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Talk Outline

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model



  

Alice 5 BTC

Bob 2 BTC

Charlie 3 BTC

...

Distributed Ledgers or Blockchains

Problem: we don't want to trust any designated,
centralized authority to maintain the ledger

Solution: “everyone” keeps a copy of the ledger!
– Everyone checks everyone else's changes to it

Alice 5 BTC

Bob 2 BTC

Charlie 3 BTC

...

Alice's copy
Alice 5 BTC

Bob 2 BTC

Charlie 3 BTC

...

Bob's copy

Alice 5 BTC

Bob 2 BTC

Charlie 3 BTC

...

Charlie's copy



  

Applications of Distributed Ledgers

Can represent a distributed electronic record of:
● Who owns how much currency? (Bitcoin)
● Who owns a name or a digital work of art?
● What are the terms of a contract? (Ethereum)
● When was a document written? (notaries)
● What is the provenance of a part? (supply chain)
● Who are you? (self-sovereign identity)
● Who used data for what purpose? (access logs)
● …

https://bitcoin.org/
https://namecoin.org/
https://www.digitalcatapultcentre.org.uk/art-and-the-blockchain/
https://www.ethereum.org/
https://www.cryptocoinsnews.com/crypto-public-notary-uses-bitcoin-block-chain-notarize-digital-content/


  

Consensus for Ledgers

Key considerations and often-desired goals
● Security against adversarial network, nodes
● Commitment finality
● Commitment latency
● Scalability to high transaction load
● Scalability to many participants
● Bandwidth, computation, power efficiency
● Open “permissionless” participation
● Equitable, “fair” distribution of power/rewards
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Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
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● Participation basis: investment or personhood?
● Smart contract execution, programming model



  

there was Paxos



  

Paxos (Leslie Lamport)

Ubiquitous, practical for small consensus groups
● Assumes well-defined group (“permissioned”)
● Not robust to adversarial nodes or networks



  

Robustness to adversarial nodes

Practical Byzantine Fault Tolerance (PBFT)
● Tolerates <1/3 adversarial group members
● Reasonably practical for small groups
● Leader-driven: vulnerable to DoS attacks



  

Open “Permissionless” Consensus

Bitcoin’s consensus - groundbreaking in 2 ways:
● Allow “anyone” to participate via proof of work
● Scalable to thousands of participants, not 3-10



  

Bitcoin’s openness had many costs

● Transaction delay
– Any transaction takes ~10 mins minimum in Bitcoin

● Weak consistency/finality: 
– You’re not really certain your

transaction is committed until
you wait ~1 hour or more

● Low throughput:
– Bitcoin: ~7 transactions/second

● Proof-of-work mining:
– Enormous energy wasted in useless arms race
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Scaling Blockchains is Not Easy



  

Many Approaches to Scaling

Scalable BFT

Horizontal Sharding

Sidechains

Payment Networks

L

share window of size w

L

keyblock (co-signed)

microblock (co-signed)

share

miner (co-signer)

leader

Keyblocks

Microblocks

Miners

Transactions

Shard 1
Shard 2

Shard 3



ByzCoin: scaling PBFT to open systems
Use PoW to pick rotating groups  [USENIX Security ‘16]

● Permanent transaction commitment in seconds

● 700+ TPS demonstrated (100x Bitcoin, ~PayPal)

Closely-related: Hybrid Consensus by Pass/Shi

1 2 3

1 2 3 4 5

...

5-10 sec

Bitcoin
Cothority

Miner 
Witnesses

Key-Block

Micro-Block

depends on

6

Co-Signature

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias


  

ByzCoin Consensus Windows

Keeps Bitcoin’s proof-of-work (PoW), but mining 
yields temporary membership share in a 
gradually-rotating consensus group



  

Why PBFT Doesn’t Readily Scale

Three phase: pre-prepare, prepare, commit

In prepare & commit, leader must get at least
two-thirds of all participants to “sign-off”
● Nodes sign-off via broadcast: O(N2)



  

PBFT with Collective Signing (CoSi)

Builds on CoSi, presented in [IEEE S&P ‘16]

ByzCoin runs collective signing (CoSi) rounds
to implement PBFT prepare, commit phases
● Efficient tree-structured communication
● Sign-offs compressed into 1 signature

Reduce round cost from O(N2) to ~O(N)

Announce Commit Challenge Response

http://dedis.cs.yale.edu/dissent/papers/witness-abs


  

ByzCoin transaction throughput

~100x improvement for similar block size
● higher throughput than PayPal
● scales to >1000 consensus peers



  

Excess redundancy in blockchains

Miners redundantly replicate all consensus effort
in today’s open blockchains like Bitcoin, Ethereum
● Storage: each stores a complete copy forever
● Processing: each re-executes all contracts
● Cost: transaction fees pay for everyone’s work

– So Bitcoin/Ethereum transactions are expensive

Capacity doesn’t “scale out” as participation grows



  

Horizontal Scaling via Sharding

OmniLedger: A Secure Scale-Out Ledger [S&P 18]
● Break large collective into smaller random subgroups
● Builds on scalable bias-resistant randomness protocol 

(IEEE S&P 2017)
● Commit transactions cross-shard w/ 2-phase protocol

Transactions

Shard 1
Shard 2

Shard 3

https://eprint.iacr.org/2017/406.pdf
https://www.ieee-security.org/TC/SP2018/
https://eprint.iacr.org/2016/1067


  

OmniLedger Throughput

Wide range of performance/security settings



  

Two interesting sub-problems

● How to get secure public randomness?
– For sharding or many consensus algorithms

● How to follow a blockchain efficiently?
– Without requiring active gossip, even offline



  

Subproblem: public randomness

Vietnam War Lotteries (1969)

https://www.nytimes.com/interactive/2018/05/03/magazine/money-issue-iowa-lottery-fraud-mystery.html


  

RandHound/RandHerd

“Scalable Bias-Resistant Distributed 
Randomness” [IEEE Security & Privacy ‘17]
● Standard t-of-n 

threshold model
● Efficient, scales to

thousands of parties
● Compatible with

ByzCoin, OmniLedger
blockchains

(c,r)

collective 
randomness

CLCL

TSS group 1 TSS group 2

TSS group 0

GLGLGLGL

(c,r0)

(c,r1) (c,r2)

https://www.ieee-security.org/TC/SP2017/


  

The League of Entropy

Public randomness beacon based on RandHerd
● Launched by EFPL-DEDIS, Cloudflare, 

Kudelski, University of Chile, Protocol Labs
● Simplifications, BLS instead of Schnorr signing

https://www.cloudflare.com/leagueofentropy/
https://www.cloudflare.com/leagueofentropy/


  

Subproblem: following a ledger

How does a (lightweight) client securely know 
what has (or hasn’t) been committed to ledger?
● Contract/payment status, certificate validity, …
● PBFT: ask a 2/3 quorum of consensus nodes
● PoW: actively gossip at least block headers
● Bandwidth, latency, power, and safety costs

Can we follow a ledger without communication?



  

Secure offline blockchain verification

Collectively-signed SkipChains [CHAINIAC]
● Efficiently-verifiable cryptographic traversal

both forwards and backwards in time

Disconnected
verification of
software
updates,
credentials,
certificates,
… 

Time

Backward hash links, embedded in blocks at commit time

Collectively signed forward links, added later once target exists

B3

B2

B1

F1

F2

F3

Level

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
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Resilience to Adversarial Networks

Most practical consensus today is leader-based
● Relies on synchrony assumptions and timeouts
● Paxos, Raft, PBFT, HotStuff, …

But a leader can be slow or a DoS attack target
● Slow everything to just below timeout threshold
● DoS attacks focused on current leader: 

Resilience to performance attacks is hard!



  

Asynchronous Consensus

Wouldn’t it be nice if consensus
● Always proceeded as quickly as network 

conditions permit, however fast that is?
● Was (provably) immune to any slowdown of

any (arbitrary) minority of participants?

That’s what asynchronous consensus achieves…
● (in principle)



  

Practical asynchronous consensus?

Most asynchronous consensus protocols are 
complex, slow, many layers, rarely implemented
● Often build multi-valued Byzantine consensus

atop n instances of binary Byzantine consensus
● Examples: CKPS ‘01, HoneyBadgerBFT



  

What is time, or a clock, anyway?

Tell the time Wake you up



  

Clocks in distributed systems

Real-time systems define fixed event schedules 
based on real (wall-clock) time and deadlines.



  

Clocks in distributed systems

General-purpose distributed systems, however,
we often prefer to be self-timed.
● Should progress as quickly as conditions permit
● Typically, as network packet delivery permits

We typically have
some control over
the nodes
but not over
the network.



  

Logical clocks in self-timed systems

Represent logical, not wall-clock, notions of time

● How many logical events have passed?

● Under what conditions should the next start?

Examples:

● Lamport clocks, vector clocks, matrix clocks

● Van Jacobsen congestion control for TCP



  

Lamport clocks only “tell time”

Global event counters approximate causal history

[credit: Paul Krzyzanowski, Rutgers]

https://www.cs.rutgers.edu/~pxk/rutgers/notes/clocks/index.html


  

Threshold Logical Clocks (TLC)

Like Lamport clocks, global integer metric of time

Unlike Lamport clocks, also offer pacing or “alarm”

Simulate lock-step synchrony atop async network



  

Que Sera Consensus (QSC)

Goal: make asynchronous consensus practical
● Not too complex, not too much overhead

Key idea: decompose safety & liveness problems
● Consensus layer: ensures safety (consistency),

atop a simple synchronous network abstraction
● Clocking layer: ensures liveness (progress)

through threshold asynchronous coordination



  

Consensus Layer (QSC)

Clocking Layer (TLC)



  

A Lock-Step Network Abstraction

QSC assumes a syncast network primitive:

(received, delivered) ← syncast(message)

Each syncast operation:
● Takes exactly one logical time-step (s=1, 2, 3…)
● Tries to send message to other group members
● received: some subset of messages sent in step
● delivered: some subset all members received

deliveredi  ⊆ receivedj, and |deliveredi| >= threshold



  

QSC Algorithm Summary

H0 ← genesis block

for time-step s = 1, 2, 3, … do:
– Ps ← (proposed_block(), random_int(), hash(Hs-1))
– (E, D) ← syncast(Ps) 
– (C, U) ← syncast(any best proposal in set D)
– Hs ← any best proposal in set C
– If Hs is in U and is uniquely best in E, commit

That’s it!



  

How QSC works, in brief

Each node has a tentative chain head (like BitCoin)
● Each time-step, add 1 block with random priority
● Call syncast twice to produce 3 proposal sets:

– Existent (E): proposed chains known to exist
– Common (C): chains that all nodes know to exist
– Universal (U): chains all nodes know are common

● Choose any highest-priority common (C) chain 
Hs to build on in next time-step s+1

● Commit when all nodes can only choose Hs



  

Byzantine QSC

To tolerate Byzantine nodes, must ensure:
● Hide honest nodes’ priorities until end of round

– Achievable with Shamir secret sharing

● All nodes must choose random priorities fairly
– Enforceable via JVSS or VRFs

Result: at least 1/3 chance of commit each round
● Even with adversarial message scheduling



  

Consensus Layer (QSC)

Clocking Layer (TLC)



  

Implementing syncast abstraction

Simple scatter/gather approach with threshold t:

1.Scatter: distribute at least t nodes’ messages
to at least t nodes each

2.Gather: collect fully-scattered messages
from at least t nodes

All fully-scattered messages reach all nodes
if/when they  successfully complete the time-step

• Provided t ensures quorum overlap property



  

Implementing syncast abstraction

procedure syncast(m):

1. Send [echo, s, m] by signed echo broadcast
• Receivers sign & record m in their acked (A) set

2. sigs ← wait for threshold t of signatures on m

3. send [done, s, m, sigs] by normal broadcast

4. D ← wait for first t [done, s, m, sigs] messages

5. R ← union of t nodes’ acked (A) sets

6. Return (R, D)



  

For more detailed information

Older (slightly different) formulations:
● Threshold Logical Clocks for Asynchronous 

Distributed Coordination and Consensus
– https://arxiv.org/abs/1907.07010

● Que Sera Consensus: Simple Asynchronous 
Agreement with Private Coins and Threshold 
Logical Clocks
– https://arxiv.org/abs/2003.02291

https://arxiv.org/abs/1907.07010
https://arxiv.org/abs/2003.02291


  

Talk Outline

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model



  

Any human organization need a way to decide:
● Who holds a stake in decision-making
● How much

influence each
stakeholder
wields

● How decisions
are a actually
agreed on:
consensus

Without stake & consensus, organizations fail 

Membership, Stake, and Influence



  

Alternative Foundations for Stake

Permissioned: prove you’re in a meatspace club

Proof-of-Work: prove you’re wasting energy

Proof-of-Stake: prove you’re already rich

Proof-of-Storage: prove you have a big disk

Proof-of-*: prove you have a lot of *’s

Proof-of-Personhood: prove you’re a real person



  

[credit: me.me]

https://me.me/market?meme_id=9156534


  

Membership in Blockchain Systems

Any organization must have a way to define:
● Who are the members involved in decisions?
● How much power does each member wield?

Example: how does Bitcoin define membership?
● Permissionless: open to anyone, in principle… 
● But only if you constantly expend useless effort

just to prove you did it.
– Much like a hazing ritual for fraternity membership!



  

Equity in decentralized systems

Today’s open blockchains are investment-based
● Proof-of-work: prove you wasted lots of energy
● Proof-of-storage: prove you bought big disks
● Proof-of-stake: prove you bought existing coin

None satisfy democratic fairness or inclusiveness
● More money buys more votes in consensus
● Most people can’t compete with big investment



  

Environmental Costs

Proof-of-work = “scorched-earth” blockchains
● Bitcoin makes BTC scarce by making miners

prove they wasted energy
● Serves no purpose except to prove they did it
●



  

Alternative: Proof-of-Stake (PoS)

● Proof-of-Stake: assigns consensus shares in 
proportion to prior capital investment
–  Could address energy waste problem
–     Many nontrivial design challenges

● Securing proof-of-stake
is a nontrivial, interesting,
but mostly-solved problem
– e.g., Orobouros, Algorand
– Also implementable with

CoSi + SkipChains +
OmniLedger + RandHound



  

Key Challenges with Proof-of-Stake

Implementing proof-of-stake securely requires:
● Agreement on current set of stake-holders

– e.g., list of public keys with number of “shares” each

● Randomness to sample future “minters” or 
consensus group members securely & fairly

● Verifiability of current state of the system
– allow parties to distinguish the “one true blockchain”

& avoid “nothing-at-stake” problem (chain mining)

All these tools are available as modules in 
ByzCoin, RandHerd, Chainiac, OmniLedger



  

Modular Proof-of-Stake

Assume we have a ByzCoin-like consensus group
● Use PBFT to agree on transactions and stake

– List of stakeholders, # shares each, their validators

● After epoch, RandHound-sample next group
– Old group collectively signs new, forms SkipChain

Epoch 1 blocks, transactions

Consensus Group 1

Epoch 2 blocks, transactions

Consensus Group 2

ID

Stakeholder
Database
Stake Validator

ID Stake Validator
… … …

CoSi

public
RandHound

sampling



  

Is Proof-of-Stake What We Want?

A Proof-of-Stake cryptocurrency is essentially an 
automated analog of a shareholder corporation.
● May help hasten the takeover of automation,

but won’t fix the world.



  

It’s all just “Proof-of-Investment”

Proof-of-Work, Proof-of-Stake, Proof-of-* are all
Proof-of-Investment, aka investment capitalism.
● The more * you invest, the greater your reward.

All prone to re-centralization, aka rich get richer
● Larger stakeholders always in a better position

to exploit economies of scale – or just cheat –
to further increase their percentage of the pie.

Proof-of-stake won’t keep systems decentralized!
● At best they can reduce rate of recentralization



  

Long-Term Decentralization?

Can we build decentralized systems that will 
reliably stay decentralized over the long haul?
● Inclusive: allow “permissionless” participation 

by everyone in practice, not just in theory
– Including developing world, homeless, refugees

● Sustainable: Ensure future generations will 
have the same opportunities that we do today
– Regardless whether their grandparents were lucky

● Empowering: Provide opportunities for all 
while limiting vulnerability to abuse of power



  

Toward People-Centric Blockchains

Can we build decentralized technology that will
● Securely stay open and widely decentralized?
● Offer a fairness metric meaningful to people?
● Be accountable to users rather than wealth? 

“We must act to ensure that 
technology is designed and 
developed to serve humankind, 
and not the other way around”

- Tim Cook, Oct 24, 2018

https://www.computerworld.com/article/3315623/security/complete-transcript-video-of-apple-ceo-tim-cooks-eu-privacy-speech.html


  

Person-Centric Decentralization

 Proof-of-Personhood [IEEE S&B ‘17]
● Proof-of-Stake but one stake unit per person

https://www.zerobyte.io/publications/2017-BKJGGF-pop.pdf
http://prosecco.gforge.inria.fr/ieee-blockchain2016/


  

Some Proof-of-Personhood Projects

Can we achieve “one person, one vote” online?
● Pseudonym Parties [Ford, 2008]
● Proof-of-Personhood [Borge et al, 2017]
● Encointer [Brenzikofer, 2018]
● BrightID [Sanders, 2018]
● Duniter [2018]
● Idena [2019]
● HumanityDAO [Rich, 2019]
● Pseudonym Pairs [Nygren, 2019]

https://bford.info/pub/net/sybil-abs/
https://bford.info/pub/dec/pop-abs/
https://encointer.org/
https://medium.com/giveth/brightid-anonymous-unique-ids-for-real-people-d45f70334ae9
https://duniter.org/en/deep-dive-into-the-web-of-trust/
https://medium.com/idena/ai-resistant-captchas-are-they-really-possible-760ac5065bae
https://medium.com/marbleorg/introducing-humanity-90ddf9ead235
https://panarchy.app/PseudonymPairs.pdf


  

Proof-of-Personhood: Approaches

● Legacy Identities (e.g., government-issued)
– Require costly ID-checking, not that hard to fake

● Global Biometric Databases (India, UNHCR)
– Huge privacy issues, false positives+negatives

● Trust Networks (PGP “Web of Trust” model)
– Unusable in practice, doesn’t address Sybil attacks

● Pseudonym Parties [SocialNets ‘08]
– Requires in-person participation, physical security
– Low-cost: verifies only personhood, not ID or trust

http://bford.info/pub/net/sybil.pdf


  

Pseudonym Parties: Summary

Locally-organized regular physical meetings
● Anyone can enter a space until a set deadline
● Then can only exit, each getting one credential

No need for IDs, biometrics, PGP key-signing, etc
● Just bodies: can be in only one place at a time

Pseudonym
Party Room

1. 2.
Pseudonym
Party Room



  

Proof-of-Personhood Consensus

Similar to Proof-of-Stake in technical challenges
● Many similar solutions apply in principle

Modular Proof-of-Personhood consensus
● PoP parties publish PoP token list each epoch
● Holders define servers for sampling committees

Epoch 1 blocks, transactions

Consensus Group 1

Epoch 2 blocks, transactions

Consensus Group 2

ID

Stakeholder
Database
Stake Validator

ID Stake Validator
… … …

CoSi

public
RandHound

sampling



  

Regular Synchronized Events

Federation of PoP groups might hold concurrent 
events with simultaneous arrival deadlines
● No one can physically attend two at once



  

Proof-of-Personhood: Applications

A few promising applications:
● Democratic decentralized governance
● Cryptocurrency universal basic income (UBI)
● Replacement for CAPTCHAs
● Sockpuppet-resistant crowdsourcing
● Accountable anonymity & pseudonymity
● Decentralized single sign-on as “a person”



  

A Crypto Universal Basic Income?

Available on “opt-in” basis to everyone,
not just in particular jurisdictions
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Consensus for Smart Contracts

Smart contract systems need consensus to agree on 
what was computed by an executed contract
● Execution typically must be deterministic

– Disagreement in execution → consensus failures

● Deterministic VMs usually constrained, slow
– Ethereum VM (EVM): complex user-defined 

computation, e.g., cryptography, mostly impractical
– Bad solution: add special-purpose crypto opcodes to 

optimize common cases, one hard fork at a time

Can we have a deterministic VM that’s also fast?



  

A few options

Exploration & development work in progress:
● High-level: deterministic language sandbox

– e.g., early prototype restriction of Go language

● Mid-level: leverage a mature bytecode or IR
– e.g., restriction of Java bytecode or LLVM IR

● Low-level: build on a “flat-model” architecture
– e.g., x86, ARM, or WASM instruction set

Interesting tradeoffs & challenges in each: e.g., FP



  

Conclusion

Some blockchain consensus challenges and work
● Classic (permissioned) versus permissionless
● Latency and throughput scalability
● Practical asynchronous consensus
● Participation basis: investment or personhood?
● Smart contract execution, programming model
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