
Fx86: Functional Management of Imperative Virtual Machines

Bryan Ford
M.I.T.

August 28, 2003

1 Introduction

Fx86 is a virtual machine architecture based on the ubiq-
uitous x86 instruction set, extended to allow user-mode
applications to create efficient, fine-grained recursive vir-
tual machines in which to run plug-ins or other extensions
in confined environments. Guest virtual machines appear
to the host application as purely functional computations
on passive, immutable data. This novel blend of the func-
tional and imperative paradigms ensures that guest com-
putations are strictly deterministic, enabling the host ap-
plication to exert precise control over its guests while per-
mitting native instruction execution at all levels. Hosts can
efficiently snapshot guests at arbitrary points, roll compu-
tations forward or backward for debugging, replay com-
putations and check the results for monitoring or verifica-
tion purposes, and distribute, replicate, or migrate compu-
tations across heterogeneous processors. The architecture
is fully recursive [2], enabling guests to act as hosts to fur-
ther (sub-)guests without substantial performance penalty.

2 State Management

The Fx86 architecture augments a process’s normal regis-
ter state and virtual address space with a private data tree,
which acts as a simple process-private file system holding
bulk data exclusively owned and controlled by the pro-
cess. By architecturally separating process-private bulk
storage from conventional shared OS-level storage ser-
vices, applications and guest computations minimize false
interactions with their environment, enabling virtual ma-
chine state to be isolated and controlled more effectively.

The entire state comprising a guest computation, in-
cluding the guest’s data tree, forms a subtree of its host’s
data tree. To run a guest computation the host simply exe-
cutes a special Fx86 instruction, which acts as a functional
transformer taking a data subtree representing the guest’s
starting state and yielding a new subtree representing its
deterministic result, after executing a predetermined num-
ber of guest instructions. Fx86 implementations guaran-
tee that copied but unchanged portions of data trees are

only stored once in memory or on disk (copy-on-write
optimization), allowing hosts to store snapshots of guest
computations efficiently at any desired frequency.

3 Implementation

Fx86 environments can be implemented to close approx-
imation as an extension to existing operating systems or
virtual machine monitors; a Linux-based implementation
is in progress. Implementation of a strict, completely de-
terministic Fx86 environment currently requires instruc-
tion emulation or rewriting, but two minor enhancements
to the x86 architecture would enable strict native imple-
mentations on future processors: the ability to disable a
few well-known non-virtualizable x86 instructions, and a
“recovery counter” that can trigger a trap after executing
a specific number of instructions [1].

References

[1] PA-RISC 1.1 Architecture and Instruction Set Refer-
ence Manual. Hewlett-Packard, third edition, Febru-
ary 1994.

[2] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tull-
mann, Godmar Back, and Stephen Clawson. Micro-
kernels meet recursive virtual machines. In Operating
Systems Design and Implementation, pages 137–151,
1996.

1


