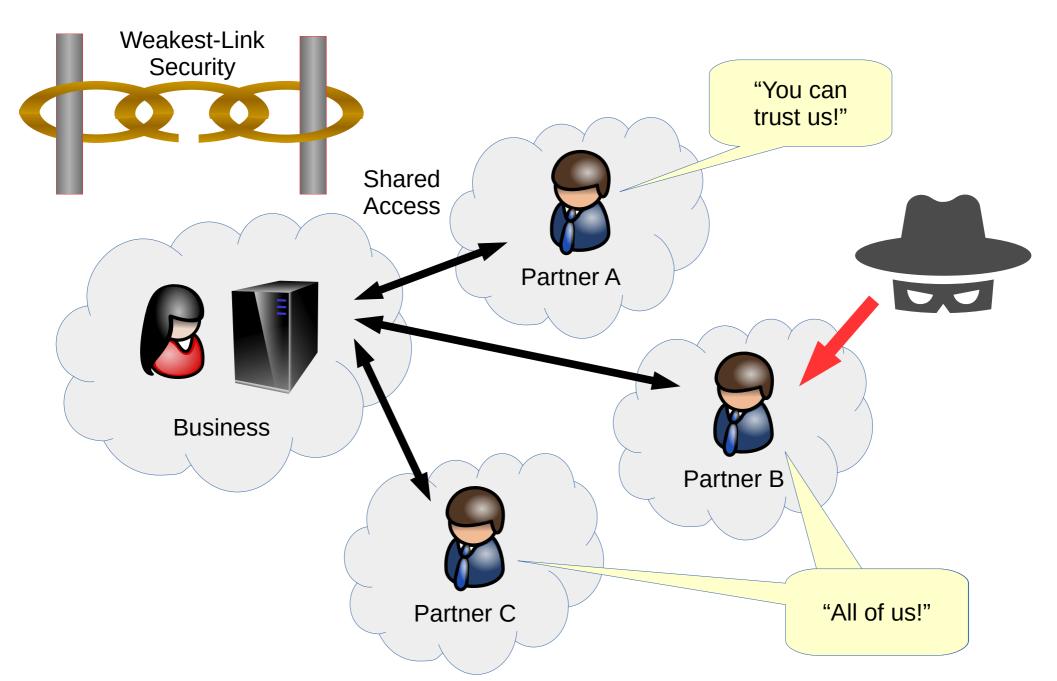
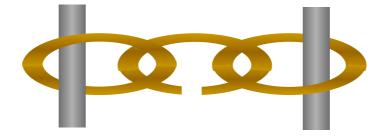
### Blockchain: Between Hype and Reality


Prof. Bryan Ford Decentralized and Distributed Systems (DEDIS) School of Information and Communications (IC)

TransformTech – January 29, 2020

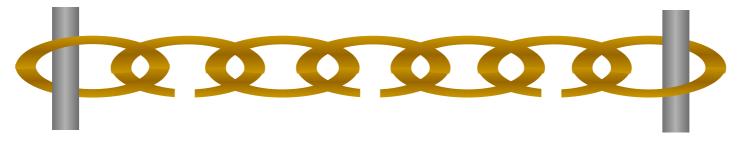
#### Where there's data, there's risk...



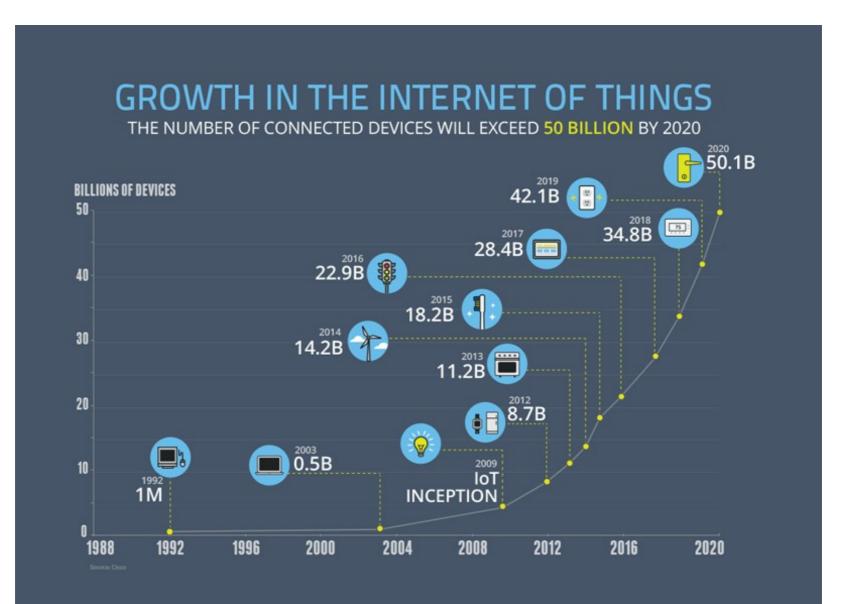

#### Access, sharing compounds risk



#### A Fundamental Challenge


In today's IT systems, security is an afterthought

Designs embody "weakest-link" security




Scaling to bigger systems  $\rightarrow$  weaker security

• Greater chance of any "weak link" breaking



#### More Devices → More Weak Links



#### Critical Devices = Attractive Targets

#### Repeated hospital ransomware attacks



QR Co

Decrypt

Copy



About bitcoin

How to buy bitcoins? Contact Us

[WannaCry ransomware, May 2017]

**Check Payment** 

bitcoin

ACCEPTED HERE

Send \$300 worth of bitcoin to this address:

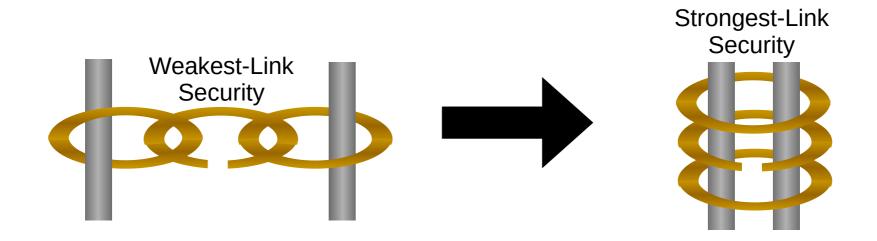
15zGqZCTcys6eCjDkE3DypCjXi6QWRV6V1

#### Central Databases = Attractive Targets

One of three credit rating agencies in the US



• Exposed sensitive personal information about 143 million people (44% of US population)




#### The DEDIS lab at EPFL: Mission

Design, build, and deploy secure privacy-preserving **Decentralized and Distributed Systems (DEDIS)** 

- **Distributed:** spread widely across the Internet & world
- **Decentralized:** independent participants, no central authority, no single points of failure or compromise

Overarching theme: building decentralized systems that **distribute trust** widely with **strongest-link security** 



#### **Turning Around the Security Game**

Design IT systems so that making them bigger makes their security increase instead of decrease



security

#### **DEDIS Laboratory Members**









**Bryan Ford** Associate Professor

**Philipp Jovanovic** Postdoctoral Scholar

Lefteris Kokoris-Kogias Henry Corrigan-Gibbs Postdoctoral Scholar

Postdoctoral Scholar



**Kirill Nikitin** Ph.D. Student



**Cristina Basescu** Ph.D. Student



**Enis Ceyhun Alp** Ph.D. Student



Jeff R. Allen Software Engineer



**Gaylor Bosson** Software Engineer



Noémien Kocher Software Engineer



**Gaurav Narula** Software Engineer

#### Today's Hot Decentralized Technology



(credit: Tony Arcieri)

#### Lecture Outline



- Introduction: What is a Blockchain?
- Applications: What are Blockchains Good For?
- Smart Contracts: Can Blockchains Compute?
- Consensus: How do Blockchains Coordinate?
- Privacy: Can Blockchains Keep Secrets?
- Wrap-up: Promise and Challenges



#### Lecture Outline



- Introduction: What is a Blockchain?
- Applications: What are Blockchains Good For?
- Smart Contracts: Can Blockchains Compute?
- Consensus: How do Blockchains Coordinate?
- Privacy: Can Blockchains Keep Secrets?
- Wrap-up: Promise and Challenges



*Structurally*, a blockchain is just a **log** or **ledger** recording events that happen over time.

| BANKING LEDGER |   |                          |              |             |          |       | Acce               | ari Kumb                             |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|----------------|---|--------------------------|--------------|-------------|----------|-------|--------------------|--------------------------------------|-----------------------------|-------------------------------------------------|-------|------------------------------------------------------|-----------------------------------------------------|-------------------|-------------------------|----------------|-------------------|
| DATE           |   | DESCRIPTION              |              | 08/         |          | witte | olaw               | BAL                                  | ANCE                        |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|                |   |                          | _            | _           |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|                |   |                          | 1            |             | VE       | HIC   |                    | EGIS                                 | STRA                        | TION                                            | CON   | ITRO                                                 | L LOG                                               | 10                | 11                      | 12             | 13                |
|                |   | REPORT-OF-SALE<br>NUMBER | но.<br>втоск | DEAL<br>NO. | CUSTOMER |       | DATE<br>OF<br>SALE | DATE<br>DEALER<br>HOTICE<br>SENT DWV | DATE<br>WORK<br>SENT<br>DMW | S AMT OF<br>LICENSE FEES<br>CHARGED<br>CUSTOMER | SAMT. | SAMT<br>DIFFERENCE<br>(plus or minus)<br>(Cols. 8-7) | DATE AND<br>NO. OF REFUND<br>CHECK AND<br>NOTATIONS | OATE<br>OF<br>RDF | OATE<br>RESUB-<br>MITEO | LIST<br>NUMBER | REASON<br>FOR RDF |
|                | 3 |                          | -            |             |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|                | 1 |                          |              |             |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
| _              |   |                          |              | E           |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|                |   |                          |              |             |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|                |   |                          |              |             |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|                |   | -                        |              |             |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|                |   |                          | 1            |             |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|                |   |                          |              |             |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     | -                 |                         |                |                   |
|                |   |                          |              |             |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |
|                |   |                          |              |             |          |       | -                  |                                      |                             |                                                 |       |                                                      |                                                     |                   | 5<br>7                  |                |                   |
|                |   |                          |              |             |          |       |                    |                                      |                             |                                                 |       |                                                      |                                                     |                   |                         |                |                   |

TTEM 726 (Res 1017) - 0001 - 0001 - 0001 200-7171 - 0001 220 MIN NO. CALIF. (TTO 324 303) - 0001 200-3311 - www.tailactations.com

#### Like a log book, a blockchain can potentially record **any type of event**.

# **ALIEN ABDUCTION LEDGER** DATE DESCRIPTION



But the *motivation* for recording these events often has to do with **security**.

| VISITOR LOG |         |          |      |             |  |  |
|-------------|---------|----------|------|-------------|--|--|
| DATE        | TIME IN | TIME OUT | NAME | AFFILIATION |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |
|             |         |          |      |             |  |  |

#### Why We Record Things in Logs

1. **Transparency:** more people have a better chance at noticing something wrong earlier.

2. Accountability: so if something goes wrong, there's a way to figure out whose head rolls.

## But is this documentation **Trustworthy**?

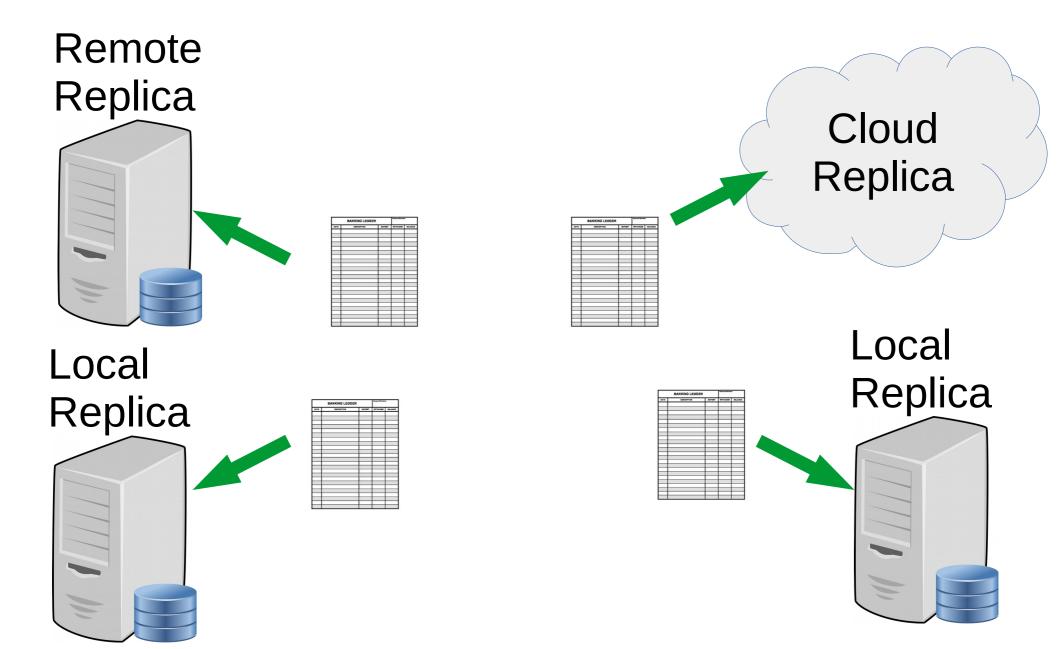
#### Key Security Challenge

Single points of **failure** or **compromise**.

What if the records get **burned in a fire** - either accidentally or "accidentally"?

If thief, criminal, fraudster, spy, etc., can compromise the **master copy of the log**, then he can just **change the log** to cover his tracks




#### Solution: Redundant Records

Keep several independent copies of records.

Keep them all **synchronized** (consistent).

Hope it's hard for attacker to get all of them.

#### **Replication for Security**



#### Replication alone isn't enough

What if there's one **central security office** from where **all the copies** can be controlled, and attacker gets access to that office?



#### Replication alone isn't enough

#### The **human weak link** problem: what if one administrator can control **all** copies, and administrator [account] is compromised?



#### The Real (But Difficult) Solution

Keep several independent copies of the log.

Keep them all **synchronized** (consistent).

Make sure they are as **independent** as possible.

Replication + Synchronization + Independence

Decentralized Trust, the principle underlying **Blockchain** 

#### Bitcoin (2008)

First successful decentralized cryptocurrency...



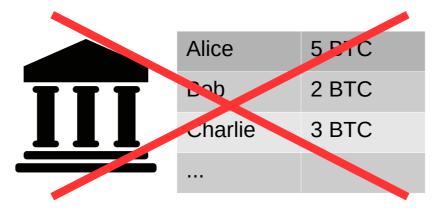
#### How to track wealth (or anything)?

#### Things

- Ledgers
- Gold, beads, cash... Who owns what?



|      | BANKING LEDGE | Account Rember: |          |         |  |
|------|---------------|-----------------|----------|---------|--|
| DATE | DESCRIPTION   | 06/06/7         | WITHORAW | BALANCE |  |
|      |               | _               |          |         |  |
| _    |               |                 |          |         |  |
|      |               | -               |          |         |  |
| _    |               | -               |          |         |  |
|      |               |                 |          | 0       |  |
|      |               |                 |          | -       |  |
|      |               |                 |          | 1       |  |
|      |               |                 |          | 8 - 1   |  |
|      |               |                 |          |         |  |
| _    |               | _               |          | 1       |  |
| _    |               |                 |          |         |  |
| _    |               | -               |          | -       |  |
| _    |               | -               |          | -       |  |
|      |               |                 |          | 8       |  |
|      |               |                 |          | 5       |  |
|      |               |                 |          |         |  |
|      |               |                 |          | £       |  |
| _    |               | 1.1             |          |         |  |
| _    |               | -               |          |         |  |
| -    |               | -               |          |         |  |
|      |               |                 |          |         |  |


#### Precedent: the Rai Stones of Yap

Stone "coins" weighing thousands of kilograms
Left in place once created ("mined")
Ownership transfer by public proclamation

(this comparison shamelessly borrowed from Gün Sirer and others)

#### **Distributed Ledgers**

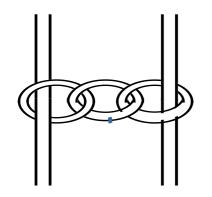
**Problem:** we don't want to trust any designated, centralized authority to maintain the ledger



Solution: "everyone" keeps a copy of the ledger!

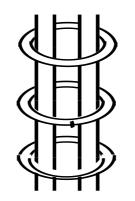
- Everyone checks everyone else's changes to it

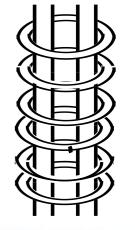
| Alice's copy |       |  |  |  |  |  |
|--------------|-------|--|--|--|--|--|
| Alice        | 5 BTC |  |  |  |  |  |
| Bob          | 2 BTC |  |  |  |  |  |
| Charlie      | 3 BTC |  |  |  |  |  |
|              |       |  |  |  |  |  |


| Bob's   | Bob's copy |    |  |  |  |  |
|---------|------------|----|--|--|--|--|
| ce      | 5 BTC      |    |  |  |  |  |
| b       | 2 BTC      |    |  |  |  |  |
| Charlie | 3 BTC      | Cł |  |  |  |  |
|         |            |    |  |  |  |  |

| Charlie' | Charlie's copy |  |  |  |  |  |  |
|----------|----------------|--|--|--|--|--|--|
| Alice    | 5 BTC          |  |  |  |  |  |  |
| bob      | 2 BTC          |  |  |  |  |  |  |
| Charlie  | 3 BTC          |  |  |  |  |  |  |
|          |                |  |  |  |  |  |  |

**Properly-Designed Blockchains** Eliminate Single Points of Compromise





T = 1



Security: T = 2-10

Security: T = 100s, 1000s

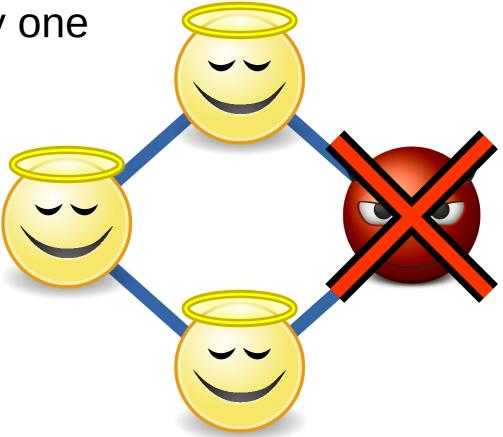




T: threshold of compromised parties to break security

# WHAT IF I TOLD YOU

### THIS IS OLD NEWS


#### **Distributed Trust is Old News**

Many algorithms allow us to **distribute trust** among multiple (preferably independent) parties

Work correctly despite any one (or several) participants being compromised, maliciously colluding

Example algorithms:

- Byzantine consensus
- Threshold cryptography (signing, encryption, ...)



# **Distributed Trust is Old News**

Many algorithms allow us to **distribute trust** among multiple (preferably independent) parties

Work correctly despite any one (or several) participants being compromised, maliciously colluding

Example algorithms:

- Byzantine consensus
- Threshold cryptography (signing, encryption, ...)

### So What's New?

#### They're not just obscure computer science algorithms anymore.

The rest of the world is (finally) interested.

# But Beware the Lemon Market

George A. Akerlof won Nobel Prize in economics for observing:

If buyers have less information than sellers about product quality, incentives lead to reduced quality

The cybersecurity market is a lemon market...

#### **Schneier on Security**

Blog

Newsletter

Books Essays

Talks

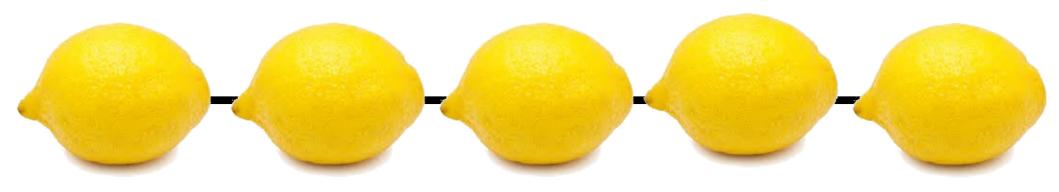
Academic About Me

Blog >

#### A Security Market for Lemons

More than a year ago, I <u>wrote</u> about the increasing risks of data loss because more and more data fits in smaller and smaller packages. Today I use a 4-GB USB memory stick for backup while I am traveling. I like the convenience, but if I lose the tiny thing I risk all my data.

News




# The Blockchain Lemon Market

Today's blockchain market is too. 😕

Economically-leading "first-to-market" designs completely compromise decentralized security

- One-click "Blockchain-as-a-Service" on cloud
- Non-Byzantine consensus in deployment
- Centralized PKI in permissioned blockchains



## Lecture Outline



- Introduction: What is a Blockchain?
- Applications: What are Blockchains Good For?
- Smart Contracts: Can Blockchains Compute?
- Consensus: How do Blockchains Coordinate?
- Privacy: Can Blockchains Keep Secrets?
- Wrap-up: Promise and Challenges



# When Can You Use a Blockchain?

**Could** be used anywhere a database is useful!

- Whenever you need to keep records, *i.e.,* practically any process of modern civilization
- A highly general technology in principle, hence the hype



"Everything looks like a nail."

# When Do You **Need** a Blockchain?

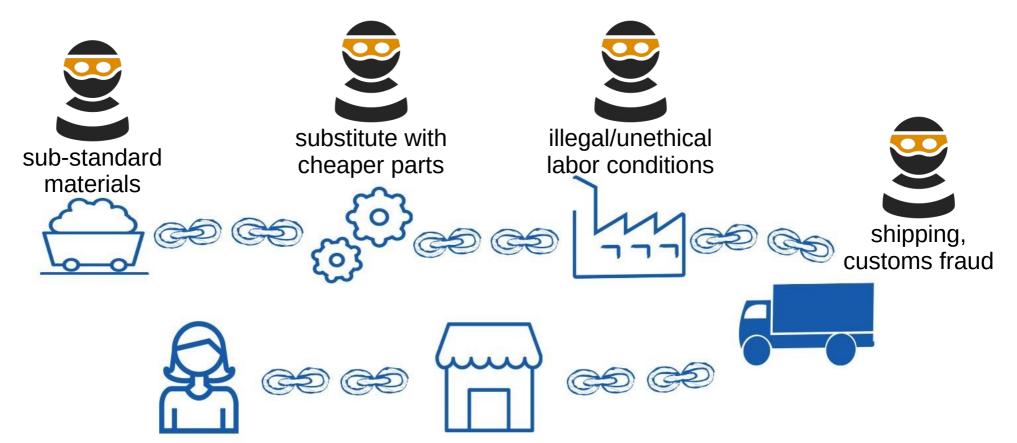
Only when *several participants* have interests and don't want to trust *any one* completely

• To avoid single points of failure or compromise

If you *do* have a single partner everyone trusts, a standard database server is faster & cheaper!

• Amazon has plenty if you don't want your own

# Applications of Distributed Ledgers


Can represent a distributed electronic record of:

- Who owns how much currency? (Bitcoin)
- Who owns a name or a digital work of art?
- What are the terms of a contract? (Ethereum)
- When was a **document** written? (notaries)
- What is the provenance of a part? (supply chain)
- Who are you? (self-sovereign identity)
- Who used data for what purpose? (access logs)

# Application Example: Supply Chain

Consumers, manufacturers depend on complex supply chains of materials, parts, labor, shipping

• All links in chain are vulnerable to compromise



# The [Potential] Promise

With the right automated & semi-automated scanning & tracking processes throughout, feeding a **common distributed log** or **ledger**  $\rightarrow$  make substitution, fraud, etc., much harder



# Supply Chain Grand Challenge

Can we make complex supply chains **transparent**, **manageable**, and **accountable** "end to end" from raw materials to consumer...

while still enabling companies to maintain the **confidentiality** they need to compete effectively?

Maybe, with the right distributed trust architecture

## Lecture Outline



- Introduction: What is a Blockchain?
- Applications: What are Blockchains Good For?
- Smart Contracts: Can Blockchains Compute?
- Consensus: How do Blockchains Coordinate?
- Privacy: Can Blockchains Keep Secrets?
- Wrap-up: Promise and Challenges



## Smart Contracts: Blockchain Code

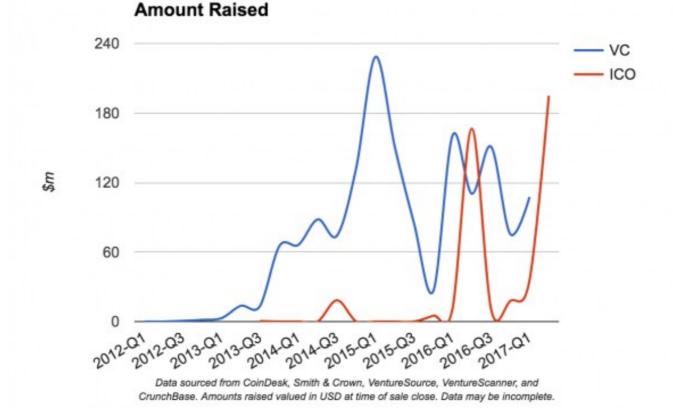
**Data** (tokens, etc) stored on blockchain with **Code** (smart contract) controlling its use

```
contract token {
   mapping (address => uint) public coinBalanceOf;
   event CoinTransfer(address sender, address receiver, uint amount);
 /* Initializes contract with initial supply tokens to the creator of the contract */
 function token (uint supply) {
       if (supply == 0) supply = 10000;
       coinBalanceOf[msg.sender] = supply;
 /* Very simple trade function */
   function sendCoin(address receiver, uint amount) returns(bool sufficient) {
        if (coinBalanceOf[msg.sender] < amount) return false;
        coinBalanceOf[msg.sender] -= amount;
        coinBalanceOf[receiver] += amount;
        CoinTransfer(msg.sender, receiver, amount);
        return true:
```

# **Application Example: Insurance**

Idea: encode an insurance policy in smart contract that "lives on the blockchain"

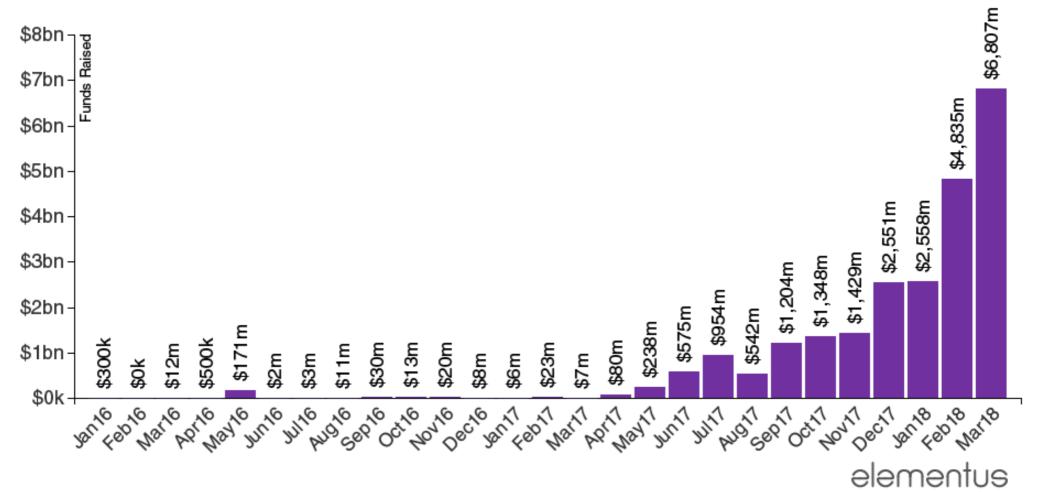
- Users can buy in by depositing into the contract
- Terms of contract are "transparent": defined by code
- Contract pays out automatically if conditions met


Ex: AXA "Fizzy"



## Enabled "new" form of investment...

ICOs: "Initial Coin Offerings"


• Digital tokens representing digital goods and services yet to be created...



## Enabled "new" form of investment...

#### **Token Sale Fundraising Volume by Month**

Total funds raised, Jan16-Mar18



# The Problem of Software Bugs

When everyone is running the **exact same code** (on or off the blockchain), one bug can be fatal

• Example: Ethereum DAO hack: attacker exploited one bug to steal \$70M+



## A "Universal Bug Bounty"

First successful hacker can cause a lot of damage



## Lecture Outline



- Introduction: What is a Blockchain?
- Applications: What are Blockchains Good For?
- Smart Contracts: Can Blockchains Compute?
- Consensus: How do Blockchains Coordinate?
- Privacy: Can Blockchains Keep Secrets?
- Wrap-up: Promise and Challenges



# Stake, Influence, and Consensus

Any organization – *or blockchain* – must determine:

- Who holds a *stake* in decision-making
- How much *influence* each stakeholder wields
- How decisions are actually agreed on: consensus



Without secure stake, consensus foundations  $\rightarrow$  fail

## **Blockchain Consensus Now & Future**

Many foundations for stake & consensus possible

We'll look at a few examples:

- Proof-of-Work Mining (common now)
- Private/Permissioned Ledgers ("now")
- Proof-of-Stake Ledgers (emerging)
- Proof-of-Personhood (research stage)

## **Blockchain Consensus Now & Future**

Many foundations for stake & consensus possible

We'll look at a few examples:

- Proof-of-Work Mining (common now)
- Private/Permissioned Ledgers ("now")
- Proof-of-Stake Ledgers (emerging)
- Proof-of-Personhood (research stage)

## Nakamoto Consensus

Public blockchains such as Bitcoin, Ethereum use consensus by crypto-lottery

1) **Miners** print their own "lottery tickets" by solving crypto-puzzle (**proof-of-work**)



- 2) Winner gets to add one **block** to blockchain; typically gets **reward**: e.g., print new money
- 3) All miners gravitate to longest chain. Repeat.



# Drawbacks of Nakamoto Consensus

#### Transaction delay

- Any transaction takes ~10 mins *minimum* in Bitcoin

#### • Weak consistency:

 You're not *really* certain your transaction is committed until you wait ~1 hour or more

#### Low throughput:

- Bitcoin: ~7 transactions/second

#### Environmental costs:

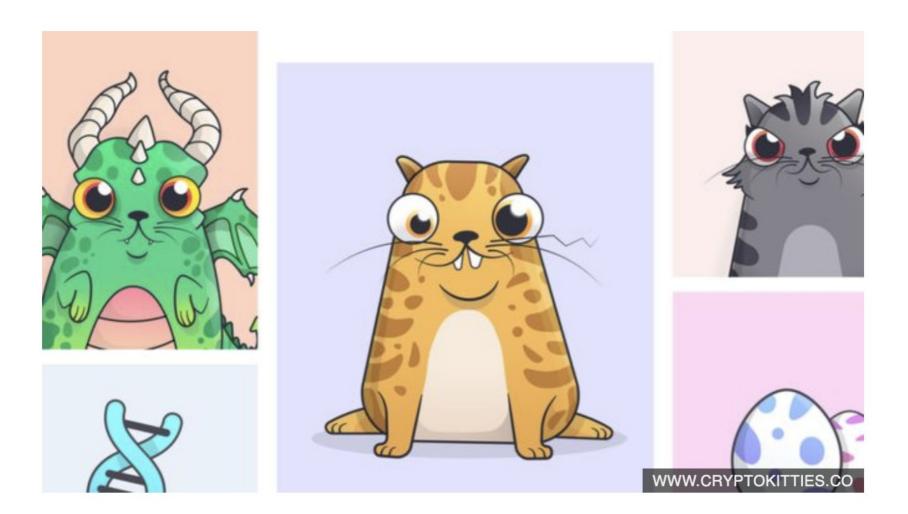
- Miners waste energy just to prove they did



# Public Blockchain Cost, Availability

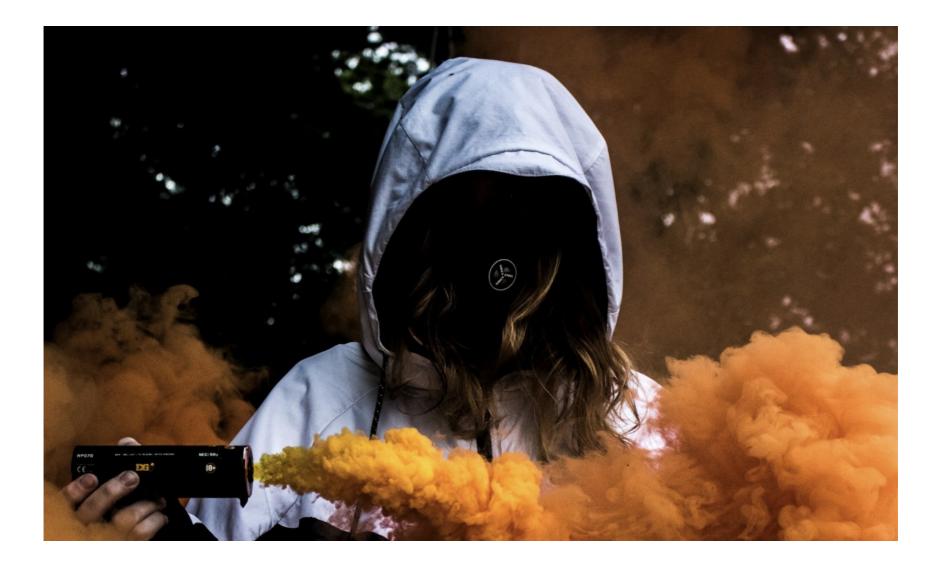
Public blockchains (Bitcoin, Ethereum) also present *cost* and *availability* risks...

- Because anyone can impose transaction loads
- Or cause the price of transactions to jump


Limited scalability and transaction capacity can lead to outages due to uncontrollable events.

- Examples: Crypto-Kitties, Fomo3D, ...
- Overload from trading: everything else stops

#### **CryptoKitties craze slows down transactions on Ethereum**


() 5 December 2017

f 🔗 🔰 🗹 < Share

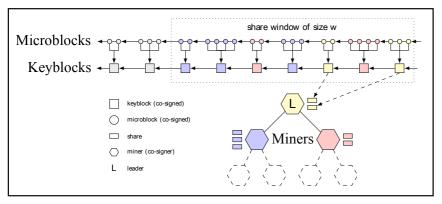


A new craze for virtual kittens is slowing down trade in one of the largest crypto-currencies.

# How the winner got Fomo3D prize — A Detailed Explanation



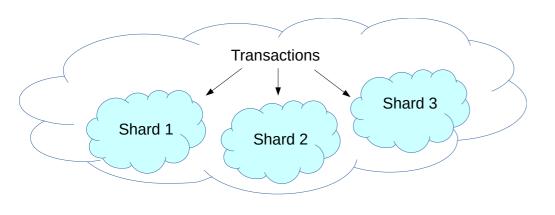
## Solving these challenges is not easy



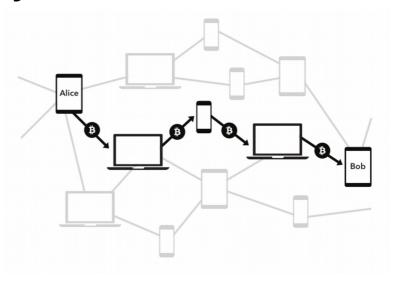

# Scaling & Performance Goals

- Increased transaction processing throughput
   From 4.7 TPS to VISA (1000s of TPS) and beyond
- Reduced transaction processing latency
  - From 10s of minutes to seconds to milliseconds...
- Reduced cost of on-chain data **storage** 
  - Don't make everyone store everything, forever
- Reduced cost of on-chain computation
  - Preferably not millions of times slower than native

# **On- versus Off-Chain Scaling**


#### Scalable BFT

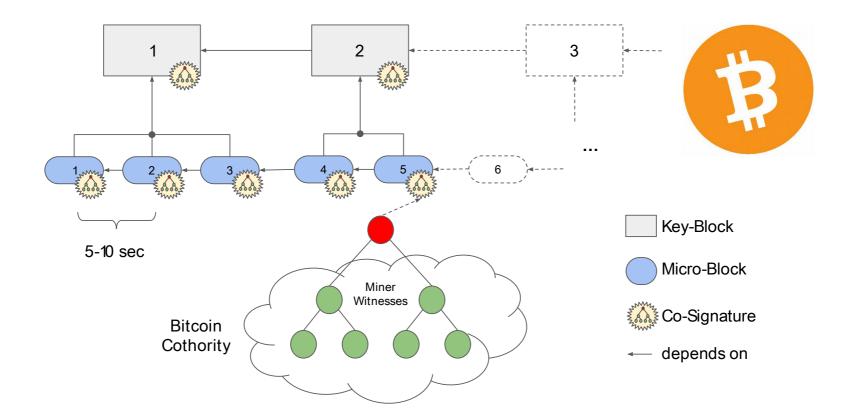



#### Sidechains



#### Horizontal Sharding

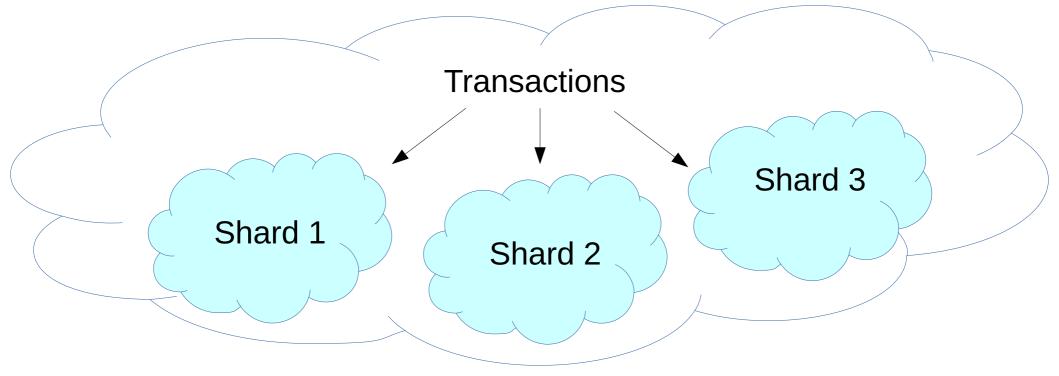



#### **Payment Networks**



# ByzCoin: Fast, Scalable Blockchains

Scalable PBFT blockchain consensus [USENIX Security '16]


- Permanent transaction commitment in seconds
- 700+ TPS demonstrated (100x Bitcoin, ~PayPal)



# Scaling Blockchains via Sharding

#### **OmniLedger: A Secure Scale-Out Ledger** [S&P 18]

- Break large collective into smaller subgroups
- Builds on scalable bias-resistant randomness protocol (IEEE S&P 2017)
- 6000 transactions/second: competitive with VISA



## Proof-of-Work as a Basis for Stake

Proof-of-Work requires miners to *expend energy* surmounting an *artificial barrier to entry*, just in order to prove they did that.

Important point: Proof-of-Work servers *no purpose* other than to erect an artificial barrier to entry and create competition for mining rewards!

Have we seen human practices like this before?

# PoW: Membership by Hazing Ritual

Anything that not everyone will do on a whim: entire purpose is to *create a barrier to entry* 

May be uncomfortable and/or embarrassing...



# PoW: Membership by Hazing Ritual

Or just plain weird...

• MIT '58: using Oliver Smoot to measure bridge



# PoW: Membership by Hazing Ritual

Or difficult, requiring energy and cooperation

• Yap: chisel a giant circular "coin" out of stone available only on another, distant island



### PoW: Bitcoin's Hazing Ritual

Digitally flip coins. Many coins. Billions of them.

By forming new "blocks" and feeding them into a *cryptographic hash* 

• Converts any information to pseudorandom number

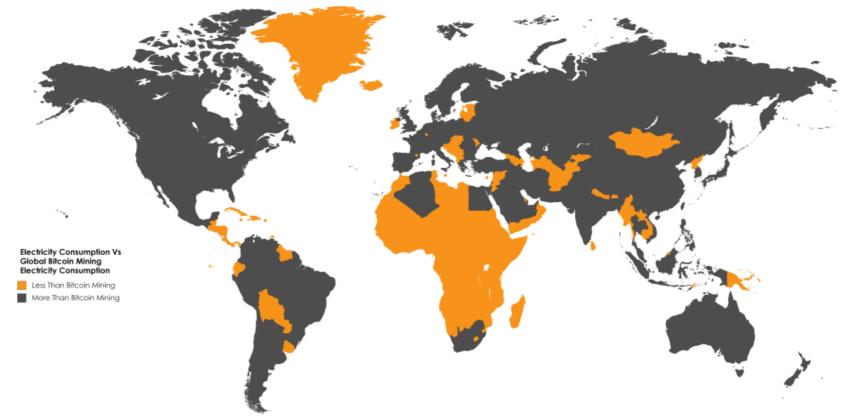
Repeat endlessly.



# JUST ONE...

# MOREBICIN

#### **Environmental Costs**

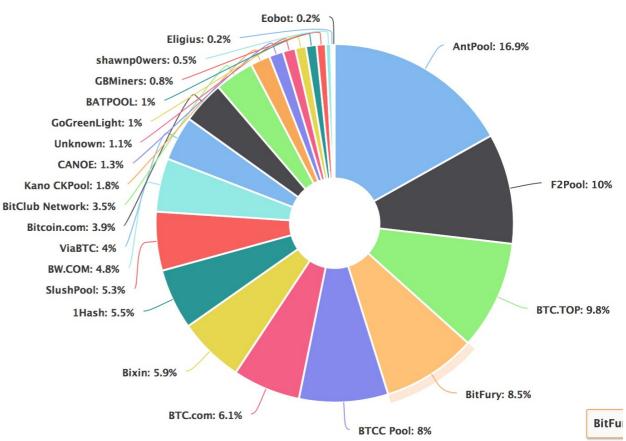

Proof-of-work = "scorched-earth" blockchains

 Bitcoin makes BTC scarce by making miners prove they wasted energy

Serves no purpose except to prove they did it

#### **Bitcoin Energy Consumption Index**

# Bitcoin now *wastes* more energy than **159 countries** use for their people to live on!




Source: https://powercompare.co.uk/bitcoin/

#### Not Even Decentralized Anymore

Market incentives drive consolidation of hashrate or "voting power" to a few powerful mining pools

- Over 60% currently in one country (China)
- Any faction >51% can control or veto decisions, censor, etc.



#### A Problem Not Unique to Bitcoin

#### Most cryptocurrencies aren't that decentralized

are we decentralized yet?

| Name            | Symbol | Consensus                  | Miners/voters<br>Incentivized? | # of entities in control of >50%<br>of voting/mining power |
|-----------------|--------|----------------------------|--------------------------------|------------------------------------------------------------|
| Bitcoin         | BTC    | PoW                        | Y                              | 3                                                          |
| Ethereum        | ETH    | PoW                        | Υ                              | 3                                                          |
| Ripple          | XRP    | RPCA<br>(voting<br>system) | Ν                              | 1                                                          |
| Bitcoin<br>Cash | ВСН    | PoW                        | Y                              | 3                                                          |
| Litecoin        | LTC    | PoW                        | Υ                              | 2                                                          |
| Cardano         | ADA    | PoS                        | Ν                              | 1                                                          |
| Stellar         | XLM    | FBA                        | Ν                              | 1                                                          |
| Neo             | NEO    | DBFT                       | Ν                              | 1                                                          |

#### **Blockchain Consensus Now & Future**

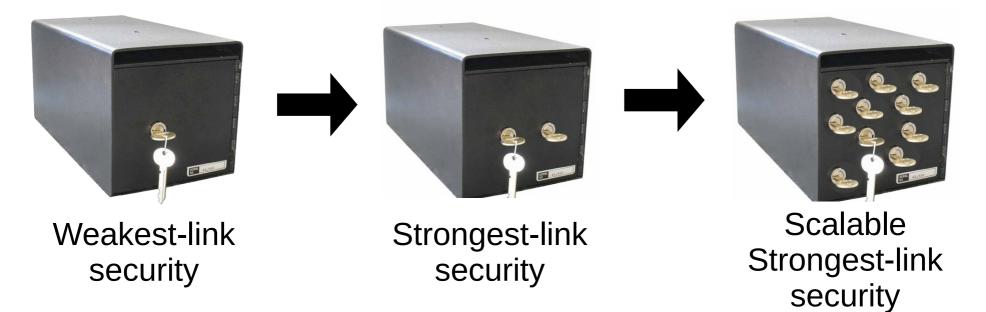
Many foundations for stake & consensus possible

We'll look at a few examples:

- Proof-of-Work Mining (available now)
- Private/Permissioned Ledgers ("now")
- Proof-of-Stake Ledgers (emerging)
- Proof-of-Personhood (research stage)

#### **Permissioned Ledgers**

Just decide **administratively** who participates; Fixed or manually-changed group of "miners"

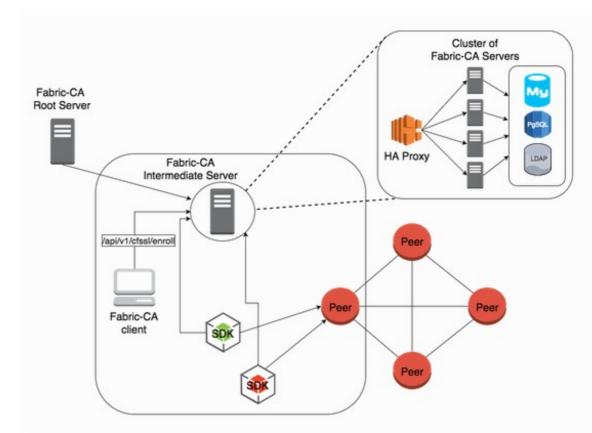

- $\bigcirc$  No proof-of-work needed  $\rightarrow$  low energy cost
- 🕲 More mature consensus protocols applicable
- 😕 Higher human organizational costs
- 😕 No longer open for "anyone" to participate



#### The Weakness of Limited Scale

Public/permissionless designs in principle have the advantage of *security scaling with size* 

• As more participants arrive, security increases




Closed participation designs limit security scaling!

### Beware the Lemon Market (Again)

Many (most?) permissioned blockchains currently on the market introduce *single points of failure* in their approaches to permissioning!

- Whole network depends on one *certificate authority* server
- If compromised, attacker can impersonate whole network



#### **Blockchain Consensus Now & Future**

Many foundations for stake & consensus possible

We'll look at a few examples:

- Proof-of-Work Mining (common now)
- Private/Permissioned Ledgers ("now")
- Proof-of-Stake Ledgers (emerging)
- Proof-of-Personhood (research stage)

### Alternative: Proof-of-Stake (PoS)

- **Proof-of-Stake:** assigns consensus shares in proportion to prior capital investment
  - © Could address energy waste problem
  - Major unsolved security & incentive problems
- Securing proof-of-stake is a nontrivial, interesting, but mostly-solved problem
  - e.g., Orobouros, Algorand
  - Also implementable with CoSi + SkipChains + OmniLedger + RandHound



#### **Blockchain Consensus Now & Future**

Many foundations for stake & consensus possible

We'll look at a few examples:

- Proof-of-Work Mining (common now)
- Private/Permissioned Ledgers ("now")
- Proof-of-Stake Ledgers (emerging)
- Proof-of-Personhood (research stage)

#### **Toward People-Centric Blockchains**

Can we build decentralized technology that will

- Securely *remain decentralized* over time?
- Offer a fairness metric *meaningful to people*?
- Be accountable to all human stakeholders?

"We must act to ensure that technology is designed and developed to serve humankind, and not the other way around" - Tim Cook, Oct 24, 2018

#### One Person One Vote?

#### Proof-of-Personhood [IEEE S&B '17]

• Proof-of-Stake but one stake unit per person



#### Proof-of-Personhood: Approaches

- Legacy Identities (e.g., government-issued)
  - Require costly ID-checking, not that hard to fake
- Global Biometric Databases (India, UNHCR)
   Huge privacy issues, false positives+negatives
- Trust Networks (PGP "Web of Trust" model)
  Unusable in practice, doesn't address Sybil attacks
- Pseudonym Parties [SocialNets '08]
  - Requires *in-person* participation, physical security
  - Low-cost: verifies only personhood, not ID or trust

#### **Blockchain Consensus Summary**

Any decentralized system must define who its stakeholders are, how much influence each get

- **Proof-of-Work:** simple but an energy disaster
- Permissioned: efficient but closed, often weak
- **Proof-of-Stake**: permissionless, low-energy, but still can have high concentrations of stake
- **Proof-of-Personhood:** attempts to distribute stake more widely among *human* stakeholders

#### Lecture Outline



- Introduction: What is a Blockchain?
- Applications: What are Blockchains Good For?
- Smart Contracts: Can Blockchains Compute?
- Consensus: How do Blockchains Coordinate?
- Privacy: Can Blockchains Keep Secrets?
- Wrap-up: Promise and Challenges



#### The Blockchain Privacy Challenge

Blockchains protect the **integrity** of data by *giving everyone a copy* for independent checking

- This works against privacy & confidentiality
- Current privacy provisions are leaky
- Solvable with proper use of encryption
  - When combined, important to remember: it's the *encryption*, not the *blockchain*, that protects privacy.

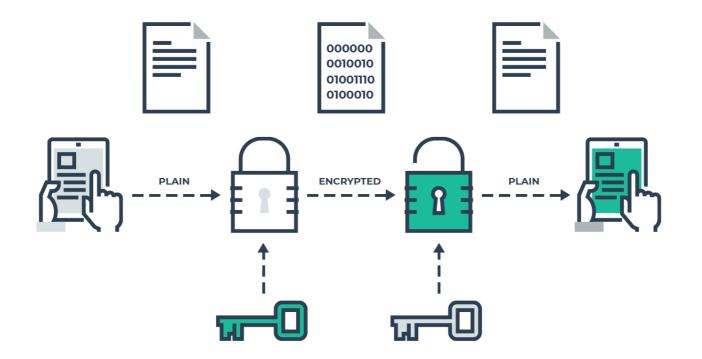
0010001011

.0001011010-

#### **Blockchain and Data Privacy**

Is data "on a blockchain" privacy-protected?

By default, no: blockchain makes privacy worse
Gives copies to many parties; any one can leak!


Why it's critical to separate *integrity* from *privacy* 

- Consensus and replication is good for integrity
- Consensus and replication is *bad* for privacy

So how can we *actually* get data privacy?

#### So How Do We Get Privacy?

#### Encryption, of course!



Encrypt data before storing, decrypt on use...

#### But Who Holds the Keys?

Any encrypted data is secured with a *private key* 

- A private key is *just information* (a number)!
- If the *key* leaks, anyone can decrypt the data
  - Regardless of where it's stored: cloud, blockchain...

If the private key is held by a single party, then that party is a single point of compromise

- If key-holder hacked, attacker gets everything
- Regardless of whether it's "on a blockchain"!

### Beware the Lemon Market (Again)

Many blockchain-based data protection/sharing designs just write *access logs* onto a blockchain

- If the access logs are on the blockchain, must be secure and tamperproof, right? *Wrong!*
- Blockchains only protect the *integrity* of logs if they were **correct** and **complete** when written!

Typical designs still entrust a *single party* to store private keys, check access rights, and log access

• Key-holder compromised: *logs don't get written!* 

#### The Data Availability Problem

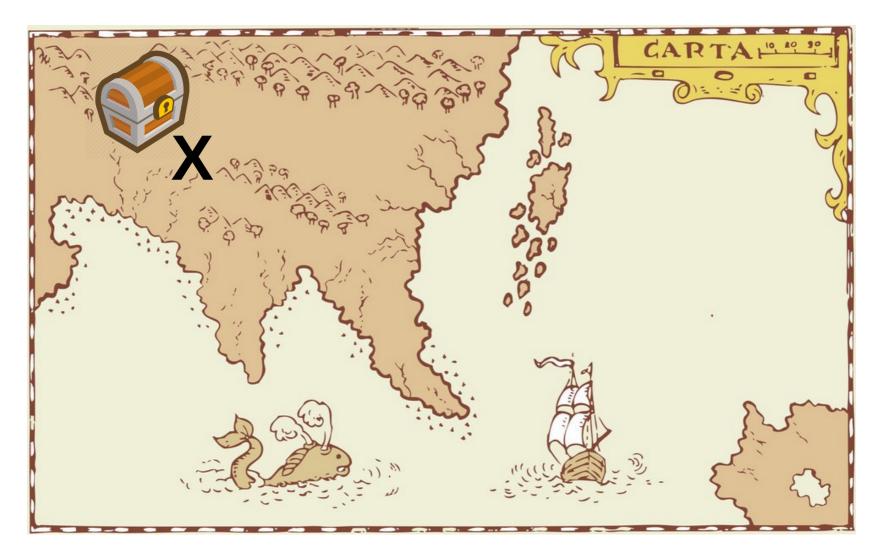
Will non-public data be there when you need it?

Many blockchains aren't scalable enough to hold large amounts of data *on the blockchain itself* 

- Store only a *hash* of the data on the blockchain
- Must store the data in a server or "cloud"...

But that's another **single point of compromise**: if storage server or cloud is down or unreachable, you won't be able to access the data!

### How to Get Privacy, Accountability?

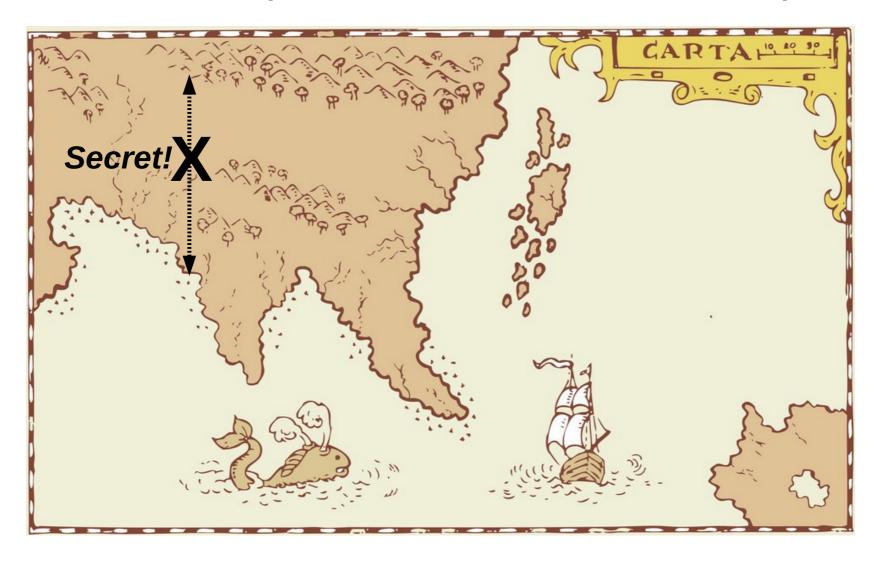

Blockchains don't protect privacy & accountability without single points of compromise; how can we? With another technology: **secret sharing**.

• Known for decades, but new in blockchain tech

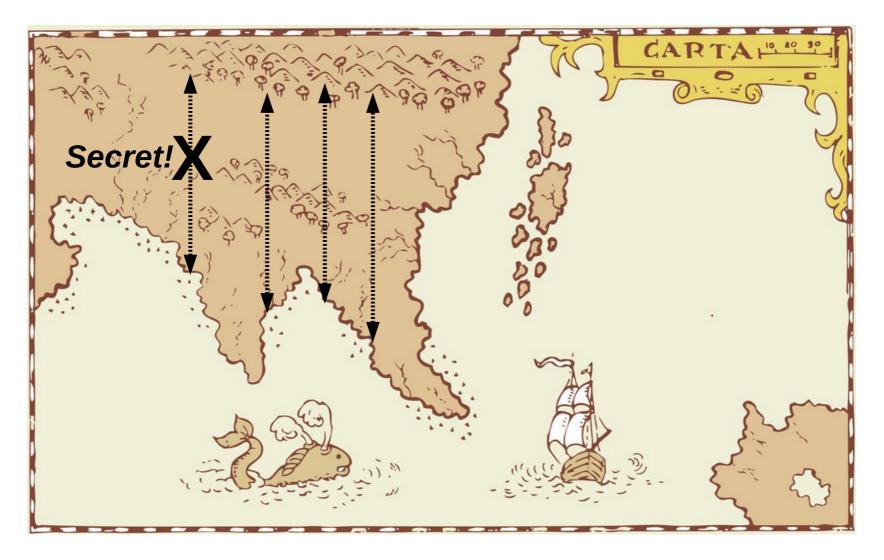
Essential idea: after encrypting data, "deal" the secret key to a *threshold* **t** of **n** parties

- At least *t* parties must *work together* to recover
- If just one (or fewer than *t*) compromised, attacker can't recover the key or *any* data!

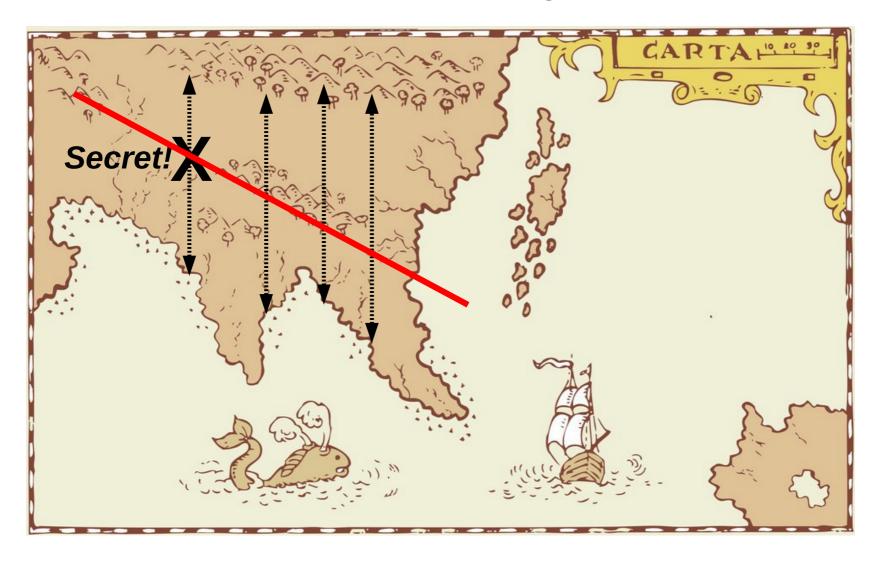
Suppose you're a pirate & bury your treasure...



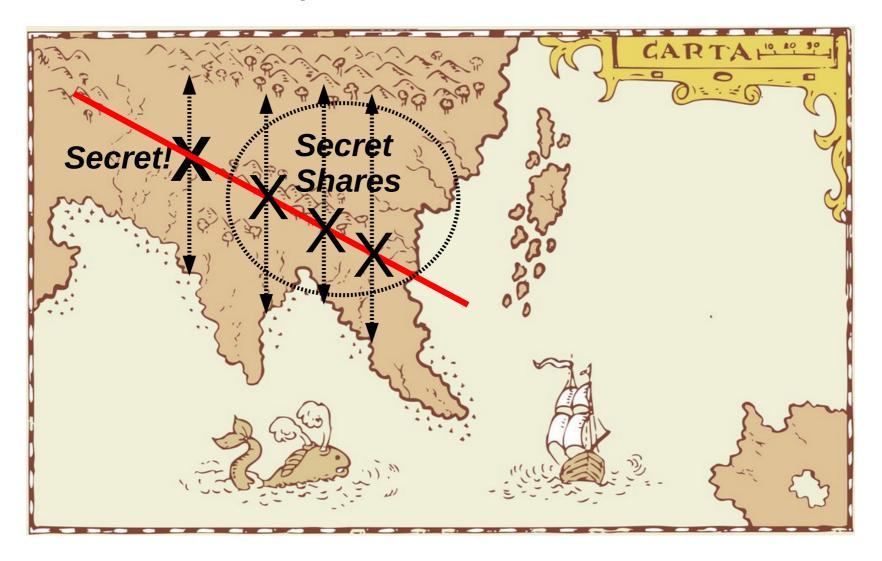

#### Keeping the Location Secret


You have 3 henchmen who you want to send back for it later, but you don't trust *any one* completely

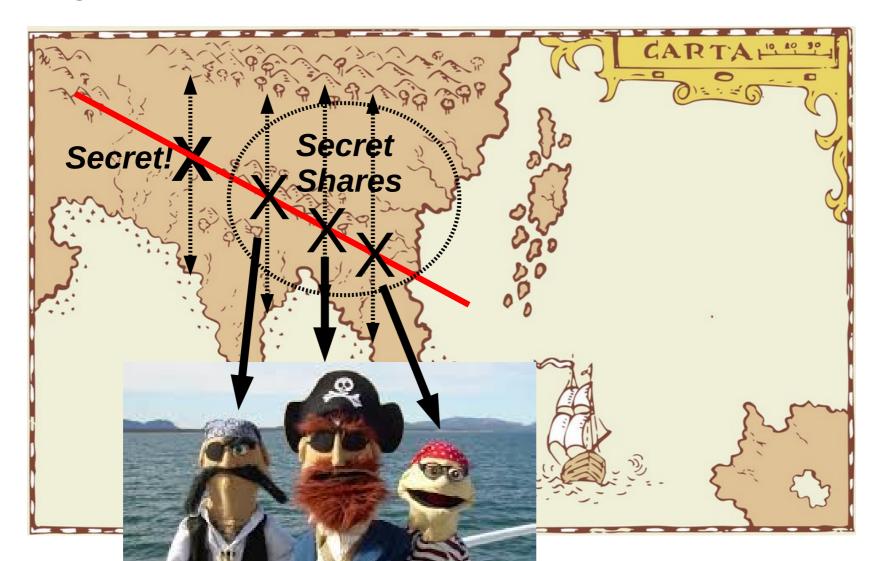



You mark the spot between two reference points




Then draw three parallel reference lines...




...and another line intersecting all four...



The intersection points are the secret shares...



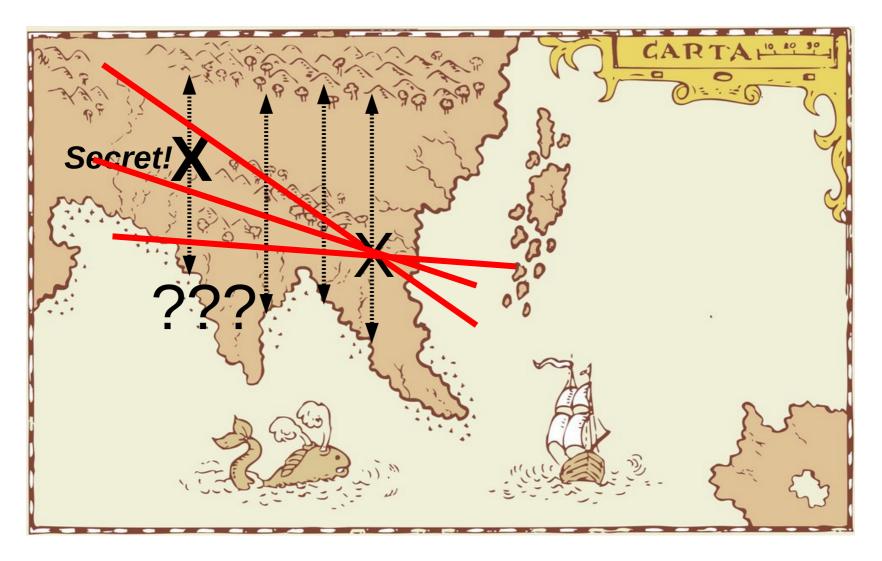
You give one of these shares to each henchman



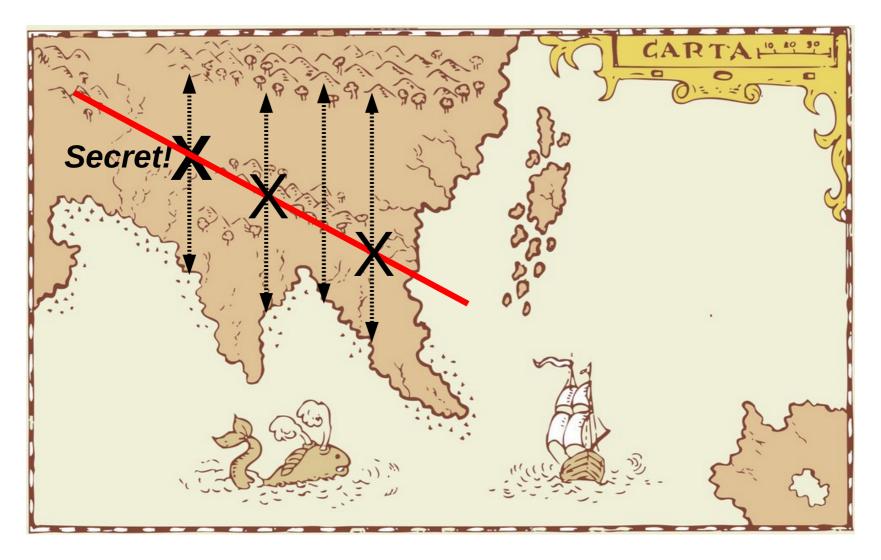
### **Threshold Secret Sharing**

Now suppose your henchmen come back later to recover the treasure...

- Any **one** henchman won't know how to find it
- Any **two** henchmen together will be able to!


You get both threshold privacy of the secret...

• No single compromised party can recover it


You also get threshold availability of the secret

• Can still recover if one henchman goes missing

One henchman alone can't recover secret



...but any two working together can!



#### **DEDIS On-Chain Secrets**

#### "CALYPSO: Auditable Sharing of Private Data"

Allow blockchain to hold and *manage secrets* via verifiable, transparent, dynamic access policies

- Example: decryption keys, access lists for documents
- Example: login credentials for access to services

Ensures that attackers cannot:

- (a) Modify or delete existing access records
- (b) Access sensitive data without access being logged
- (c) Prevent data from being revealed as policy dictates Existing blockchains can ensure only (a), not (b) or (c)

### Scaling Privacy & Integrity with Size

Ensures architecturally that not just the *integrity* but also the *privacy* of data entrusted to blockchain scales as participation increases

Weakest-link security



Strongest-link security

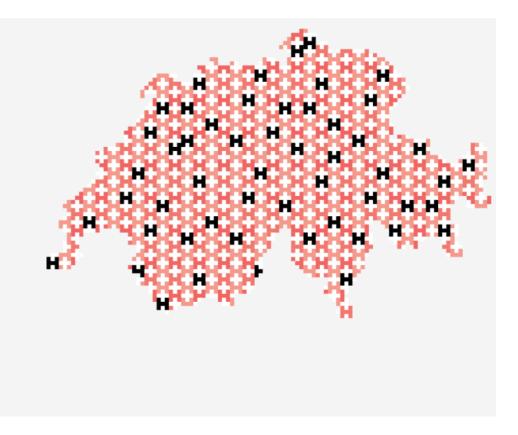
Scalable Strongest-link security

# Ongoing Industry Adoption



Supporting partners collaborating with DEDIS




Other companies building on DEDIS research

#### **Application: Personalized Health**



in Personalized Health

Personalized Medicine, Personalized Health Research Project funded by the Strategic Focus Area Personalized Health and Related Technologies (PHRT) of the ETH Board.



#### **Application: Data Science**

### SWISS DATA SCIENCE CENTER



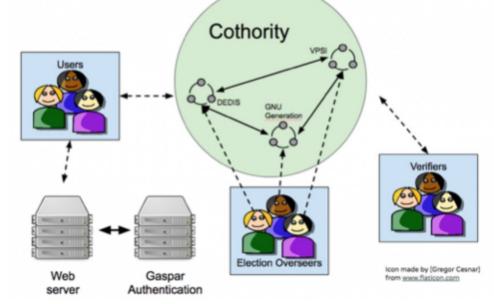
#### A COMPLEX JOURNEY MADE SIMPLE

We accompany the academic community and the industrial sector in their data science journey, putting to work AI and ML and facilitating the multidisciplinary exchange of data and knowledge

ETH zürich






### Application: Blockchain E-voting

Prototyped blockchain-based e-voting system

- State-of-the-art cryptographic security/privacy
- Validated, approved for deployment within EPFL community of 10,000+

Exploring next-generation e-voting technologies

 In contact with Geneva, Swiss Post e-voting efforts



### Summary: Blockchain Data Privacy

Enabling blockchains to *manage confidential data* is an unsolved (but solvable) research challenge.

#### Beware common easy answers such as:

- "Just encrypt the data"
- $\rightarrow$  important, but who holds the keys?
- "Leave private data off the blockchain" → blockchain can't ensure *data availability*
- "Don't worry, it's a private blockchain"
- → reintroduces single points of compromise

#### Lecture Outline



- Introduction: What is a Blockchain?
- Applications: What are Blockchains Good For?
- Smart Contracts: Can Blockchains Compute?
- Consensus: How do Blockchains Coordinate?
- Privacy: Can Blockchains Keep Secrets?
- Wrap-up: Promise and Challenges



#### Key Takeaway Points

Blockchains can keep any type of records

- Usable in any application that wants a database
- Needed only if you want no single trusted party

An important and promising technology space

- Well worth exploration and early investment, with awareness of limitations and immaturity!
- Challenges: Scalability, Energy use, Limited Decentralization, Data Privacy, Availability...