

Distributed RandomnessDistributed Randomness

Prof. Bryan Ford
Decentralized and Distributed Systems (DEDIS)
School of Information and Communications (IC)

dedis@epfl.ch – dedis.epfl.ch

Nicolas Gailly
Protocol Labs

IC3 Blockchain Camp – July 30, 2020

Prof. Bryan Ford
Decentralized and Distributed Systems (DEDIS)
School of Information and Communications (IC)

dedis@epfl.ch – dedis.epfl.ch

Nicolas Gailly
Protocol Labs

IC3 Blockchain Camp – July 30, 2020

mailto:dedis@epfl.ch
https://dedis.epfl.ch/
mailto:dedis@epfl.ch
https://dedis.epfl.ch/

A Fundamental Challenge

In today’s IT systems, security is an afterthought
● Designs embody “weakest-link” security

Scaling to bigger systems → weaker security
● Greater chance of any “weak link” breaking

The DEDIS lab at EPFL: Mission

Design, build, and deploy secure privacy-preserving
Decentralized and Distributed Systems (DEDIS)

• Distributed: spread widely across the Internet & world

• Decentralized: independent participants, no central authority,
no single points of failure or compromise

Overarching theme: building decentralized systems
that distribute trust widely with strongest-link security

Weakest-Link
Security

Strongest-Link
Security

Turning Around the Security Game

Design IT systems so that making them bigger
makes their security increase instead of decrease

Weakest-link
security

Strongest-link
security

Scalable
Strongest-link

security

DEDIS Laboratory Members

Bryan Ford
Associate Professor

Kirill Nikitin
Ph.D. Student

Cristina Basescu
Ph.D. Student

Enis Ceyhun Alp
Ph.D. Student

Jeff R. Allen
Laboratory Manager

Gaylor Bosson
Software Engineer

Noémien Kocher
Software Engineer

Gaurav Narula
Software Engineer

David Lazar
Postdoctoral Scholar

Haoqian Zhang
Ph.D. Student

Pasindu Tennage
Ph.D. Student

Talk Outline

● Public Randomness: Introduction
– Challenges: Quality, Trustworthiness, Bias
– General Approaches Known

● Background: Shamir Secret Sharing
● Research protocols: RandHound, RandHerd
● Deployment: The League of Entropy (drand)

Talk Outline

● Public Randomness: Introduction
– Challenges: Quality, Trustworthiness, Bias
– General Approaches Known

● Background: Shamir Secret Sharing
● Research protocols: RandHound, RandHerd
● Deployment: The League of Entropy (drand)

Problem: secure public randomness

Vietnam War Lotteries (1969)

https://www.nytimes.com/interactive/2018/05/03/magazine/money-issue-iowa-lottery-fraud-mystery.html

Some uses of public randomness

We need fair and unbiased “coins” for many purposes

● Choose a lottery winner fairly and transparently

● Fair sampling: e.g., risk-limiting audits of elections

● Pick representative quorums from large pools
– e.g., for secure blockchain sharding (e.g., OmniLedger)

● Divide large user network into
smaller random anonymity sets
– e.g., Herbivore [Goel/Sirir '04]

● Proof-of-Stake blockchains

● …

Randomness: what can go wrong?

Some of the common failure modes:
● Mixing up public with private randomness
● Low-quality or low-entropy generators
● Trustworthiness: do you trust who flips coins?
● Bias: even if it’s random, is it uniform?

[Credit:
Mike
Izbicki]

https://izbicki.me/blog/how-to-create-an-unfair-coin-and-prove-it-with-math.html

Random Related Randomness

Some existing approaches:

● Random oracles: Cachin et al, PODC 2000

● Quorum-building: King et al, ICDCN 2011

● Slow hashes: Lenstra/Wesolowski, 2015

● Via PoW blockchains: Bonneau et al, …

This talk’s focus: protocols that
preserve simple t-of-n threshold model

● Permissioned systems (e.g., drand/LoE)

● PoW/PoS with elected groups (e.g., ByzCoin)

Talk Outline

● Public Randomness: Introduction
– Challenges: Quality, Trustworthiness, Bias
– General Approaches Known

● Background: Shamir Secret Sharing
● Research protocols: RandHound, RandHerd
● Deployment: The League of Entropy (drand)

Shamir Secret Sharing

The foundation of much threshold cryptography
● Threshold encryption, threshold signing, MPC
● Decades old, but little-used in blockchains

Shamir Secret Sharing

Basics: “deal” a secret to a threshold t of n parties
● Any t parties can cooperatively recover or use it
● If <t parties compromised, leaks no information!

Secret Sharing: Illustration

Suppose you’re a pirate & bury your treasure…

X

https://medium.com/clavestone/bitcoin-multisig-vs-shamirs-secret-sharing-scheme-ea83a888f033

Keeping the Location Secret

You have 3 henchmen who you want to send back
for it later, but you don’t trust any one completely

Secret Sharing: Illustration

You mark the spot between two reference points

XSecret!

Secret Sharing: Illustration

Then draw three parallel reference lines…

XSecret!

Secret Sharing: Illustration

…and another line intersecting all four…

XSecret!

Secret Sharing: Illustration

The intersection points are the secret shares...

XSecret!

X XX

Secret
Shares

Secret Sharing: Illustration

You give one of these shares to each henchman

XSecret!

X XX

Secret
Shares

Threshold Secret Sharing

Now suppose your henchmen come back later to
recover the treasure…
● Any one henchman won’t know how to find it
● Any two henchmen together will be able to!

You get both threshold privacy of the secret…
● No single compromised party can recover it

You also get threshold availability of the secret
● Can still recover if one henchman goes missing

Secret Sharing: Illustration

One henchman alone can’t recover secret

XSecret!

X
???

Secret Sharing: Illustration

…but any two working together can!

XSecret!

X
X

Secret Sharing: Illustration

…but any two working together can!

XSecret!

X
X

Supporting arbitrary thresholds

Just use higher-degree random polynomials
● Degree d polynomial yields threshold d+1

Example:
degree 2 (quadratic)
polynomial →

Requires 3 points
to reconstruct

Talk Outline

● Public Randomness: Introduction
– Challenges: Quality, Trustworthiness, Bias
– General Approaches Known

● Background: Shamir Secret Sharing
● Research protocols: RandHound, RandHerd
● Deployment: The League of Entropy (drand)

Threshold Randomness Protocols

Not at all new in the research community
● Cachin, “Random Oracles in Constantinople”

But secret sharing can be expensive, unscalable
● Distributed key generation (DKG) setup needed
● Typical protocols O(n2) communication cost,

O(n3) computation cost even after setup

DEDIS protocols make public randomness scale

RandHound/RandHerd

“Scalable Bias-Resistant Distributed
Randomness” [IEEE Security & Privacy ‘17]
● Standard t-of-n

threshold model
● Efficient, scales to

thousands of parties
● Compatible with

ByzCoin group election,
OmniLedger sharding

(c,r)

collective
randomness

CLCL

TSS group 1 TSS group 2

TSS group 0

GLGLGLGL

(c,r0)

(c,r1) (c,r2)

https://www.wikiwand.com/en/Shamir's_Secret_Sharing

Strawman 1: Commit-and-Reveal

1.Each of n nodes pick a random secret si,
broadcast a commit to secret, e.g., Ci = H(si)

2.“Everyone” reveals their secrets si,
 combines to form final output, e.g., s = Σi(si)

Problem: vulnerable to either DoS or bias attacks
● Require everyone to reveal → DoS attacks
● Tolerate up to f missing secrets →

attacker can choose favorite of 2f outcomes!

Strawman 2: Shamir Secret Sharing

● Each of n nodes “deals” secret si all n nodes via
t-of-n publicly verifiable secret sharing (PVSS)

● Agree (BFT) on at least t of these secret deals
● Homomorphically sum polynomials and reveal

Works, secure!
● [Cachin et al, …]

O(n2) communication,
O(n3) compute ☹

dealers generate
n shares per deal

degree t-1
polynomials

at
 le

as
t

t,
up

 to
 n

 d
ea

ls

joint
threshold

secret

Σ

The Chicken-and-Egg Problem

More scalable if we could use smaller groups…
but need randomness to sample them securely!
● Sharding needs randomness needs sharding

Addressed by RandHound, RandHerd
● RandHound: bootstrap protocol,

O(n log n) efficiency
● RandHerd: repeating beacon,

O(log n) cost/node/round

RandHound: Key Intuition

A RandHound client initiates a “scavenging” run
● Assumes initiator wants trusted randomness

→ “trusted” for liveness but not for integrity
– Initiator gets only one try to produce an output

● Initiator picks subgroups, randomly if honest
– Subgroup size is a security parameter, O(log n)
– Each subgroup runs PVSS commit-and-reveal
– Threshold of each subgroup contributes to output
– Pigeonhole principle → at least one subgroup good
– Bad initiator can’t compromise output, only self-DoS

https://www.ieee-security.org/TC/SP2017/

RandHerd: Key Intuition

Efficient decentralized randomness beacon:
stable group producing new output every few secs
● Uses PBFT-style leader

election, view changes
● Leader uses RandHound

to bootstrap a new view
– Success → good random

output forms subgroups
– Failure → view change

● Then fast/cheap rounds

(c,r)

collective
randomness

CLCL

TSS group 1 TSS group 2

TSS group 0

GLGLGLGL

(c,r0)

(c,r1) (c,r2)

RandHerd Performance, Scalability

Compared with baseline PVSS “Strawman 2”

Talk Outline

● Public Randomness: Introduction
– Challenges: Quality, Trustworthiness, Bias
– General Approaches Known

● Background: Shamir Secret Sharing
● Research protocols: RandHound, RandHerd
● Deployment: The League of Entropy (drand)

Challenges to practical system

● Distributed systems are
hard

● Randherd: View change
protocol is hard to
implement in practice

● CoSi tree is difficult to
maintain in practice in
case of failures

● Delay to reconstruct
private key via VSS

Drand: simplified randomness
generation

● Distributed key generation similar to randherd
as an initial ceremony between nodes

● Then periodical “one round” randomness
generation protocol via pairings & BLS
signatures – no leader, no tree
– Each node simply broadcasts a partial signature

 Distributed Key Generation
● Allows to distributively generate x such that

– No nodes know x, no leader
– A subset of nodes is needed to reconstruct x

● Simple DKG: each node does a VSS with the
rest then nodes adds all its shares it received.
– Share can be used to create partial BLS signature

Randomness: Pairing curves

● Special structure of curve called “pairing
friendly curves”

● The “pairing” mapping is
– e: G1 x G2 → GT
– Key property: e(g1^a, g2^b) = e(g1,g2)^ab
– Allows to solve Decisional Diffie Hellman problem !

 Randomness: BLS signature

● BLS Signature [Boneh et
al. ‘04] is a unique
signature scheme

● Private key: x, public
key: X, generator: G1,G2

● Sign: sig = H(m)^x
● Verify:

– e(H(m), X) =?= e(sig,G2)

Randomness: Threshold BLS

● A BLS private key can be secret shared !
● Creation of a BLS signature with partial

signatures
– PartialSign: H(m)^si where si is the share of node i

● Node aggregate locally the final signature
– “Aggregation” is Lagrange interpolation

partial_sig_1

partial_sig_3

partial_sig_2 BLS sig

Drand: chain of randomness

● Nodes form a unbiasable chain of randomness
– Deterministic mapping round ↔ timestamp
– At round i, broadcast

● sigi,j = PartialSign(H(sigi-1 || i-1))

– Randomness is H[sigi = LAG(any t sigi,j)]

Round i
Sig_i = sign(H(sig_i-1 || i))

Round i+1
Sig_i = sign(H(sig_i || i+1))

Drand: dynamic resharing

● Need to adapt the group of nodes over time
● Use a variation of DKG to reshare to a new set

of nodes
– The same distributed key is used but with new

shares

Resharing

Drand: the project

● Project started at DEDIS
– Based on collaboration with

DFINITY’s BLS based beacon

● Only do one job, free, open
source & no blockchain !

● Now moved to github.com/drand/
● Team working at Protocol Labs
● Software written in Go
● Curve is BLS12-381

Drand: production network

The League of Entropy

Public network of multiple individual organizations
running drand.

* https://leagueofentropy.com

More news coming soon.

 “Randomness as a Service” network:
● Similar to NTP servers, CT servers, etc

League of Entropy: Members

● Initially launched by EFPL-DEDIS, the network
has grown since !

League of Entropy: try!

DEMO:

Conclusion

Threshold public randomness provides secure,
unpredictable, unbiased, uniform coin flips
● Provided fewer than t of n parties compromised

RandHound/RandHerd show that this can scale

League of Entropy (drand) makes it practical now!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

