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Abstract

Implementing new operating systems is tedious, costly, and often
impractical except for large projects. The Flux OSKit addressesthis
problem in a novel way by providing clean, well-documented OS
components designed to be reused in awide variety of other envi-
ronments, rather than defining a new OS structure. The OSKit uses
unconventional techniques to maximize its usefulness, such as in-
tentiondly exposing implementation details and platform-specific
facilities. Further, the OSKit demonstrates a technique that allows
unmodified code from existing mature operating systemsto be in-
corporated quickly and updated regularly, by wrapping it with a
small amount of carefully designed “glue’ code to isolate its de-
pendencies and export well-defined interfaces. The OSKit uses this
technique to incorporate over 230,000 lines of stable code includ-
ing device drivers, file systems, and network protocols. Our experi-
ence demonstrates that this approach to component software struc-
ture and reuse has a surprisingly large impact in the OS implemen-
tation domain. Four real-world examples show how the OSKit is
catayzing research and development in operating systems and pro-
gramming languages.

1 Introduction

As operating system functionality continues to expand and diver-
sify, it isincreasingly impractical for a small group to implement
even a basic useful OS core—e.g., the functionality traditionally
found inthe Unix kernel—entirely from scratch. Furthermore, gen-
erally only afew specific areasin an OS core are interesting for re-
search purposes. For example, any realistic OS, in order to be use-
ful even for research, must include many largely uninteresting ele-
ments such as boot loader code, kernel startup code, various device
drivers, kernel pri nt f and mal | oc code, and akernel debugger.
The necessity of writing this kind of infrastructure not only slows
down larger OS research projects, but also greatly increasesthe cost
of entry into OS research so that many small but useful experiments
are ssmply not viable.

While it is possible to adapt existing systems, they are gener-
ally complicated and entwined with interdependencies. The OSKit,
developed by the Flux research group at the University of Utah, ad-
dresses this problem by providing a framework and a set of modu-
larized library code with straightforward and well-documented in-
terfaces for the construction of operating system kernels, servers,
and other core OS functionality. The OSKit provides functionality
such as simple bootstrapping, a minimal POSIX environment usable
in kernels, memory management suited for physical memory and its
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constraints, extensive debugging support, and higher-level subsys-
tems such as protocol stacks and file systems. The OSKit gives a
developer animmediate starting point for investigating “red” OSis-
sues such as scheduling, virtual memory, IPC, file systems, or secu-
rity. Developers can easily replace generic OSKit modules or func-
tions with their own, guided by research interests or performance
considerations. The OSKit can be used to bootstrap unconventional
operating systems quickly, such as those for embedded systems and
network computers.

The OSKitisheavily used in at least three OS kernels under on-
going development at different intitutions. Our own microkernel-
based OS, Fluke[17], putsamost all of the OSKit to use. Over haf
of the Fluke kernel is OSKit code, and many of the servers and user-
level utilitiesthat run on top of this kernel also rely heavily on parts
of the OSKit. The OSKit has a so enhanced and accel erated our OS
research by alowing usto quickly create several prototype kernels
in order to exploreideas before investing the effort necessary to in-
corporatetheseideasinto the much larger primary development sys-
tem.

Research groups at MIT and U.C. Davis, represented by co-
authors of this paper, have recently adopted the OSKit for systems-
level language research. Traditional kernels distance the language
from the hardware; even microkernels and other extensible kernels
enforce some default policy which often conflicts with a particular
language's semantics. The OSKit provides a vauable tool to allow
advanced languages to be evaluated and experimented with at alow
level, to explore novel OS structures enabled by such languages,
and to make it possible to obtain accurate performance measure-
ments without the interference of a full-scale OS. By implement-
ing Standard ML [26] directly on the hardware using the OSKit,
we are able to model hardware resources with the constructs of a
functional programming language. Our port of SR (“ Synchronizing
Resources’) [3], aparallel languageintended for systems-level pro-
gramming but never extensively used for this purpose, dlowsusto
investigate the eff ecti venessof using acommunication-oriented lan-
guage for implementing OSfunctionality. Finally, using aJava[19]
virtual machine running on the OSKit, we have prototyped a small
network computer supporting a Java-based web server and other ap-
plications, as well as an active network router that dynamically ex-
ecutes Java bytecode embedded in network packets.

The rest of this paper describes the OSKit and reports on our
experience using it for research in operating systems and advanced
language systems. Section 2 discusses related work. Section 3 out-
lines the major OSKit components, and Section 4 details the OS-
Kit's design and implementation. Section 5 describes two example
network-oriented OSKit-based applications. Section 6 presents our
experience with the OSKit through severa case studies. Finaly, in
sections 7 and 8 we present status, future work, and conclusions.

2 Redated Work

Many OSresearch projects havetaken code from other existing, sta-
ble systems to reduce the startup cost of OS research: Mach [1]
used devicedriversfrom BSD and hardware vendors, thex86 port of
SPIN[10] uses device drivers from FreeBSD, and VINO [30] takes
its device drivers, bootstrap code, and low-level support for vir-
tual memory from NetBSD. Although this approach certainly saves



time, the developer must still manually take apart the old OS, fig-
ureout al therelevant inter-modul e dependencies and other require-
ments, and find a way either to emulate these requirements in the
new OS environment or change the code appropriately to adapt it
to the new environment. The OSKit allows the developer to save
more time by providing common componentsin a convenient form,
already separated out and documented.

Recent research projects such as the exokernel [14], SPIN, and
VINO focuson creating extensi bl e systemswhich alow applications
to modify the behavior of the core OS to suit their particular needs.
However, these systems still define a particular, fixed set of “core”
functionality and aset of policies by which the core can be used and
extended. Asthe exokernel authors state, “mechanism ispolicy, al-
beit with one lesslayer of indirection” [14]. The OSKit, in contrast,
makes no attempt to be auseful OS in itself and does not define any
particular set of “core” functionality, but merely provides a suite of
components from which real OS's can be built.

Many real-time, embedded operating systems, such as
QNX [20] and VxWorks [35], are designed as a set of modular
components that can be statically or dynamicaly linked with a
small core kernel in various configurations. These systems appar-
ently do provide a relatively hospitable kernel environment for a
single PosIx-based application, such as a Java virtual machine,
and indeed industry has recently constructed a Java-based system
using VxWorks. However, the main purpose of these embedded
systems modularity is to alow them to be used in very smal,
tightly-constrained hardware environments as well as (or instead
of) in fully-equipped workstations and PCs. All of the optiona
components still rely on the basic OS environment provided by the
core kernel, and are neither designed with the intention of making
them usable in other environments nor sufficiently documented to
make it practica for users of these systems to do so. For exam-
ple, the VxWorks execution environment always runs a specid
“exception thread” (in VxWorks terminology, a “task”), whose
purpose is to field messages from distressed threads, providing
a safe execution environment in which to execute cleanup code.
Other VxWorks components require this thread's presence, so
cannot easily be used in other environments.

Several object-oriented operating systems have been created,
such as Choices [12], which provides a full operating system, and
the Taligent [27] system, which provides OS services above an un-
derlying microkernel. Likethe OSKit, these systems attempt to pro-
vide an extensible OS structure built from customizable, replaceable
components. However, these are still operating systems in and of
themselves: they gtill define abasic core OS structure and a frame-
work within which OS components are to be extended, and make
no attempt to allow their components to be easily separated out
and used in other widdy different OS environments. Thus, these
obj ect-oriented operating systems are comparable in their basic de-
sign goals to the extensible and scalable systems described above.

3 Overview of OSKit Components

In this section we provide a brief overview of several of the most
important OSKit components. For reference, Figure Lillustratesthe
overall structure of the OSK it and the rel ati onshi ps between itscom-
ponents.

3.1 Bootstrapping

Most operating systems come with their own boot loading mecha-
nismswhich are largely incompatible with those used by other sys-
tems. Thisdiversity of existing mechanismsis caused not so much
by any fundamental difference in the bootstrap services required by
each OS, but instead merely by the ad hoc way in which boot load-
ers are typically constructed. Because boot loaders are basically
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uninteresting from a research standpoint, OS developers generally
just produce aminimal quick-and-dirty design, which resultsin each
boot loader being unsuitable for the next OS dueto slight differences
in design philosophy or requirements. To solve this problem, the
OSKit directly supports the MultiBoot standard [16] which was co-
operatively designed by members of severa OS projectsto provide
asimple but generd interface between boot loadersand OS kernels,
alowing any compliant boot |oader to load any compliant OS. Us-
ing the OSKt, it is easy to create OS kernels that support a variety
of existing boot loaders that adhere to the MultiBoot standard. In
addition, the OSKit includes tools that allow these MultiBoot ker-
nelsto beloaded from older BSD and Linux boot |oaders, and from
MS-DOS.

A key feature of the MultiBoot standard that makesit highly use-
ful to research systems is the ability of the boot loader to load ad-
ditiond files, or boot modules, a boot time along with the kernel
itself. A boot module is smply an arbitrary “flat” file, which the
boot loader does not interpret in any way, but instead merely loads
into chunks of reserved physical memory aong with the kernel im-
age itself. Upon starting the kernel, the boot loader then provides
the kernel with alist of the physical addresses and sizes of dl the
boot modules that wereloaded, dong with an arbitrary user-defined
string associated with each boot module. These boot modules and
their associated user-defined strings can then be interpreted by the
kernel however it seesfit; typically their purpose isto ease the ker-
nel’s bootstrapping burden by providing arbitrary data that the ker-
nel might need to get started, such asinitiaization programs, device
drivers, and file system servers.

3.2 Kerne Support Library

The primary purpose of the OSKit'skernel support library isto pro-
vide easy accessto theraw hardware facilities without adding over-
head or obscuring the underlying abstractions. It contains a large
collection of useful functions and symbol definitions that are highly
specific to supervisor-mode code. In contrast, most of the other li-
braries in the OSKit are often useful in user-mode code as well,
even though they are designed primarily with kernelsinmind. Also
unlike the rest of the OSKit, much of the kernel support code is
necessarily architecture-specific; no attempt has been made to hide
machine-specific details that might be useful to the client OS. For
instance, on the x86, the kernel support library includes functions
to create and manipulate x86 page tables and segment registers.
Other OSKit components can, and often do, provide higher-level



architecture-neutrd facilities built on these low-level mechanisms,
but the architecture-specific interfaces always remain accessible in
order to provide maximum flexibility.

The OSKit'skernd support library isespecialy important onthe
x86 architecture, whose OS-level programming environment is par-
ticularly complex and obscure. Thekernel support library takescare
of setting up a basic 32-bit execution environment (x86 processors
normally start up in a 16-bit mode for compatibility with MS-DOS),
initializing segmentation and page trandation tables, instaling an
interrupt vector table, and providing default trap and interrupt han-
dlers. Naturally, the client OS can modify or override any of this
behavior; however, by default, the kernel support library automat-
ically does everything necessary to get the processor into a conve-
nient execution environment in which interrupts, traps, debugging,
and other standard facilities work as expected. The library also by
default automatically locates all of the boot modulesloaded with the
kernel and reserves the physical memory in which they are located
so that the application can easily make use of them later on. The
client OSneed only provideanmai n functioninthe standard C style;
after everything is set up, the kernel support library will call it with
any argumentsand environment variables passed by the boot |oader.
Thus, using the OSKit, a“Hello World” kernel isassimple as an or-
dinary “Hello World" applicationin C.

3.3 Memory Management Library

Memory management code typically used in user space, such as
the mal | oc implementation in a standard C library, is not gener-
ally suitable for kernels because of the special requirements of the
hardware on which they run. Device drivers often need to allocate
memory of specific “types’ and with specific alignment properties:
e.g., only the first 16MB of physicad memory on PCsis accessible
to the built-in DMA controller. To address these memory manage-
ment i ssues, the OSK it includesapair of simplebut flexible memory
management libraries. The list-based memory manager, or LMM,
provides powerful and efficient primitives for managing allocation
of either physica or virtual memory, in kernel or user-level code,
and includes support for managing multiple “types’ of memory ina
pool, and for alocationswith varioustype, size, and alignment con-
straints. The address map manager, or AMM, is designed to man-
age address spaces that don’t necessarily map directly to physica
or virtual memory; it provides similar support for other aspects of
OS implementation such as the management of processes’ address
spaces, paging partitions, free block maps, or |PC namespaces. Al-
though these libraries can easily be used in user space, they are de-
signed specifically to satisfy the needs of OS kernels.

3.4 Minimal C Library

Mature OS kernelstypically contain a considerable amount of code
that simply reimplements basic C library functionaity such as
printf and mal | oc. Thisis done because the “red” C library
implementations of such functions are optimized for maximum per-
formance and functionality in the rich user-space environment pro-
vided by afull-function OS, and therefore make too many assump-
tionsto be usable in akernel environment. For example, a standard
printf usualy relies on the full st di o package, which among
other complexities manages the mapping of file handles to file de-
scriptors and dynamically all ocates buffer memory.

By contrast, the OSKit provides a minimal C library designed
around the principle of minimizing dependencies rather than max-
imizing functionality and performance. For example, locales and
floating-point are not supported, and the standard 1/O calls don’t
do any buffering, instead relying directly on underlying r ead and
wr i t e operations. Dependencies between C library functions are
minimized, and those dependenciesthat do exist are documented so
that individual functions can be replaced as necessary in order to

adapt the minimal C library to arbitrary environments.

3.5 Debugging Support

One of the OSKit's most important practical benefitsis that, given
an appropriate hardware setup, it immediately provides the OS de-
veloper with afull source-level kernel debugging environment. The
OSKit's kernel support library includes a serid-line stub for the
GNU debugger, GDB [32]. The stubisasmall module that handles
trapsin the client OS environment and communicates over a serial
line with GDB running on another machine, using GDB'’s standard
remote debugging protocol. The OSKit's GDB stub can be used
even if the client OS performs its own trap handling, and even sup-
ports multithreaded debugging if the client OS provides appropriate
hooks. In the future, we plan to integrate alocal debugger into the
OsKit aswell, which can be used when a separate machine running
GDB isnot available.

In addition to the basi ¢ debugging support, the OSKit also pro-
videsamemory allocation debugging library, which tracks memory
allocations and detects common errors such as buffer overruns and
freeing dready-freed memory. This library provides similar func-
tionality to many popular application debugging utilties, except that
it runsin the minimal kernel environment provided by the OSKit.

3.6 DeviceDriver Support

One of the most expensive tasks in OS development and mainte-
nanceis supporting the wide variety of available I/O hardware. De-
vices are tricky and often have undocumented glitches and new
hardware is constantly being released with incompatible software
interfaces. For these reasons, the OSKit leverages the extensive set
of stable, well-tested drivers developed for existing kernels such as
Linux and BSD. To avoid divergence from these existing source
bases and allow new and improved drivers to be easily integrated
into the OSKit in thefuture, existing driver codeisincorporated into
the OSKit largely unmodified using an encapsulation technique de-
scribed later in Section 4.7. These existing drivers are surrounded
by athin layer of OSKit glue code which alowsthem to be used in
environments compl etely different from those for which the drivers
were originally written. Currently, most of the Ethernet, SCSI,
and |DE disk device drivers from Linux 2.0.29 are included—over
fifty in all—aswell as eight character device driversimported from
FreeBSD in the same way, supporting the standard PC console and
serial port and various multi-seria port boards. Because of the OS-
Kit's careful packaging of these drivers, the FreeBSD drivers work
alongside the Linux drivers without a problem. In the future we
expect to incorporate drivers from other sources as well, possibly
even from popular commercial operating systems for which hard-
ware vendor-supplied drivers are often available.

3.7 Protocal Stacks

The OSKit provides a full TCP/IP network protocol stack; like the
device drivers, the networking code is incorporated by encapsula-
tion so that it can easily be kept up-to-date. However, whereas
the OSKit currently takes its network device drivers from Linux,
whichisthelargest sourceof freely available driversfor the PC plat-
form, the OSKit's network components are instead drawn from the
4.4BSD-derived FreeBSD [24] system, which is generally consid-
ered to have much more mature network protocols. This demon-
strates a secondary advantage of using encapsulation to package ex-
isting software into flexible components: with this approach, it is
possibleto pick the best components from different sources and use
them together—in this case, Linux network drivers with BSD net-
working.



3.8 File Systems

To complete our picture, the OSKit incorporates standard disk-
based file system code, again using encapsul ation, this time based
on NetBSD's file systems. NetBSD was chosen in this case as the
primary source base becauseitsfile system codeisthe most cleanly
separated of the available systems; FreeBSD and Linux file systems
are moretightly coupled with their virtual memory systems. We are
currently incorporating Linux file systems as well, to support many
diversefile system formats, such asthose of Windows 95, 0S/2, and
System V.

Our development of a highly secure file server using the OS-
Kit'sfile system provided an interesting experience with the use of
such a component. The OSKit file system’s exported COM inter-
faces are smilar to the internal VFS interface [23] used by many
Unix file systems. These interfaces are of sufficiently fine granu-
larity that we were able to leave untouched the internals of the OS-
Kit file system. For example, the OSKit interface accepts only sin-
gle pathname components, alowing the security wrapping code to
do appropriate permission checking. The fileserver itself, however,
exports an interface accepting full pathnames, providing efficiency
where it matters, between processes. Avoiding any modification of
the main file system code greatly reduces our maintenance burden,
allowing us easily to track NetBSD releases.

4 OSKit Design and | mplementation

In order to make the OSKit flexible enough to be used in awide va-
riety of diverse environments, it was necessary to adopt a different
set of design rulesthan would normally be used for building kernels
themselves. Often thisinvolves applying well-known and accepted
software engineering principles in unconventional ways. This sec-
tion describes the OSKit's design and implementation philosophy
and rationale, and provides specific examples of how they are ap-
plied.

4.1 Library Structure

Themost important goal of the OSKit isto be as convenient as pos-
sible for the developer to use. Although this goa has many ramifi-
cations throughout the OSKit's design, its first manifestation isin
the basic layout and usage pattern of the OSKit as a whole. The
OSKit is structured as a package that can be automatically built
and installed, in most cases, as easily as an ordinary GNU-style ap-
plication. It is self-sufficient in that it does not use or depend on
any existing libraries or header files installed on the system; the
only things the user must provide are the compiler, linker, and a
few other development tools. Building and ingtaling the OSKit
causesaset of librariesto be created in auser-defined location (e.g.,
/usr/local/liband/usr/local/include)fromwhich
they can then be linked into operating systems just like ordinary li-
braries are linked into user-level applications.

The OSKit is structured thisway because devel opers are dready
familiar with libraries and know how to use them; although it is not
common practice to link libraries into a kernd, this is smply be-
cause until now few libraries have been designed to be usablein ker-
nels. Given a set of libraries designed for this purpose, it is much
easier for adeveloper to link in alibrary and use it than to drop in
aset of . c files, figure out what compiler options to compile them
with, what header files they need, etc. Developers can define their
own source tree layout and build environment rather than being re-
quiredtointegrate their sourcesinto a predefined existing structure.

4.2 Modularity Versus Separ ability

While modularity is a standard software design god, in the OSKit
it gains anew level of importance. A primary goal of the OSKit is
to allow developersto use arbitrary componentsin agiven situation

without being forced to use other parts of the OSKit; thismeansthat
the OSKit's components must not only be modular, but aso fully
separable. For example, the client should be able to use the OS-
Kit'sdevice drivers without also having to use the OSKit's memory
manager, even though device drivers necessarily require some kind
of memory allocation service. A traditional kernel such asBSD may
be extremely clean and modular, but is still not very separable be-
cause of extensive inter-module dependencies which make it diffi-
cult, for instance, to use BSD's device drivers without BSD’s mem-
ory alocator, or BSD's file system code without BSD’s VFS layer.

To provide full separability between components in the OSKit,
it is often necessary to introduce thin intermediate “glue” layersto
providealevel of indirection between acomponent and the services
it requires. In many casesthese layerstake the form of library func-
tions with trivial default implementations, whose sole purpose is
to be overridden by the client OS when the need arises. In other
cases, the layer of indirection is provided through the use of func-
tion pointers and dispatch tables which allow components to be dy-
namically bound together by the client OS at run time. The for-
mer method is generally used for services for which there is gener-
aly only oneimplementation in the system, such as put char and
mal | oc, whereas the latter method is used when multiple imple-
mentati ons of aservice must coexist, such astheblock 1/O interfaces
to different disk device drivers.

4.2.1 Separability Through Overridable Functions

As an example of the first method, to allocate memory, all device
driver components in the OSKit invoke a client-supplied function
called f dev_memal | oc. A default implementation of this func-
tion is provided which uses the OSKit's memory management li-
brary, but this default can easily be overridden by the client OS if
it uses its own method of managing physica memory. Thisway, in
smplesituationswherethe client just usesthe OSKit's defaults, ev-
erything “just works” without any specid action ontheclient’s part;
however, the client OS can obtain full control over memory alloca-
tion and other services when needed.

4.2.2 Separability Through Dynamic Binding

As an example of the second method of ensuring separability, none
of the OSKit's file system components have any link-time depen-
dencies on the OSKit's device driver components, even though the
file systems must invoke the block device driversin order to access
the underlying disk on which the file system resides. Instead, when
the client OS initializes an OSKit device driver, the device driver
returns a pointer to an interface to use to access the device. OS-
Kit interfaces will be described in more detail later, but essentially
arejust opague objects with dynamic dispatch tables similar to C++
virtual function tables. Later, when initializing the OSKit'sfile sys-
tem component, the client OS passes the device driver’s interface
pointer and the file system henceforth uses that interface to invoke
thedriver’'s services. Inthisway, the client OS can bind at run time
any file system to any device driver, and neither component needs
to know how it is being used.

4.3 Component Granularity

The OSKit'slibraries each contain anumber of logical components;
the client OS incorporates these components by referencing sym-
bols defined by the libraries, and the linker determines which spe-
cific object files to pull in. However, beyond this principle there is
no single, standard definition of exactly what a “component” is or
how it isused. By not attempting to force all componentsinto asin-
glefixed design methodology, the OSK it gains adegree of flexibility
that we have found to be essentia to its success. In particular, the
most natural size and granularity for componentsvary widely in dif-
ferent parts of the OSKit, from tiny single-function “components”
suchasst r cpy tolarge components each consisting of many mod-
ules such asthe BSD file system. To copewith such large variations



in granularity, there must be some corresponding variety in imple-
mentation and usage patterns. The OSKit'slibraries are roughly di-
vided into two main categories. function libraries and component
libraries.

4.3.1 Function Libraries

The OSKit's function libraries provide relatively simple, low-
level services in a traditiona C-language function-oriented style.
They are designed for fine-grained use and control, generally on
a function-by-function basis, allowing the client OS to use partic-
ular library functions while leaving out or individualy overriding
other functions. The dependencies between library functions are
minimized, as are dependencies on other libraries; where these de-
pendenciesinevitably exist, they are well-defined and explicitly ex-
posed to the OS developer.

For instance, the OSKit's minima C library provides an im-
plementation of the well-known pri nt f function as well as other
standard I/O services; however, these servicesare designed very dif-
ferently fromthose of traditional Clibraries. A standard 1/O module
traditionally acts as one big “black box” which implements abroad
set of high-leve services on top of acorresponding set of low-level
services(read, wri t e, etc.), and maintains private state to imple-
ment buffering and other common features. Making use of a sin-
gle standard 1/O function in an application pulls in variousinterna
support routines, and with them many dependencies on other facil-
ities such as memory allocation, terminal control, etc. The stan-
dard 1/0 services in the OSKit's minimal C library, on the other
hand, minimize dependencies and internal state (e.g., they perform
no buffering), and their implementati ons are documented so that the
client OS can exercise full control over them. For instance, the OS-
Kit'sdefaultpri nt f functionisimplemented in terms of two other
functions, put s and put char ; the default put s, inturn, isim-
plemented only in terms of put char . While thisimplementation
would beabugin astandard Clibrary, inwhich overriding one func-
tion is not supposed to affect the behavior of another, in the OSKit’s
minimd C library it isextremely useful becauseit allows the client
OS to obtain basic formatted consol e output simply by providing a
put char function and nothing el se.

4.3.2 Component Libraries

Whereas the function libraries are designed for maximum fine-
grained flexibility and controllability, the component libraries are
designed to provide large chunks of functionality in one shot, as
quickly and conveniently as possible. They adopt a more coarse-
grained, object-oriented “black box” design philosophy with rela-
tively fewer public entrypoints. For example, in the OSKit's de-
vice driver component libraries, each device driver is represented
by a single function entrypoint which is used to initialize and reg-
ister the entire driver. Most of theinternal details of the driver and
the hardware it controls are hidden from the client OS, which gen-
erally interacts with these components only through common, well-
defined, object-oriented interfaces, giving the OS devel oper “plug
and play” control over the overall system structure. Thisdesignin-
creases large-scale flexibility at the expense of fine-grained control-
lability: by using aparticular OSKit device driver, the OS devel oper
gives up direct control over the piece of hardware the driver iscon-
trolling, but gains the ability to drop a different driver in its place
later on without changing anything else.

Thereisno clear-cut criterion defining the appropriate granul ar-
ity for particular components; in fact, for some services it may be
desirable to have adternative libraries available implemented at dif-
ferent granularities. For example, while the OSKit's minimd C li-
brary serves the needs of kernels and simple applications well by
emphasizing smplicity and flexibility over functiondity, in the fu-
turewe may integrate amoretraditional Clibrary, suchastheBSD C
library, as an alternative OSKit component, to be used in situations
where more complete functionality but less fine-grained control is

needed by the application.

44 COM Interfaces

For usability, it is critical that OSKit components have clean, well-
defined interfaces, designed dong some coherent set of global con-
ventionsand principles. To providethisstandardization, we adopted
a subset of the Component Object Modd [25] as a framework in
which to define the OSKit's component interfaces. At its lowest
level, COM is merely a language-independent protocol allowing
software components within an address space to rendezvous and in-
teract with each other efficiently, while retaining sufficient separa-
tion so that they can be developed and evolved independently. Be-
sidesthe obvi ous advantages of making the OSKit’sinterfacesmore
consistent with each other and withthosewidely used in component-
oriented applications, COM aso brings several technical advan-
tages described bel ow.

4.4.1 Implementation Hiding

COM is founded on the notion of interfaces, which are compara-
ble to Java [19] interfaces: they define a set of methods that can
be invoked on an object without providing any direct access to the
object’s internal state. COM interfaces are defined independently
of the components that implement them, ensuring that implementa-
tion and interface remain well-separated; in practice many different
implementations of a particular COM interface often coexist even
within a single system. As represented in the C language, a COM
interface isan opague structure whose actua size and content isun-
knownto the client, except that itsfirst member isapointer to atable
of function pointers, similar to a C++ virtual function table. For ex-
ample, Figure 2 showsaslightly simplified but essentially complete
definition of the OSKit'sbl ki o interface, which isimplemented by
each of the OSKit's disk device drivers as well as by other compo-
nents.

typedef struct blkio {
struct bl ki o_ops *ops;
} blkio_t;

struct bl kio_ops {

error_t (*query)(blkio_t *io,
const struct guid *iid,
voi d **out _i handl e);

unsigned (*addref)(blkio_t *io);

unsigned (*release)(blkio_t *io);

unsi gned (*getbl ocksize)(blkio_t *io);

error_t (*read)(blkio_t *io, void *buf,
off_t offset, size_t anount,
size_t *out_actual);

error_t (*wite)(blkio_t *io, const void *buf,
of f _t offset, size_t anount,
size_t *out_actual);

error_t (*getsize)(blkio_t *io, off_t *out_size);

error_t (*setsize)(blkio_t *io, of f_t new_ size);

h

/* Friendly macros */
#defi ne oskit_bl kio_read(io, buf, ofs, anount, out_actual) \
((io)->ops->read((io),

(buf), (ofs), (anount), (out_actual)))

#define BLKIO |1 D GU D(0x4aa7df 81, 0x7c74, Oxllcf, \
0xb5, 0x00, 0x08, 0x00, 0x09, 0x53, Oxad, 0xc2)

Figure 2: The OSKit's COM Interface for Block I/O.
Thebl ki 0_ops structure isthe dynamic dispatch table for thisin-
terface, representing the methods that can be called. The last two
lines define the Globally Unique Identifier (GUID) identifying the
bl ki o interface.



4.4.2 |Interface Extension and Evolution

An object can export any number of COM interfaces; each interface
represents one particular “view” of the object with its own indepen-
dent function table through which methods can be invoked. Inter-
faces are identified by agorithmically generated DCE Universally
Unique I dentifiers (UUIDs), so new COM interfaces can be defined
independently by anyone with essentially no chance of accidenta
collisions. Given a pointer to any COM interface, the object can be
dynamically queried for pointers to its other interfaces, providing
what is known in many languages as “safe downcasting” or “nar-
rowing.” This mechanism allows objects to implement new or ex-
tended versions of existing interfaces while retaining compatibility
with clientsthat only understand the origina interface, and it allows
clientsto probe an object safely and take advantage of extended in-
terfaces if available while falling back on the base interface if not.
For example, the OKit's buf i o interface is an extension to the
bl ki o interface in Figure 2, which adds methods to alow direct
pointer-based access to the data stored in the object in the common
casein which this data happensto be in local memory. The OSKit’s
raw, unbuffered disk device drivers only provide the basic bl ki o
interface, since aread or write to the object trand ates to adisk read
or write; however, an object representing abuffered disk deviceor a
RAM disk could also support the extended buf i o interfaceto pro-
vide more efficient access to clients that can take advantage of the
extended interface.

4.4.3 No Required Support Code

Finadly, one of the abstraction features in our use of COM that is
most important for the purposes of the OSKitisthat interfacescan be
completely “standalone’ and do not require any common infrastruc-
ture or support code that the client OS must use in order to make use
of the interfaces. Contrast this, for example, with the BSD, Linux,
and x-kernd network stacks, in which the protocols themselves are
modular and interchangeabl e to some degree, but each of their inter-
faces depends on a particular buffer management abstraction with a
particular concrete implementation (nbuf s, skbuf f s, and Msgs,
respectively). In order to use any BSD networking code, one must
alsoincorporate and “design around” the BSD nbuf code; it would
be nontrivial at best to replaceit with an alternative buffer manage-
ment implementation that differs in more than minor details. The
OSKit's corresponding interfaces, on the other hand, are purely be-
havioral contracts between modulesthat rely on no particular com-
mon implementation infrastructure.

45 Execution Environment

To achieve full OSKit component separability, it is necessary to de-
fine and document not only the interface implemented by acompo-
nent, but also all of theinterfaces the component itself uses and the
execution environment on which it depends: in other words, each
component must be described not only “in front” but “all around.”
For function libraries such asthe minimal C library, thisis mostly a
matter of documenting each function’s behavior and dependencies:
for instance, the documented “environment” of the pri nt f func-
tion consists of the put s and put char functions on which it is
based.

For larger components such as device drivers, however, is
sues such as concurrency and synchronization are important, and
the reentrancy and interruptibility requirements of each component
must be defined carefully. Naturally, the complexity of the exe-
cution environment required by a component varies depending on
the size and complexity of the component itself in addition to other
factors; however, in all cases the OSKit's design attempts to min-
imize the complexity of this expected execution environment. For
instance, the OSKit does not require the OS to provide a notion of
“interrupt priority levels” asisused in BSD, even though the OSKit
incorporates BSD file system and networking code and can be made

to use multiple IPLsif desired. The OSKit documentation specifies
several basi c execution models of varying complexity, ranging from
an extremely ssimple concurrency model in which the component
makes almost no assumptions about its environment, to the most
complex model in which components must be aware of and have
some control over various concurrency issues such as blocking, pre-
emption, and interrupts. All of the OSKit's components conform to
one of these documented execution models. Further, since using the
OSKit inagiven environment will invariably involve some adapta-
tion to local requirements, we have also included in the documen-
tation a number of “recipes’ for using OSKit components in vari-
ous common environments, such as preemptive, multiprocessor, or
interrupt-model kernels.

4.6 Exposing the lmplementation

Whereas hiding theimplementation of amoduleisgenerally consid-
ered good software design practice, we take an approachinlinewith
Kiczales “Open Implementation” philosophy [22]. The OSKit of-
ten explicitly exposes the implementation of acomponent as part of
its documented interface, in order to provide maximum power and
flexibility to the client OS. For instance, the OSKit’s basic memory
management library exposes a number of functions that are fairly
specific to its particular implementation, such as the ability to re-
serve particular regions of physical memory or walk through and
examinethefreelist. Theclient OSisnot obligated to usethese low-
level interfacesand in most cases can stick to thestandard nal | oc-
likeinterface, but the availahility of thelow-level interfacesisoften
important in meeting the needs of particular kernels.

The OSKit employs an open implementation philosophy even
for the more coarse-grained component librariesin which it is usu-
ally desirable to hide most implementation details. However, inthis
case, the key point is that implementation details are hidden un-
less explicitly requested; they are not forced onto the client. For
example, al of the OSKit's device drivers, whether derived from
BSD or Linux, export a common set of basic interfaces which hide
the nature and origin of each individua driver; however, each de-
vicedriver can also export additiona interfacesproviding extended,
driver-specific functionality. In fact, the COM interface extension
mechanism (Section 4.4.2) provides an ideal basis for open imple-
mentation in the OSKit.

4.7 Encapsulation of Legacy Code

Much of the code in the OSKit isderived directly or indirectly from
existing systems such as BSD, Linux, and Mach. For small pieces
of code that aren’t expected to change much in the origina source
base, or are expected to diverge widely from the original base any-
way, we smply assimilated the code into the OSKit's source tree,
modifying it as necessary, and maintaining it as part of the OSKit
fromthen on. However, for large or rapidly-changing bodi es of code
borrowed from existing systems, such as device drivers, file sys-
tems, and network protocol stacks, we instead took the approach of
cleanly encapsulating the code within its new environment. This
approach generalizes the technique explored by Goel at Columbia
and Utah, in which Linux device drivers were used unchanged in
the Mach 3.0 kerndl [18]. The OSKit defines a set of COM inter-
faces by which the client OS invokes OSKit services; the OSKit
components implement these services in athin layer of glue code,
which in turn relies on a much larger mass of encapsulated code,
imported directly from the donor OSlargely or entirely unmodified.
The glue code translates calls on the public OSKit interfaces such
as the bl ki o interface into calls to the imported code's internal
interfaces, and in turn translates calls made by the imported code
for low-level services such asmemory allocation and interrupt man-
agement into calls to the OSKit's equivalent public interfaces. Al-
though sometimes tricky to implement, this design requires virtu-



ally no modifications to the encapsulated code itself, vastly smpli-
fying the task of keeping the code up-to-date with new versions of
thedonor OS. Of course, theglue codestill hasto be updated to deal
with major changes in the native environment being emulated, but
this is much simpler than updating all the imported code manually,
and occurs much less frequently. For example, the OSKit's Linux
driver set has dready tracked the Linux kernel through several ver-
sions, starting with Linux 1.3.68; the encapsulation technique has
made these upgrades relatively straightforward, and they continue
to become easier as the emulation mechanisms are refined. The fol-
lowing sections describe some of the particular techniques we em-
ployed in encapsulating legacy code in the OSKit.

471 Basc Structure

We have found it extremely useful to preserve not only the con-
tents of source files imported from legacy systems, but aso the
directory structure they reside in. For instance, al of the en-
capsulated FreeBSD code is located in the OSKit subdirectory
freebsd/ sr c;thisdirectory exactly mirrorsthe/ usr/ sr c tree
in the actual FreeBSD distribution, except that it only contains the
files the OSKit actually uses. The glue code that encapsulates the
imported FreeBSD code is located in separate directories such as
freebsd/ net andfreebsd/ dev, keeping the glue well sepa-
rated from the encapsulated code. This structure allows changesin
anew release of the donor OS to be incorporated simply by apply-
ing an appropriate patch to the appropriate OSKit directory subtree
and then fixing any resulting conflicts. Of course, if the changesin
the donor OS were extensive, the conflict resolution and debugging
process can take some time and thought, but it is still much simpler
and quicker than updating heavily modified or restructured code.

4.7.2 Conversions and Namespace M anagement

Theimported OS code defines and relies on alarge number of sym-
bols which create namespace management problems at both com-
pile and link time. For instance, the imported Linux and FreeBSD
kernel header files each define their own versions of many standard
POSIX types such assi zet and struct stat, which may or
may not happen to be equivalent to each other or to the definitions
used in the OSK it component interfaces. Mismatches between types
used in imported code and those used in the public OSKit inter-
faces, such asdifferencesinthest at structure, are handled by per-
forming conversions in the glue code surrounding the encapsulated
component. However, this means that the glue code must include
both the header files imported from the donor OS and the header
files defining the OSKit interfaces; to prevent symbol name con-
flicts, all symbolsdefined by these OSKit headers are given prefixes
(e.g., oskit _st at) to disambiguate them from symbols used in
legacy code. Following thisrulein the OSKit interface definitions
also leaves a cleaner namespace for the client OS.

The link-time namespace presents another problem: athough
the legacy header files are never used or seen by other compo-
nents or by the client OS, any global functions or variables the
legacy code defines may conflict with those defined by the client
OS or by other components. For example, the NetBSD file system
and FreeBSD networking components use many functions with the
same names but incompatible definitions, which is not surprising
given the common heritage of these systems. To solve this prob-
lem we used preprocessor magic to rename these symbols. eg.,
thewak eup function used in the FreeBSD device driversisnamed
FDEV_FREEBSD.wak eup in the compiled object files comprising
the library, preventing linker conflicts with other code.

4.7.3 Exporting COM Interfaces

We have found the implementation flexibility afforded by the OS-
Kit's COM interfaces to be critical to exporting efficient interfaces
to legacy code. For example, as mentioned earlier, BSD and Linux
each haveinterna “network packet buffer” abstractions, known as

nbuf s and skbuf f s respectively, whose implementation details
arethoroughly known throughout their respective device driver and
networking code. It would beimpractical to changeeither code base
to use adifferent packet buffer representation, but in order to make
the BSD and Linux components interoperate with each other and
with client OS code that may use a different abstraction, the details
of nbuf sand skbuf f smust be hidden within the respective com-
ponents. COM interfaces allow thisto be done without copying ex-
cept in afew unavoidable situations.

When a Linux network driver receives a packet from the hard-
ware, it reads it into a contiguous skbuf f and then passes it up
to higher-level networking code, which in this case is the OSKit's
Linux glue code. This glue code must in turn export the packet
from the component using the OSKit's common networking inter-
faces in which packets are represented by buf i o interfaces (see
Section4.4.2). Because COM interfacesmake essentially norestric-
tions on the implementation details of the objects themselves, the
Linux glue code can export the skbuf f directly asaCOM bufi o
object without copying the data, merely by adding abuf i o inter-
face to the Linux skbuf f structure itself. The COM interface is
smply aone-word field in the skbuf f structure in which the glue
code places a pointer to a function table providing methods to ac-
cesstheskbuf f 'scontents; the semantics of thesefunctionsarede-
fined by the buf i o interface, but the functions themselves are im-
plemented by the glue code with full internal knowledge of Linux’s
skbuf f implementation. After the skbuf f leaves the compo-
nent, external code only manipulatesit throughitsbuf i o interface.

Packets submitted to the driver component for transmission are
also represented by a COM buf i o interface, but the Linux glue
code cannot assume that the object isreally an skbuf f since, for
example, the packet may have been manufactured in the FreeBSD
TCP/IP code where packets are instead represented as nbuf s. The
Linux glue code can easily recognize “foreign” buf i o objects by
checking their function table pointer; when it receives one, it first
cals its map method to obtain a direct pointer to the data in the
buffer if possible. This call will only succeed if the implementor
of thebuf i o object happensto store the requested range of datain
contiguous local memory; if it does, the Linux glue code creates a
“fake’ skbuf f pointing directly to this data. Otherwise, the glue
code dlocates a norma skbuf f and calls the buf i o interface’s
r ead method to copy the data into the buffer. In this way, copy-
ing is avoided whenever possible while presenting a clean, abstract
interface to the client OS and other components.

4.7.4 Blocking and Interrupts

Since al of the OSKit's encapsulated components currently come
from systems that use the relatively simple and well-understood
blocking model, the encapsulated OSKit components retain this
same execution model as seen by the client OS. The model hastwo
levels, “process level” and “interrupt level.” There can be many
process-level threads of control using separate stacks, but only one
can run at atime and context switches only occur at well-defined
“blocking” points; interrupt-level activities can run any time inter-
rupts are enabled and always run to completion without blocking.
Unlike in conventiona kernels, however, the “process’ and “inter-
rupt” abstractionsin the OSKit components are generally only rele-
vant for purposes of defining the concurrency model, and do not nec-
essarily correspond to “real” processes or hardware interrupt han-
ders. Aslong as the client OS ensures that all cals it makes into
the component follow the constraints defined by the concurrency
model, it can use the component in practically any environment.

For example, although the encapsulated OSKit components are
not inherently multiprocessor or thread safe, they can easily be
used in multiprocessor or multithreaded environments by taking a
component-wide lock just before entering the component, and re-
leasing it after the component returns and during any “blocking”



calls the component makes back to the client OS. Although this
allows only relatively coarse-grained concurrency, this granularity
is sufficient in many situations and is clearly the best we can do
without heavily modifying the imported code. Furthermore, the
client OS can run different OSKit components independently—for
instance, amultiprocessor OS could place separate locks around the
file system and network components, alowing them to execute con-
currently. This medium-grained concurrency is possible because of
the clean separation and independence of the OSKit components,
and would be much harder to achieve if the BSD or Linux file sys-
tem and networking code was imported into the client OS directly
without any of the “packaging” done by the OSKit.

4.75 Hiding Details of L egacy Environments

Even though the concurrency model presented to the client OS by
the OSKit's encapsulated components is superficialy similar to the
models used in the donor OS environments, the OSKit's environ-
ment is much simpler and more limited in many ways, making as
few demands as possible on the client OS in order to make the
components as widdly usable as possible. For example, as men-
tioned above, the OSKit's components generally can’t assume that
the client OS has any notion of a*“process’ in the traditiona sense.
However, the imported legacy code is generally riddled with code
that makes assumptions about processes and often accessesthe “ cur-
rent process’ structure directly (e.g., through BSD’s cur pr oc or
Linux's cur rent pointer). This is done for many reasons, but
the most common cases are permission checking and blocking on
events.

To avoid having to make the large number of changes required
to eliminate these dependenci es, weinstead structured the glue code
to emulate the abstractions expected by the encapsulated code. For
example, to emulate the current process, a every entrypoint into the
component from the “outside,” the glue code creates and initializes
aminimal temporary process structure on the stack, and initializes
the globa (component-wide) cur pr oc pointer to point to it. This
structure then represents the “current process,” as far as the encap-
sulated codeisconcerned, for the duration of thiscall, and automati-
cally disappearswhen the call compl etes—in essence, the glue code
manufactures processes on demand. Since other threads of control
may execute in the component during any blocking callsthe compo-
nent makes back to the client OS, the glue code must also intercept
these calls and save the cur pr oc pointer on the local per-thread
stack for their duration in order to prevent it from getting trashed by
other concurrent activities. In thisway, the glue code emulates the
process abstraction expected by the legacy code while completely
hiding it from the client OS.

476 Sleep/Wakeup

Another related part of the donor OS environment used throughout
theimported legacy codeisthe sleep/wakeup mechanism, which for
example the interrupt handler in a device driver uses to wake up a
blocked r ead or wr i t e request after it has completed. Naturaly,
thedetails of the d eep/wakeup mechanism vary widely even among
similarly structured kernels such as BSD and Linux. The glue code
in each encapsulated component emulates the native slegp/wakeup
mechani sm of the donor OS on top of asingle extremely simple un-
derlying abstraction designed to be as easy as possible for the client
OS to implement: namely a “deep record,” which is like a condi-
tion variable except that only onethread of control can wait on it at
atime. Theclient OS can directly implement these “ s eep records’
in various ways, such as using conventional condition variables or
event objects or whatever esethe client OS usesinternally for syn-
chronization. In fact, in the OSKit's single-threaded example ker-
nels, sleeping isimplemented ssmply as a busy loop that spinson a
one-hit field in the sleep record structure.

Given this minimal sleep/wakeup mechanism provided by the
client OS, wefound that the easiest way to emulate the more elabo-

rate mechanisms expected by legacy OS code wasto incorporatethe
actud deep/wakeup code from thelegacy OS and modify it dightly
to use the OSKit's sleep record abstraction in place of the legacy
OS's scheduler. For instance, the BSD deep/wakeup mechanism
uses a global hash table of “events,” where an event is just an ar-
bitrary 32-bit value; when wakeup is caled on a particular event,
all processes waiting on that particular value are woken. In the en-
capsulated BSD-based OSKit components, weretain BSD'soriginal
event hash table management code; however, the hash tableis now
only used within that particular component rather than throughout
the entire system, and instead of all the scheduling-related fieldsin
theemulated pr oc structurethereis now only adeep record which
the BSD glue code usesto block the current “process’ as necessary.

477 Memory Allocation

Another tricky aspect of the legacy environment to be emulated is
thememory dlocation mechanism. BSD’sin-kernel mal | oc pack-
age tries to be particularly clever in a number of respects: (1) al
allocated blocks are naturally aligned according to their size (e.g.,
65-128 byte blocks are aligned on a 128-byte boundary); (2) blocks
with a size of exactly a power of two can be alocated efficiently
without wasting space; and (3) the allocator automatically keeps
track of the sizes of alocated blocks. Any two of these proper-
ties can beimplemented easily, but it takes special tricksto provide
all three at once—and several parts of the BSD kernel, such asthe
nbuf code for networking and the cl i st code for character 1/0,
depend on all three properties.

The BSD kernd dlocator provides these three properties by re-
serving on system startup a specid range of kernel virtua memory
for this allocator, and creating a separate table with one entry for
each page in this range. Each entry records the size of the blocks
allocated from that page, so that onacall tof r ee the alocator can
quickly look up the size of the allocated block without having to re-
serve space in the memory block itself for this information, which
would conflict with the first two properties above. Unfortunately,
this solution is not acceptable in the OSKit because OSKit compo-
nents do not have any knowledge of or control over the virtual or
physical memory layout of the kernel or user-mode application in
which they run. In this case, there appears to be no entirely sat-
isfactory solution that does not involve heavy modifications to the
imported legacy code; however, we have adopted an imperfect but
practical solution which relies on the (generally true) heuristic as-
sumption that most memory blocks returned by the client OS will
be fairly densdly packed within the address space. To provide the
properties abovein thiscontext, our BSD glue code uses BSD’sker-
nel mal | oc package unmodified, layering it on top of the memory
allocation facility the client OS provides, except that our glue code
watches the memory blocks returned by the client OS and dynami-
cally re-dlocates and grows the allocation table as necessary to en-
sure that it dways coversall of the addresses that the allocator has
ever “seen.” Naturaly, this solution may become very inefficient or
cease to work in unusual cases where the memory blocks returned
by the client OS are very widely dispersed in the component’s ad-
dress space; however, it works finein all of the situations we have
so far encountered.

4.7.8 Physical Memory Access

Another common problem with legacy kernel code, particularly de-
vice driver code, is the assumptions it makes about how it can ac-
cess physical memory. For example, some of the Linux device
drivers assumethat all physical memory is direct-mapped into their
address space starting at virtual address zero, and access memory-
mapped devices, BIOS information, etc., simply by “manufactur-
ing” pointers directly from physical addresses. This makes it im-
possible to use these particular driversin aclient OS that does not
directly map physical memory inthisway; Inthis casethere appears
to be no solution other than fixing the drivers themselves. Fortu-



nately, FreeBSD drivers use a well-known symbolic constant when
accessing physical memory in this way; this “constant” can smply
be changed into avariableinitialized by the BSD glue code on start-
up to point to aregion of mapped physical memory.

5 Example OSKit-Based Systems

The examples distributed with the OSKit include Chesapeake’s Test
TCP (t t cp) benchmark [13] which measures TCP send/receive
bandwidth. We implemented a second benchmark to measure la-
tency, similar to hbench’s[11] | at _t cp, calledrt cp, which mea-
sures the time required for a 1-byte round trip. We will use these
examples to demonstrate how applications can tie various OSKit
components together, and to measure the unavoidable though fairly
small performanceimpact caused by the interactions between com-
ponents and by mismatches in the interna abstractions used by im-
ported legacy code.

The minimal C library provided al but a few of the functions
required by these examples. Sincett cp relies on the times re-
ported by get r usage for its timing, we implemented a smple
get r usage based on thetimerskept by the FreeBSD-derived net-
working code. tt cp also usessi gnal and sel ect which are
currently not provided by the OSKit, but they are only used to han-
dle exceptiond conditionsand can beimplemented asnull functions
without affecting the results. Aside fromtheseadditionsand theini-
tialization of the device drivers and networking stack, we were able
to compile the applications unchanged. The required initidization
code looks like this:

fdev_linux_init_ethernet();

fdev_probe();

oskit_freebsd_net _init(&sf);

posi x_set _socket creator (sf);

fdev_devi ce_| ookup(&f dev_ethernet _iid, &dev);
oskit_freebsd_net _open_ether _if(dev[0], &eif);
oskit_freebsd_net_ifconfig(eif, |PADDR, NETMASK);

fdev.inux.init_ethernet initidizes the Linux eth-
ernet drivers, causing all supported drivers to be linked into the
resulting application. (The client OS can aternatively link in only
specific drivers if it chooses.) f dev_probe locates al devices
for which a driver has been initidlized. The FreeBSD network-
ing stack is initialized with oskit _freebsd_net.nit
which returns a “socket factory” interface used to create
new sockets; posi x_set socketcreator is then caled
to register that socket factory with the C library so that its
socket function will work. The fdev_devi cel ookup
call searches the device table constructed with f dev_pr obe,
returning an array of handles for Ethernet devices. The first
such device is then bound to the FreeBSD network stack by
oski t freebsd_net _open_et her _i f, which returns a han-
dle used by oski t -freebsd_net _i f confi g to perform BSD
i f confi g-style configuration of the network interface.

Application

BSD socket interface
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FreeBSD TCP/IP
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Figure 3: Structureof thet t cp andr t cp example kernels.

fdev_ethernet, oskit_netio,
oskit_bufio COM interfaces

Figure 3 shows the structure of thettcp and rt cp kernels
when compiled with the OSKit libraries. The application uses the

Receiver:
Linux FreeBSD  OSKit
Sender:
Linux 72.4 712 713
FreeBSD | 60.0 78.6 78.7
OSKit 56.4 68.3 68.2

Table 1: TCP bandwidth in MBit/s measured witht t cp between two Pentium Pro
200MHz PCs connected by 100Mbps Ethernet.

familiar BSD socket functions. The OSKit's C library maps these
functions directly to the methods of the oski t _socket COM in-
terfaceimplemented by the FreeBSD networking component, by as-
soci ating file descriptorswith references to COM objects. Sincethe
Clibrary’'ssocket call usesaclient-provided socket factory inter-
face to create new sockets, this C library code can be used with any
protocol stack that provides these socket and socket factory inter-
faces.

When theclient OS bindsthe FreeBSD protocol stack to aLinux
device driver during initialization, these components exchange call-
back functions which are subsequently used to pass packets back
and forth asynchronously. When the driver receives a packet from
the hardware, the driver cals the protocol stack’s registered call-
back; similarly, when the protocol stack needsto transmit a packet,
it calls the device driver’s callback. Packets passed through these
callbacks are represented as references to opague objects imple-
menting the oski t _buf i o COM interface (see Section 4.7.3).
In this system configuration, incoming packets are initially repre-
sented internally as skbuf f s in the Linux network driver code;
these skbuf f sare passed directly to the FreeBSD TCP/IP compo-
nent as COM buf i o objects, which the FreeBSD glue code inter-
nally repackages as mbuf s for the benefit of itsimported FreeBSD
code. Sinceskbuf f srepresents packets as contiguous buffers, the
FreeBSD glue code is able to obtain a direct pointer to the packet
data using the map method of the buf i o interface, and therefore
never has to copy the incoming data. Outgoing packets manufac-
tured by the FreeBSD TCP/IP code, on the other hand, sometimes
consist of multiple discontiguous buffers chained together; in this
case, whentherbuf chainispassedtotheLinux driver asabuf i o
object, the Linux glue code must read the datainto its own contigu-
ous buffer in order to present it to the encapsulated driver code as
an skbuf f . Thus, themismatch between Linux’sand BSD’s inter-
nal packet representations sometimes requires extra copying on the
send path, but never on the receive path.

Tables 1 and 2 compare the TCP send and receive bandwidth
and latency for three environments: Linux 2.0.29, FreeBSD 2.1.5,
andthe OSKit using the FreeBSD 2.1.5 protocol stack and the Linux
2.0.29 device drivers. Running these tests as applications on top of
Linux or FreeBSD involves system call overhead not present in the
OSKit versions; to factor thisout, thetransmit and receive loopsfor
ttcpandrt cp weremovedintothekernel on Linux and FreeBSD
and accessed viaa specia system call.

Table 1 presents the bandwidth measurements obtained with
ttcp. Ineach caset t cp transmitted 131072 blocks of 4096 data
bytes (52MB tota). This reasonably long run of the test compen-
sates for the relatively low 10ms granularity of the clock used for
timing. The results show that the OSKit implementation receives
about as fast as FreeBSD—this is due to the fact that the Linux
driver dways hands contiguous buffers up which can be mapped to
nmbuf clusters without copying. On the other hand, when a packet
issent, an additiona copy is hecessary since non-contiguous proto-
col mbuf smust be copied into contiguous device driver skbuf f s,
accounting for the decrease in send performance.

Table 2 showsthe latency of a 1-byte round-trip. While we can-



Server:
Linux FreeBSD OSKit
Client:
Linux 152 168 180
FreeBSD 168 197 210
OsKit 180 210 222

Table 2: TCP one-byte round-trip time in xsec measured with r t cp between two
Pentium Pro 200MHz PCs connected by 100M bps Ethernet.

not interpret Linux’s performance, the FreeBSD versus OSKit re-
sults indicate that the OSKit imposes significant overhead. Extra
data copies are not part of the problem since thistest involves small
packet sizes that fit in a single protocol mbuf , enabling mapping
into a device driver skbuf f . Hence, the overhead is largely at-
tributable to the additional glue code within the OSKit components:
the price we pay for modularity and separability and for the ability
to use existing driver and networking code unmodified in an envi-
ronment for which they were not designed.

6 ExperienceUsingthe OSKit

The OSKit is aready being used in severd different research
projects at institutions around the world, not only for “traditional”
OSresearch but aso for systems-level advanced programming lan-
guage research: designing systemsin which the programming lan-
guage is the operating system. Language implementations usually
have to take the operating system'’s interface to the hardware as a
given; for languages whose semantics differ markedly from C, the
match is often not ideal. Unix, for example, is tuned to provide the
services required by the C run-time model, such as protected, flat
address spaces and stack allocation. The OSKit, for the first time,
enables advanced language systems to be easily implemented di-
rectly on the raw hardware, avoiding these mismatches created by
traditional operating systems. The most striking common finding of
these various research proj ects has been how remarkably easy it was
to implement experimental kernels and advanced language systems
on the raw hardware using the OSKit as a substrate.

6.1 Case Studies

In this section wefirst briefly describe four major research projects
that have recently taken advantage of the OSKit, and the overall ex-
perience of using the OSKit in each case; the next section will de-
scribein more detail specific aspects of the OSKit that proved to be
particularly useful in these research projects.

6.1.1 TheFlukeOS

In 1996 we developed an entirely new microkernel-based system
caled Fluke [17] to explore numerous ideas in fundamental ker-
nel structuring, including scheduling mechanisms, execution mod-
els, IPC, and virtual memory. We had been pursuing research using
the Mach microkerne, but found that none of these directions could
have been explored or effectively eval uated in the context of this ex-
isting system because it was too large, inflexible, and tightly bound
together to be amenable to the fundamenta changes we needed to
make. Therefore, we started a new system, incorporating a few
pieces of Mach and BSD code but otherwise written from scratch.
To ensure that Fluke would not quickly become as tightly-bound
and inflexible as its predecessor, we started developing the OSKit
concurrently as a set of components to be used in Fluke and other
projects. Therefore, Fluke acted as the primary driving applica-
tion for the OSKit, but by also using the OSKit simultaneously for
other purposes, we were able to prevent it from becoming specific
to Fluke.

Fluke putsalmost all of the OSKit to use, and infact over half of
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the Fluke microkernel is OSKit code. Most of the basic serversand
other utilities that run on Fluke also use the OSKit to provide their
standard C library, memory alocation, address space management,
and debugging facilities. These servers include a virtual memory
manager, checkpointer, file and network servers, and aprocess man-
ager. Although Fluke includes a complete standard C library based
on FreeBSD’s C library for the use of Unix applications running on
Fluke, in many situations we have found that the OSKit's minimal
Clibrary providesall the functionality needed and is much smdller,
simpler, and more flexible.

6.1.2 Sandard ML

Standard ML [26] is a functional programming language that in-
cludes first-class, higher-order procedures, a static polymorphic
type system, exceptions, continuations, and a sophisticated module
system. Webuilt our system, called ML/OS, by porting the Standard
ML of New Jersey (SML/NJ) implementation [6] to run on a PC
using the OSKit. SML/NJis acomplex, Unix-based system com-
prising about 144,000 lines of code, in over 1000 sourcefiles. The
run-time model used by SML/NJisfairly exotic—for example, the
system runs completely without a stack, using instead very aggres-
sive heap-alocation and garbage-collection techniques to manage
procedure frames. Our current research focus in the ML/OS effort
is modeling concurrency using semantic features found in higher-
order programming languages, in particular continuations. Thisre-
quires the language and compiler to be intimately involved with the
fundamental context switch code, something that is not possiblein
traditional operating systems.

At MIT, ML/OS was developed over a semester by a Magter’s
student with the part-time assistance of an undergraduate program-
mer. Neither student was previously familiar with OS internals or
the low-level details of the x86 architecture. Much of their effort
was spent in learning and dealing with the details of the SML/NJ
implementation, which was far more complex than the OSKit code
to which it was being mated. In contrast to this experience, strong
groups of advanced programming language researchers have been
intending, for years, to implement a sophisticated functional lan-
guage directly on araw hardware platform. For example, the Fox
project at CMU [5, page 214] and the Programming Principlesgroup
at Bell Labs have at different times begun effortsto port SML/NJto
run on bare hardware. But the details of doing so have been suffi-
ciently forbidding as to prevent these efforts from ever being com-
pleted.

6.1.3 SR

SR is a language designed for writing concurrent programs, both
parallel and distributed [3], for both application and systems soft-
ware. It offers a flexible concurrency model, and includes as in-
herent parts of the language entities such as threads, synchroniza-
tion, and communication mechanisms. The standard SR implemen-
tation [31] is tightly coupled to Unix 1/0 and Unix sockets, thus
for the work described in this paper we started with a previously
developed, more platform-neutral version of SR [9]. That version
removes many Unix dependencies and isolates system-dependent
functionality such as threads, synchronization, and network com-
munication. Our research goal in porting SR to the raw hardware
istoinvestigate the eff ectiveness of a communication-oriented lan-
guage for implementing OS functionality.

Implementing SR/OS with the OSK it was accomplished by one
U.C. Davisstudent whilevisiting the University of Utah. Theinitial
implementation took approximately one week, and adding network
support using the x-kernel protocol stack required another week. In
contrast, several earlier attempts to implement SR directly on the
hardware proved very difficult or were stillborn. A very early ver-
sion of SR was implemented directly on PDP-11 machines, but its
development and debugging were extremely tedious [28]. Later,
during the Saguaro distributed operating system project, an SR im-



plementation on the bare hardware was again considered, but aban-
doned due to the lack of good development tools[2].

6.1.4 Java

Findly, in a project to create a Java [19] environment on the raw
hardware, we started with Kaffe[34], afreely available and portable
Javavirtual machine and just-in-time compiler. Kaffe iswritten for
a standard PosIx environment, requiring support for file 1/0 cals
such as open and r ead, as well as BSD’s socket API. It imple-
mentsits own user-level thread system, for which it relies on some
minimal signal handling facilities and timer support. Our imple-
mentation goals were to provide a prototype Java-based “network
computer” called Java/PC, and an active network router. Our re-
search goals are to explore resource management issues, compar-
ing this Java system on the bare hardware to a Java system atop the
Fluke microkernel.

Building Java/PC atop the OSKit was remarkably easy: one
Utah student, at that time not amajor contributor to the OSKit, took
just 14 hoursto get the system to run a “Hello, World” Java appli-
cation; large single-threaded applications, such as Sun’s Java com-
piler, ran the next day. Less than three weeks later he had built
a usable system that ran complex applications such as the Jigsaw
Web Server [7], making extensive use of threads, timers, and file
and network 1/O. The resulting system is similar in function to
Sun’'s JavaOSs [33] but with a dramatically different implementa-
tion. Whereas almost all components in our system reuse existing
C-based components provided by the OSKit, Sun’s was primarily
written anew in Javaand took much longer to build.

6.1.5 Other Usesof the OSKit

We used an early version of the OSKit in a“DOS extender” [15], a
small OS kernel that runson MS-DOS and creates amore complete
process environment for 32-bit applications; this DOS extender is
now being used in commercial products. We have also used the OS-
Kit in two small experimental kernels that we prototyped in order
to test out new IPC, capability, and kernel execution environment
concepts before committing to these ideas in the main Fluke kernel
effort. Both of these kernels were developed in a matter of daysto
the point of being useful for measurement and analysis, these pro-
totypes would not have been feasible without the OSKit. Finaly,
besides these experimental kernels, we have used the OSKit in sev-
eral smaller utilities, such as specialized kernels to boot other ker-
nels across the network or from existing non-MultiBoot boot load-
ers.

A few of thesitesthat haveretrieved the OSKit haveinformed us
of their use. Among these are researchers at the University of Car-
los |1 in Spain who have built their “ Off” distributed adaptable mi-
crokernel [8] ontop of the OSKit, and the “ bits and pi eces microker-
nel” (bpmk), developed in Finland. A company, Network Storage
Solutions, is using the OSKit to provide the base hardware support
for a“ network appliance’ -style server. Inthe wake of the successful
language-based OS projects discussed above, another Utah student
recently ported the GNU Smalltalk system to the bare hardware. He
implemented a complete, functional multithreaded Smadltalk sys-
temin just over seven hours, starting with little experience with op-
erating systems, the x86 PC, the OSKit, or the Smalltalk run-time
system. This system has not yet, however, been used for serious re-
search.

6.2 Common Experiences

This section describes a few specific aspects of the OSKit that
proved to be particularly useful in the above research projects, as
well as OSKit features that caused problems or were commonly
needed but not yet available.

1

6.2.1 POSI X Environment

All of the language implementations greatly benefited from the
fairly complete Posix environment provided by the OSKit's mini-
mal Clibrary, memory allocator, and kernel support library. Thisen-
vironment allowed the Unix versions of the languagesto be quickly
ported to the bare hardware, and then gradually specialized to take
advantage of the new environment, extending their control to var-
ious hardware resources (e.g., registers, traps, interrupts) that are
hidden by a normal operating system. Furthermore, the OSKit's
minimal Posix environment allowed the language research to fo-
cuson issues critical to the research, and let the POSIX environment
pick up therest: we could let unimportant code remain unimportant.

6.2.2 Bootstrap Support

A particularly notable feature of the OSKit's minimal environment
isits boot module support (see Section 3.1), which providesa sm-
ple RAM-disk file system accessible immediately upon bootstrap
through PosIX’'s standard open/cl ose/r ead/wri t e interfaces.
For example, in Fluke, this boot module file system includes the
first user-mode executable to be loaded and run by the kernel, and
subsequently acts asthe root file system for thisinitial server, with-
out requiring any “red” file system or device driver components
to be embedded in the kernel. ML/OS uses a boot module to hold
the precompiled “initial heap image” for the ML runtime, which is
over 99% of the kernel (i.e., everything written in ML); similarly,
JavalPC loadsits Javabytecode (. cl ass files) fromtheinitia boot
modulefile system. Other dternatives are availablein each of these
cases, such asmanually embedding datainto . o fileslinked into the
kernel, or using the OSKit's device drivers and file system compo-
nents to load this data from a “real” disk-based file system, but the
boot modulefacility invariably proved to be by far the most simple,
robust, and convenient for this purpose.

6.2.3 NoImposed Process/Thread Abstraction

The absence of an OS-defined process or thread abstraction
proved of great benefit to al three languages. ML/OS provides
continuation-based Concurrent ML [29] threads as the machine's
basi c thread facility, complete with a preemptive scheduler, console
1/0, and timer events. Whereas OS thread systems usually center
on stacks, CML threads are entirely without stacks, running entirely
in the heap. Interrupts and thread context switches use garbage
collected continuations. Modeling concurrency in this way is
central to our line of research; building on an infrastructure that
imposed no thread abstraction meant that we could implement this
model directly. It was similarly straightforward to port the built-in
thread packages in Kaffe and SR to the OSKit. This contrasts with
our experience porting Kaffe to a kernel providing its own thread
abstraction—our Fluke microkernel. On Fluke, in order to avoid
classic problems such as blocking for 1/0, we needed to use native
Fluke threads instead of Kaffe's built-in threads; minor mismatches
between Java's and Fluke's thread semantics caused the Fluke port
of Kaffe to take much longer.

6.24 Exposed Implementation and Hardware

In the ML port it was pleasant to discover how simple it can be to
implement a high-performance functional programming language
when one doesn’t have to bend over backwards to accommodate the
demands of anill-suited operating system. The SML/NJsourcesare
larded with complex sequences of code designed to work around the
limits of the Unix architecture. For example, SML/NJ allows heap
alocation in signal handlers; to make this work, the run-time sys-
tem must go through arcane gymnastics when it wishes to modify
the processor’s register state from aUnix signal handler. The trick-
ery involved is considered sufficiently clever asto be worth report-
ing in the literature [4]. Since in our case the hardware is exposed
in adocumented manner, we just did it. No Unix; no trickery.

Java provided other examples of leveraging the exposed imple-



mentation and hardware. Kaffe relies on the delivery of SI GSEGV
signalsto detect null pointer accesses and throw the null pointer ex-
ception specified by Java semantics. The x86 architecture provides
an efficient way to catch such accesses, by setting the processor’s
breakpoint registers appropriately. Besides alowing Java/PC direct
accessto thisfacility, the OSKit also provided asimpleway for it to
install its own custom trap handlerswritten in ordinary C, which can
still fall back to the default handler for traps that are of no interest.

6.25 Modular, Separable Components

“Network computers’ seek to minimize memory footprint, and of-
ten do not need adisk or file system; using the OSKit it proved triv-
ial to build a version of Java/lPC that included networking but no
file system. We have not yet made any effort to minimize mem-
ory footprint, but the inherent modularity of the OSKit keeps the
resulting system to a modest size: the dtatic (code+data) size of
our executable is 412K B, including one ethernet driver, networking
(121K B), the Kaffe virtual machine and native libraries (132K B),
and various glue code. Note that this system does not contain an
implementation of Java's abstract windowing toolkit (AWT).

6.2.6 Mature Componentswith Flexible Interfaces

The networking performance of our Java/PC and SR/OS systems
demondtrates the value of using mature, tuned components with
flexible interfaces. Four weeks into the Java/PC project, using a
measurement program written in Java, we measured a sustained
TCP receive throughput of 78Mbps over a 100Mbps Ethernet, us-
ing the hardware platform described in Section 5. As expected, the
TCP send throughput was lower at 59Mbps due to the extra copy.
This relatively high performance is not surprising considering that
the BSD network protocols have been tuned for over 15 years. In
contrast, Sun’s recent re-implementation of TCP/IPinJava[33] has
been reported as being “more than adequate for Web browsing,” but
by inferenceis probably asyet nowhere near the performanceof tra-
ditional C implementations.

6.2.7 Fully Defined I nterfaces and Execution Modés

The simple, well-defined execution model s used by the OSKit com-
ponents enabled them to be used fairly easily in very different envi-
ronments from those in which they were originally designed. For
example, even though the Linux and FreeBSD-based components
were designed for a traditional nonpreemptive uniprocessor ker-
nel environment, they were easily incorporated into the fully mul-
tithreaded Java/PC and SR/OS environments by surrounding them
with small amounts of locking and other glue code. The Fluke ker-
nel uses these same components in an even more exotic environ-
ment. Since Fluke can be configured as an interrupt-model kernel,
with only one kernel stack per processor rather than one per thread,
it isimpossible to run process-model OSKit components on these
kernel stacks since they are not retained across context switches.
However, we were easily able to solve this problem by running
the process-level activities of these components on ordinary Fluke
threads running in user mode but inthekernel’saddress space, while
interrupt handlers in the components still run in supervisor mode.
Using the OSKit components in these fundamentally foreign en-
vironments is only possible because their assumptions on the sur-
rounding environment are minimized, and the few remaining as-
sumptions are precisely defined.

6.2.8 Library Structure

SR/OS's use of the x-kernel [21] protocol framework demonstrated
the value of the OSKit's simple structure as a set of libraries inde-
pendent of the client system. The x-kernd has an extremely com-
plex build environment which is entirely different from the OS-
Kit's. However, we got the x-kernel working quickly with SR/OS
by working completely within the x-kernel’s build environment and
using the OSKit as an independent, previoudy-ingtalled “package.”
Since all of the OSKit's functionality is provided by libraries, we
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just needed to add the appropriate ‘- L’ and ‘- | * parametersto the
main x-kernel makefile, and to point the main makefileto the OSKit
include directories. Because the OSKit's exported structure is sm-
ple, itiseasy to use it from within more complicated environments.

6.2.9 Tools Debugging and Documentation

Although mundane from a research perspective, the practical im-
portance of quality debugging tools and documentation should not
be underestimated; thisis particularly important to those whose pri-
mary interest and expertise lie e sewhere than in operating systems.
The OSKit'srobust source-level debugging support provided an en-
vironment familiar to application developers, contrasting sharply
with the methods used during the early phases of the ML/OS project
before GDB support was available: we could debug only by insert-
ing“halt” instructionsinto thekernel, rebuilding, rebooting, and ob-
serving whether the kernel would quietly lock up (“success’) or ex-
hibit random behavior (“failure”).

Finally, the documentation provided by the OSKit developersat
Utah was a great help to the ML/OS hackers at MIT, even when it
was much less complete than it is today. Had the ML project pro-
ceeded withitsoriginal intent to cannibalize Linux, wewould likely
till be puzzling out the code and interfaces of the kernel internals.
Another moreinformal form of documentation were the twenty-line
kernels E-mailed from Utah to MIT in answer to questions. These
tiny (in source) but compl ete kernel swere enabled by many features
of the OSKit, al working together: the bootstrap/kernel support, the
C/posix environment, the boot modules, and the component sepa-
rability.

6.2.10 Deficiencies

These research projects also revea ed several deficienciesin the OS-
Kit; some of these have already been addressed, whereas others re-
main for future work. They include:

e Java/PC's concern with memory revealed a size disadvantage
in the technique of using components built from encapsul ated
legacy code: the imported code was not designed with mem-
ory footprint as a primary concern, and the glue code encap-
sulating the imported code adds some additiona overhead. In
the future we may import or develop adternative implementa-
tions of these components, designed for minimal size rather
than generality.

¢ Profiling of the benchmark kernels described in Section 5 re-
ved ed that asignificant amount of timeis spent inmemory a-
location and deallocation. This overhead is attributable to the
fact that the OSKit's default memory manager library is de-
signed for flexibility and spaceefficiency rather than common-
case performance. For fast alocation of small data structures
with no type or aignment restrictions, a more conventional
high-level alocator would be more appropriate, possibly lay-
ered on top of the OSKit’s existing low-level alocator. The
OSKit currently does not provide ahigh-level allocator of this
kind, but we expect to integrate one in the future.

e When an OSKit-based application “exits,” the OSKit simply
reboots the machine without performing any cleanup. Some
applications, such asthet t cp benchmark in Section 5, as-
sume that their network connections will be cleanly closed
when they exit, asis done for Unix processes. On the OSKit
such an application currently just leavesits peershanging; this
problem will be fixed in afuture version of the OSKit's mini-
mal C library.

¢ |nthefirst released version of the OSKit, the layout of stack
frames for synchronous traps was documented and visible to
theclient OS, but the layout of stack frames for hardware in-
terrupts was not. This deficiency caused problems for both



ML/OS and JavalPC which needed access to the state of the
interrupted code in order to handle preemption properly. Al-
though they could have gained access to this state by replac-
ing the OSKit's default interrupt handling mechanism with
their own, doing so would have been inconvenient, so instead
we modified the OSKit's hardware interrupt handler to use
the same well-documented stack frame used for synchronous
traps. This experience demonstrates an instance in which the
OSKitinitially failed to exposeitsimplementation details suf-
ficiently and had to be fixed later.

7 Status

In Table 3 we present a breakdown of the source sizes of the various
OSKit components. The OSKit currently consists of over 260,000
lines of code. Of that, 32,000 lines of native and assimilated code
and interfaces provide access to remaining 230,000 lines of entirely
encapsulated imported code. Over 500 pages of documentation are
provided; most of this documentation is in Unix man-page format,
one module or interface per page, so it is not as forbidding as it
sounds. While the OSKit currently only runs on x86 PCs, most of it
is designed to be easily portable to other platforms, and two thirds
of the OSKit's exported interfaces are architecture-neutral. Most of
the heavily architecture-specific aspects of the OSKit areisolated in
the low-level kernd support library and the bootstrap code.

Our first public release of the OSKit in July 1996 was an al-
pha version; two months later we made one public update, primar-
ily adding initia device driver support. For the seven months in
which at least one of those versions was available, inspection of
our FTP logs shows that, excluding obvious mirror sites, 537 dif-
ferent external sites obtained the OSKit, including 122 at U.S. com-
panies. The currently released version of the OSKit is available at
http://ww. cs. ut ah. edu/ proj ects/flux/.

8 Conclusion

We have been pleasantly surprised at how phenomenally quickly
one can develop OS and direct hardware language implementations
using the OSKit, and by the widespread and disparateinterest in the
OsKit from both the research and commercial communities. The
OSKit's evolution has been amost entirely demand-driven, and we
believe that is amajor reason for its success. Rather than being de-
signed a priori, with some inevitably flawed vision of future needs,
it hasbeen congtantly refined and augmented, driven by the demands
of awide variety of real client systems. The ability of the OSKit it-
self to reuse components from outside sources, unchanged, is crit-
ical to its immediate as well as long term success. From this ex-
perience, we conclude that research and devel opment of operating
systems and languages are greatly aided by the pragmatic but sys-
tematic approach to software structure and reuse that the OSKit ex-
emplifies. We expect the growing number of OSKit clientsto drive
continued growth in its power and flexibility.
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Interface Implementation

Native Encapsulated

Library Description Ml x86 MI x86
boot Bootstrap Support — 67 — | 2829 —
kern Kernel Support 325 | 1379 476 | 3890 —
snp Multiprocessor Support 6 2 — 868 —
I mm List Memory Manager 33 — 314 — —
anmm Address Map Manager 60 — 349 — —
c Minimal Clibrary 588 4 4863 220 —
nmendebug Malloc Debugging 18 — 398 13 —
di skpart Disk Partitioning 205 — 311 — —
fsread File System Reading 13 — 1581 — —
exec Program Loading 133 5 61 125 —
com COM interfaces & support 1514 — 667 — —
fdev Device driver support 35 — 861 388 —
I'i nux_dev Linux drivers & support 7 — 2801 — 77023
FreeBSD common code — — 524 116 8275
freebsd.dev | FreeBSD drivers & support 8 13 558 10 14755
freebsd.net FreeBSD network stack 44 — 1318 — 17241
freebsd.m FreeBSD Math library — — — — 7517
net bsd-fs NetBSD file system 8 — 2465 — 18968
x11 X11-based windowing — — 1909 — 90182

3067 | 1470 || 19456 | 8459
Total 37 27915 233961

Table3: “Filtered” sourcecodesize, of the OSKit components, classifiedinto interface (header files) and implementation (C and assembly language source), with the latter classified
into home-grown/assimilated code and encapsulated, imported code. The code is further broken down into machine-independent (M1) and machine-dependent (x86) portions. This
count of source code lines filters out comments, blank lines, preprocessor directives, and punctuation-only lines (e.g., aline containing just a brace), and typically is1/4 to 1/2 the
size of unfiltered code. The X11-based windowing support is currently in progress.
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