
QuePaxa: Escaping the Tyranny of
Timeouts in Consensus

Pasindu Tennage*
EPFL

Cristina Basescu*
EPFL & Digital Asset

Eleftherios Kokoris Kogias
ISTA & Mysten Labs

Ewa Syta
Trinity College

Philipp Jovanovic
UCL

Vero Galiñanes
EPFL

Bryan Ford
EPFL

1

Consensus and Replicated State Machine

 State State State

State

State

State

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

2

Consensus and Replicated State Machine

3

RoadMap

● Introduction to consensus

● Tyranny of timeouts

● Parallels of QuePaxa and hedging

● QuePaxa algorithm

● Evaluation

4

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts Manually configured timeoutsTimeout based view change

5

Timeout based view change [Multi-Paxos]

R1

R2

R3

R4

View 1

Propose Accept

Commit

6

Propose Accept

Commit

Propose Accept

Commit

Propose Accept

Commit

As long as the network is synchronous, the leader will keep committing new requests

Timeout based view change [Multi-Paxos]

R1

R2

R3

R4

View 1

Propose Accept

Commit

View 2

Prepare

Promise

View Change

7

Propose

Accept

No new commands are committed during view change
Liveness depends on partial synchronous network conditions

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts Manually configured timeoutsConservative timeouts

8

Choosing Timeouts in leader based protocols

 Timeout High TimeoutLow Timeout High Timeout

9

Timeout based view change [Multi-Paxos]

R1

R2

R3

R4

View 1

Propose Accept

Commit

View 2

Prepare

Promise

View Change

10

Propose

Accept

High Recovery Time

High timeouts result in high recovery time

Choosing Timeouts in leader based protocols

 Timeout High TimeoutLow Timeout

High Recovery Time

High TimeoutHigh TimeoutLow Timeout

11

Liveness loss with low timeouts

12No commands are committed when the timeout is low

R1

R2

R3

R4

View 1 View 2

Prepare

View 3

Prepare

View 4

…

Propose

Choosing Timeouts in leader based protocols

 Timeout High TimeoutLow Timeout

High Recovery Time

High TimeoutHigh Timeout

13

Liveness Loss

Both choices of timeouts have negative consequences

Tyranny of Timeout Problems in Consensus

Timeout based view change Conservative timeouts Manually configured timeoutsManually configured timeouts

14

Manual configuration of timeouts

● Stuck with a live but slow leader replica

● Do not consider dynamic network state for leader election

15Manual timeouts are sub optimal

Are timeouts necessary for progress?

Can we eliminate the impact of timeout for liveness?

16

Do asynchronous protocols solve this problem?

● Asynchronous protocols do not depend on timeout for progress
○ Use randomization to alleviate the FLP impossibility

● Message complexity
○ In general asynchronous protocols have O(n2) / O(n3) complexity in the normal case

■ In contrast, partially synchronous protocols have O(n)
○ Less efficient than leader-based protocols
○ Hence rarely deployed

17Asynchronous protocols are slow and rarely deployed

An alternative approach?

Leader 2

Leader 3

Leader 4

Leader 1R1

R2

R3

R4

Propose Accept

Commit

18

Propose Accept

Commit

No view
change

Accept

Commit

No view
change

Propose

Can we change leaders without view changes if the current leader is sub optimal?

What if multiple leaders could cooperate instead of interfere?

R1

R2

R3

R4

Leader 2

Leader 3

Leader 4

Leader 1

Propose

commit

Round 1

19Can we support multiple proposers to be non destructive?

RoadMap

● Introduction to consensus

● Tyranny of timeouts

● Parallels of QuePaxa and hedging

● QuePaxa algorithm

● Evaluation

20

Hedging

● Hedging is a way to curb latency variability
○ Key idea: issue the same request to multiple replicas and use the results from whichever replica responds first

Server

Store 1 Store 2 Store 3

Multiple responses
do not interfere with each
other

Can we apply hedging to consensus so that multiple proposers don’t interfere?21

RoadMap

● Introduction to consensus

● Tyranny of timeouts

● Parallels of QuePaxa and hedging

● QuePaxa algorithm

● Evaluation

22

QuePaxa Contributions

● A consensus protocol that eliminates the tyranny of timeouts for
liveness

● First consensus protocol to support hedging in consensus

● A novel consensus protocol that
○ Under normal network conditions as good as Multi-Paxos /Raft
○ Under adversarial network conditions, provides liveness

23

QuePaxa RoadMap

● Operation Overview

● Abstract QuePaxa – a simplified version

● Safety and liveness of abstract QuePaxa

● Concrete QuePaxa overview

24

QuePaxa Architecture

Replica

Proposer

Recorder

Replica

Proposer

Recorder

Replica

Proposer

Recorder

Submitter Submitter

Client Requests

25

QuePaxa Log Structure

26

Slot 1

Slot 2

Slot 3

Round 1 Round 2P1 P2 P3 P4

QuePaxa Protocol Diagram

Proposer 1

Proposer 2

Recorder 1

Recorder 2

Recorder 3

Phase 0

Learn Majority Proposals

Phase 1-3

Information Propagation

27

Fast Path
Decision

Slow Path
Decision

QuePaxa has a fast path decision and a slow path decision

QuePaxa RoadMap

● Operation Overview

● Abstract QuePaxa - a simplified version

● Safety and liveness of abstract QuePaxa

● Concrete QuePaxa overview

28Abstract QuePaxa is a simplified version of QuePaxa

● Divide the problem in to two parts
○ Handling replica failures
○ Handling asynchrony

● First ignore asynchrony and focus on replica failures

● Using tcast let us assume a synchronous lock step
network

● tcast (threshold synchronous broadcast): an abstraction
which provides lock step synchrony to the consensus
layer

Introducing threshold broadcast (tcast)

Asynchronous Network

tcast

Abstract QuePaxa

29Abstract QuePaxa assumes synchrony and solves the replica failure challenge

Abstract QuePaxa Algorithm

 Abstract QuePaxa is just a few lines of pseudocode! 30

tcast

Alice

Bob

Charlie
Propose A

Propose B

Propose C

Proposals Alice knows to exist

Proposals Bob knows to exist

Proposals Charlie knows to exist

● tcast property 1: each node learns a majority of proposals

● tcast property 2: each node learns a proposal that all nodes know to exist

Proposal Alice knows that all others know to exist

 Nodes have no guarantee to learn the same sets! (no consensus yet)

Proposal Bob knows that all others know to exist

Proposal Charlie knows that all others know to exist

31

● An existent set: If Alice knows that a proposal exists, then it’s in her existent set

● A common set: If Alice knows that all nodes know a proposal to exist, then it’s

in Alice’s common set

● A universal set: If Alice knows that all nodes know a proposal p to be common,

then it’s in her universal set

● Repeat: three tcast invocations, giving each node i sets with increasing guarantees

Towards consensus: approximating what others know

● Sets from one tcast invocation are insufficient for consensus

Key relationship for consensus: Existenti ⊇ Commonj ⊇ Universalk 32

Existenti ⊇ Commonj ⊇ Universalk

33

QuePaxa RoadMap

● Operation Overview

● Abstract QuePaxa

● Safety and liveness of abstract QuePaxa

● Concrete QuePaxa overview

34

Consensus: reaching a safe decision

35

best(ExistentX) =
best(UniversalX)

propose

Three tcast rounds

ExistentAlice ⊇ CommonBob⊇ UniversalAlice

best(ExistentAlice) = V = best(UniversalAlice)
YES

decide

Alice decides V

NO

best(CommonBob)

best(ExistentBob) ≠ best(UniversalBob)

Bob doesn’t decide, proposes V’

V’ =
best(CommonBob)

 Only possible decision in future is V’ = best(CommonBob) = best(ExistentAlice) = V

Efficiency: How many rounds until consensus

Prob (best(ExistentAlice) = best(UniversalAlice))Probability that Alice decides

Each set contains
> ½ of proposals

 Decision probability is ≥ ½ ⇒ in expectation two rounds until decision

best

36

Abstract QuePaxa

37

● Avoids timeout from liveness because the protocol is randomized

● Robust against adversarial networks

● O(n2) message complexity hence slow

● Does not support hedging

��

��

��

��

Abstract QuePaxa is robust but inefficient

QuePaxa RoadMap

● Operation Overview

● Abstract QuePaxa

● Safety and liveness of abstract QuePaxa

● Concrete QuePaxa overview

38

From abstract to concrete QuePaxa

Asynchronous Network

tcast

Abstract QuePaxa

Asynchronous Network

Interval Summary Register

Concrete QuePaxa

● O(n) complexity in the
normal case

● Robust against
asynchrony

● Support hedging

● Implementation ready
(4368 LOC)

39Concrete QuePaxa has all we need!

QuePaxa Architecture

Replica

Proposer

Recorder

Replica

Proposer

Recorder

Replica

Proposer

Recorder

Submitter Submitter

Client Requests

40

Concrete Recorder Protocol (ISR)

● Simulates lock step synchrony using a
threshold logical clock

● For each step, records the the first
value and the aggregate of the values
submitted in the previous step

● Constant space

41QuePaxa Recorder is a constant space interval summary register

Proposer Code

QuePaxa proposer uses RPC in 4 phases to contact Recorders
42

Hedging in QuePaxa

Proposer 1

Proposer 2

Recorder 1

Recorder 2

Recorder 3

Phase 0

Learn Majority Proposals

Phase 1-3

Information Mule

QuePaxa supports hedging because multiple proposers do not cancel each other 43

Other Contributions

● Multi-Armed-Bandit based hedging sequence tuning for maximum performance

● Optimizations for reducing leader bandwidth bottleneck for high performance

44

RoadMap

● Introduction to consensus

● Tyranny of timeouts

● Parallels of QuePaxa and hedging

● QuePaxa algorithm

● Evaluation

45

Evaluation

● Can QuePaxa guarantee liveness under any timeout?

● Under normal case executions, how does QuePaxa compare with leader-based
protocols?

● Under adversarial conditions, does QuePaxa provide liveness?

● Can QuePaxa converge to the best hedging-sequence? – please refer the paper

46

Setup

● LAN (N. Virginia)

● WAN (Tokyo, Mumbai, Singapore, Ireland, and São Paulo)

● Replicas: c4.4xlarge
○ 16 virtual CPUs, 30 GB memory

● Submitters: c4.2xlarge
○ 8 virtual CPUs, 15 GB memory

47

Effect of Hedging in Quepaxa

48

Throughput

QuePaxa is live for any hedging delay

Effect of Hedging in Quepaxa

49

Throughput

Bandwidth Cost

QuePaxa has an additional overhead only when hedging delay < RTT

Effect of Hedging in Quepaxa

50

Throughput

Bandwidth Cost

Recovery Time

QuePaxa has low recovery time

Normal case execution in a WAN (see paper for LAN)

51QuePaxa performs comparable to Multi Paxos

Performance under adversarial networks

52QuePaxa is live under asynchrony

Conclusion

● QuePaxa eliminates timeout from liveness guarantees and supports hedging

● QuePaxa provides Multi-Paxos / Raft equivalent performance under normal case

● QuePaxa is resilient to adversarial network conditions

● https://github.com/dedis/quepaxa

53

https://github.com/dedis/quepaxa

Supplementary

54

Hedging delay vs Timeout

● Timeouts initiate failure-recovery processes that interfere with normal progress if
triggered early

○ a premature Raft view change halts the prior leader’s progress.

● Hedging initiates non-destructive concurrency:
○ launching a second QuePaxa proposer does not prevent the first from still completing the round.

● QuePaxa hedging delays can be zero without losing liveness
○ but the cost is redundant messaging

55

tCast vs other Broadcast flavours

● Best effort broadcast: If a correct process broadcasts a message m, then every correct process
eventually delivers m.

● Reliable broadcast: : If a message m is delivered by some correct process, then m is
eventually delivered by every correct process.

● Uniform reliable broadcast: If a message m is delivered by some process (whether correct or
faulty), then m is eventually delivered by every correct process.

● Byzantine consistent broadcast: delivered m is the same for all receivers.

● Byzantine reliable broadcast: all correct parties deliver some request or none delivers any
(Bracha’s broadcast)

56

tCast

● tcast property 1: each node learns a majority of proposals
● tcast property 2: each node learns a proposal that all nodes know to exist

57

QuePaxa vs Common Core

● Common core allows all replicas to create a common core (n-f proposals), such
that each node knows that there are n-f proposals known by everyone, however,
no node exactly knows which n-f proposals are common. In the literature,
common core is used in binary consensus.

● In contrast, tcast-based QuePaxa allows nodes to not only create a common core
but also pinpoint which n-f proposals are common. Nodes reach multi-valued
consensus using the set relationship we mentioned.

58

Overhead of Multiple Proposers

59

Throughput

Bandwidth Cost

Normal Case LAN performance

60

FLP impossibility and QuePaxa

● QuePaxa uses randomization to alleviate FLP
○ However, when the network is synchronous, QuePaxa uses that to provide 1 round trip fast path

● QuePaxa uses private randomness, and that enables hedging

61

Fast path of 1 RTT in concrete QuePaxa

● How does concrete quePaxa reduce the fast path to just 1 RTT, given that one
tcast is several round trips, and one abstract QuePaxa is two tcasts?

● The first tcast of abstract QuePaxa corresponds to a spread phase in concrete
QuePaxa in 1 RTT: Each proposer records its proposal at a recorder. In contrast
to abstract QuePaxa, however, in concrete QuePaxa only a few nodes propose. If
the leader is the fastest, i.e., faster than the few other proposers, then its proposal
gets adopted by most recorders. Upon observing this, no other decision is
possible and nodes decide after the spread phase, i.e., in 1 RTT.

62

Correspondence between concrete and abstract QuePaxa (1)

63

Correspondence between concrete and abstract QuePaxa (2)

● Concrete QuePaxa phase 0

○ Computes 𝑝 = best(𝑃); in abstract QuePaxa 𝑃 is the output set of the first tcast

● Concrete QuePaxa phases 1 and 2

○ Computes 𝑎 = best(𝐸); in abstract QuePaxa 𝐸 is the first output of the second tcast

○ Computes 𝑝 = best(𝑃’), in abstract QuePaxa 𝐸 𝑃’ is the second output set of the second
tcast

● Concrete QuePaxa phases 2 and 3

○ Computes 𝑎 = best(𝐶); in abstract QuePaxa 𝐶 is the first output of the third tcast

○ Computes 𝑝 = best(𝑈); in abstract QuePaxa 𝑈 is the second output set of the third tcast
64

