
Service Duality: Vitalizing the Commons

UNPUBLISHED DRAFT

Bryan Ford

M.I.T.

July 24, 2003

Abstract

Service duality is a design principle for peer-to-peer
protocols, whose purpose is to create direct incen-
tives for nodes to provide good service, and to min-
imize the network’s vulnerability to denial-of-service
attacks based on attempts to overload good nodes.
In protocols designed this way, nodes providing nat-
urally complementary services, or duals, form sym-
metrical, self-reinforcing relationships in which they
use each other to provide a common larger service.
Each node constantly monitors the performance of
the partner nodes it depends on during the course
of its normal operation, in order to find the best
partners and provide good performance to its local
user. When serving requests from other nodes, each
node gives preferential service to its primary part-
ners: those nodes that it relies on and have given
it the best service in the past. This paper explores
the principle of service duality in the abstract and
in terms of how it might be applied in two specific
protocols: a distributed routing protocol and a file
sharing protocol.

1 Introduction

A persistent thorn in the side of Peer-to-Peer (P2P)
systems, commonly described as “the tragedy of the
commons,” is that their incentive structures often en-
courage users to behave selfishly to the detriment
of the system as a whole. For example, Napster
and Gnutella users often lie about their connection

bandwidth in order to discourage incoming connec-
tions [9], or simply choose to share few or no files [3],
since these “selfish” behaviors do not have any direct
negative impact on the service they receive from oth-
ers and can leave more bandwidth available for their
own downloads.

In systems such as Freenet [1] and
Chord/DHASH [4], in which nodes can “push”
data into the network to be stored on other nodes,
there seems to be no satisfactory way to ensure, or
even encourage, users to store and reliably serve back
as much as much data or metadata as they them-
selves insert. In the worst case, this flaw can leave
such systems open to denial-of-service attacks where
malicious nodes flood the network with insertions
of useless data. PAST [8] suggests a smart card-
based quota scheme to solve this problem, whereas
OceanStore [5] avoids it by assuming centralized
administration. Neither of these solutions seem
satisfactory from a purely decentralized peer-to-peer
perspective.

MojoNation [2] attempted to create a global “vir-
tual currency” for peer-to-peer services such as stor-
age space and download bandwidth, in which nodes
would “earn” currency by providing services and
“spend” currency when consuming services provided
by other nodes. This system failed to take off, how-
ever, perhaps in part due to the technical complexity
of the currency scheme, but no doubt also due to its
perceived complexity to users, who would be forced to
set prices and effectively barter for on-line resources
that are usually considered “too cheap to meter” [10].

1



Freeloading by itself is not necessarily a fatal flaw,
as long as there are enough “good citizens” to com-
pensate for the freeloaders and ensure that everyone
gets a decent level of service. Freeloading can even
be a good thing, because it allows new users (po-
tential “future good citizens”) to try the system be-
fore investing substantial resources of their own into
it, thereby increasing the overall growth rate of the
user community. But as a system grows and di-
versifies, the likelihood of malicious denial-of-service
attacks increases, and current peer-to-peer systems
make such attacks all too easy.

1.1 The Solution

What we need is a way to design peer-to-peer systems
so that they will directly reward good citizenship,
thereby encouraging users to contribute resources to
the system, and limit the effects of denial-of-service
attacks based on “maliciously bad citizenship.” This
incentive structure must be accomplished without
substantially complicating the user’s experience or
preventing the harmless variety of freeloading. This
paper presents a novel (and untested) design princi-
ple called service duality, which could enable peer-to-
peer systems to provide this property. The principle
is potentially applicable to a variety of different types
of peer-to-peer services, including distributed routing
and data storage.

The central idea of service duality is to design peer-
to-peer systems so that a larger distributed service is
built out of a pair of smaller “sub-services.” Nodes
that can provide one of the sub-services seek and form
bonds with nodes that reliably provide the comple-
mentary sub-service (its “dual”). Once that bond is
established, each node can then reliably provide the
larger service, by serving requests for “its half” di-
rectly and forwarding requests for the other half to its
partners. This larger service may in turn have a dual,
for which the node in turn seeks reliable providers in
order to build an even larger service, and so on.

These pairwise bonds between nodes need not
be based on any explicit agreement; rather, these
bonds are merely emergent properties resulting from
the nodes independently pursuing “rational self-
interest.” For a given sub-service, each node seeks

other nodes that provide the complementary sub-
service, and in making or forwarding requests for that
service, relies primarily on the complementary nodes
that have given the fastest and most reliable service
in the past. In return, each node provides prefer-
ential treatment for requests from (or forwarded by)
the nodes it relies on primarily. For example, a node
might service requests from its primary partners be-
fore serving queued requests from unknown or less
reliable nodes, and drop requests from its primary
partners last in the event of overload. By giving pref-
erential treatment to its most reliable partners, the
node will in turn be seen to be more reliable by those
partners, and will be more likely to receive preferen-
tial treatment from them. Each node is merely pursu-
ing its own self-interest: namely, the goal of providing
the larger service reliably to its local user. But since
the node can only provide half of this service directly
and must rely on other nodes to provide the comple-
mentary half, it is in the node’s interest to favorably
treat other nodes that provide good service, in or-
der to increase its own likelihood of receiving good
service from them.

There may be many nodes providing a given sub-
service, as well as many nodes providing its dual, all
of which are seeking to form relationships in order to
provide the larger service to their local users. Sup-
pose the nodes within each group exhibit a wide vari-
ation of service quality, as is inevitably the case in
real peer-to-peer networks [9]. If nodes give prefer-
ential treatment to their primary partners, then the
best-connected and most reliable nodes will naturally
gravitate toward each other over time, limiting their
vulnerability to unreliable nodes. Less reliable nodes
will gravitate toward other nodes with similar levels
of reliability from whom they can obtain preferential
treatment, and also toward more reliable nodes that
have sufficient excess service capacity to provide good
service to non-primary partners. It is in every node’s
interest to be as close to the “core” as possible, in
order to receive preferential treatment from highly
reliable nodes—but the only way for a node to get
there is by staying up and providing good service.

Service duality is ultimately just an application
of the principle of quid pro quo, the foundation on
which all manner of self-reinforcing, mutually bene-

2



ficial relationships are built in human and biological
societies—the ultimate “peer-to-peer networks.” As
such the plausibility of this principle should not be
surprising; the trick is in its implementation. The
rest of this paper therefore focuses on how this de-
sign principle might be applied to specific peer-to-
peer services. These protocol designs are not com-
plete, implemented, or tested; their purpose is merely
to suggest possible directions and promote discussion
on how we might design future P2P systems to pro-
vide more robust incentive structures.

2 A Routing Protocol

As a starting point, consider a P2P routing service
akin to Chord [4] or Pastry [7], where the goal is to
route message to nodes according to node identifiers
that have no relationship to geography or the under-
lying network topology. Assume that the distribution
of node IDs is reasonably uniform, and that there is
some way to verify that a node has a “right” to a
given node ID. For example, the node ID may be a
SHA-1 hash of the node’s IP address, in which case
the test is to send a challenge message to that IP
address; or the node ID may be the hash of a pub-
lic key, in which case the test is to send a challenge
message asking the node to sign a response with the
corresponding private key.

The overall service each node wishes to provide to
its local user, then, is the ability to route a message
to any node in the network by its node ID. Applying
the principle of service duality, the obvious way to
subdivide this “large” service into smaller services
is by subdividing the node ID space. For any n-bit
pattern p, Sp is the service of routing messages to
any node whose ID has prefix p. If n is less than the
length of the node ID, then the service corresponding
to an n-bit prefix p can therefore be viewed as the
aggregation of two smaller (more specialized) services
Sp0 and Sp1: services for prefix p with a 0 bit and a
1 bit appended, respectively.

The only “atomic” service a node can provide with-
out any help from other nodes is the service of routing
messages to itself: i.e., the service Sq where q is the
node’s own ID. But if the node can provide service

Sp0, and find other nodes who provide the comple-
mentary service Sp1, then the node can use these re-
lationships to provide the service Sp; and similarly if
the node starts with service Sp1. If no other nodes
can be found providing the complementary service for
a given prefix length, which is likely to be the case
for long prefixes, the node merely assumes that there
are no nodes having that prefix.

To route a message to a given ID other than its
own, the node picks one or more of its most reli-
able partners providing routing service for the longest
matching prefix, which will be at least one bit longer
than the prefix of any service the node itself provides.
As long as the addressed node exists and the network
is sufficiently connected, the message will eventually
be forwarded to the proper node. Each node moni-
tors the results of requests it forwards to other nodes
in order to determine which of its peers at a given
prefix length are providing the best service, and uses
that information in future routing decisions. The
node also uses this information to prioritize requests
from its most reliable peers above requests from un-
known or less-reliable nodes. Each node therefore has
a strong incentive to monitor its partners carefully
and make good routing decisions for a given prefix
length, because its own reputation is on the line for
the higher-level services it provides to other nodes,
and its reputation has a direct impact on the service
it receives from its partners in turn.

Kademlia[6] already implements a routing protocol
very similar in its basic operation to the one described
here, so the general structure of the protocol has al-
ready been proven to work. The key element intro-
duced by the service duality principle in this case is
the idea of giving preferential treatment to partners
that have proven reliable in the past, thereby promot-
ing the formation of long-term, self-reinforcing rela-
tionships and reducing the system’s vulnerability to
denial-of-service attacks. It is the natural symmetry
of the interactions between nodes in this protocol—
the property that each node seeks out other nodes
providing exactly complementary services—that en-
ables this incentive structure.

3



3 A File Sharing Protocol

Consider next a file sharing protocol built on
top of the routing protocols above, in which files
are addressed by a content hash such as SHA-1.
Chord/DHASH [4] and PAST [8] simplify this prob-
lem by “pushing” data to the nodes whose node IDs
most closely match the content hash of the data. As
mentioned above, however, this scheme provides lit-
tle direct incentive for selfish nodes to store much, if
any, of the data that is actually pushed to them. Fur-
thermore, the scheme assumes that all nodes provide
roughly similar amounts of storage, which is unlikely
except under highly controlled conditions.

An alternate data sharing scheme, based on ser-
vice duality, is for each node to choose indepen-
dently which parts of the content hash space it wants
to serve directly, and build relationships with other
nodes in order to construct services for larger portions
of the content hash space. Suppose a node wishes to
publish a particular set of files. For each file to be
published, the node offers a service Sq , where q is the
complete content hash of the file. Then for each n-
bit proper prefix of q, the node searches the network
for other nodes offering the complementary service,
serving files whose content hash shares the first n bits
but differs in the immediately following bit. As in the
routing protocol, each node builds upward from more
specialized services with longer prefixes toward more
general services with shorter prefixes.

Each node evaluates its partners not only accord-
ing to their speed and reliability but also by their hit
rate. If the node forwards a request for a file with
content hash h to two of its partners, and one re-
sponds quickly indicating the requested block doesn’t
exist, but the other responds (perhaps more slowly)
with the contents of a block matching the requested
content hash, then the rating of the first partner is
reduced in favor of the second. As with the routing
protocol, each node provides preferential service to
partner nodes that have provided the best service in
the past, creating an incentive for nodes to be both
accurate and reliable. Since the ultimate responsibil-
ity for storing and serving a given data file remains
with the node that wants to publish that file, how-
ever, the storage incentive problem common to other

schemes does not apply.

One obvious potential problem with this scheme
is the sheer number of relationships each node may
have to maintain, since the node must keep a table
of partners at various prefix lengths for each file to
be published. This issue is only likely to be of con-
cern to nodes that publish a very large number of
files, however. To address this problem, it may be
possible to layer yet another protocol on top of this
one which well-connected nodes can use to “trade”
responsibility for publishing data sets of similar size,
so as to narrow the range of content hashes they are
directly responsible for into a specific portion of the
content hash space and thereby reduce the number
of relationships they must maintain.

4 Potential Weaknesses

Servers or centrally-administered server clusters that
have provided very good service for a long time may
become a weakness in a system based on service dual-
ity, in the sense that they may cause considerable dis-
ruption if they suddenly disappear or start behaving
maliciously. An attacker with substantial resources
could conceivably insert a cluster of well-behaving,
reliable servers into the network for long enough for
them to become widely trusted and trickle into the
core of the network, then suddenly cause these servers
to misbehave all at once in the worst possible way in
order to cause the maximum disruption of the overall
system. Such an attack would be inherently some-
what self-defeating, however, because in order to in-
filtrate these nodes into the network the attacker has
been forced to feed substantial resources into the sys-
tem, creating a large net benefit to the system up to
the point at which those nodes become malicious. In
other words, the attacker has effectively amortized
the harm caused by his attack by all the good service
he has provided up to that point. For this reason,
such a method of attack is likely to be effective only
in situations in which it is the timing of the disruption
that is critical for some reason (e.g., if the attack is
timed to coincide with some other important event)
rather than merely to disrupt the system in general.

4



5 Conclusion

Service duality is a design principle for peer-to-peer
protocols, in which self-reinforcing relationships be-
tween nodes providing complementary services are
used to form an incentive structure that directly
rewards “good citizenship.” The specific protocols
outlined here have not been implemented or tested,
and may need considerable modification to be made
practical—though the similarity of the routing pro-
tocol described here to Kademlia provides some ev-
idence of plausibility. At any rate, it seems clear
that some design principle of this general variety will
need to become a pervasive element in any peer-to-
peer protocol that is intended to survive truly “in the
wild,” among untrusted nodes not under any common
administrative domain and whose users are primarily
motivated by self-interest.

References

[1] http://freenetproject.org/.

[2] http://mojonation.net/.

[3] Eytan Adar and Bernardo A. Huberman. Free
riding on gnutella. First Monday, 5(10), October
2000.

[4] Frank Dabek, Emma Brunskill, M. Frans
Kaashoek, David Karger, Robert Morris, Ion
Stoica, and Hari Balakrishnan. Building peer-
to-peer systems with chord, a distributed lookup
service. In Proceedings of the 8th Workshop on
Hot Topics in Operating Systems, May 2001.

[5] John Kubiatowicz et al. Oceanstore: An ar-
chitecture for global-scale persistent storage.
In Proceedings of the Ninth international Con-
ference on Architectural Support for Program-
ming Languages and Operating Systems (ASP-
LOS 2000), November 2000.

[6] Petar Maymounkov and David Mazières.
Kademlia: A peer-to-peer information system
based on the XOR metric. In Proceedings of
the 1st International Workshop on Peer-to-Peer
Systems, March 2002.

[7] Antony Rowstron and Peter Druschel. Pastry:
Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In Proceed-
ings of the IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware),
pages 329–350, Heidelberg, Germany, November
2001.

[8] Antony Rowstron and Peter Druschel. Stor-
age management and caching in past, a large-
scale, persistent peer-to-peer storage utility. In
Proceedings of the ACM Symposium on Operat-
ing Systems Principles, Banff, Canada, October
2001.

[9] Stefan Saroiu, P. Krishna Gummadi, and
Steven D. Gribble. A measurement study of
peer-to-peer file sharing systems. In Proceed-
ings of Multimedia Computing and Networking
(MMCN) 2002, San Jose, CA, USA, January
2002.

[10] Clay Shirky. In praise of freeloaders.
openp2p.com, December 2000.

5


