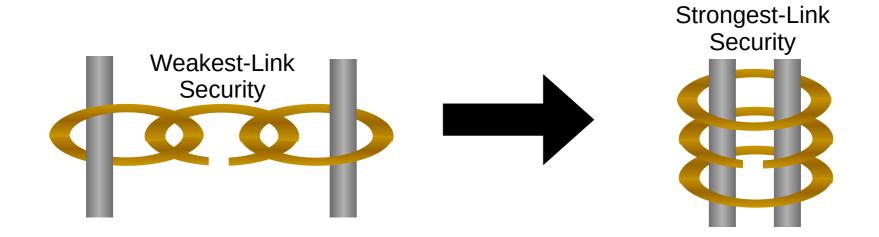


Voting and Blockchain: Promise and Challenges

Prof. Bryan Ford Decentralized and Distributed Systems (DEDIS) School of Information and Communications (IC) dedis@epfl.ch – dedis.epfl.ch

Geneva Blockchain Congress – January 20, 2020


The DEDIS lab at EPFL: Mission

Build advanced Decentralized and Distributed Systems (DEDIS)

- **Distributed:** spread widely across the Internet & world
- **Decentralized:** independent participants, no central authority, no single points of failure or compromise

Systems that **distribute trust** widely with **strongest-link security**

Website: https://dedis.epfl.ch

- The appeal and history of E-voting
- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious

- The appeal and history of E-voting
- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious

E-voting: the Convenience Appeal

Convenience of vote from home (or anywhere)

• Ideally with whatever device you prefer

E-voting: the Participation Appeal

Allow rich, frequent participation by constituents

• While maintaining or **improving** voter turnout

E-voting: the Scalability Appeal

Mass online deliberation, liquid democracy

E-voting: a Generic Workflow

Three fundamental phases:

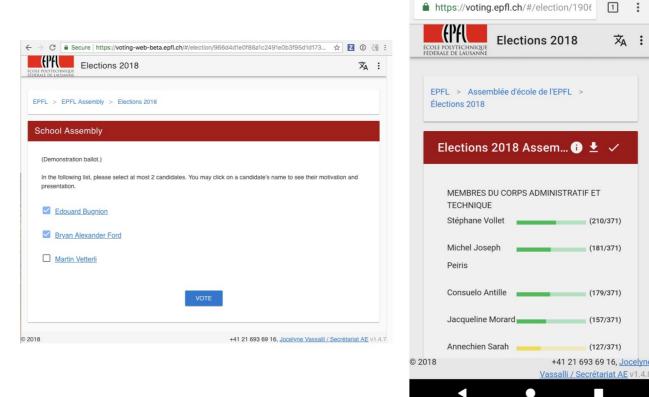
- Registration, credential creation and renewal
- Vote casting and recording
- Results tallying and publication

Sounds like a process that could use a ledger?

E-voting and Blockchain

You can record **anything** on a blockchain, right?

So why not cast & count votes on a blockchain?

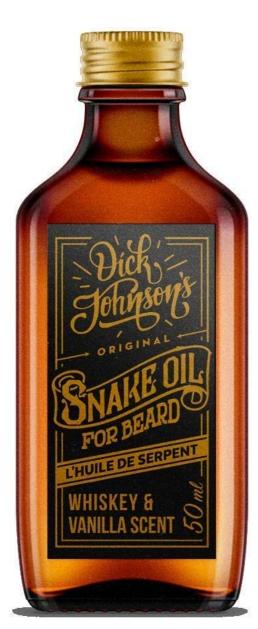


Blockchain E-voting: Yes We Can

We do for EPFL Assembly elections since 2018

- DEDIS system serving ~10,000 eligible voters
 - https://blog.dedis.ch/post/evoting/
- Builds on DEDIS's
 Calypso blockchain design

But hold on...


•

15:44

Not to rain on the parade, but...

Blockchain won't magically make E-voting safe or secure

E-voting tech has used "blockchain" since long before "blockchain"

Decades-old cryptographic tools, such as:

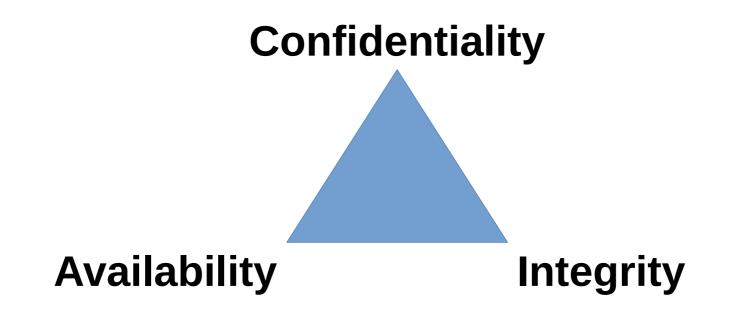
- Merkle trees and hash authentication: **1988**
- Distributed ledgers and time-stamping: **1990**
- Verifiable shuffles for voting privacy: **2001**
- First public E-voting in Switzerland: **2003**
- Practical voter-verifiable elections: **2004**

(Bitcoin: 2008; "Blockchain": later)

Example: Swiss vs EPFL E-voting

Blockchain-based EPFL system suited for internal low-stakes use, *not* for large-scale public elections

		EPFL
Protection from compromised voting device ("cast-as-intended")	\checkmark	
End-to-end voter verifiability ("recorded-as-cast")	\checkmark	\checkmark
Auditable vote counting ("counted-as-recorded")	\checkmark	\checkmark
Decentralized verification with no single points of failure ("cothority")		\checkmark


- The appeal and history of E-voting
- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious

- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious

The C-I-A (or A-I-C) Principle

In information security and data protection, we generally want **three fundamental properties**

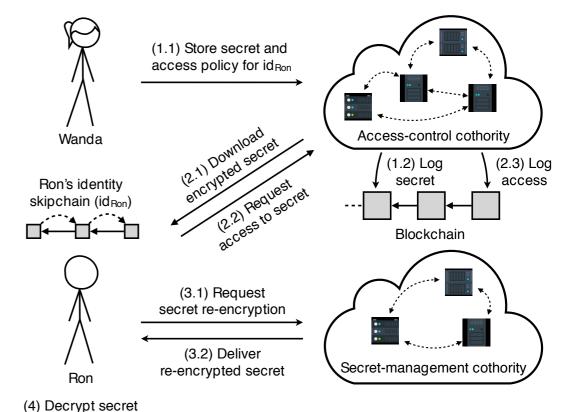
Blockchains **strengthen** Integrity and Availability, while by default **weakening** confidentiality!

The Blockchain Privacy Challenge

Blockchains protect the **integrity** of data by *giving everyone a copy* for independent checking

• This works against confidentiality

Current practice: keep secrets off-chain


- Only hashes or zero-knowledge proofs about those secrets go on-chain
- But user's device or central trustee must reveal when required, (e.g., to tally votes)

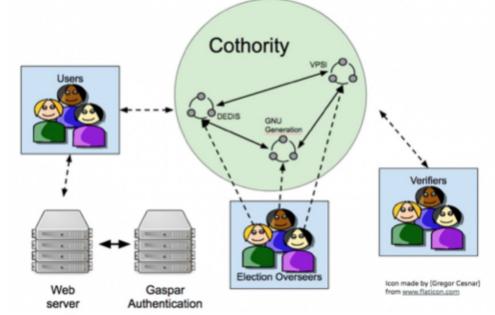
DEDIS Calypso: on-chain secrets

Verifiable management of private data [arXiv]

Encrypt^(*) secrets *care-of the blockchain itself*, under a specific access policy or smart contract

- Threshold of trustees
 mediate all accesses
- Enforce policies, access recording
- Ensure data both *hidden* and *disclosed* when policy requires
- Can revoke access if policy/ACLs change

(*) with post-quantum security if desired


Application to Blockchain E-voting

Basis of EPFL's blockchain-based e-voting system

- State-of-the-art cryptographic security/privacy
- Deployed within EPFL community of 10,000+

Helios-like workflow:

- Clients encrypt votes to threshold of trustees
- Blockchain records them
- Neff shuffle and decrypt

- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious

- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious

What about long-term privacy?

If today's encryption gets broken in 10 years, will your vote today be revealed to everyone?

0110010101010010110	
101100101011001010101	1010110010101011100110101
11010110010110010101	±1001011001010100010010110
010011010010101101001	0100101011010010010011010
011010010100110100110	/0101001101001101101001011
001010100101001101001	1001010011010010001101001
1101010010110100101N01	010110100101101110100110
1011001010101010101010	1010010110010100100110101
0101 001101011001010010	1010110010100101010101010101010101000
0010100110101010010100	110101101001010001101Q01
10100101100101010101)110100101001011100101101
1001101010 0101101011011	1001011010101010101010101010101010101010
01101010101001100	101100101001100100101011
10110100101011011010111	010101101101011110100101
01100101010010110101	101010010110101001101011
101100101010101010101	1010110010101011100110101
110101 0010110010101000	001011001010100010010110
01001101001010110100100	100101011010010010011010
0110100101001101001101)101001101001101101001011
00101010010100110100100	001010011010010001101001
1101010010110100101101	J010110100101101110100110
1011001010010110010100	010010110010100100110101

Verifiability needs your encrypted vote public, but long-term privacy needs it not public.

What about long-term privacy?

Quantum computers may eventually break today's most flexible and verifiable encryption schemes

Post-quantum crypto is coming but not yet mature

E-voting with "Everlasting Privacy"

Research designs exist, but not yet deployed

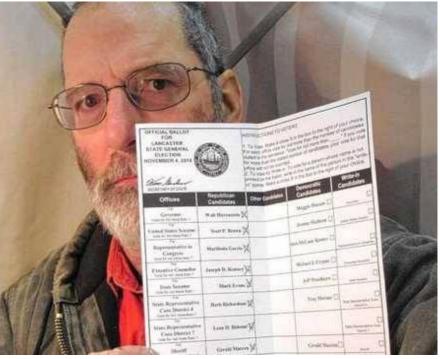
Receipt-Free Universally-Verifiable Voting with Everlasting Privacy^{*}

Coercion-Resistant Internet Voting with Everlasting Privacy

Philipp Locher^{1,2}, Rolf Haenni¹, and Reto E. Koenig¹

¹ Bern University of Applied Sciences, CH-2501 Biel, Switzerland {philipp.locher,rolf.haenni,reto.koenig}@bfh.ch ² University of Fribourg, CH-1700 Fribourg, Switzerland philipp.locher@unifr.ch

- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious


- The appeal and history of E-voting
- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious

Coercion and vote-buying

A potential threat affecting *all* voting methods...

• E-voting, postal voting, in-person voting But risks are not equally *scalable* or *undetectable*

The New York Times

North Carolina Operative Indicted in Connection With Election Fraud

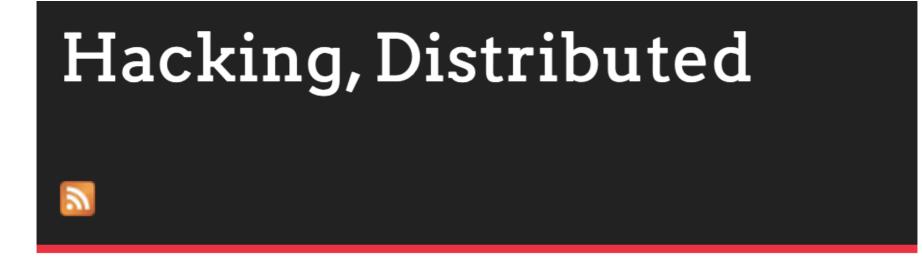
swissinfo.ch #20yearsSWI

Yes, electoral fraud happens in Switzerland too

Despite a reputation for democratic exactitude, mishaps have sometimes affected Swiss votes in the past. For example, the **collection of signatures** for the deposition of a People's initiative (100,000 are necessary) can lead to forgeries, although the Federal Chancellery does its best to weed them out.

EN

Elsewhere, some well-known examples in recent years include **Glarus**, where in 2010 a recount was ordered following the discovery that several ballots were filled-out by the same person. The result: the conservative right Swiss People's Party had to cede one of the seats it initially won.


In **Bern**, in 2016, 300 votes in local elections were declared void after investigators discovered they all had the same handwriting. And in **Valais**, the following year, 119 irregularities were found in three municipalities in an election that saw well-known politician Oscar Freysinger lose his seat. The margin of loss (2,000 votes) dissuaded his followers from pursuing the case.

Smart Contracts & "Dark DAOs" can make voting fraud scale

HIT IS (AUG 1+)

Furlesfince by (by freat A (a

FUTUESTINC2 BU(BU(FEATA(

On-Chain Vote Buying and the Rise of Dark DAOs

on-chain voting voting e-voting trusted hardware identity selling

ethereum

July 02, 2018 at 03:22 PM

Philip Daian, Tyler Kell, Ian Miers, and Ari Juels

Approaches to Coercion-Resistance

Estonia: a coerced voter can "re-vote" again later

• Critical flaw: coercion to vote at the last minute

i-voting

i-Voting is a unique solution that simply and conveniently helps to engage people in the governance process. In 2005, Estonia became the first country in the world to hold nation-wide elections using this method, and in 2007, it made headlines as the first country to use i-Voting in parliamentary elections.

Approaches to Coercion-Resistance

Decoy Ballots: fake ballots to give out or sell

C

• Problem: how to obtain decoy ballots safely?

Thwarting Vote-Selling

indistinguishable decoy ballots, w/ game theory & economic modeling

Random-Sample Voting

Approaches to Coercion-Resistance

DEDIS Votegral framework: https://votegral.org

- Supports E-voting, postal, and in-person voting
 - Also continuous participation, e.g., liquid democracy
- Usable: **Easy** for voters to obtain decoy ballots
 - Give to your kids to play with and learn how to vote
 - Give to someone **coercing** you to vote their way
 - Sell them to anyone offering to **buy** your vote
- Entire E-voting pipeline **verifiable** end-to-end
 - All voters, credentials transparent on public ledger
 - Votes cast on one device are **checkable** on others

- The appeal and history of E-voting
- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious

- The appeal and history of E-voting
- What's missing: key unsolved challenges
 - Keeping secrets off- or on-chain
 - Transparency versus long-term privacy
 - Coercion and vote-buying
- Conclusion: there's promise, but be cautious

Conclusion

E-voting and Blockchain: yes it *can* work...

• Promises of convenience, online participation, transparency, end-to-end verifiability

But...

- "Blockchain" isn't actually *new* in E-voting tech, and doesn't solve *any* of the hardest problems
- Beware quick-to-market products without deep design review, vote privacy, coercion resistance

More: https://dedis.epfl.ch/ - https://votegral.org/