

to exploit economies of scale – or just cheat –
to further increase their percentage of the pie.

Proof-of-stake won’t keep systems decentralized!
● At best they can reduce rate of recentralization

Long-Term Decentralization?

Can we build decentralized systems that will
reliably stay decentralized over the long haul?
● Inclusive: allow “permissionless” participation

by everyone in practice, not just in theory
– Including developing world, homeless, refugees

● Sustainable: Ensure future generations will
have the same opportunities that we do today
– Regardless whether their grandparents were lucky

● Empowering: Provide opportunities for all
while limiting vulnerability to abuse of power

Toward People-Centric Blockchains

Can we build decentralized technology that will
● Securely stay open and widely decentralized?
● Offer a fairness metric meaningful to people?
● Be accountable to users rather than wealth?

“We must act to ensure that
technology is designed and
developed to serve humankind,
and not the other way around”

- Tim Cook, Oct 24, 2018

https://www.computerworld.com/article/3315623/security/complete-transcript-video-of-apple-ceo-tim-cooks-eu-privacy-speech.html

Person-Centric Decentralization

 Proof-of-Personhood [IEEE S&B ‘17]
● Proof-of-Stake but one stake unit per person

https://www.zerobyte.io/publications/2017-BKJGGF-pop.pdf
http://prosecco.gforge.inria.fr/ieee-blockchain2016/

Some Proof-of-Personhood Projects

Can we achieve “one person, one vote” online?
● Pseudonym Parties [Ford, 2008]
● Proof-of-Personhood [Borge et al, 2017]
● Encointer [Brenzikofer, 2018]
● BrightID [Sanders, 2018]
● Duniter [2018]
● Idena [2019]
● HumanityDAO [Rich, 2019]
● Pseudonym Pairs [Nygren, 2019]

https://bford.info/pub/net/sybil-abs/
https://bford.info/pub/dec/pop-abs/
https://encointer.org/
https://medium.com/giveth/brightid-anonymous-unique-ids-for-real-people-d45f70334ae9
https://duniter.org/en/deep-dive-into-the-web-of-trust/
https://medium.com/idena/ai-resistant-captchas-are-they-really-possible-760ac5065bae
https://medium.com/marbleorg/introducing-humanity-90ddf9ead235
https://panarchy.app/PseudonymPairs.pdf

Proof-of-Personhood: Approaches

● Legacy Identities (e.g., government-issued)
– Require costly ID-checking, not that hard to fake

● Global Biometric Databases (India, UNHCR)
– Huge privacy issues, false positives+negatives

● Trust Networks (PGP “Web of Trust” model)
– Unusable in practice, doesn’t address Sybil attacks

● Pseudonym Parties [SocialNets ‘08]
– Requires in-person participation, physical security
– Low-cost: verifies only personhood, not ID or trust

http://bford.info/pub/net/sybil.pdf

Pseudonym Parties: Summary

Locally-organized regular physical meetings
● Anyone can enter a space until a set deadline
● Then can only exit, each getting one credential

No need for IDs, biometrics, PGP key-signing, etc
● Just bodies: can be in only one place at a time

Pseudonym
Party Room

1. 2.
Pseudonym
Party Room

Proof-of-Personhood Consensus

Similar to Proof-of-Stake in technical challenges
● Many similar solutions apply in principle

Modular Proof-of-Personhood consensus
● PoP parties publish PoP token list each epoch
● Holders define servers for sampling committees

Epoch 1 blocks, transactions

Consensus Group 1

Epoch 2 blocks, transactions

Consensus Group 2

ID

Stakeholder
Database
Stake Validator

ID Stake Validator
… … …

CoSi

public
RandHound

sampling

Regular Synchronized Events

Federation of PoP groups might hold concurrent
events with simultaneous arrival deadlines
● No one can physically attend two at once

Proof-of-Personhood: Applications

A few promising applications:
● Democratic decentralized governance
● Cryptocurrency universal basic income (UBI)
● Replacement for CAPTCHAs
● Sockpuppet-resistant crowdsourcing
● Accountable anonymity & pseudonymity
● Decentralized single sign-on as “a person”

A Crypto Universal Basic Income?

Available on “opt-in” basis to everyone,
not just in particular jurisdictions

Talk Outline

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model

Consensus for Smart Contracts

Smart contract systems need consensus to agree on
what was computed by an executed contract
● Execution typically must be deterministic

– Disagreement in execution → consensus failures

● Deterministic VMs usually constrained, slow
– Ethereum VM (EVM): complex user-defined

computation, e.g., cryptography, mostly impractical
– Bad solution: add special-purpose crypto opcodes to

optimize common cases, one hard fork at a time

Can we have a deterministic VM that’s also fast?

A few options

Exploration & development work in progress:
● High-level: deterministic language sandbox

– e.g., early prototype restriction of Go language

● Mid-level: leverage a mature bytecode or IR
– e.g., restriction of Java bytecode or LLVM IR

● Low-level: build on a “flat-model” architecture
– e.g., x86, ARM, or WASM instruction set

Interesting tradeoffs & challenges in each: e.g., FP

Conclusion

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model

	Slide 1
	Slide 3
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 45
	Slide 46
	Slide 48
	Slide 60
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 73
	Slide 79
	Slide 80
	Slide 81
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 100
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 118
	Slide 124
	Slide 125
	Slide 127
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 144
	Slide 145
	Slide 146
	Slide 153
	Slide 154
	Slide 155
	Slide 169
	Slide 171
	Slide 182
	Slide 183
	Slide 184
	Slide 185

