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Abstract
Leader-based consensus algorithms are fast and efficient un-
der normal conditions, but lack robustness to adverse condi-
tions due to their reliance on timeouts for liveness. We present
QuePaxa, the first protocol offering state-of-the-art normal-
case efficiency without depending on timeouts. QuePaxa uses
a novel randomized asynchronous consensus core to tolerate
adverse conditions such as denial-of-service (DoS) attacks,
while a one-round-trip fast path preserves the normal-case
efficiency of Multi-Paxos or Raft. By allowing simultaneous
proposers without destructive interference, and using short
hedging delays instead of conservative timeouts to limit re-
dundant effort, QuePaxa permits rapid recovery after leader
failure without risking costly view changes due to false time-
outs. By treating leader choice and hedging delay as a multi-
armed-bandit optimization, QuePaxa achieves responsiveness
to prevalent conditions, and can choose the best leader even if
the current one has not failed. Experiments with a prototype
confirm that QuePaxa achieves normal-case LAN and WAN
performance of 584k and 250k cmd/sec in throughput, respec-
tively, comparable to Multi-Paxos. Under conditions such as
DoS attacks, misconfigurations, or slow leaders that severely
impact existing protocols, we find that QuePaxa remains live
with median latency under 380ms in WAN experiments.

1 Introduction
In widely-deployed state machine replication (SMR) proto-
cols [64, 75], a fault-tolerant group of distributed replicas use
consensus [16, 42] to agree on a strongly-ordered series of
states. Mainstream SMR protocols, however, depend heavily
on timeouts in their operation, leading to three related issues
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we call the tyranny of timeouts. First, because most practical
consensus algorithms are leader-driven, they rely on partial-
synchrony assumptions and timeout-triggered view changes
for availability, and may lose liveness under adverse network
conditions. Second, because simultaneous leaders interfere
destructively and view changes incur high costs, timeouts
must be chosen conservatively large to avoid false triggers
and maintain performance. Third, timeouts incur the adminis-
trative cost of careful manual configuration, and mistakes can
lead to poor performance or complete outages. Can practical
SMR systems escape the tyranny of timeouts?

We introduce QuePaxa, a novel approach to consensus and
SMR that confronts these issues. QuePaxa seeks to ensure
robust availability and performance under diverse conditions
such as transient slowdowns, targeted denial-of-service at-
tacks, or misconfigurations. In brief, QuePaxa achieves robust-
ness by (1) leveraging randomized asynchronous consensus to
guarantee liveness under worst-case conditions; (2) relying on
hedging [23, 71] instead of timeouts to gain efficiency com-
parable to leader-based protocols under normal conditions;
and (3) adaptively choosing leaders and hedging schedules to
mitigate the costs and risks of manual configuration.

Asynchronous consensus algorithms have long held promise
to avoid relying on timeouts for liveness [2, 14, 29], and
to tolerate arbitrary network conditions including targeted
denial-of-service attacks. Under normal conditions, however,
asynchronous algorithms are usually much less efficient than
partially-synchronous algorithms. QuePaxa introduces a novel
asynchronous crash-stop consensus protocol that randomly
prioritizes proposals to circumvent the FLP theorem [27]
and guarantees commitment in a few round-trips with high
probability. To avoid the traditional efficiency costs of asyn-
chronous consensus, QuePaxa supports a fast path allowing a
designated leader to commit in a single round-trip merely by
adjusting its priority selection, thereby achieving normal-case
efficiency comparable to partially-synchronous protocols.

Timeouts in traditional protocols must be set conserva-
tively large to avoid false triggers, because simultaneous
proposers destructively interfere with each other, prevent-
ing either from progressing, and unnecessary view changes
are costly. Due to QuePaxa’s asynchronous core, however,
simultaneous proposers not only do not interfere destructively,
but can even cooperatively help each other decide faster. In
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place of timeouts and view changes, proposers in QuePaxa
use hedging [23, 71] – a delayed-activation schedule – allow-
ing proposers later in the schedule to exercise “enlightened
procrastination” to avoid unnecessary effort (computation
and bandwidth consumption) redundant with the work of
earlier proposers. Hedging enables QuePaxa to achieve the
same 𝑂 (𝑛) complexity as conventional protocols under stable
network conditions. Further, hedging delays may be set ag-
gressively small, minimizing recovery time in case of leader
failure. False triggers rarely delay QuePaxa consensus, as our
experiments confirm, and they never compromise liveness
even if hedging delays are badly misconfigured.

Finally, timeouts traditionally incur the administrative cost
of manual tuning, and limit the system’s responsiveness [69,
93] or dynamic adaptivity to prevailing conditions. Today’s
popular consensus protocols such as Raft [64] can remain
“stuck” with a leader that is slow but not slow enough to
trigger a view change, even when faster leaders are avail-
able. QuePaxa incorporates delay monitoring and adaptation
techniques, inspired by multi-armed bandit theory [78], to
adjust its leader choice and hedging schedule dynamically
and ensure responsiveness to time-varying conditions.

We evaluated a prototype of QuePaxa in Go [52] against
Multi-Paxos [42], Raft [64], EPaxos [55], and Rabia [66]. We
tested QuePaxa on Amazon EC2 in both local-area (single-
region) and wide-area (multi-region) deployments. We first
confirm that QuePaxa delivers 584k cmd/sec in throughput
under 5.8ms median latency, comparable to state-of-the-art
protocols under normal conditions. QuePaxa also remains
live, however, under adversarial network attacks that slow or
halt existing protocols. QuePaxa maintains full performance
even when its hedging delays are only 1/3 the underlying
round-trip time, whereas timeouts in Multi-Paxos and Raft
must be at least 1.8× the round-trip delay to avoid stalls due
to false triggers and unnecessary view changes. Finally, we
show that QuePaxa automatically identifies and converges
to the fastest leader replica, delivering 1.4ms lower median
latency among heterogeneous replicas in a data center setting.

This paper makes the following main contributions:
• The first practical asynchronous consensus protocol that

supports single-round-trip, 𝑂 (𝑛) normal-case commitment,
merely by adjusting the priorities of proposals.
• The use of hedging instead of timeouts to avoid the high

costs of unnecessary view changes, and to minimize recov-
ery time after leader failure.
• Novel adaptation techniques enabling QuePaxa to optimize

its leader choice and hedging schedule and maintain re-
sponsiveness to prevalent conditions.
• A working prototype and experimental analysis of QuePaxa

under both normal and adversarial conditions.
• Correctness proofs (Appendix C) and Promela models veri-

fied using the SPIN model checker (Appendix D).

Section 2 summarizes background, and Section 3 presents
a high-level overview of QuePaxa. Section 4 details the con-
sensus protocol, while Section 5 covers its use in efficient
SMR. Section 6 describes our prototype, Section 7 evaluates
it experimentally, and Section 8 outlines related work.

2 Background and Motivation
This section outlines the current state-of-the-art in consensus
and SMR and the challenges that motivate QuePaxa.

Leader-based consensus: The most widely-deployed con-
sensus and SMR protocols elect one leader at a time to drive
consensus [42, 64], because simultaneously-active replicas
destructively interfere as we examine later in Section 3.4. If
the leader fails, consensus stalls until enough replicas time
out and trigger a view change to elect a new leader.

These protocols guarantee liveness only under partial syn-
chrony: when network delays are small and stable enough for
some leader to make progress between timeout-triggered view
changes. Adverse network conditions such as periods of high
delay or jitter, asymmetric connectivity, or misconfiguration
can drastically slow or halt progress [7, 40, 47]. Further, if an
adversary in the network can focus a denial-of-service (DoS)
attack on the current leader, the attacker can slow or halt all
progress until a timeout. If such an attacker can employ traffic
analysis to detect view changes and refocus the attack on each
new leader, then the attacker can in principle halt progress
indefinitely while targeting only one replica at a time [80].

Asynchronous protocols: Asynchronous consensus [2, 14,
53, 63] avoids depending on timeouts, in principle promising
robust availability even under arbitrary worst-case network
conditions. Asynchronous protocols are typically much less
efficient under the normal conditions that leader-based proto-
cols optimize for, however, incurring 𝑂 (𝑛2) rather than 𝑂 (𝑛)
communication complexity per decision. Asynchronous pro-
tocols are thus rarely deployed in practice. We would ideally
like a consensus protocol that could achieve the normal-case
efficiency of leader-based protocols, together with the robust
worst-case availability guarantees of asynchronous protocols.

Rabia [66] is a randomized crash-fault-tolerant SMR pro-
tocol that builds on Ben-Or’s binary asynchronous consensus
algorithm [14] as a central component. Rabia specializes in
low-delay, high-capacity data-center networks, however, mak-
ing assumptions and design choices that limit its usability in
other environments (see Section 7.2 and Appendix E).

Conservative timeouts: Because simultaneous leaders de-
structively interfere and view changes are costly in leader-
based schemes, timeouts must be conservatively large to limit
risk of false triggers due to random delays or brief slowdowns.
As our experiments later in Section 7.5 confirm, leader-based
protocols drastically slow or stop entirely if timeouts are too
short with respect to underlying delays. Large timeouts imply
a long recovery time if the leader fails, however. We would
thus prefer a protocol that could enable short recovery times
without risking availability loss from false timeouts.



Figure 1. Architecture of QuePaxa. A configuration consists
of 2𝑓 +1 replicas tolerating 𝑓 faults. Each replica plays two
roles: proposers actively drive consensus, while recorders
passively store and update state in response to commands.

Configuration sensitivity: Timeouts in leader-based pro-
tocols must be carefully configured in practice, requiring
administrative effort and risking outages if misconfigured.
Further, statically-configured timeouts prevent leader-based
schemes from adapting dynamically to prevailing conditions,
such as when the current leader is slow but not slow enough to
trigger a timeout. We would ideally prefer a protocol requiring
no manual configuration of delays, and which would adapt
automatically to prevailing conditions, such as by choosing a
faster leader automatically if one is available.

In brief, QuePaxa seeks to address three main challenges:
• How to achieve robust availability under worst-case condi-

tions together with high normal-case efficiency?
• How to minimize recovery time without risking liveness?
• How to adapt dynamically to current network conditions?

3 QuePaxa Architecture Overview
This section outlines QuePaxa’s architecture at a high level,
covering system model, assumptions, workflow, and proper-
ties enabling QuePaxa to avoid dependence on timeouts.

3.1 QuePaxa system model

Figure 1 illustrates QuePaxa’s architecture. Any number of
submitters send commands describing transaction requests
to a group of replicas collectively responsible for storing
state. Submitters could be clients that generate commands
directly, but in modern tiered deployments, a submitter is
more commonly a front-end proxy that receives commands
from actual clients elsewhere on the Internet, often gathering
commands into batches for submission to the proposers.

As usual in crash-fault consensus, there are 𝑛 ≥ 2𝑓 + 1
replicas, of which at most 𝑓 may fail, by going silent forever
(faults are not Byzantine). We assume the set of replicas is
well-known and static, but reconfiguration may be supported
via standard practices [42, 64]. Submitters send commands to
all replicas, so submitted commands cannot starve indefinitely
regardless of which proposers commit transactions.1

1Submitters must send commands to at least 𝑓 + 1 replicas anyway, in any
consensus protocol, since 𝑓 replicas may fail. A standard optimization to
reduce bandwidth and load is for submitters to contact only the current leader
first, then other replicas only if the leader does not respond quickly.

As shown in Figure 1, each replica plays two functional
roles internally: (1) a replica’s proposer role receives com-
mands from submitters and actively drives the process of
committing these commands, and (2) a replica’s recorder role
passively maintains consensus state while responding to RPC-
style requests from proposers. This active/passive division of
roles is analogous to that of Disk Paxos [32].

3.2 Assumptions and threat model

QuePaxa assumes that while the 𝑛 replicas are trustworthy,
communication paths are not. Especially in wide-area net-
works (WANs), communication may be disrupted in practice
by intermittent outages, high delays or jitter, and asymmetric
connectivity [7, 47]. Intelligent adversaries in the network
may identify consensus protocol flows (e.g., via traffic anal-
ysis patterns) and seek to slow or halt progress via targeted
denial-of-service (DoS), route hijacking [19], or other attacks.

Formally, QuePaxa assumes that any message sent between
correct (non-faulty) nodes is eventually delivered [16], an
assumption we fulfill in practice by building atop a reliable
transport such as TCP [81]. We consider a broadcast to the
𝑛 replicas to consist of 𝑛 separate message transmissions in
parallel: we do not assume efficient network broadcast.

QuePaxa assumes that the network adversary is content-
oblivious [10]. That is, the adversary may manipulate network
delays and order packets arbitrarily, but cannot see message
content or replica memory. This assumption is realistic in that
we can satisfy it in practice simply by encrypting pairwise
communication between replicas, e.g., via TLS [73].2

We say that the network is partially synchronous if there
exists some maximum delay Δ, unknown to the consensus pro-
tocol, that upper bounds all message transmission delays [24].
The network is asynchronous if no such maximum delay ex-
ists. Partial synchrony models “normal-case” periods when
network delays are reasonably stable, while asynchrony mod-
els adverse conditions such as DoS attacks. QuePaxa seeks
high performance and efficiency under partial synchrony,
while ensuring safety and liveness even under asynchrony.

3.3 QuePaxa workflow overview

Figure 2 illustrates QuePaxa’s workflow, which employs the
standard state machine replication (SMR) paradigm [75]. A
series of slots represent successive state transitions forming a
totally-ordered history. A submitter broadcasts a command
(or a batch of commands) to all the proposers, who in turn
propose these commands in the next free slot. The proposers
then run a consensus protocol instance in each slot to agree on
a unique state transition for that slot. Proposers finally report
the commitment of commands to the submitter. Proposers
may batch concurrent submitters’ commands (or batches)

2Information leakage via side channels could compromise this content-
oblivious adversary assumption. Such risks may be mitigated via imple-
mentation best practices such as constant-size messages and constant-time
code paths, but side channels are beyond the scope of this paper.



Figure 2. QuePaxa workflow overview. Slots represent succes-
sive state changes decided by consensus. A decision takes one
or more rounds of four phases each. Steps combine round and
phase numbers into a logical clock: step = 4× round + phase.

together into one slot, or defer them to later slots. Batching is
thus possible at both the submitter and proposer stages.

Because asynchronous consensus is deterministically un-
solvable in general [27], any single decision attempt may
fail and need to be retried. QuePaxa thus decides each slot
in a series of attempts or rounds numbered from 1. Each
round consists of four protocol phases 0–3. A step number
or threshold clock [28] counts phases across rounds, such
that step = 4 × round + phase. A step represents progress
in completing a threshold of communication, and assumes
neither network synchrony nor synchronized clocks. Each
step requires one communication round-trip between at least
one proposer and a quorum or majority of 𝑛 − 𝑓 recorders.

The passive recorder role is simple, merely storing a con-
cise, constant-space summary of recent proposals aggregated
via simple arithmetic (e.g., integer maximum). We formulate
this recorder functionality in a primitive we call an interval
summary register or ISR, detailed later in Section 4.2.2.

A proposer may decide a slot in two ways. Under partial
synchrony, a unique designated proposer or leader may com-
mit in just one round-trip (round 1 phase 0). This fast path
is largely equivalent to fast consensus in Multi-Paxos by an
already-prepared leader [42]. If the fast path fails for any
reason, including leader failure or network asynchrony, then
any proposer can potentially decide the slot in phase 2 of
any round. Rounds 2 and higher in each slot are leaderless
and fully asynchronous, each round guaranteed to succeed
independently with probability at least 1/2. Phase 3 of each
round is needed only to prepare for the next round, in case
the current round fails to reach consensus.

3.4 From competitive claim-staking to cooperation

Like Paxos, QuePaxa is most efficient (and its fast path most
likely to succeed) when only one proposer (the leader) pro-
poses at once. In normal-case operation, replicas in both proto-
cols have an expectation of which proposer “should” propose
(first) in a slot. The protocols differ fundamentally, however,

(a) Destructive interference in
Paxos consensus.

(b) Cooperative concurrency in
QuePaxa consensus.

Figure 3. Destructive versus constructive concurrency be-
tween multiple proposers in consensus algorithms.

in the strength of this expectation and in the consequences of
its being violated. Figure 3 illustrates this difference.

The purpose of Paxos’s prepare phase is akin to staking a
territorial claim on a majority of the proposers, and Paxos’s
accept phase essentially records a successful claim. Two com-
peting proposers interfere destructively, however, in the worst
case blocking each other’s progress indefinitely. In Fig. 3a,
Proposer B’s prepare phase interrupts Proposer A’s attempt
to complete (via accept) a transaction it had successfully
prepared. Proposer A then retries from the prepare phase
with a higher ballot number, interrupting proposer B – and
so on, ad infinitum. This destructive interference motivates
traditional view change protocols, in which only the leader
of a given view can propose – and must propose, before the
other proposers’ timeouts expire – otherwise consensus stalls
until further view changes find a live leader. If timeouts are
configured too short for the network delay, then exactly this
“worst-case” scenario happens and Paxos livelocks forever.

A QuePaxa leader, however, is merely “first among equals”
with a special fast-path privilege. Other replicas may also
propose, with little risk or penalty apart from redundant effort.
Simultaneous proposers do not destructively interfere, and
can even help each other complete consensus rounds faster.

As Fig. 3b illustrates, proposers in phase 0 serve a “coin
flipping” function, attaching a random priority to the first pro-
posal each recorder sees. In phases 1–3, proposers serve an
“information mule” function, propagating information about
prioritized proposals among recorders. In both of these func-
tions, it matters little whether just one proposer, or several,
perform these steps at once. Consensus rounds complete re-
gardless, each with a constant probability of deciding.

3.5 Escaping the tyranny of timeouts

Given the above operational overview, we can now summarize
more precisely how QuePaxa escapes from the three “tyranny
of timeouts” issues introduced in Section 1.

Liveness: QuePaxa eliminates reliance on timeouts for live-
ness. All phases of all rounds progress asynchronously. The
first round in each slot is leader-based, allowing single-round-
trip fast-path commit under normal conditions. An intelligent



Figure 4. Protocol layering. Abstract QuePaxa (Algorithm 1)
operates atop lock-step threshold synchronous broadcast
(tcast), which the concrete protocol (Algorithm 4) simulates
using interval summary registers or ISRs (Algorithm 2).

network adversary could potentially exploit knowledge of
the leader to make this first round consistently fail to decide,
but subsequent rounds are leaderless and fully asynchronous,
guaranteeing at least 1/2 success probability each round.

Hedging: By avoiding destructive interference or view
changes, QuePaxa permits all proposers to participate in any
round, on a hedging schedule [23, 71]. Proposers later in the
schedule wait for longer, then propose only if they have not
seen earlier proposers make progress. Under normal condi-
tions, only the first scheduled proposer usually proposes in
each round, yielding 𝑂 (𝑛) communication cost as in leader-
based protocols. Unlike timeouts, hedging delays may be
short for fast recovery after a leader failure. Even if set so
small that several proposers start before the first one com-
pletes, consensus remains live, the only costs being redundant
proposer effort and lower fast-path success probability.

Auto-tuning: Because choice of leader and hedging sched-
ule in QuePaxa are optimization parameters not critical to live-
ness, these choices are a form of multi-armed bandit (MAB)
problem [78]. QuePaxa thus leverages simple explore/exploit
processes inspired by MAB theory to explore alternatives
and auto-tune consensus to exploit learned knowledge. Un-
like existing protocols, QuePaxa can thus find a better leader
proactively even if the current leader has not failed. QuePaxa
also eliminates both the administrative burden of configuring
timeouts and the main risks of misconfiguring them.

Having summarized how QuePaxa operates and avoids
dependence on timeouts, we now detail its design.

4 QuePaxa Protocol Design
This section details QuePaxa’s design, first in terms of a
simplified abstract formulation of the core protocol for clarity,
followed by a concrete instantiation of that core (see Fig. 4).

4.1 Abstract QuePaxa consensus protocol

For simplicity, we temporarily ignore the challenge of net-
work asynchrony and address only the unreliability problem:
i.e., that anticipated messages fail to arrive due to replica fail-
ures. Figure 4 depicts the architectural layers of this abstract
protocol, and their correspondence to the concrete protocol
we present later in Section 4.2. We assume for now that the
network provides a threshold synchronous broadcast or tcast
primitive described next. We then define QuePaxa’s abstract
consensus protocol (Algorithm 1) based on tcast. In brief,

Algorithm 1: Abstract QuePaxa consensus algorithm
Input: 𝑣 ← value preferred by this replica

repeat // iterate through rounds
𝑝 ← ⟨𝑣, random()⟩ // prioritized proposal
(𝑃, _) ← tcast({𝑝}) // propagate our proposal
(𝐸, 𝑃 ′) ← tcast(𝑃) // propagate existent sets
(𝐶,𝑈 ) ← tcast(𝑃 ′) // propagate common sets
𝑣 ← best(𝐶).value // next candidate value
if best(𝐸) = best(𝑈 ) then // detect consensus

deliver(𝑣) // deliver decision

tcast provides each replica with the messages from any ma-
jority or quorum of replicas at each time step. Each replica
also identifies one message received by all live replicas. Con-
sensus atop tcast provides each replica with two proposal
sets that bound some set of proposals received by any replica.
This cross-node subset relationship is essential for replicas
to ensure safety. Each replica attaches a random local prior-
ity to its proposal, enabling the protocol to terminate with
probability 1 in a small constant expected number of rounds.

4.1.1 Threshold synchronous broadcast (tcast) We pre-
tend for now that the 𝑛 replicas run atop an idealized network
operating in lock-step synchrony: any message delivery takes
exactly one step. This idealized network provides a threshold
broadcast primitive, or tcast [28, 29], which we find particu-
larly well-suited to information dissemination in consensus.

At each time step, each live replica 𝑖 invokes tcast(𝑃𝑖 ) with
some set of proposals 𝑃𝑖 that 𝑖 wishes to disseminate to the
other replicas. After one time step, each replica 𝑖’s tcast(𝑃𝑖 )
call completes and returns a pair of proposal sets (𝑅𝑖 , 𝐵𝑖 ). The
sets 𝑅𝑖 and 𝐵𝑖 satisfy two key properties that we define below.

The first set 𝑅𝑖 returned by tcast is the set of all proposals
received by replica 𝑖 in this broadcast step. This 𝑅𝑖 includes
the inputs from a majority of replicas. That is, there is some
set 𝑆 of replicas such that |𝑆 | > 𝑛/2, and ∀𝑗 ∈ 𝑆, 𝑃 𝑗 ⊆ 𝑅𝑖 .

The second set 𝐵𝑖 returned by tcast is some proposal set
input (i.e., 𝑃 𝑗 for some 𝑗) that tcast has successfully broadcast
to all non-faulty replicas during this broadcast step. That is,
the returned 𝐵𝑖 is the proposal set input 𝑃 𝑗 of some replica
𝑗 , not necessarily the same as 𝑖, such that for all replicas 𝑘,
𝑃 𝑗 ⊆ 𝑅𝑘 . As a result, for all replicas 𝑖 and 𝑗 , 𝐵𝑖 ⊆ 𝑅 𝑗 .

In summary, tcast ensures two key properties: (1) all live
replicas receive a majority of replicas’ inputs, and (2) at least
one replica’s input (returned in 𝐵) is seen by all live replicas.3

4.1.2 Building consensus atop tcast Algorithm 1 presents
QuePaxa’s abstract consensus protocol core, built atop tcast,
for a single SMR slot. Each replica conceptually runs an un-
limited series of rounds in the slot, delivering a consensus

3These two properties could be separated into two distinct communication
primitives, but we felt this combined formulation is easier to understand.



decision with some probability in each round. Different repli-
cas may reach a decision earlier or later, in different rounds.

In each round, each replica 𝑖 first associates its current
preferred value 𝑣 with a random numeric priority to form 𝑖’s
proposal 𝑝𝑖 . All replicas choose these priorities independently
from the same private random distribution. For simplicity, we
will assume for now that priorities never tie within a round.4

All 𝑛 replicas then disseminate their prioritized proposals
in three successive tcast steps. The first tcast gives each
replica 𝑖 a proposal set 𝑃𝑖 containing the proposals from any
majority of replicas. The second tcast takes 𝑃𝑖 as input, and
gives 𝑖 a proposal set 𝑃 ′𝑖 that is guaranteed to be included in
the existent sets 𝐸 𝑗 returned to all other replicas 𝑗 . Finally,
the third tcast uses this set 𝑃 ′𝑖 as input, and gives replica 𝑖 a
common proposal set 𝐶𝑖 and a universal proposal set 𝑈𝑖 .

The one important goal that these protocol steps achieve is
that ∀𝑖, 𝑗,𝑈𝑖 ⊆ 𝐶 𝑗 ⊆ 𝐸𝑖 . That is, every replica’s universal set
𝑈𝑖 is a subset of every other replica’s common set 𝐶 𝑗 , which
in turn is a subset of any replica’s existent set 𝐸𝑖 .

Perhaps more intuitively, a proposal 𝑝 is existent from
replica 𝑖’s perspective (i.e., 𝑝 ∈ 𝐸𝑖) if 𝑖 knows that 𝑝 exists:
that is, 𝑖 knows that some replica proposed 𝑝 in this round.
A proposal 𝑝 is common for 𝑖 (𝑝 ∈ 𝐶𝑖) if 𝑖 knows that all
replicas know that 𝑝 exists. A proposal 𝑝 is universal for 𝑖
(𝑝 ∈ 𝑈𝑖 ) if 𝑖 knows that all replicas know that 𝑝 is common.

Finally, each replica chooses best(𝐶𝑖 ), the highest-priority
proposal from 𝑖’s common set 𝐶𝑖 , as 𝑖’s preferred value as
input to the next consensus round. Each replica also checks
whether its best known existent proposal best(𝐸𝑖 ) is identi-
cal to its best known universal proposal best(𝑈𝑖 ), and if so
delivers this proposal’s value as the consensus decision.

4.1.3 Consensus protocol correctness We now briefly sketch
arguments for this algorithm’s correctness. Detailed correct-
ness proofs may be found in Appendix B.

Theorem (Safety). Abstract QuePaxa ensures the key safety
properties of consensus: validity, integrity, and agreement.
Proof sketch: If replica 𝑖 sees that best(𝐸) = best(𝑈 ) and
delivers a decision in some round, then every replica 𝑗 must
choose the same proposal as its next candidate value best(𝐶 𝑗 ).
That is, ∀𝑖, 𝑗, best(𝐸𝑖 ) = best(𝐶 𝑗 ) = best(𝑈𝑖 ), because of the
cross-node subset relationship 𝑈𝑖 ⊆ 𝐶 𝑗 ⊆ 𝐸𝑖 established
above and because priorities are never tied. Since each sub-
sequent round uses only values carried over from the prior
round, this decision is the only value available to be decided
upon by any replica in this or any subsequent round, thus
ensuring agreement. The decided value is carried over from
the previous round and, by induction, originates in the first
round, which employs only values proposed by replicas, thus
ensuring validity. Each replica trivially ensures integrity by

4We can ensure a negligible chance of a tie for best by choosing priorities with
high entropy (e.g., 256 bits) drawn from a strong (e.g., cryptographic) random
number generator. Appendix A discusses alternative approaches to choosing
priorities and handling ties if high-entropy priorities are undesirable.

Figure 5. Correspondence between the four-phase concrete
protocol in Algorithm 4 and the three tcast invocations in the
abstract QuePaxa algorithm in Algorithm 1.

maintaining a local decision flag (not shown in Algorithm 1
for simplicity) to decide only once per slot.

Theorem (Liveness). Abstract QuePaxa terminates with prob-
ability 1 in less than two rounds in expectation.
Proof sketch: Informally, each replica 𝑖 is guaranteed to
decide in a given round if the unique best proposal in that
round appears in 𝑖’s universal set 𝑈𝑖 . In this case, that unique
best proposal must also appear, and be best, in 𝐸𝑖 and in the
𝐶 𝑗 of every other replica 𝑗 . All the sets returned from the tcast
invocations in Algorithm 1 include proposals from a majority
of the replicas. Because the network-scheduling adversary is
content-oblivious and hence unaware of the priorities attached
to proposals (see 3.1), each replica 𝑖 observes at least 1/2
probability of the round’s unique best proposal appearing
in 𝑈𝑖 and hence deciding. Each replica therefore decides in
under two rounds in expectation and decides eventually with
probability 1, thus ensuring the protocol’s liveness.

4.2 Concrete QuePaxa consensus protocol

The concrete QuePaxa consensus protocol essentially simu-
lates the abstract protocol described above, implementing it
more realistically and efficiency in several ways. As outlined
earlier in 3.3, the concrete QuePaxa protocol separates each
replica’s active and passive roles, handles network asynchrony
by threshold logical clocking [28], transmits only constant-
space integer summaries rather than proposal sets, and incor-
porates a Paxos-like fast path to achieve single-round consen-
sus in favorable network conditions with a known leader.

Figure 5 shows an overview of how the three tcast opera-
tions in the abstract protocol above map to the four phases of
the concrete protocol detailed below. Concretely implement-
ing the first tcast operation in Algorithm 1 requires only one
threshold clock time-step (phase 0), because this step requires
only that each replica obtain proposals from some majority
of replicas. Concretely implementing the second and third
tcast operations in Algorithm 1 require two threshold clock
steps each, using a spread/gather sequence detailed below to
propagate at least one replica’s tcast input to all live replicas.
We can pipeline these latter two tcast operations, however, so



Algorithm 2: Interval summary register (ISR)
State :𝑆 current logical clock step, initially 0
State :𝐹 [𝑠] first value recorded at each step, default nil
State :𝐴[𝑠] aggregate of values in each step, default nil

record (𝑠, 𝑣) → (𝑠′, 𝑓 ′, 𝑎′): // handle an invocation
if 𝑠 > 𝑆 then // advance to a higher step

𝑆 ← 𝑠 // update current step number
𝐹 [𝑠] ← 𝑣 // record first value in this step

if 𝑠 = 𝑆 then // aggregate all values
𝐴[𝑠] ← aggregate(𝐴[𝑠], 𝑣) // seen in this step

return (𝑆, 𝐹 [𝑆], 𝐴[𝑆 − 1]) // return a summary

as to use only three steps total (phases 1–3). The full concrete
protocol thus comprises four phases total per round.

4.2.1 Separating active and passive roles Each replica
plays an active proposer role, which drives consensus, and a
passive recorder role, which merely records state. All commu-
nication is RPC-style, proposer-to-recorder. Proposers never
interact directly with each other, and neither do recorders.

Any proposer can drive consensus, by guiding the recorders
through a series of states that simulate an execution of the
abstract QuePaxa protocol (Algorithm 1). As in traditional
leader-based consensus protocols, it is sufficient, and most
efficient, when only one proposer drives consensus in the
common case. Thus, we expect most replicas’ proposer roles
(except the leader) to be idle much of the time normally. If
multiple proposers are active simultaneously, however, they
merely work together to drive this simulation faster (i.e., at
the speed of the fastest proposer at each step) rather than
interfering destructively as in a Paxos-like protocol.

4.2.2 Logical clocks and interval summary registers As
the concrete protocol runs atop an asynchronous network,
the recorders use threshold logical clocks [28] to simulate
the synchronous, lock-step notion of time that Algorithm 1
assumes. Each consensus round consists of four logical time
steps. A step is a non-negative integer that has no direct cor-
respondence to real time, but advances only when a threshold
of communication has been completed in the prior step.

We distill each recorder’s state and behavior into a sim-
ple abstraction we call an interval summary register or ISR,
which may be of interest beyond QuePaxa. Intuitively, an ISR
accepts a succession of values each associated a logical time
step, and in response to each invocation, returns a concise
summary of all the values that were presented to the ISR so
far in the current and immediately-prior time steps.

Algorithm 2 captures the operation of our ISR in a generic,
abstract form. The ISR provides only a single operation,
record, taking two parameters 𝑠, 𝑣 and returning three re-
sults 𝑠′, 𝑓 ′, 𝑎′. The value 𝑣 is associated with logical time-step
𝑠. The record operation first uses 𝑠 to increase the ISR’s
internal step counter 𝑆 as needed to the maximum step ever
seen so far, and to record the first value 𝑣 submitted at each

Algorithm 3: Specialized constant-space integer ISR
State :𝑆 current logical clock step, initially 0
State :𝐹𝑐 first value received in current step 𝑆 , initially 0
State :𝐴𝑐 maximum value seen in this step, initially 0
State :𝐴𝑝 maximum value seen in prior step, initially 0

record (𝑠, 𝑣) → (𝑠′, 𝑓 ′, 𝑎′): // handle an invocation
if 𝑠 = 𝑆 then // aggregate all values

𝐴𝑐 ← max(𝐴𝑐 , 𝑣) // seen in this step

else if 𝑠 > 𝑆 then // advance to a higher step
if 𝑠 = 𝑆 + 1 then // exactly one step forward

𝐴𝑝 ← 𝐴𝑐 // current aggregate now prior

else // skipping one or more step(s)
𝐴𝑝 ← 0 // we saw nothing in 𝑠 − 1

𝑆 ← 𝑠 // advance to the new higher step
𝐹𝑐 ← 𝑣 // record first proposal this step
𝐴𝑐 ← 𝑣 // initial aggregate for this step

return (𝑆, 𝐹𝑐 , 𝐴𝑝 ) // return a summary

step. The ISR then uses some binary combinator aggregate,
which we will elaborate later in this section, to summarize all
values seen during each step. If the step 𝑠 associated with 𝑣

is smaller than the ISR’s internal step counter 𝑆 , this means
the provided value 𝑣 is obsolete and the ISR simply discards
it. In any case, the ISR returns its internal step counter 𝑆 , the
first value presented in the current step, and the aggregation
of all values presented in the immediately-prior step.

This ISR formulation assumes that there is a well-defined
“base” value we call nil, such that aggregate(𝑣, nil) = 𝑣 . Also,
for clarity, Algorithm 2 is formulated as if the ISR perma-
nently records values from all historical time steps. This is
obviously unnecessary, since the ISR only ever returns the
first and aggregate values for the current and prior step, respec-
tively. An ISR implementation thus requires only constant
space if the values presented to it are constant size.5

4.2.3 Specialized ISR for concrete QuePaxa In the con-
crete QuePaxa protocol we must instantiate the generic ISR
with a suitable value type, nil value, and aggregate combina-
tor. Since the abstract consensus algorithm (Algorithm 1) uses
proposal sets, a naïve ISR for QuePaxa might use a proposal
set as its value type, the empty set ∅ as its nil value, and set
union ∪ as the aggregate combinator.

In practice, since we only ever need the best or highest-
priority proposal in a set, a more optimized implementation
of QuePaxa can use simple binary integers as ISR values,
zero as nil, and integer maximum for aggregate. A realistic

5A QuePaxa recorder must also store a slot and step number, of course, which
might be unbounded in principle. In practice, however, slot numbers may be
limited to fixed-size integers by resetting them at reconfiguration events, and
forcing a reconfiguration before slot number overflow. Step numbers may be
limited to ≈ 10 bits in practice, because the probability of a slot remaining
undecided for more than ≈ 256 rounds is cryptographically negligible.



Algorithm 4: Protocol for QuePaxa proposer 𝑖
Input: 𝑣 preferred value of this proposer 𝑖

𝑠 ← 4 × 1 + 0 // start at round 1, phase 0
𝑝 ← ⟨𝐻, 𝑖, 𝑣⟩ // initial proposal template
repeat

𝑝 𝑗 ← 𝑝 for all recorders 𝑗 // prepare proposals
if 𝑠 mod 4 = 0 and (𝑠 > 4 or 𝑖 is not leader) then

𝑝 𝑗 .priority← random(1..𝐻 − 1) for all 𝑗

Send record(𝑠, 𝑝𝑖 ) in parallel to each recorder 𝑗
Await 𝑅 ← quorum of replies (𝑠′

𝑗
, 𝑓 ′

𝑗
, 𝑎′

𝑗
)

if 𝑠′
𝑗
= 𝑠 in all replies received in 𝑅 then
if 𝑠 mod 4 = 0 then // phase 0: propose

if 𝑓 ′
𝑗
.priority = 𝐻 in all replies then
return 𝑓 ′

𝑗
.value from any reply in 𝑅

𝑝 ← best𝑗 of 𝑓 ′
𝑗

from all replies in 𝑅

if 𝑠 mod 4 = 1 then // phase 1: spread 𝐸

// no action required

if 𝑠 mod 4 = 2 then // phase 2: gather 𝐸, spread 𝐶

if 𝑝 = best𝑗 of 𝑎′
𝑗

from all replies in 𝑅 then
return 𝑝.value // report decision

if 𝑠 mod 4 = 3 then // phase 3: gather 𝐶
𝑝 ← best𝑗 of 𝑎′

𝑗
from all replies in 𝑅

𝑠 ← 𝑠 + 1 // advance to next step

else if any reply in 𝑅 has 𝑠′
𝑗
> 𝑠 then

𝑠, 𝑝 ← 𝑠′
𝑗
, 𝑓 ′

𝑗
// catch up to step 𝑠′

𝑗

ISR for QuePaxa is thus constant space. For completeness,
Algorithm 3 presents pseudocode for the concrete, integer-
specialized, constant-space ISR needed by the concrete Que-
Paxa proposer protocol, which we describe next.

4.2.4 Concrete QuePaxa proposer protocol Algorithm 4
presents pseudocode for the concrete QuePaxa proposer algo-
rithm. The algorithm uses four logical time-steps per consen-
sus round, starting at step 𝑠 = 4 to represent round 1, phase
0. Figure 5 illustrates how these four phases of the concrete
protocol correspond to and implement the three tcast invoca-
tions in Algorithm 1 through interactions with the recorders
and their ISR state, as detailed below. Each step incurs one
round trip between the proposer and a majority of recorders.

A proposal is logically a ⟨priority, proposer, value⟩ triple.
We assume each component is encoded in a fixed-width binary
format, then concatenated, so that the ISR-based recorders
defined above see a proposal simply as a single binary integer.

Because the ISR aggregates values using integer maximum,
and priority is the first component of the triple, ISR aggrega-
tion selects the highest-priority proposal of those submitted
during a step, disambiguated by proposer in case of a tie.

Proposal randomization: Phase 0 of each round, where
𝑠 mod 4 = 0, implements the prioritization of proposals and
the first tcast in Algorithm 1. Proposer 𝑖 chooses a random

priority on behalf of each recorder, except in leader-based
rounds as discussed later in Section 4.2.5. After sending each
proposal 𝑝 𝑗 to recorder 𝑗 , proposer 𝑖 awaits replies of the form
(𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 ) from a majority quorum of recorders. If the step
𝑠′𝑗 response from each recorder 𝑗 in this quorum is equal to
the proposer’s step number 𝑠, the proposer tests for a fast-
path decision (Section 4.2.5), then chooses the best (highest-
priority) proposal from all the 𝑓 ′𝑗 (first-value) responses in the
quorum, as 𝑖’s new proposal 𝑝 for phase 1 below.

Proposer catch-up: In any phase, if proposer 𝑖 receives
a response (𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 ) from any recorder 𝑗 whose 𝑠′𝑗 > 𝑠,
this means that proposer 𝑖 has fallen behind recorder 𝑗 (and
hence behind some other proposer) in logical time. In this
case, proposer 𝑖 simply “catches up” to step 𝑠′𝑗 directly, by (a)
adopting 𝑠′𝑗 as 𝑖’s new step number 𝑠, and (b) taking 𝑓 ′𝑗 as 𝑖’s
proposal template 𝑝 for this later step.

Spread/gather propagation: Phases 1–3 of Algorithm 4
implement the last two tcast invocations in Algorithm 1,
in which at least one replica’s input is broadcast to all live
replicas. Algorithm 4 implements these tcast operations in
two steps each: a spread step spreads some proposer’s input to
a majority of recorders, then a gather step gathers knowledge
of these spread inputs from a majority of recorders. As Fig. 5
illustrates, Algorithm 4 pipelines the 2-step spread/gather of
existent sets (the second tcast in Algorithm 1) together with
the 2-step spread/gather of common sets (the third tcast), so
that these operations take only three steps total in Algorithm 4.

For phase 1 of each consensus round, no phase-specific
code is required in Algorithm 4. In this phase, proposer 𝑖
spreads the “best-of-a-quorum” proposal 𝑝 resulting from
phase 0 (corresponding to the best of set 𝑃 in Algorithm 1) to
a quorum of recorders. If proposer 𝑖 succeeds in this venture,
then at the end of phase 1, proposer 𝑖 knows that the existence
of its proposal 𝑝 (or a better one) will become known to all
proposers by the next phase. This proposal 𝑝 thus corresponds
to the best of set 𝑃 ′ in Algorithm 1, a proposal set guaranteed
to appear in all replicas’ existent (𝐸) sets in the abstract algo-
rithm. If proposer 𝑖 fails to spread its proposal 𝑝 to a quorum
of replicas before some replica advances to the next phase,
however, then the generic catch-up logic above leaves 𝑖 with
a (possibly different) proposal that was successfully spread
by another (faster) proposer. Either way, 𝑖’s proposal 𝑝 at the
end of phase 1 is now a common proposal.

Phase 2 of each round serves three purposes: to gather
knowledge of existent (𝐸) proposals, to spread knowledge
of common (𝐶) proposals, and to determine if consensus
has been reached. Any proposal that was successfully spread
(became common) in phase 1 will have been aggregated by a
majority of recorders’ ISRs in phase 1. Any such proposal will
thus be accounted for in the prior-step-aggregate 𝑎′𝑗 returned
by some recorder 𝑗 that 𝑖 queries in phase 2. The best of a
quorum of these aggregates is thus the best of an existent
(𝐸) set in Algorithm 1. Further, the working proposal 𝑝 at



the end of phase 2 corresponds to a universal (𝑈 ) proposal,
because the knowledge that 𝑝 is common was spread to a
quorum of recorders during this phase. Thus, proposer 𝑖 can
actually perform consensus detection – representing the test if
best(𝐸) = best(𝑈 ) in Algorithm 1 – at the end of this phase.
Proposer 𝑖 returns a decision immediately if this test succeeds.

Phase 3 is required only in consensus rounds that do not
succeed in deciding from proposer 𝑖’s perspective. In this
phase, 𝑖 gathers knowledge of common (𝐶) proposals, exactly
as it gathered knowledge of existent proposals in phase 2.
At the end of phase 3, 𝑖 selects the best of the prior-step-
aggregates 𝑎′𝑗 of the recorders 𝑗 in its quorum of responses
as its initial proposal 𝑝 for the next consensus round. This 𝑝
corresponds to the next candidate best(𝐶).value computed in
Algorithm 1, and defines 𝑖’s preferred value in the next round.

4.2.5 Fast path: supporting leader-based rounds The
concrete QuePaxa protocol can implement either leaderless
asynchronous consensus or efficient leader-based consensus.
At the start of each round, all proposers must have already
agreed on which proposer, if any, is the leader for this round.
This agreement may derive from a prior decision, for example.

In leaderless rounds, all proposers choose the priorities
of their proposals as random integers between 1 and 𝐻 −
1, where 𝐻 is the highest possible priority. In this case, no
proposer is behaviorally distinguished and QuePaxa acts as
an asynchronous consensus protocol in this round.

In leader-based rounds, however, the unique designated
leader attaches the highest priority 𝐻 , reserved for this pur-
pose, to all of its proposals. If the leader’s proposal is the
first to reach a quorum of recorders in phase 0, then this high-
priority proposal naturally dominates the consensus process:
only the leader’s high-priority proposal can ever subsequently
be chosen. If the leader obtains such a quorum in phase 0,
therefore, the leader can decide at the end of phase 0, after
only a single round-trip with the proposers. Under typical
network conditions, this fast path enables QuePaxa to commit
in a single round-trip, equivalent in efficiency to Multi-Paxos
or Raft commitment by an already-prepared leader.

A strong network adversary can always prevent leader-
based rounds from succeeding, e.g., by scheduling messages
such that the leader’s proposal propagates to all proposers’ 𝐸
sets but to none of their𝑈 sets. We would thus lose robustness
to asynchrony if we always used leader-based rounds. Que-
Paxa therefore uses a leader only in the first round of any slot,
then falls back on leaderless rounds if the first round fails to
decide. In this way, the leader can generally decide on the fast
path in the first round under normal network conditions, while
subsequent leaderless rounds provide a robust asynchronous
backup path if the first round fails to decide.6

6We expect that fast-path optimizations could be pushed further. Using
flexible quorums [6, 39], for example, we could reduce the quorum size
required in the fast commit path, at the cost of requiring a larger quorum in
the following step. We leave such optimizations to future work, however.

This leader-based fast path with asynchronous backup ad-
dresses our first main “tyranny of timeouts” challenge, live-
ness loss under network asynchrony. To address the other two
challenges, we next focus on how QuePaxa uses the above
consensus protocol for state machine replication (SMR).

5 High performance SMR with Hedging
This section elaborates on how QuePaxa leverages hedging for
efficiency and dynamically optimizes the hedging schedule.

5.1 Retroactive versus proactive risk management

Hedging is the practice of launching operations redundantly
on different nodes simultaneously, possibly but not neces-
sarily staggered by brief delays, in order to “hedge one’s
bets” against an instance of the operation taking unexpectedly
long [23, 71]. This practice is well-established in large-scale
multi-tier query architectures, but to our knowledge QuePaxa
is the first work to apply this concept in consensus protocols.

There is a basic difference between a timeout and a hedging
delay. A timeout serves to detect a likely failure retroactively,
as evidenced by a lack of observed normal-case progress.
A timeout typically initiates an abnormal-case recovery pro-
cess, such as a view change, which interferes with normal-
case progress if triggered too early. Hedging initiates non-
interfering parallel effort, in contrast, proactively limiting
risks of long delays. Hedging is safe and often useful even if
no failure has occurred. A timeout can never sensibly be con-
figured to zero, as this would leave no time for normal-case
progress and would doom the system to an endless failure-
recovery loop. A hedging delay of zero not only makes sense
but is common, whenever the reduced risk of long delays
justifies the costs of simultaneous redundant effort.

5.2 Using hedging instead of timeouts in QuePaxa

Leveraging the fact that multiple proposers may be simulta-
neously active in any protocol step without destructive inter-
ference (Section 3.4), QuePaxa organizes potential proposers
into a hedging schedule or delayed-activation sequence. The
designated leader, if any, is always the first in the schedule
with a delay of zero. All other proposers follow in some
known order, sorted in non-decreasing order of associated de-
lays. Each proposer in the schedule waits its associated delay
before proposing, and does so only if it has not by then seen
evidence that some other proposer (probably earlier in the
schedule) has already driven the relevant step to completion.

While the hedging schedule technically needs to include
only 𝑓 + 1 proposers to ensure liveness against 𝑓 failures,
QuePaxa always includes all proposers in the schedule for
simplicity. QuePaxa currently just chooses a single base de-
lay parameter 𝛿 , then assigns the second proposer (after the
leader) a hedging delay of 𝛿 , assigns the third proposer a
hedging delay of 2𝛿 , etc. Other approaches to scheduling are
certainly feasible, such as launching the first two proposers
simultaneously, or assigning delays to later proposers based



on historically-measured timings of all proposers. We leave
such scheduling refinements to future work, however.

During periods of synchrony when the maximum round-
trip network delay Δ (unknown to the protocol) is less than
the current base delay 𝛿 , normally only the first proposer in
the schedule will activate, the rest remaining passive upon
seeing the leader making progress. Even if 𝛿 is less than Δ
by some constant factor, however (i.e., Δ = 𝑂 (𝛿)), at most
a constant number of proposers will activate in each step,
ensuring the same 𝑂 (𝑛) asymptotic communication cost as
in conventional leader-based protocols during synchronous
periods. Choosing 𝛿 too small can cause too many proposers
to activate and revert to the 𝑂 (𝑛2) worst-case communication
cost that applies under asynchronous conditions. But we will
next explore how QuePaxa tunes its choices of leader to
prevalent conditions whenever network delays are stable.

5.3 Leader tuning in QuePaxa

We usually do not know how each replica will perform as
leader until we try it. Even then, observations may be noisy,
affected by load and many other factors. Leader selection is
thus a form of multi-armed bandit problem, a term inspired
by a gambling machine (“bandit”) whose multiple levers
(“arms”) each have different, unknown payout chances [78].

QuePaxa adopts a well-known strategy for such problems,
first exploring or testing alternatives, then exploiting or ap-
plying learned knowledge. QuePaxa divides SMR slots into
fixed-length epochs each with a stable leader. In the first 2𝑛+1
epochs QuePaxa rotates among leaders, round-robin, giving
each replica two epochs as leader. After this exploration,
QuePaxa exploits these trials by forming and agreeing on a
hedging schedule with replicas sorted in descending order of
their observed average epoch completion time. QuePaxa then
continues monitoring the current leader’s performance, re-
computing the hedging schedule each epoch, but it no longer
proactively explores other leaders unless the current leader’s
performance falls below that of the next in the schedule.7

6 Implementation
We implemented QuePaxa using Go version 1.18 [52], in
4368 lines of code as counted by CLOC [22]. We use the stan-
dard Go network library and TCP [81] for reliable point-to-
point links between replicas. We used Protobuf encoding [36]
with the gRPC [30] plugin for remote procedure call.

Our implementation supports batching in both submitters
and proposers, as well as pipelining, as in existing implemen-
tations of Rabia [65] and EPaxos [54]. The current prototype
does not implement reconfiguration, but could readily be
extended to do so by using consensus to agree on new config-
urations, as per standard existing practices [42, 64]. An open
source release of our prototype is available [83].

7Refinements inspired by “restless bandits” [90] might periodically re-
explore to detect dynamic performance improvements in non-leader replicas.

6.1 Reducing the leader bottleneck in LAN scenarios

In leader-driven consensus, the leader is often a performance
bottleneck because it must send 𝑛 messages and receive up
to 𝑛 messages per commit, even on the fast path. The size
of these messages mainly depends on the batch sizes of sub-
mitters: while QuePaxa metadata is usually only a few bytes,
batches of commands are often kilobytes or even megabytes.

To reduce this bottleneck in data center settings, Que-
Paxa leverages the property of modern data center LANs
that when a node broadcasts a message 𝑚 to several others,
recipients usually receive𝑚 at almost the same time, within a
millisecond-latency upper bound [46, 66]. After a submitter
broadcasts a batch of commands to all replicas in QuePaxa,
it sends only a small unique batch ID (e.g., a cryptographic
hash) to the consensus layer. The consensus logic then agrees
on batch IDs rather than batch contents, reducing the leader’s
bandwidth burden. When a recorder receives a proposal con-
taining a batch ID, it first checks whether it has received that
batch’s content, and if so – as is common in a data center LAN
– the recorder responds immediately according to algorithm 2.
If the recorder has not yet received the batch, it first requests
the batch from any proposer before responding. Other pro-
tocols such as Rabia [66] and NOPaxos [46] have employed
similar optimizations specific to data center networks.

6.2 Model-checked implementation in Promela

In addition to the above full prototype in Go, we imple-
mented the core QuePaxa consensus logic in Promela and
exhaustively verified the model’s safety using the Spin model
checker [37]. See Appendix D for further details. This verifi-
cation is subject to the usual limitations of model checking,
such as the need to constrain the problem to a finite state space
and the inability to verify properties such as the probabilistic
success of consensus rounds. The verification nevertheless
increases our confidence in the basic algorithm’s correctness.

7 Experimental evaluation
We evaluated QuePaxa to address the following key questions:
(1) Does QuePaxa perform comparably to state-of-the-art con-
sensus algorithms under normal network conditions? (2) Can
QuePaxa offer robustness to adversarial network conditions?
(3) What is the impact of hedging on liveness and on recovery
time? (4) Can QuePaxa converge to the best hedging schedule
in a realistic heterogeneous deployment?

We compare QuePaxa’s performance against four state-
of-the-art SMR algorithms: Multi-Paxos [42], Raft [64], Ra-
bia [66], and EPaxos [55]. Multi-Paxos is a classic leader-
based algorithm. Raft is a leader-based algorithm based on
viewstamped replication [62]. Rabia uses randomization to
simplify SMR, specializing in data-center networks.

EPaxos is a multi-leader protocol that partitions commands
across consensus instances in parallel as their dependencies
permit. EPaxos’s primary goal of improving throughput via
parallelism is orthogonal and complementary to QuePaxa’s



Algorithm Implementation Lines of Code Note
Multi-Paxos existing [54] 2891
EPaxos existing [54] 4658
Rabia existing [65] 4572 8

Multi-Paxos new [82] 2743
Raft new [82] 2802
QuePaxa new [83] 4368

Table 1. Lines of code [22] in the SMR implementations.

primary goal of robustness, and thus represents a less “apples-
to-apples” baseline than Multi-Paxos and Raft, but we include
it when feasible for a diverse comparison.

When feasible we use the existing Go implementations of
Multi-Paxos and EPaxos [54], and of Rabia [65], each with
minor enhancements for our experiments [56, 67]. We found
that the existing Multi-Paxos/EPaxos code base [54] does not
correctly implement leader-failure scenarios, however. Upon
a leader timeout, the new leader does not initiate the prepare-
promise phase. With five replicas and command execution
enabled via the -exec flag, after any replica failure, the
existing implementation never makes any progress.

Due to this issue, we use this existing EPaxos code base
only for normal-case execution in Section 7.2 below. Other
experiments use our own publicly-available Paxos and Raft
implementations [82], which correctly handle replica failures.

For reference, Table 1 lists the SMR implementations we
evaluated, each with line counts measured with CLOC [22].

7.1 Experimental configuration and workloads

We use Amazon EC2 virtual machines [8] of type c4.4xlarge
(16 virtual CPUs, 30 GB memory) and c4.2xlarge (8 virtual
CPUs, 15 GB memory) for replicas and submitters, respec-
tively. We test both a local-area-network (LAN) configuration
where all replicas and submitters are located in the North
Virginia AWS region, and in a wide-area-network (WAN)
setup where the replicas and submitters are distributed glob-
ally across AWS regions Tokyo, Mumbai, Singapore, Ireland,
and São Paulo. We use Ubuntu Linux 20.04.5 LTS [87].

Following the evaluation approach of Rabia [65], we use a
string-to-string key-value store as the backend application.

Submitters generate traffic with a Poisson distribution in
the open-loop model [76]. All algorithms use batching in both
submitters and proposers. Multi-Paxos, EPaxos, and QuePaxa
support pipelining, while the Raft and Rabia implementations
do not. Client requests are 17 bytes (1-byte GET/PUT opcode
plus 8-byte keys and values), consistent with request sizes
common in production systems and prior research [15, 66].

For Multi-Paxos, Raft, Rabia and QuePaxa we measure end-
to-end execution latency, counting the submitter-observed
time required both to order and execute commands. EPaxos’s

8The Rabia implementation includes log compaction; the others do not.

execution latency is significantly higher than its commit la-
tency [86], however, due to its dependency tracking and par-
allelization of commands, a feature orthogonal to this work’s
focus. For EPaxos, we therefore measure both ordering-with-
execution latency, denoted “EPaxos-exec” in the graphs be-
low, and commit-only latency (omitting the time required to
execute commands), denoted “EPaxos-commit” below.

We run each experiment for one minute, repeating exper-
iments 3 times. We measure throughput in commands per
second (cmd/sec), where a command is one 17-byte request.

7.2 Normal-case performance evaluation

We first evaluate the performance of QuePaxa under normal
failure-free conditions, in LAN and WAN settings. We employ
pipelining only in the WAN scenario (with a pipeline length
of 10), as we did not observe any benefit from pipelining in
the LAN case. Figure 6 depicts the results of this experiment.

We observe in figure 6a that QuePaxa delivers LAN satu-
ration throughput of 584k cmd/sec under a median latency
upper bound of 5.8ms, compared with Multi-Paxos’s satura-
tion throughput of 400k under 5.6ms. We attribute QuePaxa’s
higher LAN throughput to the optimization discussed in Sec-
tion 6.1, using submitter-driven batch dissemination to reduce
critical-path bandwidth. Multi-Paxos carries these batches in
the critical path, thereby incurring higher latencies.

We see in figure 6a that EPaxos-commit (without com-
mand execution) delivers LAN throughput of 699k cmd/sec
under 5.8ms latency, 16.5% higher than QuePaxa’s saturation
throughput. This higher throughput results from EPaxos’s par-
titioning of commands across consensus instances, a useful
optimization that could be combined with QuePaxa but is out-
side the scope of this work. The EPaxos-commit experiment
uses a conflict rate of 2%, thus committing commands in one
round-trip 98% of the time. Because our QuePaxa prototype
lacks this partitioning and employs only a single leader at
once, its performance is naturally bottlenecked by the leader.

EPaxos-commit’s 2% conflict rate impacts its 99% LAN
tail latency shown in figure 6b, however. In the WAN case
shown in Fig. 6c, the median latency of EPaxos-exec with
command execution is 400ms higher on average than Que-
Paxa (in the 50k–200k cmd/sec range). This higher latency
results from EPaxos’s dependency management, consistent
with prior observations [51, 86]. Finally, even the median
WAN latency of EPaxos-commit is 60ms higher than Que-
Paxa in the 0-150k cmd/sec range. This is because a single
conflicting command in a batch requires EPaxos to take the
two-round-trip slow path, thus impacting not just tail latencies
but the latencies of most commands [86].

We observe in Fig. 6a that Rabia’s median latency is com-
parable to QuePaxa’s. As Fig. 6b shows, however, Rabia’s
tail latency is 100ms-300ms higher than QuePaxa’s in the
throughput region 250k-400k, due to the cost of slot forfeit-
ing in Rabia [66]. Moreover, we observed that under WAN
deployment, the throughput of Rabia falls under 10 cmd/sec
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Figure 6. Throughput versus latency for normal-case execution, comparing QuePaxa to Rabia, Multi-Paxos and EPaxos.

with latency greater than 2s. This low WAN performance
stems from Rabia’s assumption that network delay is small
compared with the interval between consecutive requests [66,
§3.2], a condition that holds in the LAN but not the WAN.

7.3 Scalability

This experiment evaluates the scalability of QuePaxa in a
single data center (North Virginia), with an increasing number
of replicas. We measure the saturation throughput of each
algorithm, under a 5.8ms median latency upper bound, which
we chose based on the saturation point we observed in Fig. 6a.
Figure 7 depicts these scalability results.

In contrast with blockchain algorithms targeting scalability
up to hundreds of nodes [34, 93], crash-fault-tolerant proto-
cols are generally deployed and evaluated at smaller scales of
under 15 nodes [41, 49], so we follow this convention.

We compare QuePaxa, Multi-Paxos, and EPaxos in this
experiment. We observed that EPaxos is hard-coded to sup-
port only up to 5 replicas. With more than 5 replicas, EPaxos
crashes with an index-out-of-bounds exception, which stems
from a hard-coded array of size 5. We reported this as a bug
in the EPaxos code repository [54]. Hence, for EPaxos, we
depict only the 3- and 5-replica configurations.

We observe that the throughput of QuePaxa decreases from
584k to 467k cmd/sec as the replica count increases from 3 to
13. QuePaxa uses a quorum-based broadcast for replicating
commands. When replication factor increases, the current
leader in QuePaxa must exchange an increasing number of
messages with non-leader replicas. This load explains the
20% throughput drop with increasing replication factor.

We observe that for all replica configuration sizes, the
throughput of QuePaxa is 35% higher than Multi-Paxos, on
average. We attribute this gain to QuePaxa’s LAN optimiza-
tion of using client replicas to disseminate the requests, re-
ducing critical-path bandwidth usage. With this optimization
disabled, we find that QuePaxa and Multi-Paxos deliver es-
sentially the same throughput in all configuration sizes.

Finally, we observe that EPaxos provides better throughput
than QuePaxa and Multi-Paxos. While we do not have the
empirical data to showcase the scalability of EPaxos, theo-
retically, we expect EPaxos to scale better than QuePaxa and
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Figure 7. Scalability in a single data-center deployment

Multi-Paxos, because EPaxos partitions over commands and
only partially orders commands. In contrast, QuePaxa and
Multi-Paxos place all commands in a total order.

7.4 Performance under adversarial network conditions

This experiment evaluates QuePaxa under simulated attack
by a network adversary, similar to attacks used in recent
consensus robustness work [80, 84, 85]. This adversary con-
trols communication delays of a minority of replicas, with
the aim of compromising the liveness and performance of
consensus. Our simulated adversary is intended to model real-
istic network-based attacks, such as a denial-of-service (DoS)
attack focused on a few replicas, or the use of BGP hijack-
ing [19] to divert routes and gain direct control over delays
between some replicas. Our simulated attacker increases the
egress packet latency of a minority of replicas up to 500ms
dynamically in 5s time epochs. This experiment runs in the
WAN setting with 5 replicas. Figure 8 depicts these results.

We observe that under the simulated attack conditions,
QuePaxa sustains a throughput of at least 75k cmd/sec un-
der 380ms median latency. In contrast, the throughput of
Multi-Paxos and Raft saturate at 2.5k cmd/sec. We inter-
pret these results as confirming that QuePaxa’s asynchronous
core provides significant robustness under attack, in contrast
with Multi-Paxos and Raft, which stall and make little or no
progress when the current leader is under attack.



0 10 20 30 40 50 60 70 80
Throughput (x 1k cmd/sec)

0

500

1000
M

ed
ia

n 
la

te
nc

y 
(m

s)
QuePaxa
Multi-Paxos
Raft

Figure 8. Throughput versus median latency with a network
adversary that randomly attacks a minority of replicas at once.

100

300

1000

3000

Re
co

ve
ry

 ti
m

e 
 (m

s)

5

1000
4000

25000

Th
ro

ug
hp

ut
 

 (c
m

d/
se

c)

QuePaxa
Multi-Paxos
Raft

50 100 200 300 500
Leader Timeout / Hedging Delay (ms)

1
2
3

Av
er

ag
e 

nu
m

be
r 

 o
f s

te
ps

 p
er

 
 sl

ot

QuePaxa
Round trip 
latency

Figure 9. Impact of timeout/hedging delay configuration on
recovery time (upper) and throughput (middle).

7.5 Impact of protocol delays on liveness and recovery

This experiment evaluates the impact of configured protocol
delays – hedging delays in QuePaxa, and view-change time-
outs in legacy protocols – on protocol liveness and recovery
time after leader failure. We use five replicas in the WAN set-
ting, among which we measured an average round-trip delay
of 180ms. In this experiment, five submitters inject a constant
aggregate load of 25k commands per second.

We first evaluate throughput under varying hedging delays
(QuePaxa) or leader timeouts (existing protocols). We then
investigate the protocols’ recovery time after leader failure.

To measure recovery time, we “crash-stop” the leader at
time 𝑡 = 15 seconds, and measure the time it subsequently
takes for a new leader or alternate proposer to resume making
progress. Figure 9 depicts these experimental results.

Protocol Liveness: As Fig. 9 (middle) shows, we find that
QuePaxa consistently delivers throughput of 25k cmd/sec,
keeping pace with the imposed load regardless of hedging
delay. When QuePaxa’s hedging delay is less than the average
network round-trip-time of 180ms, the non-leader replicas
also propose commands. However, each non-leader replica
waits a short time before proposing in a slot, while the leader
proposes with no delay. Even with competition from other
proposers, we observe that the leader still “wins” most slots
and commits in one round-trip. Moreover, when non-leader

replicas propose concurrently with the leader, we find that
the non-leader proposers often help the leader propagate its
command, confirming that proposers effectively cooperate
in QuePaxa. Even when hedging delay is less than network
round-trip time, QuePaxa thus delivers stable performance.

As shown in Fig. 9 (bottom), the main cost of hedging
in QuePaxa is increased bandwidth use. When the hedging
delay is less than the network round-trip time, more than one
proposer submits commands, increasing message overhead.

Multi-Paxos and Raft, in contrast, rapidly lose throughput
and ultimately liveness when their view-change timeout is
close to or less than the average network round-trip time.
In this case, no leader can make progress without interfer-
ence from false view-change triggers. With a timeout above
330ms, Multi-Paxos and Raft deliver 25k cmd/sec throughput
as expected, as the leader can proceed without interruption.

We conclude that QuePaxa maintains liveness and perfor-
mance with any hedging delay, while Multi-Paxos and Raft
depend on their view-change timeout being correctly config-
ured to at least about 1.8 times the network round-trip time.

Leader recovery: As Fig. 9 (upper) shows, we see that for
all hedging delays, QuePaxa exhibits a recovery time after
leader failure between 303ms and 473ms. QuePaxa exhibits
close to its lowest recovery time with a hedging delay around
200ms – barely above the 180ms average RTT. When hedging
delay is below the RTT, recovery time increases slightly due
to the redundant proposers, but nevertheless remains modest.

Multi-Paxos and Raft exhibit orders-of-magnitude higher
recovery times with timeouts insufficiently above the net-
work’s RTT. Below 200ms timeouts, Multi-Paxos and Raft
fail to stabilize at all and hence have no recovery time.

In Multi-Paxos, recovery time explodes with 100ms higher
timeouts than Raft. This difference results from the Raft im-
plementation using a multi-threaded gRPC design, while the
Multi-Paxos code uses a single-threaded event-driven design.

With delays more than 500ms, all protocols converge to a
recovery time roughly equal to network round-trip time plus
the timeout, as we expect since recovery in this case depends
primarily on the combination of network RTT (to run the view
change) plus one timeout (to detect the need for it).

We conclude that QuePaxa robustly maintains low recov-
ery times affected only slightly by configured hedging delay.
Existing protocols effectively impose a hard lower bound on
timeouts, otherwise risking high recovery time or no recovery.

7.6 Automatic convergence to the best leader

This experiment evaluates QuePaxa’s auto-tuning mechanism
to identify and converge on the best hedging schedule. We ask
in particular: can QuePaxa find whichever leader maximizes
performance, regardless of initial leader? This experiment
uses five replicas in a single AWS region (Oregon), on five
heterogeneous EC2 machines (t2.large, t2.2xlarge, c4.large,
c4.xlarge, and c4.4xlarge) [8]. These EC2 types have varying
computational and memory resources, with t2.large being
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Figure 10. Automatic best-leader discovery in QuePaxa.

the weakest machine and c4.4xlarge being the strongest. For
each run, the t2.large machine is the initial leader. We use a
constant load of 80k cmd/sec, and measure median command
execution latency (Section 5.3). Fig. 10 depicts these results.

We find that Multi-Paxos and Raft maintain a high latency
of 5.2 ms, retaining the slow t2.large machine as leader be-
cause it never times out. QuePaxa’s multi-armed-bandit opti-
mization, in contrast, converges to the best leader after only 4
seconds, thereafter providing a 3.8ms latency. QuePaxa thus
achieves 1.4ms lower latency than Raft and Multi-Paxos in
this scenario, a significant benefit in a data-center setting.

8 Related Work
The most widespread consensus protocols use a leader to or-
der requests and achieve one-round-trip normal-case commit
latency at 𝑂 (𝑛) cost [42, 62, 64]. Multi-leader variants allow
several leaders to propose concurrently, spreading the lead-
ership burden to optimize throughput [43, 49, 55, 84]. Other
variants employ overlay networks to reduce bandwidth con-
sumption [18, 50, 85]. Archipelago [9] achieves consensus
deterministically without relying on a single leader. All of
these protocols lose liveness under asynchrony, however.

Randomized consensus: Many algorithms use randomness
to achieve asynchronous consensus [1, 14, 26, 29, 31, 53,
57, 63, 72, 94]. These algorithms are rarely implemented or
deployed, however, due to high complexity and poor normal-
case efficiency. QuePaxa builds on ideas from QSC [29],
but QuePaxa introduces a single-round-trip fast path, 𝑂 (𝑛)
normal-case cost, hedging, and leader-choice optimizations.

Prior hybrid consensus protocols have combined failure
detection for synchronous performance with randomization
for asynchronous robustness [5, 34, 61, 79, 80, 85]. These
protocols still rely on timeouts to recover from failures under
synchronous operation, however, and do not achieve Que-
Paxa’s single-round-trip, 𝑂 (𝑛)-cost normal-case efficiency.

Rabia [66] is a randomized crash-fault-tolerant SMR scheme
that uses Ben-Or’s asynchronous consensus algorithm [14] as
a component. Rabia specializes in low-delay, high-capacity
data-center networks, however, making assumptions and de-
sign choices that limit its usefulness in other contexts. Ra-
bia’s fast path incurs three network hops and quadratic mes-
sage complexity, compared with QuePaxa’s two-hop, linear-
complexity fast path. Rabia assumes that incoming requests
are (correctly) timestamped and that “message delay is small
compared to the interval between two consecutive requests”

([66, §3.2]). Experimentally, we found Rabia usable only on
low-delay LANs with high network capacity and few replicas
(n=3 or 5), as examined in Section 7 and prior reports [85].
Appendix E provides an in-depth comparison with Rabia.

Hedging: Hedging is often employed in online interactive
services, which typically operate under strict service-level
objectives (SLOs) [11, 12, 23, 33, 68]. QuePaxa is the first
consensus protocol to adapt hedging to allow multiple leaders
to propose, while minimizing the message overhead. Prior
work has explored other ways to make consensus more robust
against network performance issues, however [44, 59, 60].

Automated tuning: Most consensus protocols contain
many tunable parameters: e.g., leader timeout, batch size,
batch time, pipeline length, garbage collection frequency.
Couceiro et al. [20] used machine learning to predict the per-
formance of total-order-broadcast protocols. Paolo et al. [74]
employed multi-armed-bandit theory to tune batching in con-
sensus protocols. QuePaxa focuses on tuning leader choice
and hedging schedule, and hence is complementary to prior
work. Multi-armed bandit theory has been used in many do-
mains outside of consensus, of course [3, 21, 45, 48, 91].

Orthogonal goals: As this work focuses on the liveness
and performance robustness of consensus, it does not attempt
to address many other useful goals: e.g., achieving scalability
by partitioning over commands [25, 55] or over state [6, 70],
shrinking the quorum required in the fast commit path [6,
39], exploiting WAN locality [6, 58], reducing storage costs
via erasure coding [88, 89], reducing the load on leaders
by outsourcing work [92], or tolerating Byzantine replica
faults [17, 93]. We expect that many techniques from these
complementary works could be adapted to QuePaxa, but we
leave these interesting challenges to future work.

9 Conclusion
QuePaxa is a novel asynchronous consensus algorithm with
the efficiency of partially-synchronous protocols under nor-
mal conditions, while being far more robust to challenging
conditions. Our evaluation confirms that QuePaxa achieves
high common-case performance, robustness to DoS attack,
low recovery time, and ability to converge to the best leader.
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Appendices
The following appendices contain material supplemental to the main paper above. The authors feel that this material may be
useful in understanding certain subtleties of QuePaxa and its relation to prior work in more detail. Readers are advised, however,
that the material in these appendices has not received the same level of peer review as the main paper.

A Approaches for choosing random priorities
The simple liveness analysis in Section 4.1.3 assumes that
each replica chooses high-entropy priorities using private
(local) randomness, so that there is a negligible chance that
two or more replicas tie by choosing the same highest pri-
ority in a round. There are many potential ways to choose
random priorities for QuePaxa, however, with different trade-
offs. Appendix A.1 below outlines three alternative ways to
handle ties while using private coins, then Appendix A.2
describes how we adjust the per-round decision success prob-
ability calculations to account for any non-negligible chance
of ties. Finally, Appendix A.3 briefly explores common-coin
approaches to handling priorities, which trivially avoid ties
but can be less performant when a minority of nodes have
failed.

A.1 Choosing priorities via private coins

There are three readily-apparent alternative ways to handle
ties: avoid them, break them, or detect and neutralize them.
We summarize each of these approaches in turn.

Avoiding ties: The simple analysis in Section 4.1.3 applies
verbatim with no adjustment if we simply choose priorities
from a sufficiently-high-entropy (e.g., cryptographic) random
number distribution, thereby making the chance of a tie (cryp-
tographically) negligible.

This approach keeps both the algorithm and its correctness
proof simple, at the cost of requiring priorities to be fairly
large, i.e., hundreds of bits. Both the space cost of these large
priorities, and the computational cost of generating them from
a high-entropy cryptographic random source, may be an issue
especially in high-performance implementations of QuePaxa.

Breaking ties: An almost-equally-simple approach is to
prevent ties from occurring at all, by choosing the least-
significant bits of priorities non-randomly so as to disam-
biguate them uniquely within a given round.

For example, we can first choose a low-entropy random
binary integer, then append to it a binary encoding of the
replica number, ensuring that the resulting priority associated
with any replica’s proposal is unique within a given round.
Our main prototype implementation discussed in Section 6
and evaluated in Section 7 uses this approach.

An alternative tiebreaking approach is to choose a low-
entropy random binary integer then append a binary encoding
of the proposal value itself. Random ties associated with
different proposals are then disambiguated by the proposal
value, favoring proposals whose encodings represent larger
integers. Random ties associated with identical proposals are

Algorithm 5: Abstract QuePaxa with tie detection
Input: 𝑣 ← value preferred by this replica

repeat // iterate through rounds
𝑝 ← ⟨𝑣, random()⟩ // prioritized proposal
(𝑃, _) ← tcast({𝑝}) // propagate our proposal
(𝐸, 𝑃 ′) ← tcast(𝑃) // propagate existent sets
(𝐶,𝑈 ) ← tcast(𝑃 ′) // propagate common sets
𝑣 ← anyBest(𝐶) .value // next candidate value
if uniqueBest(𝐸) = anyBest(𝑈 ) then // detect and

deliver(𝑣) // deliver decision

not broken in this case but are harmless. Our Promela models
of QuePaxa employ this approach.

While the tiebreaking approach keeps the algorithm simple
while allowing priorities to be small, we must adjust the
liveness analysis of Section 4.1.3 – and in particular the per-
round success probability – since not all of the bits of the
resulting priorities are random and hence independent of
the network adversary’s scheduling decisions. Appendix A.2
below discusses the adjustments necessary in this case.

Detecting ties: A third approach to handling ties is to detect
them and avoid deciding when a tie for best proposal has
occurred. This approach slightly increases the algorithm’s
complexity, but may be useful in implementations wishing
to keep priorities as small as possible without adding even a
few bits for tiebreaking. This tradeoff may be worthwhile in
hardware-supported implementations, for example.

Algorithm 5 shows Algorithm 1 adapted to detect ties.
The one difference is that Algorithm 5 uses two separate
best-proposal-selection functions, anyBest and uniqueBest,
instead of the single best function used in Algorithm 1. The
function anyBest(𝑃) selects any proposal from set 𝑃 that
has maximum priority among all those in 𝑃 , breaking ties
arbitrarily. Thus, anyBest(𝑃) always returns some valid pro-
posal provided that 𝑃 is non-empty, which is always the
case in Algorithm 5. The function uniqueBest(𝑃) returns
the highest-priority proposal from 𝑃 provided there is only
one highest-priority proposal, and otherwise (on a tie) returns
a distinguished nil value distinct from any valid proposal.

In Algorithm 5, the next candidate value 𝑣 ← anyBest(𝐶)
always comes from some valid proposal even if there is a
tie. If there is a tie for best in any node’s common (𝐶) set,
and hence ambiguity about which best proposal a node might
choose, then all of these tied proposals must also appear in
every node’s existent (𝐸) set. In this case, uniqueBest(𝐸) will
always return nil while anyBest(𝑈 ) always returns a non-nil



proposal, causing consensus detection to fail on every node
and hence safely deferring to the next round.

To implement tie detection in the concrete QuePaxa proto-
col, using constant-size summaries in place of the proposal
sets above, we modify the interval summary register (ISR) def-
inition (Section 4.2.2) to accept and record tuples of the form
⟨priority, value, conflict⟩ instead of simple binary integers.
The conflict element is simply a boolean flag that is always
false in any individual (non-aggregated) proposal. The ISR’s
summarization operator aggregate combines two proposal
tuples by choosing the one with the highest priority element,
provided their priorities are different. Upon encountering two
distinct proposals tied for the same priority, aggregate returns
a tuple whose priority is that priority, whose value comes
from either of the tied proposals arbitrarily (as in anyBest
above), and whose conflict flag is true to indicate the conflict.

After this modification to the recorders’ ISR logic, the
only modification required to the concrete proposer logic
(Algorithm 4) is to the decision condition in the 𝑠 mod 4 = 2
case. After checking that 𝑝 is identical to the best of all replies
in 𝑅, we must also check that the conflict flag in 𝑝 is false,
and decide only if 𝑝 is non-conflicted.

As with the tiebreaking approach, this detection approach
also requires an adjustment to the decision success probability
calculations as described next.

A.2 Decision success probability adjustment:

Whenever the probability of a tie for best proposal is non-
negligible, we must adjust the simplistic decision success
probability calculations in Section 4.1.3 to account for ties.

A straightforward approach is to use the union bound as a
conservative upper bound on the chance of either of two “bad
events” occurring: (a) a tie for highest priority, and (b) the
otherwise-unique highest-priority proposal not appearing in
the universal set (𝑈𝑖) of a given replica 𝑖 in question. If the
chance of a priority tie is 𝑝𝑡 , for example, then the chance of
a given replica 𝑖 not deciding in a round is upper bounded by
𝑝𝑡 + 𝑓 /𝑛. Thus, the chance of 𝑖 deciding is at least 1−𝑝𝑡 − 𝑓 /𝑛.
With this approach, the algorithm retains a reasonably-high
constant probability of success provided that priorities have
at least around log2 𝑛 bits of entropy.

Single-bit randomness: In certain implementations of Que-
Paxa it may be desirable to keep the size of random priorities
to an absolute minimum, e.g., just one random bit. We can
accomplish this goal, while maintaining a reasonable (though
not ideal) constant success priority per round, by choosing
that random bit from a suitably-biased random distribution.

Suppose for example that each replica chooses priority 2
with probability 1/𝑛 and chooses priority 1 otherwise, i.e.,
with probability 1 − 1/𝑛. (Priority 0 is unused and priority 3
is reserved for the fast-path leader, if any.) Then the desirable
event of a given replica 𝑖 deciding occurs if exactly one replica
chooses priority 2 and that replica’s proposal appears in 𝑖’s

universal set 𝑈𝑖 . The event of a particular replica 𝑗 choosing
the one and only proposal of priority 2 occurs with probability
1
𝑛
(1 − 1

𝑛
)𝑛−1. Further, there are at least 𝑛 − 𝑓 > 𝑛/2 such

replicas in 𝑈𝑖 leading to this desirable outcome. This yields
an overall success probability of at least 1

2 (1 −
1
𝑛
)𝑛−1 per

round, which is always greater than 1
2𝑒 ≈ 0.18 for all 𝑛 ≥ 1.

Leader-based rounds: Note that when operating under
asynchronous network conditions, the above worst-case suc-
cess probabilities are guaranteed only in leaderless, fully-
asynchronous rounds (i.e., round 2 or greater in any SMR
decision slot). In leader-based rounds (the first round of a
slot), a strong network adversary with full power to schedule
message delivery can prevent this first round from ever suc-
ceeding. Thus, the worst-case success probability for this first
leader-based round is zero, and the protocol relies on subse-
quent leaderless rounds to ensure liveness under asynchrony.

A.3 Choosing priorities via common coins

Most asynchronous consensus protocols in practice depend on
common (shared), rather than private (local) random coins. It
is therefore slightly counter to conventional wisdom that Que-
Paxa is simpler and more efficient using private coins. In brief,
this is because QuePaxa uses randomness to choose proposal
priorities, and not to choose either fallback agreement values
or unique leaders as in most prior asynchronous protocols.
This section briefly discusses the main precedents and reasons
for using common coins in consensus protocols and how
these precedents relate to QuePaxa. Finally, we briefly discuss
common coin implementation issues.

Precedent: randomized fallback values Ben-Or’s classic
algorithm for asynchronous binary consensus [14] uses ran-
domness to choose actual values for the replicas to agree on,
as a “fallback” if they don’t agree on their initial inputs. This
algorithm can use either private or common coins [5].

Ben-Or’s original private-coin version [14] tolerates a strong,
non-content-oblivious adversary, but requires a number of
rounds exponential in the number of replicas, and is there-
fore impractical. In essence, the replicas must wait for a rare
“lucky” round in which their private coin tosses are suffi-
ciently imbalanced, towards either mostly ones or mostly
zeros. The law of large numbers makes such “lucky” (imbal-
anced) rounds exponentially rare in the number of replicas.

Using a common coin instead of private coins to choose
fallback agreement values [5] eliminates the exponential-time
problem, because all replicas agree by design on the fallback
value for each round. The adversary must then be content-
oblivious (like QuePaxa), however. A non-content-oblivious
adversary can break the protocol by running just one replica
far enough to reveal the (one and only) common coin value
for the round, then scheduling the rest of the replicas based on
this knowledge [4]. Rabia [66] uses this weaker, but practical,
common-coin version of Ben-Or as a building block.



This approach of randomly choosing fallback consensus
values does not readily generalize from binary to multi-valued
consensus, unfortunately, because with more than one bit
of “value space” it becomes nontrivial to ensure validity:
the important property that the value the replicas agree on
is a value that some replica actually proposed. Naïvely ex-
tending Ben-Or to multi-valued consensus using a common
coin, for example, would yield a protocol that often randomly
chooses a fallback value that no replica actually proposed.
A slightly-less-naïve band-aid solution might be to check
whether a randomly-chosen fallback value is valid (i.e., to
check whether some replica actually proposed it). We might
plausibly perform such a check using binary consensus. This
approach, however, in turn raises the spectre of an exponential-
time search through a large agreement-value space.

Precedent: randomized leader election Because of the
above limitations, most recent asynchronous consensus proto-
cols use common coins not for choosing fallback agreement
values but for choosing leaders: i.e., a particular unique replica
responsible for performing a critical (typically final) step. For
example, ACE [80] runs 𝑛 concurrent instances of a partially-
synchronous consensus protocol, then uses a common coin
to choose one of those 𝑛 executions to “use” – crucially, only
after any network adversary has had to schedule and run a ma-
jority of those concurrent instances to completion. VABA [2]
uses a common coin in similar fashion as a final step.

QuePaxa could use common coins similarly, by assigning
one unique replica’s proposal in a round a designated higher
priority (e.g., 2), while assigning all other replicas’ proposals
some identical lower priority (e.g., 1). The result is a protocol
nearly equivalent to the one described above using a single
biased bit of private randomness per replica. By design, the
common-coin version eliminates the undesirable chance that
either two or more, or zero, replicas choose the high priority.
The resulting protocol may therefore be close-to-optimally
efficient, provided that no replicas have failed.

The cost of using common coins for leader election, how-
ever, manifests when some (up to 𝑓 ) of the replicas have failed.
If exactly 𝑓 replicas have failed, for example, then the com-
mon coin used for leader election will choose a failed leader
in each round with probability 𝑓 /𝑛. These “unlucky” rounds
will always fail to reach consensus, because all of the propos-
als of non-failed nodes have the same undifferentiated priority
(1), i.e., always yielding a tie for highest priority. Asynchro-
nous common-coin protocols like ACE [80] and VABA [2]
similarly fail to decide in such “unlucky” rounds, and must
simply retry until a lucky round materializes. When using pri-
vate coins to choose priorities, in contrast, QuePaxa can reach
consensus in every round even in this “𝑓 failures” scenario,
because the 𝑛 − 𝑓 live nodes always produce some highest-
priority proposal (unless a tie for best occurs, of course).

A more sophisticated common-coin QuePaxa could miti-
gate the “unlucky round” effect by using 𝑘 common random

“leader elecctions” per round to choose 𝑘-bit priorities, such
that each bit 𝑏 ∈ {0, . . . , 𝑘 − 1} is set in node 𝑖’s proposal
priority if node 𝑖 is the unique “winner” of random election 𝑏.
If the “first-choice” winner of bit 𝑘 − 1 is one of the 𝑓 offline
nodes, then the “next-choice” winner of bit 𝑘 − 2 might still
enable the round to succeed if that winner is online, and so on.
This multi-bit common-coin protocol is likely just as efficient
as the private-coin protocol: perhaps slightly more efficient,
since it eliminates the possibility of ties. This common-coin
version of QuePaxa seems more complex, however, and per-
haps not worth the trouble provided the private-coin protocol
has enough bits to limit the frequency of random ties.

Implementing common coins Relying on common coins
in asynchronous Byzantine consensus protocols tends to in-
troduce significant challenges and complexity, but is much
simpler in asynchronous crash-stop protocols like QuePaxa.

Byzantine consensus protocols usually require common
coins to be built using techniques such as Shamir secret shar-
ing [77], because it is usually important for the values of the
common coins to be hidden from all participants (especially
the Byzantine replicas) until a threshold number of replicas
has reached a certain stage. This secret-sharing dependency in
turn requires some form of distributed key generation (DKG)
for setup [28, 35]. This effective dependency on DKG further
creates a “chicken-and-egg” problem for Byzantine consen-
sus, in that solving DKG requires solving consensus as part of
the process, to agree on a particular choice of random secrets.

Implementing common coins in crash-stop protocols like
QuePaxa is easy, in contrast. We can choose a secret random
seed known to all replicas at group setup time. We then use
a keyed hash function [13] with the seed as key, and round
number as input, to produce fresh common coins for each
round. Since crash-fault protocols assume none of the replicas
are compromised and the adversary is only in the network,
we can simply trust the replicas not to leak the common
seed or resulting common coins to the network adversary. In
summary, implementing common-coin variants of QuePaxa
is feasible and straightforward, although the benefits appear
small and may not be worth the marginal complexity cost.

B Abstract QuePaxa Correctness Proofs
In this section, we prove the correctness of abstract Que-
Paxa described in Algorithm 1. These proofs expand the
correctness sketches provided in Section 4.1.3.

Definition B.1 (Proposal). We define a proposal as a tuple
⟨𝜋𝑖 , 𝑖, 𝑣𝑖⟩, where 𝑖 denotes the proposer replica’s identifier, 𝑣𝑖
denotes the proposed value and 𝜋𝑖 represents the priority.

This definition adds the replica identifier 𝑖 to the proposal
tuple used in Algorithm 1, to simplify formal reasoning, and
in practice for tiebreaking in case there is a non-negligible
chance of ties (see Appendix A for details). By this definition,
proposals from different replicas are always distinct even if
their priorities and values are identical.



In the formal reasoning below, however, we will assume
for simplicity that priorities never tie. That is, for any two
independently-chosen random priorities 𝜋 and 𝜋 ′, the prob-
ability that 𝜋 = 𝜋 ′ is zero. This is automatically the case if
priorities are real numbers chosen uniformly at random from
the interval between 0 and 1, for example. The example of
using real numbers is only a formal mathematical abstraction;
for practical discussion, refer to Appendix A on priorities.

Definition B.2 (Time advancement). In the abstract network
model that Algorithm 1 builds on, time advances in con-
secutive integer steps. At each time step, each live replica 𝑖
invokes the threshold broadcast primitive, or tcast, exactly
once. This invocation of tcast completes in exactly one time
step, unless replica 𝑖 fails during that time step. Invocation of
tcast is the only way in which time advances in this abstract
network model, so all live replicas by definition run tcast
simultaneously in each time step.

Definition B.3 (Threshold broadcast). At each time step,
each live replica 𝑖 invokes tcast(𝑃𝑖 ) with some set of pro-
posals 𝑃𝑖 that 𝑖 wishes to disseminate to the other replicas.
After one step, if replica 𝑖 is still live, tcast returns to 𝑖 a
pair of proposal sets (𝑅𝑖 , 𝐵𝑖 ). The tcast primitive satisfies two
properties, presented informally in Section 4.1.1:
• Property T1. 𝑅𝑖 includes the inputs from a majority of

replicas, i.e., |𝑅𝑖 | > 𝑛/2, and ∀𝑃 𝑗 ∈ 𝑅𝑖 , ∃ replica 𝑗 s.t. 𝑗
proposed 𝑃 𝑗 in that step.
• Property T2. 𝐵𝑖 is the proposal set input of some replica

(i.e., 𝑃 𝑗 for some 𝑗) that tcast has successfully broadcast to
all non-faulty replicas during this step. In other words, ∃
replica 𝑗 s.t. 𝐵𝑖 = 𝑃 𝑗 , 𝑗 invoked tcast(𝑃 𝑗 ) in this time step,
and ∀ live replicas 𝑘, 𝐵𝑖 ⊆ 𝑅𝑘 , where (𝐵𝑘 , 𝑅𝑘 ) is the pair
returned from tcast on replica 𝑘 .

Lemma B.4 (Set cardinalities). In every consensus round,
the sets 𝑃𝑖 , 𝑃 ′𝑖 , 𝐸𝑖 ,𝐶𝑖 , and𝑈𝑖 that are computed in Algorithm 1
each have cardinality greater than 𝑛/2.

Proof. By induction over consensus rounds. In the base case,
the initial preferred value 𝑣𝑖 of each replica 𝑖 is a well-defined
input to the algorithm.

In each round, assuming that 𝑣𝑖 is well-defined, the replica’s
proposal 𝑝𝑖 is likewise well-defined, so the input to the first
tcast invocation is a well-defined proposal set of cardinality
one. By tcast property T1, the received proposal set 𝑃 re-
turned from this tcast invocation contains the tcast inputs to a
majority of replicas in this step. Each of these tcast inputs has
cardinality one and contains a distinct proposal, due both to
the inclusion of replica identifier 𝑖 and to the assumption that
priorities never tie, as discussed above. The set 𝑃 returned
from the first tcast thus has cardinality greater than 𝑛/2.

The proposal sets 𝑅𝑖 and 𝐵𝑖 returned by any tcast invocation
on replica 𝑖 are at least as large as the input 𝑃 𝑗 to tcast on
some replica 𝑗 in the same time step. As a result, the fact
that ∀ replicas 𝑗, |𝑃 𝑗 | > 𝑛/2 in Algorithm 1 implies that ∀

replicas 𝑖, |𝐸𝑖 | > 𝑛/2 and |𝑃 ′𝑖 | > 𝑛/2. This in turn implies
that ∀𝑖, |𝐶𝑖 | > 𝑛/2 and |𝑈𝑖 | > 𝑛/2, As a result, the statement
𝑣 ← best(𝐶𝑖 ).value chooses a next candidate value from a
non-empty common set𝐶𝑖 , thus ensuring that 𝑣 is well-defined
in the next consensus round as well. □

Lemma B.5 (Set relationship). The QuePaxa protocol achieves
the property ∀ live replicas 𝑖, 𝑗,𝑈𝑖 ⊆ 𝐶 𝑗 ⊆ 𝐸𝑖 (Section 4.1.2).

Proof. The QuePaxa protocol executes three tcast steps. The
first tcast gives replica 𝑖 a proposal set 𝑃𝑖 containing the pro-
posals of any majority of replicas. The second tcast takes
𝑃𝑖 as input, and gives replica 𝑖 a proposal set 𝑃 ′𝑖 that, by
tcast property T2, is guaranteed to appear in the existent sets
𝐸 𝑗 returned to any replica 𝑗 . Finally, the third tcast uses 𝑃 ′𝑖
as input, and returns to 𝑖 a common proposal set 𝐶𝑖 and an
universal proposal set 𝑈𝑖 . By tcast property T2, 𝑈𝑖 is guaran-
teed to appear in the sets 𝐶 𝑗 returned to all replicas 𝑗 (hence
𝑈𝑖 ⊆ 𝐶 𝑗 , ∀ replicas 𝑖, 𝑗). By tcast property T1, ∀𝑃 ′′𝑗 ⊆ 𝐶𝑖 , ∃
replica 𝑗 that proposed 𝑃 ′𝑗 = 𝑃 ′′𝑗 . Since the input parameter 𝑃 ′𝑗
used in the third tcast call at replica 𝑗 is guaranteed to be in
the 𝐸𝑘 set received by any replica 𝑘 in the second tcast call,
we have 𝐶𝑖 ⊆ 𝐸𝑘 , ∀ replicas 𝑖, 𝑘. Hence we have ∀ replicas
𝑖, 𝑗,𝑈𝑖 ⊆ 𝐶 𝑗 ⊆ 𝐸𝑖 .

Furthermore, we can derive that∀ replicas 𝑖, 𝑗 , if best(𝑈𝑖 ) =
best(𝐸𝑖 ), then best(𝑈𝑖 ) = best(𝐶 𝑗 ) = best(𝐸𝑖 ), due to the
assumption above that independent priorities never tie. □

Lemma B.6 (Validity). Any value decided by QuePaxa is a
value proposed by some replica.

Proof. Algorithm 1 has a single decision condition: best(𝐸) =
best(𝑈 ). When this condition is satisfied, QuePaxa delivers
best(𝐶).value as the consensus decision to the upper layer.
We show that the set 𝐶 contains only proposed values, hence
any decided value is a proposed value.

By Lemma B.5, 𝐶 ⊆ 𝐸 in round 𝑟 . We show that ∀𝑝 ∈ 𝐸, 𝑝
is a value proposed by some replica. From the second tcast
call of round 𝑟 , by tcast property T1, there is a set 𝑆 containing
a majority of replicas such that ∀𝑗 ∈ 𝑆 , 𝑃 𝑗 ⊆ 𝐸. Each replica
𝑗 sets the input argument 𝑃 = 𝑃 𝑗 for the second tcast to
be equal to the 𝑃 set returned in the first tcast call of the
same round 𝑟 . This 𝑃 set consists of the values 𝑝 received
from a majority of the replicas as input to the first tcast call,
which each replica 𝑖 sets as 𝑝 = ⟨𝜋𝑖 , 𝑖, 𝑣𝑖⟩. If 𝑟 = 0, then 𝑣𝑖 is
proposed by some replica, hence the validity holds. If 𝑟 > 0,
then we can inductively show that 𝑝 is derived from a value
that was initially proposed by some replica in round 0. Hence,
the validity property holds. □

Lemma B.7 (Agreement). No two replicas decide differently.

Proof. Assume by contradiction that two replicas 𝑖 and 𝑗

decide different values 𝑣𝑖 ≠ 𝑣 𝑗 for the same slot. Without loss
of generality, assume that 𝑖 decides first 𝑣𝑖 in round 𝑟𝑖 , and 𝑗

decides second the value 𝑣 𝑗 in round 𝑟 𝑗 , s.t 𝑟 𝑗 ≥ 𝑟𝑖 .



Case 1: 𝑟 𝑗 = 𝑟𝑖 (both replicas decide in the same round and
phase).

Replica 𝑖 decides 𝑣𝑖 = best(𝐶𝑖 ).value, if best(𝑈𝑖 ) = best(𝐸𝑖 ).
By Lemma B.5, we have𝑈𝑖 ⊆ 𝐶𝑖 ⊆ 𝐸𝑖 , and we can derive that
best(𝑈𝑖 ) = best(𝐸𝑖 ) = best(𝐶𝑖 ) = ⟨𝜋𝑖 , 𝑖, 𝑣𝑖⟩. Using the same
lemma for replica 𝑗’s decision, we have𝑈𝑖 ⊆ 𝐶 𝑗 ⊆ 𝐸𝑖 , and we
can also derive best(𝑈𝑖 ) = best(𝐸𝑖 ) = best(𝐶 𝑗 ) = ⟨𝜋 𝑗 , 𝑗, 𝑣 𝑗 ⟩.
best(𝑈𝑖 ) = ⟨𝜋𝑖 , 𝑖, 𝑣𝑖⟩ = ⟨𝜋 𝑗 , 𝑗, 𝑣 𝑗 ⟩ is a contradiction, given our
assumption that 𝑖 and 𝑗 are different replicas and priorities are
unique per proposal. Hence 𝑖 and 𝑗 must be the same replica
and 𝑣𝑖 = 𝑣 𝑗 .

Case 2: 𝑟 𝑗 > 𝑟𝑖 (replica 𝑗 decides in a later round than
replica 𝑖).

When replica 𝑖 decides 𝑣𝑖 , by Lemma B.5 (𝑈𝑖 ⊆ 𝐶𝑘 ⊆ 𝐸𝑖 ),
any replica 𝑘 advancing to round 𝑟𝑖+1 chooses best(𝐶𝑘 ).value =

𝑣𝑖 and proposes ⟨𝜋𝑘 , 𝑘, 𝑣𝑖⟩ in the first tcast of round 𝑟𝑖 + 1.
Since all the sets in the three tcast steps are derived only
from proposals containing 𝑣𝑖 as value, we can inductively
show that in any round 𝑟𝑘 > 𝑟𝑖 , any replica 𝑘 chooses 𝑣𝑖 in its
proposal. Thus all the sets in any round 𝑟 > 𝑟𝑖 contain only
proposals with 𝑣𝑖 as value, and thus the only decision possible
is best(𝐶).value = 𝑣𝑖 . This contradicts our assumption that
some replica 𝑗 decides 𝑣 𝑗 ≠ 𝑣𝑖 in round 𝑟 𝑗 > 𝑟𝑖 . □

Lemma B.8 (Integrity). No replica decides twice.

Proof. This property may be trivially satisfied by using a
boolean flag decided per replica, initialized to false. A replica
decides only if its decided flag is false, and sets it to true once
it has decided. Due to its implementation triviality, we have
not included the flag in the abstract QuePaxa algorithm. □

Lemma B.9 (Liveness). Each non-faulty replica eventually
decides with probability 1. The expected termination time per
slot is less than two asynchronous (leaderless) rounds.

Proof. Replica 𝑖 decides in round 𝑟 if the set 𝑈 returned from
𝑖’s third tcast call in round 𝑟 contains the round’s unique
globally-best prioritized proposal 𝑣 . Then 𝑖 will necessarily
choose 𝑣 and deliver it.

We compute the probability that the desirable event (𝑣 ∈
𝑈 ) occurs. As stated in Section 3.2, we assume a content-
oblivious network whose choices of sets does not depend on
the content of messages or their priority values. Together with
Lemma B.4, this means that replica 𝑖’s 𝑈 set contains more
than 𝑛/2 proposals, each of which is equally likely to be one
of the 𝑛 proposed values in round 𝑟 . Thus, Pr[𝑣 ∈ 𝑈 ] > 1/2.

Hence we see that with probability greater than 1/2, each
replica decides in a given round. We conclude that each
replica decides with probability 1 eventually, and delivers
the decided value to the upper layer in less than two asynchro-
nous rounds in expectation. □

Note that the above analysis ignores the first round in an
SMR slot if that first round is leader-based, since a leader-
based round has a worst-case success probability of zero
under asynchronous network conditions.

C Concrete QuePaxa Correctness Proofs
We prove the correctness of the concrete QuePaxa protocol
(Algorithm 4 and Algorithm 2) by showing that concrete
QuePaxa correctly simulates abstract QuePaxa (Algorithm 1).
We first show that concrete QuePaxa computes functionally-
equivalent state as the abstract QuePaxa in each step. We
then show that each proposer in concrete QuePaxa eventually
reaches the next step until it decides. These two statements
imply that the correctness proofs for abstract QuePaxa (Ap-
pendix B) also apply to concrete QuePaxa.

Definitions. Throughout this section we use the proposal
definitions and tcast properties defined in Appendix B.

Definition C.1 (Recorder reply). We define as recorder reply
a tuple 𝑟 = ⟨𝑠, 𝑓 , 𝑎, 𝑗⟩, where 𝑠 is the current step of the
recorder’s ISR, 𝑓 is the first proposal the ISR received in step
𝑠, 𝑎 is the ISR aggregate in step 𝑠 − 1, and 𝑗 is the recorder
identity.

Lemma C.2 (Recorder reply step). In concrete QuePaxa, a
proposer 𝑖 invoking record(𝑠, 𝑝) at recorder 𝑗 cannot receive
a reply 𝑟 𝑗 = ⟨𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 , 𝑗⟩ from 𝑗 such that 𝑠′𝑗 < 𝑠.

Proof. Suppose proposer 𝑖 receives a reply from recorder 𝑗

with 𝑠′𝑗 < 𝑠. This means 𝑖 is ahead of recorder 𝑗 that sent the
respective reply. We show by contradiction that 𝑠′𝑗 ≮ 𝑠.

Assuming that 𝑠′𝑗 < 𝑠, then recorder 𝑗’s ISR is in step 𝑠′𝑗 < 𝑠

when it replies to 𝑖. However, when 𝑗 receives 𝑖’s invocation
record(𝑠, 𝑝), it first updates its internal step to 𝑠. Because ISR
steps only increase, it cannot be that at a later time, 𝑗’s step
decreases to 𝑠′𝑗 < 𝑠. This contradicts our assumption. □

Lemma C.3 (Proposer catch-up correctness). In concrete
QuePaxa, a proposer catching up to any step is initialized
to a correct ⟨𝑠, 𝑝⟩ state. In other words, there exists a valid
execution of concrete QuePaxa where the proposer does not
execute the catch-up procedure and reaches the same ⟨𝑠, 𝑝⟩
state.

Proof. Proposer 𝑖 in step 𝑠 executes the catch-up procedure
when 𝑖 observes that it lags behind one or more recorders by
inspecting the reply set 𝑅. Let recorder 𝑗 trigger the catch-up
procedure at proposer 𝑖 when it replies 𝑟 𝑗 = ⟨𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 , 𝑗⟩ ∈ 𝑅
with 𝑠′𝑗 > 𝑠. According to the catch-up procedure, the proposer
state becomes ⟨𝑠′𝑗 , 𝑓 ′𝑗 ⟩.

Recorder 𝑗 initialized its ISR to 𝑠′𝑗 and its 𝐹 [𝑠′𝑗 ] to 𝑓 ′𝑗 when
receiving from a proposer the proposal 𝑓 ′𝑗 tagged with step
𝑠′𝑗 . Let this be proposer 𝑘. W.l.o.g., assume that proposer 𝑘
reached state ⟨𝑠 = 𝑠′𝑗 , 𝑝 = 𝑓 ′𝑗 ⟩ without executing any catch-up
procedure, which we can prove by induction. Indeed, ∃ at



least one proposer in any step that does not execute a catch-up
procedure, e.g., the first proposer that is first to execute that
step; if all proposers were to catch-up in a step, this means
that ∀ proposer 𝑥, ∃ proposer 𝑦 s.t. 𝑥 .step < 𝑦.step, which is
impossible.

Thus 𝑖 catches up to the same state as proposer 𝑘 , and pro-
poser 𝑘 did not execute any catch-up statement. Moreover, by
our assumptions on the network adversary and the communi-
cation model, the message delivery schedule at any proposer
is agnostic to the proposer’s identity. We conclude that there
exists a valid execution for proposer 𝑖, e.g., the same execu-
tion and message delivery as for proposal 𝑘 , which enables 𝑖
to reach the state 𝑠′𝑗 , 𝑓

′
𝑗 . □

Lemma C.4 (Phase 0 of concrete QuePaxa). Each concrete
QuePaxa proposer computes in phase 0 of each round pro-
posal 𝑝 = best(𝑃), where 𝑃 = {𝑓 ′ | ⟨𝑠′, 𝑓 ′, 𝑎′, 𝑗⟩ ∈ 𝑅}, and
where 𝑅 is the reply set. In abstract QuePaxa, 𝑝 = best(𝑃),
where 𝑃 is the output set 𝑃 of the first tcast call of the round.

Proof. In abstract QuePaxa, consider a replica 𝑖 that proposes
𝑝 and broadcasts this proposal through the first tcast call.
By tcast property T1, at the end of the first tcast call, the
output set 𝑃 of replica 𝑖 contains the proposals of a majority
of replicas. Because we assume that priorities do not tie, there
exists a best proposal of set 𝑃 , which we denote by best (P).

In concrete QuePaxa, in phase 0 and step 𝑠 (with 𝑠 mod 4 =
0), consider proposer 𝑖 proposing 𝑝 𝑗 to recorder 𝑗 , where 𝑝 𝑗 =

⟨𝜋 𝑗 , 𝑖, 𝑣⟩ (𝑝𝑖 𝑗 is the per-recorder priority, all other proposal
fields do not change per recorder). The proposer submits
(𝑠, 𝑝 𝑗 ) by sending record(𝑠, 𝑝 𝑗 ). The proposer then waits for a
quorum (majority) of replies 𝑟 𝑗 = ⟨𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 , 𝑗⟩ from recorders,
which forms its reply set 𝑅.

Each live recorder 𝑗 receives such proposals (𝑠𝑖 , 𝑝𝑖 ) from
potentially multiple proposers 𝑖. Consider a recorder with ISR
current step 𝑆 . When 𝑠𝑖 > 𝑆 , the recorder advances 𝑆 = 𝑠𝑖 and
stores 𝐹 [𝑆] = 𝑝𝑖 , i.e., F[S] is the first proposal the recorder
received at step S. The recorder replies with ⟨𝑆, 𝐹 [𝑆], 𝐴[𝑆 −
1], 𝑗⟩, where 𝐴[𝑆 − 1] is an aggregate that proposer do not
use in phase 0.

Case 1: All replies 𝑟 𝑗 ∈ 𝑅 have the step 𝑠′𝑗 = 𝑠, the pro-
poser’s current step. In this case, 𝑓 ′𝑗 from all replies in 𝑅

represent a majority of proposals from the same step, and
𝑝 ← best(𝑓 ′𝑗 ),∀𝑟 𝑗 ∈ 𝑅 represents the best of a majority of
proposals. Thus, 𝑝 is the same as best(𝑃) in abstract QuePaxa.

Case 2: At least a proposal 𝑟 𝑗 ∈ 𝑅 has the step 𝑠′𝑗 ≠ 𝑠.
We know from Lemma C.2 that 𝑠′𝑗 ≮ 𝑠. When 𝑠′𝑗 > 𝑠, then
the proposer has fallen behind some recorder and executes
the catch-up sequence. Lemma C.3 proves that the proposer
catches up correctly to the beginning of step 𝑠′𝑗 and resumes
execution in step 𝑠′𝑗 . □

Lemma C.5 (Spread/gather relationship to tcast property T2).
In concrete QuePaxa, consider a proposer 𝑖 that successfully
spreads proposal 𝑝 in step 𝑠, and all live proposers executing

gather in step 𝑠 + 1. This spread/gather sequence implements
tcast property T2 in abstract QuePaxa, i.e., 𝑝 ∈ 𝐵.

Proof. We first show that in step 𝑠 at least a majority of
recorders accumulate proposal 𝑝. Then we show that in step
𝑠 + 1 all proposers gather in the set 𝑅 all proposals accumu-
lated at a majority of recorders in step 𝑠. Thus, in step 𝑠 + 1
all recorders gather 𝑝, which corresponds to 𝑝 ∈ 𝐵 in tcast.

Let proposer 𝑖 invoke record(𝑠, 𝑝) at all recorders, then
waits to collect in 𝑅 a majority of recorder replies, where
𝑟 𝑗 = ⟨𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 , 𝑗⟩ is the reply from recorder 𝑗 . There are three
cases based on the current steps of replying recorders.

Case 1: All replies have the recorder ISR step equal the
proposer’s step 𝑠, i.e., ∀𝑟 𝑗 = (𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 , 𝑗) ∈ 𝑅, 𝑠′𝑗 = 𝑠. Let
𝐴 = { recorder 𝑗 | 𝑗 sent reply 𝑟 𝑗 ∈ 𝑅}. Because |𝑅 | > 𝑛/2, we
have that |𝐴| > 𝑛/2. Moreover, ∀ recorders 𝑗 ∈ 𝐴, the ISR
of 𝑗 aggregated in 𝐴 𝑗 [𝑠′𝑗 ] all proposals it received in step 𝑠,
including proposer 𝑖’s value 𝑝.

Case 2: At least one reply is from step 𝑠′𝑗 > 𝑠 (by Lemma C.2,
𝑠 𝑗 ≮ 𝑠). Such a recorder 𝑗 is ahead of the proposer and by ISR
construction discards proposals from earlier steps, such as
𝑝. Thus, recorder 𝑗 does not accumulate 𝑝 and, in fact, does
not change their ISR state based on 𝑝. In this case, proposer
𝑖 cannot be sure that a majority of recorders aggregated 𝑝.
Thus proposer 𝑖 is unsuccessful in spreading 𝑝, executes the
catch-up sequence (Lemma C.3) and resumes execution from
step 𝑠′𝑗 .

Now consider a proposer 𝑘 in step 𝑠 + 1 executing a gather
operation by invoking record(𝑠, ∗), where ∗ is a wildcard for
any proposal that does not affect the gather operation. Each
contacted recorder 𝑙 in step 𝑠𝑙 < 𝑠 + 1 advances its step to 𝑠𝑙 =

𝑠+1. Then recorder 𝑙 replies with 𝑟𝑙 = (𝑠′𝑙 , 𝑓
′
𝑙
, 𝐴′

𝑙
[𝑠𝑙−1], 𝑙), and

proposer 𝑘 gathers a majority of such replies in set 𝑅. Similar
to case 1 above, if all replies have 𝑠′

𝑙
= 𝑠 + 1, then proposer

𝑘 gathers in 𝑅 the 𝐴′
𝑙
[𝑠] sets of a majority of recorders, Let

𝐵 = { recorder 𝑙 |𝑙 sent reply 𝑟𝑙 ∈ 𝑅}. Because |𝑅 | > 𝑛/2, we
have that |𝐵 | > 𝑛/2. If proposer 𝑘 finds itself in case 2 above,
it simply catches up to a higher step.

The first proposer executing gather in step 𝑠 + 1 makes the
recorder-aggregated sets 𝐴 𝑗 [𝑠] in step 𝑠 final. Consider the
first proposer 𝑘 in step 𝑠 + 1 executing a gather operation.
Each contacted recorder 𝑗 ISR first advances its step to 𝑠 + 1,
and stops accumulating values for step 𝑠, i.e., 𝐴 𝑗 [𝑠] is final.
Indeed, no recorder can be in step 𝑠+1 upon receiving proposer
𝑖’s message because recorders only advance their step when
a proposer in a higher step contacts them, and 𝑖 is the first
proposer to execute gather in step 𝑠 +1, thus no other proposer
besides 𝑖 contacted the recorders in step 𝑠 + 1.

Now consider proposer 𝑙 that fell behind in step 𝑠 attempt-
ing to spread a proposal. 𝑙 waits for a majority of replies from
recorders, and by quorum intersection receives at least one
reply 𝑟 𝑗 with 𝑠 𝑗 = 𝑠 + 1. As a result, proposer 𝑙 learns that
its proposal was not spread to a majority of recorders, and



executes the catch-up procedure. Thus, a proposer execut-
ing gather in step 𝑠 + 1 cannot miss any proposals that were
successfully spread in step 𝑠.

We conclude that 𝐴 and 𝐵 intersect in at least one recorder,
thus all proposers executing step 𝑠 + 1 successfully (either
directly or via catch-up) gather proposal 𝑝. Hence proposal 𝑝
in concrete QuePaxa fulfills 𝑝 ∈ 𝐵 in tcast. □

Lemma C.6 (Gather relationship to tcast property T1). In
concrete QuePaxa, proposer 𝑖 executing gather in step 𝑠 + 1
after spread in step 𝑠 compute 𝑝 = best({𝐴[𝑠] 𝑗 | ⟨ 𝑗, 𝑠 +
1, 𝑓 ′𝑗 , 𝐴[𝑠] 𝑗 ⟩ ∈ 𝑅𝑖 }, where 𝑅𝑖 is the reply set. In abstract
QuePaxa, 𝑝 = best(𝑅), where 𝑅 is the output set of a tcast
operation performed at step 𝑠.

Proof. From Lemma C.5 we infer that, ∀ proposer 𝑖 that
successfully spread 𝑝𝑖 in step 𝑠, all proposers 𝑘 have 𝑝𝑖 ∈
{𝐴[𝑠] 𝑗 | ⟨ 𝑗, 𝑠 + 1, 𝑓 ′𝑗 , 𝐴[𝑠] 𝑗 ⟩ ∈ 𝑅𝑖 } by the end of step 𝑠 + 1.
Thus {𝐴[𝑠] 𝑗 | ⟨ 𝑗, 𝑠 + 1, 𝑓 ′𝑗 , 𝐴[𝑠] 𝑗 ⟩ ∈ 𝑅𝑖 } = 𝑅, where 𝑅 is the
first output parameter of tcast in step 𝑠, and best({𝐴[𝑠] 𝑗 |
⟨ 𝑗, 𝑠 + 1, 𝑓 ′𝑗 , 𝐴[𝑠] 𝑗 ⟩ ∈ 𝑅𝑖 }) = 𝑏𝑒𝑠𝑡 (𝑅). □

Lemma C.7. Concrete QuePaxa computes in phases 1 and 2
of each round: (i) proposal 𝑎 = best(𝐸), where 𝐸 = {𝑎′𝑗 | ⟨ 𝑗, 𝑠′𝑗 ,
𝑓 ′𝑗 , 𝑎

′
𝑗 ⟩ ∈ 𝑅} and 𝑅 is the reply set of phase 2, which in ab-

stract QuePaxa is 𝑎 = best(𝐸), where 𝐸 is the first output of
the second tcast call of the round, and of the second tcast
call of the round; and (ii) proposal 𝑝 = best(𝑃 ′), where 𝑃 ′ is
the second output set of the second tcast call.

Proof. In concrete QuePaxa phase 1, each proposer 𝑖 in step
𝑠 mod 4 = 1 selects proposal 𝑝 = best of 𝑓 ′ from all replies
in set 𝑅, and spreads it to all recorders. By Lemma C.4, 𝑝 =

best(𝑃), where 𝑃 is the first output set of the first tcast call in
abstract QuePaxa. By Lemma C.5, 𝑝 = best(𝑃 ′) in abstract
QuePaxa.

Using Lemma C.6, all proposers completing phase 2 in
step 𝑠 + 1 mod 4 = 2 gather best of 𝑎′𝑗 = 𝐴 𝑗 [𝑠 + 1],∀𝑗 ∈ 𝑅,
which corresponds to the best(𝐸) in abstract QuePaxa. □

Lemma C.8. Concrete QuePaxa computes in phases 2 and 3
of each round: (i) proposal 𝑎 = best(𝐶), where𝐶 = {𝑎′𝑗 | ⟨ 𝑗, 𝑠′𝑗 ,
𝑓 ′𝑗 , 𝑎

′
𝑗 ⟩ ∈ 𝑅} and 𝑅 is the reply set of phase 3, which in abstract

QuePaxa is 𝑎 = best(𝐶), where 𝐶 is the first output of the
third tcast call of the round; and (ii) proposal 𝑝 = best(𝑈 ),
where 𝑈 is the second output set of the second tcast call.

Proof. In concrete QuePaxa phase 2, by Lemma C.7, each
proposer 𝑖 in step 𝑠 mod 4 = 2 proposes 𝑝 = best(𝑃 ′) in
abstract QuePaxa. Using Lemma C.5, by the end of phase
3, 𝑝 = best(𝑈 ) in abstract QuePaxa. Using Lemma C.6, all
proposers completing phase 3 in step 𝑠 + 1 mod 4 = 3 gather
best of 𝑎′ = 𝐴 𝑗 [𝑠 + 1],∀𝑗 ∈ 𝑅, which corresponds to the best
(C) proposal in abstract QuePaxa. □

Lemma C.9 (Asynchronous decision path). The asynchro-
nous path decision in concrete QuePaxa, returning 𝑝.value

in phase 2, when 𝑝 = best{𝑎′𝑗 |⟨ 𝑗, 𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 ⟩ ∈ 𝑅}, where 𝑅 is
the reply set, represents the same decision as best(𝐶).value
when best(𝐸) = best(𝑈 ) after the third tcast call of abstract
QuePaxa.

Proof. Using Lemma C.7, at the end of phase 2 in concrete
QuePaxa, 𝑝 = best{𝑎′𝑗 |⟨ 𝑗, 𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 ⟩ ∈ 𝑅} = best(𝐸) in ab-
stract QuePaxa. We now need to show that 𝑝 = best(𝑈 ) in
abstract QuePaxa.

Using the same same Lemma C.7, 𝑝 = best(𝑃 ′) in abstract
QuePaxa. Moreover, using Lemma C.5, a proposer checks
the condition 𝑝 = best of 𝑎′ from all replies in the reply
set 𝑅, at the end of phase 2. At the end of phase 2, using
similar reasoning as in Lemma C.5, 𝑝 is accumulated in the
ISR registers of a majority of recorders. Thus, although 𝑝 is
not yet a universal proposal, already at the end of phase 2
it is inevitable that 𝑝 ∈ 𝑈 by the end of phase 3, as shown
in Lemma C.8. Because 𝑝 was selected to be the best proposal
the proposer knew of at the end of phase 1, the proposer knows
at the end of phase 2 that 𝑝 = best(𝑈 ) that the proposer
knows of. Thus 𝑝 = best(𝑈 ) = best(𝐸) and the asynchronous
decision condition in concrete QuePaxa is the same as the
decision condition in abstract QuePaxa.

When best(𝐸) = best(𝑈 ), then best(𝐶) = best(𝐸) =

best(𝑈 ) (Lemma B.5). We conclude that, when the deci-
sion condition is met, 𝑝.value in concrete QuePaxa equals
best(𝐶).value in abstract QuePaxa. □

Lemma C.10 (Fast-path decision). The fast-path decision
condition in step 0 in leader-based concrete QuePaxa is cor-
rect.

Proof. In concrete QuePaxa, proposers propose in phase 0
(step 𝑠 mod 4 = 0) of a round. Leader-based concrete Que-
Paxa uses a single deterministic leader only in the first step,
which is step 4, of the execution. All subsequent steps 𝑠

mod 4 = 0, with 𝑠 > 4, do not have a designated leader.
Each proposers assigns a priority to its proposal, and the
leader’s proposal is the only proposal receiving the highest
priority 𝐻 in step 0. The fast-path decision condition states
that, if a proposer executing step 𝑠 = 4 gathers in its reply set
∀𝑟 𝑗 = ⟨𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 , 𝑗⟩ ∈ 𝑅, 𝑓 ′𝑗 .priority = 𝐻 and |𝑅 | > 𝑛/2, then
the proposer decides 𝑓 ′𝑗 .value. We show that this decision
condition is equivalent with Lemma C.9.

Let the leader be proposer 𝑙 that proposes 𝑝𝑙 with 𝑝𝑙 .priority
= 𝐻 , and let proposer 𝑖 satisfy the fast-path condition and
decide 𝑣𝑖 in step 𝑠𝑖 = 4. Because proposer 𝑖 has ∀𝑟 𝑗 =

⟨𝑠′𝑗 , 𝑓 ′𝑗 , 𝑎′𝑗 , 𝑗⟩ ∈ 𝑅𝑖 in step 4, 𝑓 ′𝑗 .priority = 𝐻 and |𝑅𝑖 | > 𝑛/2,
more than 𝑛/2 recorders store in their ISR registers a pro-
posal 𝐹 [4] with 𝐹 [4] .priority = 𝐻 . Because only the leader’s
proposal has priority 𝐻 , it must be that these recorders ISR
registers store the leader’s proposal 𝑝𝑙 in 𝐹 [4].

We claim that each ISR writes 𝐹 [4] only once. Indeed, the
first proposal 𝑝 tagged with 𝑠 = 4 that reaches a recorder’s
ISR triggers 𝐹 [4] ← 𝑠 because the ISR’s step 𝑆 < 𝑠, then



advances 𝑆 ← 𝑠. As ISR steps never decrease, the ISR never
overwrites 𝐹 [4]. Hence, the leader’s proposal 𝑝𝑙 is recorded in
𝐹 [4] at more than 𝑛/2 recorders, and it is never overwritten.
∀ proposer 𝑗 executing step 4, proposer 𝑗 computes a reply

set 𝑅 𝑗 s.t. |𝑅 𝑗 | > 𝑛/2. 𝑅𝑖 and 𝑅 𝑗 must intersect in at least one
recorder, hence ∃ recorder 𝑘 s.t. reply 𝑟𝑘 = ⟨𝑠′

𝑘
, 𝑓 ′

𝑘
, 𝑎′

𝑘
, 𝑘⟩ ∈ 𝑅 𝑗

has 𝑓 ′
𝑘
.priority = 𝐻 . There are two cases.

Case 1: Proposer 𝑗 decides some 𝑝.value on the fast path.
In this case, it must be that 𝑝.priority = 𝐻 , and because only
𝑝𝑙 has 𝑝𝑙 .priority = 𝐻 , 𝑗 decides 𝑝𝑙 .value.

Case 2: Proposer 𝑗 does not decide on the fast path. Then 𝑗

chooses 𝑝 s.t. 𝑝 is best in 𝑅 𝑗 . Because the leader’s proposal
𝑝𝑙 ∈ 𝑅 𝑗 , 𝑗 chooses and spreads 𝑝𝑙 in the next step. All pro-
posers not deciding in step 4 choose and spread 𝑝𝑙 for the next
step 𝑠 + 1 mod 4 = 1. In other words, 𝑝𝑙 is the only proposal
broadcast. We show that 𝑗 decides 𝑝𝑙 .value in the same round.

By Lemma C.7, Lemma C.7 and tcast properties T1 and T2,
all output sets 𝐸,𝐶,𝑈 must contain 𝑝𝑙 . Thus, by Lemma C.9,
all live proposers decide 𝑝𝑙 .value. □

Lemma C.11 (Liveness). In concrete QuePaxa, each live
proposer eventually decides with probability 1.

Proof. We first show that ∀ live proposer 𝑗 , 𝑗 always advances
to a higher step unless it decides. Let proposer 𝑗 execute step
𝑠. ∀ steps 𝑠, 𝑗 waits for the replies of a majority of recorders,
which it gathers in set 𝑅. Because a majority of recorders
never crash, 𝑗 eventually receives a majority of replies. There
are two cases possible.

Case 1: All replies 𝑟 ∈ 𝑅 are tagged with step 𝑠. Then 𝑗

increments its step counter 𝑠 ← 𝑠 + 1 or stops execution by
deciding.

Case 2: At least one reply in 𝑟 ′ ∈ 𝑅 is tagged with step 𝑠′ ≠
𝑠. We know from Lemma C.2 that 𝑠′ ≮ 𝑠. When 𝑠′ > 𝑠, then
the proposer has fallen behind some recorder and executes
the catch-up sequence, which simply enables 𝑗 to advance to
step 𝑠′ and adopt the proposal 𝑟 ′ .𝑓 ′.

In both these cases, 𝑗 advances to a higher step until it
decides. We now show that every live proposer 𝑗 eventually
decides with probability 1. Proposer 𝑗 either decides through
the fast-path in the first step (step 4) – which under asynchro-
nous conditions reduces to probability 0 – or through the asyn-
chronous path in any step 𝑠 with 𝑠 mod 4 = 2. By Lemma C.9,
concrete QuePaxa’s asynchronous decision path represents
the same decision condition as abstract QuePaxa. Because
in abstract QuePaxa every live replica eventually decides
with probability 1 Lemma B.9, the same holds for concrete
QuePaxa. □

D Promela Models for SPIN Model Checker
To validate QuePaxa’s safety, we implemented two Promela
models of its basic consensus logic, supporting exhaustive
verification of the state space using the SPIN model checker.

The first model (Appendix D.1) is simpler and cheaper to ver-
ify, while the second model (Appendix D.2) is more realistic
but much more costly to verify.

Both implementations enable us to verify only the algo-
rithm’s safety, since decision success in any round is proba-
bilistic and the SPIN model checker is not designed to check
statistical properties. Nevertheless, the model checker does
verify that the models never deadlock or get “stuck” without
completing the designated number of logical time steps, and
that all of the code is covered (no code is unreachable).

As with any use of model checking, our verification was
constrained by the need to limit the problem to a finite state
space. As our baseline configuration we focus on two pro-
posers and three recorders, in executions of two full rounds
(logical time steps 4–11), with 1-bit random priorities (not
counting 0 or 𝐻 ) and 2-bit proposal values. We confirmed
manually that any of these parameters may be increased in
moderation while leaving the model verifiably safe.

D.1 Promela model with inline recorder logic

Our first Promela model of QuePaxa is designed to minimize
state space explosion by modeling proposer/recorder commu-
nication as shared-memory interactions rather than by passing
messages explicitly between processes. In this model, only
the active proposer roles are processes, while the recorder
roles are represented by atomic code manually inlined into
the proposer logic at appropriate points. While drastically
simplified, this model still requires the model checker to ex-
plore all possible interleavings of the proposer processes (two
in the baseline configuation) throughout executions of their
non-atomic code. If the algorithm had any safety violations
reachable in the finite state space explored, therefore, we
would expect the model checker to find them.

We found it feasible to verify this model exhaustively in
under three minutes on a 2021 MacBook Pro laptop with
64GB of RAM.

D.2 Promela model with separate recorder processes

Our second and more realistic Promela model of QuePaxa
models recorders more realistically as separate processes,
and uses message passing for proposer/recorder interaction.
Because of the larger number of processes (five instead of
two in the baseline configuration) and their more complex
interaction, the state space of this model explodes much more
rapidly than that of the simpler one above.

We found it necessary to use bitstate verification [38] to
limit memory consumption in checking this model even for
just two rounds. In particular, we verified this model in about
24 hours, on the same 2021 MacBook Pro laptop as the one
above.

Because bitstate verification uses a hash table to check
whether states have already been explored, false positives due



to hash collisions can result in some paths being left unex-
plored. Thus, our verification of this model was not necessar-
ily fully exhaustive. Nevertheless, since the core consensus
logic it represents is identical to that of the simpler model
above that was exhaustively verified, we consider it unlikely
that bitstate verification missed any safety failures in this case.

E Detailed comparison with Rabia
As another recent randomized consensus protocol address-
ing crash-stop failures, Rabia [66] represents a particularly
important comparison point for QuePaxa. While similar in
certain respects, Rabia and QuePaxa embody fundamental
differences in goals, assumptions, and design.

Goals If we take widely-deployed partially-synchronous
consensus algorithms like Paxos and Raft as a baseline, then
Rabia and QuePaxa essentially pursue opposite goals on a
spectrum of tradeoffs between simplicity and adaptivity. Ra-
bia pursues simplicity through randomization as its primary
goal, but specializes in low-latency data-center networks.
QuePaxa, in contrast, pursues adaptability to diverse network
conditions including LAN, WAN, grey failures [7, 40, 47],
and adversarial conditions such as network-based DoS attacks
– at some cost in protocol complexity.

Safety and liveness assumptions To ensure safety and live-
ness, QuePaxa and Rabia both make the standard assump-
tions that 𝑛 ≥ 2𝑓 + 1, that messages between correct replicas
are eventually delivered, and that replicas are fail-stop (non-
Byzantine). Unlike QuePaxa, Rabia requires incoming re-
quests to be timestamped, and relies on correct timestamping
for liveness, as we examine further below.

Fast-path assumptions Both Rabia and QuePaxa rely on
further assumptions holding in order to achieve their ideal
fast-path performance.

QuePaxa’s fast path achieves consensus in two network
hops (one round-trip), with linear communication cost. Que-
Paxa can achieve this fast-path performance and efficiency
when network delays are stable enough that its hedging sched-
ule normally activates only 𝑂 (1) proposers per round.

Rabia’s fast path operates in three network hops, and al-
ways exhibits quadratic communication cost: all replicas
broadcast to all others in every round. For its fath path to
succeed, Rabia assumes that under the normal data center
conditions it targets, “message delay is small compared to the
interval between two consecutive requests” [66, §3.2].

Design Both QuePaxa and Rabia are randomized consen-
sus algorithms, but they differ drastically in the way they use
randomness to circumvent the FLP impossibility result [27].

As a key component, Rabia builds on Ben-Or’s classic algo-
rithm for asynchronous binary consensus [14], made practical
using common coins as discussed in Appendix A.3. Binary
consensus alone is insufficient to achieve multi-valued con-
sensus or state machine replication (SMR), however. The

challenge of “bridging the gap” from binary to multi-valued
consensus adds substantial complexity to prior asynchronous
consensus protocols such as HoneyBadger [53].

Rabia avoids this complexity by relying on request times-
tamps and the data center delay assumption above. In essence,
Rabia assumes that the low-delay data-center network nor-
mally creates a natural multi-valued consensus among repli-
cas as to the “oldest[-timestamped] pending request” [66,
§3.2]. The replicas then use Ben-Or binary consensus merely
to confirm whether or not this network-based multi-valued
consensus has occurred in a particular SMR decision slot.

QuePaxa’s design differs fundamentally by using random-
ness to choose proposal priorities, and not to choose either
fallback agreement values as in Ben-Or binary consensus or
to choose random leaders as in many other prior protocols. In
particular, QuePaxa need not use common coins in order to be
practical, and normally does not, as detailed in Appendix A.

E.1 Implications of Rabia’s two key assumptions

Rabia’s timestamping and data-center delay assumptions have
a few subtle but important implications, examined next.

Implications of request timestamping While the Rabia
paper does not state exactly how or where timestamps are as-
signed, practical considerations suggest that they are assigned
either by clients themselves or trusted front-end proxies. If
the replicas themselves assigned timestamps on a request’s ar-
rival, then the same request arriving at different replicas would
typically receive different timestamps, causing effective re-
quest duplication and defeating the natural network-based
consensus on “oldest pending request” that Rabia depends
on. Since 𝑓 replicas may fail, clients or front-ends must be
prepared to submit a given request to at least 𝑓 + 1 replicas –
eventually if not immediately. It therefore appears that Rabia
makes an essential assumption that some node apart from
the replicas or replicas themselves (e.g., client or front-end
proxy) assigns each request a single timestamp consistently.

Correct request timestamping is critical to Rabia’s liveness,
at least in principle. Suppose, for example, an adversarial
network scheduler could conspire with a single compromised
client capable of injecting a series of requests with decreasing
(back-dated) timestamps. In this case, each time the replicas
nearly reach agreement on some oldest pending request, the
adversarial scheduler could simply “discover” (inject) a new,
still “older” pending request with which to disrupt consensus,
and thereby block Rabia’s progress indefinitely. Thus, Rabia’s
assumption of (correct) request timestamping is essential to
Rabia’s liveness, not just to its performance.

Since fail-stop consensus algorithms assume the replicas
are uncompromised (non-Byzantine) anyway, this effective
“trusted timestamping” assumption may not appear to rep-
resent a major expansion of the trust base, especially in a
tightly-controlled data center environment. Nevertheless, it is
normally preferable for consensus algorithms to rely only on



the trustwortiness of the (typically few) replicas themselves,
and not on all of the clients or front-ends that may submit
requests to them, which are typically far more numerous and
more likely to be spread across multiple trust domains. Thus,
Rabia’s reliance on correct timestamps assigned by clients or
proxies represents a significant expansion of the consensus
algorithm’s trust base, even if this expansion may be deemed
reasonable in Rabia’s target data center environment. Que-
Paxa, in contrast, does not assume that the clients or front-end
proxies submitting requests are trustworthy.

Even if Rabia’s timestamping tier is uncompromised, its
failure semantics yields further subtle challenges. If a client
first submits a request through one timestamping proxy, but
does not receive a response after a timeout period, does the
client re-submit its request through another timestamper? If
so, and the original request was merely delayed but not lost,
then the Rabia replicas may sometimes receive the same client
request multiple times with distinct timestamps attached, po-
tentially affecting Rabia’s correctness or performance. If Ra-
bia expects client requests to arrive with exactly one times-
tamp, however, then it appears that a fault-tolerant group of
timestamping servers would have to implement consensus in
order to agree on a unique timestamp for each request. But
there would then be no need for Rabia to implement con-
sensus redundantly. It is therefore important, but non-trivial,
to define and implement a timestamping tier with failure se-
mantics strong enough to satisfy Rabia’s requirements and
support its reliability and performance, but weak enough that
the timestamping tier need not already implement consensus.
This hidden complexity of designing the timestamping tier,
and avoiding subtle failure hazards from its interaction with
Rabia, thus somewhat undermines Rabia’s apparent simplic-
ity. By avoiding any dependency on request timestamping,
in contrast, QuePaxa avoids these subtleties and the hidden
complexity they may create in practical implementations.

Implications of Rabia’s fast-path delay assumption An-
other subtlety arises from Rabia’s fast-path delay assumption,
namely that “message delay is small compared to the interval
between two consecutive requests” [66, §3.2].

We can safely expect this assumption to hold on a low-delay
data center network, provided the actual requests ultimately
arrive from outside the data center, e.g., over a higher-delay,
more bandwidth-constrained Internet link. This is presumably
the case when the consensus group is directly serving Internet-
based clients external to the relevant data center.

This assumption might not hold, however, if Rabia is used
for applications in which sudden “requests storms” or other
heavy loads might be generated by other servers within the
same data center, over the same internal high-capacity in-
ternconnect. If numerous request submittors within the same
data center may generate bursts of requests under heavy load
or other unusual conditions, then the performance differen-
tial between the data center’s network and long-haul WAN

links no longer guarantees Rabia’s fast-path delay assumption.
Thus, even without any deliberate malicious behavior, request
storms originating within the same data center could poten-
tially defeat Rabia’s assumption that replica usually observe
a natural network-based consensus on oldest-timestamped
pending request, and thereby cause Rabia to fall off its past
path for extended periods (perhaps during the very high-load
periods when maximum performance is most needed).

In summary, Rabia’s key fast-path delay assumption is not
just an assumption about the network itself, but is also an as-
semption about the nature and origin of application-imposed
traffic loads: e.g., whether load originates from within or from
outside the data center. Thus, while Rabia might consistently
perform well when serving application clients that are always
across the Internet external to the data center, its performance
may be less reliable in multi-tenant cloud environments where
application clients may often be other servers that happen to
be hosted within the same data center.

While our experiments with Rabia broadly confirmed its
dependence for performance on the network conditions it
expects, exploring in detail Rabia’s sensitivity to external
versus internal application loads under varying conditions
is a task out of this paper’s scope that we leave to future
work. In contrast, since QuePaxa makes no delay assump-
tions (even for its fast path) that depend on the nature and
origin of application-imposed load, we can expect QuePaxa
to maintain good performance under more diverse conditions,
as our experimental results appear to support.
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