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1 Innovative Claims

Operating System (OS) kernels form the bedrock of all system software—they can have the greatest

impact on the resilience, extensibility, and security of today’s computing hosts. A single kernel bug

can easily wreck the entire system’s integrity and protection. We propose to apply new advances

in certified software [86] to the development of a novel OS kernel. Our certified kernel will offer

safe and application-specific extensibility [8], provable security properties with information flow

control, and accountability and recovery from hardware or application failures.

Our certified kernel builds on proof-carrying code concepts [74], where a binary executable

includes a rigorous machine-checkable proof that the software is free of bugs with respect to spe-

cific requirements. Unlike traditional verification systems, our certified software approach uses an

expressive general-purpose meta-logic and machine-checkable proofs to support modular reason-

ing about sophisticated invariants. The rich meta-logic enables us to verify all kinds of low-level

assembly and C code [10, 28, 31, 44, 68, 77, 98] and to establish dependability claims ranging from

simple safety properties to advanced security, correctness, and liveness properties.

We advocate a modular certification framework for kernel components, which mirrors and

enhances the modularity of the kernel itself. Using this framework, we aim to create not just a

“one-off” lump of verified kernel code, but a statically and dynamically extensible kernel that can

be incrementally built and extended with individual certified modules, each of which will provably

preserve the kernel’s overall safety and security properties. In place of the rigid safety condi-

tions used in traditional extension mechanisms (e.g., that kernel extensions must be type-safe), our

approach will assure both the safety and semantic correctness of extensions with respect to appro-

priate specifications (e.g., that a file system extension behaves like a file system). Our certified

kernel will use this flexibility, for example, to provide accountability and recovery mechanisms,

formally guaranteeing that whenever an application fails, the system can always be rolled back to

an earlier, consistent state. Our certified kernel will also provide information flow control [20,100]

not only enforcing policies on user applications, but also guaranteeing that the security monitor

itself and other kernel modules manipulate all security labels correctly.

More specifically, we propose a new synergistic effort that combines novel advances in oper-

ating systems, programming languages, and formal methods to support advanced development of



certified crash-proof kernels. Our work is divided into the following three areas:

1. Clean-slate design and development of crash-proof kernels. With certified components

as building blocks, we propose to design and develop new kernel structures that generalize

and unify traditional OS abstractions in microkernels, recursive virtual machines [41], and

hypervisors. By replacing the traditional “red line” (between the kernel and user code) with

customized safety policies, we show how to support different isolation and kernel extension

mechanisms (e.g., type-safe languages, software-fault isolation, or address space protection)

in a single framework. We will also show how to provide built-in accountability and recov-

ery mechanisms from the very beginning and how to combine them with information flow

control to enforce the integrity of security labels and capabilities. Our new kernel will not

only provide certified guarantee about the soundness of its innate immunity mechanisms but

also offer solid support for new adaptive immunity mechanisms.

2. Programming languages for building end-to-end certified kernels. OS kernels must ad-

dress a multitude of abstraction layers and programming concerns. We propose a new open

framework for supporting certified low-level programming and cross-abstraction linking of

heterogenous components. We will develop a set of domain-specific variants of assembly

and C-like languages. Each such variant will be equipped with a specialized program logic

or type system (i.e., DSL). We will apply them to certify different components at differ-

ent abstraction layers (ranging from scheduler, interrupt handling, virtual memory manager,

optimistic concurrency, file system, to information flow control), and then link everything

together to build end-to-end certified systems. By imposing DSLs over familiar low-level

constructs, we can program and verify kernel components at a higher abstraction level, yet

without sacrificing code performance or precise control over hardware resources.

3. Formal methods for automated analysis and proofs. To make our DSL-centric approach

scalable, we propose to build a new integrated environment named VeriML [92] for com-

bining automated provers and decision procedures (tailored to each DSL) with certified pro-

gramming and proof development. Existing automated verifiers often depend on a rather

restricted logic. Proof assistants with a richer meta logic (e.g., Coq [54]), however, provide

poor support for automation. VeriML extends ML-style general-purpose programming with

support for type-safe manipulation of arbitrary logical terms. Typed VeriML programs serve

as excellent proof witnesses, since they are much smaller than proof objects (in the meta

logic). We will build certifying static analysis and rewriting tools to synthesize program

invariants automatically and to serve as generalized proof tactics.

Because future computing hosts will almost certainly be multicore machines, as an option to

our base effort, we propose to extend all three lines of our work to support the development of certi-

fied multicore kernels. Multicore machines will likely require multiple kernels running on different

cores that still share memory—this creates new challenges for recovery and security. Certified ker-

nels should offer a significant advantage over traditional ones because they have spelled out all

of its formal invariants and abstraction layers, making it easier to identify orthogonal concerns

and reason about sophisticated cross-core interaction. Under this option, we will also extend our

formal specification and proof efforts to certify larger and more realistic kernels.
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implementation of high-assurance languages, compilers, and runtime systems. He was a coauthor

of the SML/NJ compiler, the main architect of the FLINT certifying infrastructure, and a PI on

the DARPA OASIS PCC project (in 1999-2004). During the last 10 years, his FLINT group

has pioneered and led an extensive body of work on certified low-level programming and formal

methods (available at http://flint.cs.yale.edu). Bryan Ford is a leading expert on

operating systems and has 15 years experience in the design and implementation of extensible OS

kernels and virtual machine monitors. He was a key member of the Utah Flux group, an architect

and the main developer of the OSKit infrastructure, the Fluke kernel, the Unmanaged Internet

Architecture (UIA) project at MIT, and the Vx32 virtual sandboxing environment.

2 Technical Approach

OS kernels are critical software components that can have the greatest impact on the resilience,

extensibility, and security of the underlying computer systems. They often have to address a mul-

titude of potentially interfering concerns ranging from boot loading, virtual memory, interrupt

handling, thread preemption, optimistic concurrency, protection and isolation, information flow

control, file system, device drivers, interprocess communication, persistence, recovery, to all kinds

of application-specific kernel extensions. Getting all of these work properly with each other is

a difficult task. As the hardware community moves deep into new multicore or cyber-physical

platforms, the complexity of OS kernels could only get much worse even though the demand for

crash-proof kernels will become much more urgent.

We believe that the most promising approach to deal with such complexity is to take a clean

slate approach to reexamine these different programming concerns and abstraction layers, spell out

their formal specifications and invariants, and then design and develop new kernel structures that

minimize unwanted interferences and maximize modularity and extensibility.

To this end, we propose to apply recent advances on certified software [86] to the development

of a novel OS kernel. Certified software, which originates from Proof-Carrying Code (PCC) [74],

consists of a binary machine executable plus a rigorous machine-checkable proof that the software

is free of bugs with respect to specific requirements. A certified OS kernel is a library-based

kernel [21] but with formal specifications and proofs about all of its abstraction layers and system

libraries. It formally guarantees that proper recovery and protection mechanisms are in place, so

that the kernel itself will not behave unexpectedly, and so that crashes by user applications will not

damage the consistency of kernel state or the integrity of security labels.

Our proposed research will attack the following three important questions:

• Under a clean-slate approach, what are the right OS kernel structures that can offer the best

support for resilience, extensibility, and security?

• What are the best programming languages and developing environments for implementing

such certified crash-proof kernels?

• What new formal methods we need to develop in order to support the above new languages

and make certified kernels both practical and scalable?
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Figure 1: Subprojects, tasks, and their relationships.

We will develop new technologies in operating systems, programming languages, and formal

methods, and integrate them to build certified crash-proof kernels. The individual technologies

will also be useful as scientific advances and as practical tools for constructing other certifiably

dependable software for crash-proof computing hosts.

Figure 1 is an overview of the component parts of this research project. There are eight tasks

(BT1-8) in the base and two tasks in the option. Many tasks require co-designs involving multiple

technical areas; the edges between subprojects and tasks illustrate their dependency and also the

synergistic nature of the proposed work. KDev/KSpec is the new kernel design that generalizes

and unifies traditional OS abstractions, with formal specifications. Recov/Acct is a new technique

for supporting the accountability and recovery mechanism. IFlow/IPC is a new language-based

technique for enforcing information-flow control and for supporting efficient secure interprocess

communication. OCAP/EnvM is our new open framework for supporting certified low-level pro-

gramming, environment modeling, and certified linking. Proc/Mem consists of domain-specific

program logics (DSLs) and linking mechanisms for building certified thread/process management

modules, interrupt handling, and virtual memory managers. OptC/FSys consists of DSLs for rea-

soning about optimistic concurrency, persistence and rollbacks, and file systems. VeriML/DPro

is our new integrated environment for combining automated provers and decision procedures with

certified programming and proof development. CVeri/Comp consists of an automated program ver-

ifier and analysis tool and a simple certifying compiler for a subset of C implemented in VeriML.

MultiCoreExt consists of subtasks that extend our work to support multicore kernels. SpecPrfExt

consists of formal specification and proof efforts to certify larger and more realistic kernels.

2.1 Clean-Slate Design and Development of Crash-Proof Kernels

Our kernel design approach is broken into three main areas, corresponding to proposal tasks BT1–

3. First, we will design and build a kernel from the ground up around the use of certified plug-ins,

which will provide provably correct but extensible and replaceable implementations of key kernel
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Figure 2: A secure but flexible kernel design built from certified plug-ins.

modules such as protected code executors, resource managers, and device drivers. Second, we

will design the kernel’s storage and computation mechanisms to incorporate pervasive support for

recovery and accountability, enabling automatic identification and precise tracing of application-

level crashes or compromises, corruption due to hardware errors, etc. Third, the kernel will support

explicit information flow control (IFC) on all forms of inter-process communication (IPC): not

only on explicit communication mechanisms such as messages or shared memory, but also via a

novel temporal information flow control (TIFC) mechanism to control leaks due to implicit timing

channels. The following sections describe these aspects of the design in more detail.

A Kernel Design for Certified Heterogeneous Computation (BT1,OT1) Today’s operating

systems must supervise a wide variety of new and legacy applications running in multiple types

of execution environments (e.g., 32-bit versus 64-bit x86, conventional CPU versus GPU architec-

tures, typesafe versus unsafe languages), and manage many different types of physical resources

(memory, disk, flash, network, etc.) each implemented by many possible devices requiring differ-

ent device drivers. While there are many approaches to adding support for “safe” extensions to an

existing OS kernel [8,12,46,76,90,91], such mechanisms fail to meet our needs in two main ways.

First, they address only low-level notions of safety (e.g., can the extension corrupt arbitrary mem-

ory?), while ingoring higher-level notions of safety specific to the purpose of a particular module

(e.g., does a file system plug-in actually behave like a file system?). Second, classic extension

mechanisms assume there is a more or less full-featured “base kernel” to extend, and do not ad-

dress safety within that base kernel. Classic microkernels [65] attempt to minimize the size of that

base kernel, and systems like Singularity [22] implement as much of the base kernel as possible in

a typesafe language, but the semantic correctness of the base kernel remains merely an assumption.

Our approach, in contrast, will be to design the “base kernel” itself so as to be composed purely

of modular, replaceable, and individually certifiable plug-ins that interact to implement all the ker-
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nel’s functions. In our design, there is no longer a “base kernel” at all per se, because the “base

kernel” is nothing but interacting plug-ins. The kernel will support a number of different module

classes, each supporting a different kernel function, and each class embodying different safety and

correctness models for certification purposes. As illustrated in Figure 2, some of the important cer-

tified module classes will include device drivers for specific types of hardware; physical resource

managers such as schedulers, memory managers, and file systems; and protected executors that

implement secure “sandboxes” for different types of application code.

Our design’s class of protected executors, in particular, addresses the increasingly important

need to support a wide variety of application code execution mechanisms both securely and effi-

ciently. Today’s complex applications and services are often composed of many interacting pro-

cesses implemented in different languages, sometimes using non-traditional processing hardware

such as GPUs for improved performance. Further, many of these applications depend on the APIs

of a particular legacy OS, and thus need to be run within a virtual machine (VM) supporting both

the application and the legacy OS it requires.

Our kernel therefore replaces the traditional “red line” with an extensible suite of certified ex-

ecutor plug-ins, each of which supervises the execution of a particular class of untrusted process.

For example, one executor will run x86 code natively in user mode (“ring 3”) [56] as in traditional

process models; a second might run typesafe code in kernel mode as in SPIN [8] or Singular-

ity [22]; a third executor might run native x86 code in the kernel via dynamic translation [39] or

SFI [93] to enable more efficient fine-grained IPC or instruction-level instrumentation; a fourth

executor might serve as a full-system virtual machine monitor (VMM) or hypervisor, running an

entire legacy guest OS and its many guest processes within one host process. The kernel design

will allow any of these forms of “processes” to interact via IPC, and to create child processes or

child VMs of any type, thereby supporting efficient nested virtualization [41]. In this model, for

example, a web server process running within a virtualized legacy guest OS could invoke a web

server plug-in running under a different, non-legacy executor for greater security and/or efficiency.

History-based Accountability and Recovery (BT2,OT1) Even with a certified kernel, the cor-

rect functioning of an overall system still depends on that of the underlying hardware and the ap-

plications running atop the kernel. But even correctly-designed hardware is prone to failures due to

slight manufacturing defects, cosmic rays, etc., which may corrupt both stored data and computed

results. Further, since in most cases it will be infeasible to certify all application code, applications

will still manifest bugs and security vulnerabilities that, while hopefully not compromising the

kernel’s protection boundaries, still need to be contained, traced, analyzed, and debugged.

To support the analysis of and recovery from software and hardware failures of all kinds, our

kernel design will incorporate history-based accountability and recovery as a basic kernel primi-

tive. In a pure, “ideal” (but unrealistic) implementation of this idea, the OS kernel would keep in

some internal, “write-once” memory, a complete history log of everything it has ever computed,

or has ever read from or written to an I/O device. If the system ever produces output manifesting

unexpected or suspcious behavior, e.g., in application-level output, the system can use replay tech-

niques [18,45,48] to backtrack the cause of the unexpected output precisely to the application bug,

intrusion, or hardware failure that caused it. Further, by proactively replaying selected portions of

past computations on different machines, it is possible to detect hardware failures or other incorrect
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behavior even before this behavior detectably manifests as bad output [48].

Maintaining a full record of a system’s execution is costly, however, especially on multicore

machines [19]. We plan to develop techniques to reduce history storage and processing costs to

levels tolerable during everyday use. One such technique is to leverage our ongoing work on

deterministic parallel execution [4–6] to create “naturally deterministic” application-level environ-

ments. In such an environment, the results of a computation depend only on its explicit inputs, and

not by the timings of interrupts, messages, accesses to shared memory, etc. Thus, determinism fa-

cilitates history-based accountability and recovery by eliminating the need to log nondeterministic

events, which in current replay systems often represents the vast majority of logging costs.

Ideas from our prior work on system call atomicity in the Fluke kernel [40] will also play an

important role in supporting efficient recovery and accountability in the proposed kernel. This

design atomicity ensures that all user and kernel state can be consistently checkpointed at any time

during kernel execution, without incurring unbounded delays that might reduce performance or

responsiveness, or even create denial-of-service (DoS) attack vulnerabilities, as is possible with

blocking system calls in current monolithic kernels.

Even with deterministic execution and system call atomicity, however, we will often need to

limit the logging of true inputs as well to provide a balance between accountability/recoverability

and practical costs. If a small computation produces large intermediate output files used as in-

puts to another computation, for example, we can maintain exact repeatability by saving only the

original inputs and final outputs, knowing that the large intermediate results can be reproduced if

needed. One approach to this “history optimization” problem is to treat the system’s history as a

weighted dependency graph and use algorithms to find min-cuts on that graph: i.e., state snapshots

carefully chosen to minimize the amount that must be stored. Another approach we will explore

is to combine history “compression” and processing with garbage collection techniques, yielding

a kernel memory manager that synergistically combines garbage collection, computation history

compression, periodic checking and scrubbing of data stored in memory and on disk, and periodic

spot-checking of past results computed by all CPU cores.

Information Flow Control and IPC (BT3,OT1) To provide strong mechanisms for controlling

information propagation via inter-process communication (IPC) and other interaction mechanisms,

our kernel will incorporate and build on recent work on Information Flow Control (IFC) [20, 72,

100], which enable the explicit labelling of information and control over its propagation through

and out of a system. Our design will advance beyond prior work in two important ways, however.

First, through the common certification framework we will develop to certify all kernel ex-

ecutors, we will make it possible to enforce IFC using a common set of labels and rules across

multiple heterogeneous execution environments: e.g., to track information flows precisely as they

cross between typesafe language domains, legacy native code domains, and even guest virtual ma-

chines. This will require addressing a number of technical challenges, such as the differences in

labeling schemes and control rules between traditional language-based IFC systems [72] and OS-

based ones [20, 100], as well as the pragmatic differences in the granularity of flow tracking that

different schemes provide (e.g., variable-granularity versus file and process granularity). We are

confident, however, that the detailed formal understanding of inter-process communication and in-

teraction mechanisms that will necessarily arise out of our kernel certification effort will also lead
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to practical solutions to these challenges.

The second unique aspect of our kernel design is that it will address not just conventional,

explicit interactions between processes, but also covert timing channels [57, 95], which have been

largely avoided in previous IFC work but are becoming increasingly critical to real-world secu-

rity [1, 2, 9, 82, 84, 94]. Further leveraging our work in deterministic execution and combining

them with classic IFC techniques, we will design the kernel to provide pervasive controls over how

and when potentially sensitive timinig information can enter or affect the results of any untrusted

application computation. We describe these ideas in more detail elsewhere [4].

If we wish to timeshare a CPU core between two untrusted processes and prevent timing chan-

nels between them, for example, a classic approach would be to arrange a fixed timeslice for each

process, not varying depending on either process’s actual usage, and clear all caches and other state

affecting timings on context switches. While this approach may be useful in some situations, it is

undesirable due to the potential waste of resources it incurs, due to the flushing of potentially use-

ful state and giving up the ability of one process to utilize fully any resources left underutilized by

others. An alternative solution we will explore is to timeshare the processes without restriction, but

run them deterministically and thus prevent them from being able to “tell the time” locally while

running on the timeshared CPU core. If one process has a semantic need to tell the time, its “read

time” request leads to an IFC “taint” fault, e.g., causing the process to be migrated to some other

CPU core that is not timeshared at fine granularity between untrusted processes, and on which the

system time is thus “untainted” by information from other processes.

Taking this approach further, suppose a process wishes to run on timeshared cores for per-

formance, but also use fine-grained internal timers to make decisions for load-balancing parallel

computations across cores or similar internal optimization purposes. In this case, instead of read-

ing “tained” high-resolution timers directly, the process can fork off a parallel process to make

dynamic load-balancing decisions on behalf of the original process. This new load-balancing pro-

cess will become tainted by timing information from other processes sharing the same core. The

kernel’s determinism and IFC enforcement mechanisms, however, will allow the tainted process

to affect only the scheduling (and hence execution performance) of the original process it was

forked from, and not the actual results computed by that process; the original process will thus run

(deterministically) without itself becoming tainted with potentially leaked timing information.

2.2 Programming Languages for Building End-to-End Certified Kernels

A key first step to make certified kernels practical is to actually show that it is possible to carry

out end-to-end certification of a complete system. Low-level system software uses many different

language features and span many different abstraction levels. Our recent work [28] on building a

simple certified kernel exposes such challenges. The kernel has a simple bootloader, kernel-level

threads and a scheduler, synchronization primitives, hardware interrupt handlers, and a simplified

keyboard driver. Although it has only 1,300 lines of x86 assembly code, it already uses features

such as dynamic code loading, thread scheduling, context switch, concurrency, hardware inter-

rupts, and device drivers. How do we verify the safety or correctness properties of such a system?

Verifying the whole system in a single program logic or type system is impractical because,

as Figure 3(a) shows, such a verification system needs to consider all possible interactions among
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Figure 3: A DSL-centric view for building certified OS kernels

these different features (possibly at different abstraction levels). The resulting logic, if exists,

would be very complex and difficult to use. Fortunately, in reality, software developers never seem

to use all the features at the same time. Instead, only limited sets of features—at certain abstrac-

tion level—are used in specific program modules. It would be much simpler to design and use

specialized “domain-specific” logics (DSL) to verify individual program modules, as shown in

Figure 3(b). For example, for the simplified kernel, dynamic code loading is only used in the OS

boot loader [10]; interrupts are always turned off during context switching; embedded code point-

ers are not needed if context switching can be implemented as stack-based control abstraction [31].

OCAP and Environment Modeling (BT4) Our approach for programming certified kernels

follows this DSL-centric view. As shown in Figure 4, we first provide a detailed hardware model

inside a mechanized meta logic [54,92]). This formal model provides a detailed semantic descrip-

tion for all machine instructions, hardware registers, interrupts, devices, and timing behaviors, etc.

We assign a trace-based semantics to the machine-level programs: the meaning of each binary

is simply its set of execution traces; a certified program satisfies a particular specification if its

set of execution traces does so. Each DSL provides a specific abstraction of the hardware model.

Different kernel components can be certified using different DSLs; hardware details that are not

relevant to the current property of interests are abstracted away. To build a complete system, we

have also developed an open framework named OCAP [24] to support interoperability between

different DSLs and certified linking of heterogeneous components.

Our proposed extension to OCAP will use an shallow-embedded assertion language capable

of specifying arbitrary program traces. OCAP rules are expressive enough to embed most ex-

isting verification systems for low-level code. OCAP assertions can specify invariants enforced

in most type systems and program logics, such as memory safety [98], well-formed stacks [31],

non-interference between concurrent threads [28], and temporal invariants [44].

The soundness of OCAP ensures that these invariants are maintained when foreign systems

are embedded in the framework. To embed a specialized verification system L, we first define an

interpretation [[ ]]
L

that maps specifications in L into OCAP assertions; then we prove system-

specific rules/axioms as lemmas based on the interpretation and OCAP rules. Proofs constructed

in each system can be incorporated as OCAP proofs and linked to compose the complete proof.
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Figure 4: An open framework for building certified software

The OCAP approach to environment modeling makes it possible to lift much of the kernel

development, validation, and verification to a higher abstraction layer, yet it still maintains the

consistency with the raw hardware semantics. We plan to further extend OCAP to support model-

ing of various abstraction layers and executors based on the kernel design described in Section 2.1.

Certified Programming (BT3-6) We will develop a large set of domain-specific variants of

assembly and C-like languages. Each such variant will be equipped with a specialized program

logic or type system (i.e., DSL). Our OCAP/VeriML framework (also see Section 2.3) provides

a great setup for implementing these variants, DSLs, and the corresponding certifying compilers.

By imposing DSLs over familiar low-level constructs, we get the best of both worlds: we can

program and verify kernel components at a higher abstraction level, yet without sacrificing the

code performance and the firm control of hardware resources.

Certified Assembly Programming (CAP) [98] is a logic-based approach for carrying out gen-

eral program verification inside a rich mechanized meta-logic. Subsequent work on CAP (by the

PI and his students) developed new specialized program logics for reasoning about low-level con-

structs such as embedded code pointers [77], stack-based control abstractions [31], self-modifying

code [10], garbage collectors [68], hardware interrupts [28], and nonblocking concurrency [44].

We plan to adapt these DSLs and also design new ones to support certified programming of differ-

ent abstractions and plug-ins in our new kernel designs.

Virtual Memory Management (BT5,OT1-2) We propose to develop new DSLs for writing

certified virtual memory managers. Figure 5 (left) shows decomposition of a kernel virtual mem-

ory manager. Here, the lowest layer is a model of the physical hardware, except that the OS is

preloaded into memory. The next layer is the physical memory manager (PMM), which provides

functions for marking physical memory pages as used or free. The next layer is the page table

manager (PTABLE), which provides functions for updating a page table. The layer after that is the

virtual memory manager (VMM), which provides functions for adding or removing virtual pages.

The top layer is the rest of kernel, which only works in the presence of paged memory.

Each layer of code provides a layer of abstraction to the components above, enforced via a new

DSL. Figure 5 (left) also gives a dotted line showing that the left side of the line is code running
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Figure 5: Decomposition of a virtual memory manager

scheduler  &  ctxt switching  &  ...


. . .


ISR

. . .


.
 

.
 

.


A


B


C


1


1


0


1


1


0


1


0


irq0


irq1


irq2


irq3


irq4


irq5


irq6


irq7


cond var.
locks
 I/O & Driver


. . .


sti/cli


Figure 6: Decomposition of a preemptive thread implementation

with paging disabled and the right side is code running with paging enabled. Notice that at the top

layer, the paged kernel is always running with the address translation turned on, but the bottom

four layers must support both paged and non-paged code. During the bootstrap process, the non-

paged kernel would invoke the initialization routines for the middle three layers before turning on

the paging flag. If a routine might be called in the non-paged mode (e.g., during initialization) or

the paged mode, it must be duplicated and compiled twice (e.g., boot alloc and alloc); but they

must satisfy the similar sets of invariants.

To put these components together, in Figure 5 (right), we show how each abstraction layer maps

into the lower abstraction layer. For example, the VMM machine only sees the virtual address

space (virtual pages marked with X’s are inaccessible). The actual page tables (the left table in the

PTABLE box) and the underlying physical memory (the right table in the PTABLE box) are only

visible inside the PTABLE machine. Page tables in PTABLE are abstract — we don’t know where

it is stored in physical memory; they are stored in page 0x1 in the PMM machine. PMM also

maintains a data structure which marks all the used physical pages; this information is abstract in

PMM but actually stored in page 0x0 on the bare hardware. With all these mapping, we can create

verified transformations layer by layer. This chain of abstractions allow us to guarantee that the

entire code is safe to run on the actual hardware, while the verification took place over various

abstract machine models using specialized DSLs. For the Option, we plan to extend and adapt this

base framework to certify advanced virtual memory features and primitives.
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Thread/Process Management (BT5,OT1-2) We plan to build certified thread/process manage-

ment modules based on our recent work [28] in which we have successfully certified the partial

correctness of a preemptive thread library. The thread library consists of thread context switch-

ing [78], scheduling, synchronizations, and hardware interrupt handlers. In Figure 6, we show how

we decompose the implementation into different abstraction layers. At the highest level (Level A),

we have preemptive threads following the standard concurrent programming model. The execution

of a thread can interleave with or be preempted by other threads. Synchronization operations are

treated as primitives. Hardware interrupts are abstracted away and handled at Level B. Code at

Level B involves both hardware interrupts and threads; synchronization primitives, input/output

operations, device drivers, and interrupt handlers are all implemented at this level. Interrupt han-

dling is enabled/disabled explicitly using sti/cli. At the lowest level (Level C), the thread

scheduler and the context switching routine manipulate the threads’ execution contexts, which are

stored in thread queues (on the heap). Interrupts are invisible at this level because they are always

disabled. Libraries implemented at a lower level are exposed as abstract primitives for the level

above it; their operational semantics in the high-level abstract machine serves as formal specifi-

cations for the low-level implementation. The stratified system model gives us a systematic and

principled approach for controlling complexity. We can focus on a subset of language features at

each level and certify different software components using specialized program logics.

Our proposed work is to integrate the above framework [28] with VMM and also to support

realistic scheduler, realistic stack management, multilevel interrupts, and various other event or

signal handlers. For our multicore extension, multiple scheduler may run at the same time so

access to the thread queues must be synchronized as well; turning off interrupts can no longer

prevent thread interleaving so synchronization libraries must be implemented differently.

Information Flow Control and IPC (BT3,OT1-2) Information flow control is a new kernel

mechanism, first introduced in HiStar [100], to implement protection in traditional kernels and

to enforce application-level security policies. Subsequent work [101] shows that it is possible to

simplify the HiStar kernel greatly by introducing a separate security monitor. Both of these work,

however, still require a nontrivial sized trusted computing base, and neither spells out the exact

formal property the kernel can guarantee and what requirements any kernel extension must satisfy.

We plan to formalize and incorporate HiStar-style information flow control into our certified

kernels. We will take the language-based approach (as done in Jif [72]) but instead of relying on a

type system, we will design new specialized program logics to certify low-level label manipulation

code. We will first formalize the traditional notion of the principals as well as the HiStar-style cate-

gories as a basic language primitive. We will then extend previous work on Concurrent Separation

Logic (CSL) [80] and Local Rely Guarantees (LRG) [23] to reason about multi-threaded shared

memory programs but with explicit domain separation and security labels. Interprocess commu-

nication can be either implemented as cross-domain procedure calls or as messaging passing via

contract-based channels [22]. Security labels and declassification constraints can be formalized

as resource invariants or rely-guarantee conditions. Finally, we will integrate the certified label

mechanisms with our certified virtual memory and thread management modules.

Optimistic Concurrency and File System (BT6,OT1-2) Optimistic concurrency algorithms [52,

53] (e.g., non-blocking synchronization, software transactional memory) allow concurrent access
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to shared data and ensure data consistency by performing dynamic conflict detection. These algo-

rithms can be more efficient than coarse-grained lock-based synchronization if there is sufficient

data independence. However, the design of the algorithms has to consider many more thread-

interleaving scenarios than coarse-grained synchronization. The algorithms are usually complex

and error-prone. Their correctness is usually far from obvious and is hard to verify too.

In our recent work [44], we have developed a new program logic that uses invariants on histori-

cal execution traces to reason about optimistic concurrency algorithms. The logic extends previous

work on LRG by introducing past tense temporal operators in the assertion language. The pre- and

post-conditions in our judgments only specify the program state at the current program point and

the execution history before this point. It allows us to specify historical events directly without

using history variables, which makes the verification process more modular and intuitive.

We have successfully applied our new logic to certify a few classic optimistic algorithms [16,

69]. Our proposed work is to extend the history logic (or design new DSLs) to certify a large class

of optimistic concurrent data structures commonly used in kernel programming. We will also ap-

ply new DSLs to certify the file system implementation and also the history-based accountability

and recovery mechanism described in Section 2.1. For the multicore extension, we plan to ex-

tend the history logic to include assertions on future traces; this will allow us to reason about the

liveness properties of certain critical kernel routines; we will also look into concurrent reference

counting [63] and real-time garbage collection algorithms [83].

2.3 Formal Methods for Automated Analysis and Proofs

The end goal of certified kernels is to establish the important requirement specifications for all

the kernel modules, abstract machines, and libraries. It uses a rich meta logic and a large set of

DSLs (implemented on top of the OCAP in the meta logic) to capture deep kernel invariants and

to spell out claims required for building a resilient and secure host. Automated analysis and proof

construction are extremely important and desirable to make the whole approach scalable.

Unfortunately, existing proof assistants or theorem proving tools do not offer good support for

certified programming. Automated theorem provers and SMT solvers such as Z3 [13] often depend

on a rather restricted logic—this is in conflict with the rich meta logic (which makes heavy uses of

quantifiers) required for supporting the OCAP framework; they also do not provide any interface

or generate witnesses for linking with other tools. Proof assistants such as Coq [54]—which we

used heavily in the past—provide rather poor support to automation.

VeriML and Type-Safe Proof Scripts (BT7,OT2) We have recently developed a prototype im-

plementation of VeriML [92]—a novel language design that couples a type-safe effectful compu-

tational language with first-class support for manipulating logical terms such as propositions and

proofs. Our main idea is to integrate a rich logical framework—similar to the one in Coq—inside

a computational language inspired by ML. This way, the OCAP-style certified linking can be sup-

ported and the trusted computing base of the verification process is kept at a minimum. The design

for VeriML is such that the added features are orthogonal to the rest of the computational language,

and also do not require significant additions to the logic language, so soundness is guaranteed.

VeriML can programmatically reflect on logical terms so that we can write a large number of
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procedures (e.g., tactics, decision procedures, and automated provers) tailored to solving different

proof obligations. VeriML also provides an unrestricted programming model for developing these

procedures, that permits the use of features such as non-termination and mutable references. The

reason for this is that even simple decision procedures might make essential use of imperative

data structures and might have complex termination arguments. One such example are decision

procedures for the theory of equality with uninterpreted functions. By enabling an unrestricted

programming model, porting such procedures does not require significant re-engineering.

We plan to extend VeriML into a more realistic tool: this includes building more user-friendly

surface syntax, providing support for finite precision integers, and also extending the base lan-

guage with more powerful context matching construct. We will then implement a large number

of automated decision procedures (like Z3) in VeriML. We will also implement our new OCAP

framework, environment modeling, and all the DSLs in VeriML. Because VeriML uses a logic

language that is a subset of Coq’s calculus inductive constructions, and both can provide explicit

proof witnesses, linking these two tools should be fairly easy.

Another effort we want to pursue is to use type-safe proof scripts to serve as proof witnesses.

When building certified kernels, we ideally want some sort of certificate that can be easily checked

by a third party. Under Foundational PCC [3, 50], this certificate takes the form of a proof object

of some suitable logic. In Coq, proof objects are made feasible in terms of memory consumption,

by including a notion of computation inside the logic (i.e., automatic βι reductions) and trading

derivation steps for computation. This complicates proof checking, increasing the overall TCB. We

propose to use a simpler, well-established logic that does not include such a notion of computation

as the meta logic, which further reduces the TCB. With VeriML, we can write procedures produc-

ing proofs in this logic in a type-safe manner. VeriML programs that produce proofs can be seen

as type-safe proof scripts, whose types guarantee that proof objects establishing the desired prop-

erties exist, if these programs terminate. The user is free to trust some of these proof-producing

procedures, so as to have them not generate full proof objects; still, type safety guarantees that

such proof objects exist in principle. We are therefore led to ”tunable-size” proof objects, where

users can trade memory consumption for increased assurance.

Automated Program Verifiers and Analysis Tools (BT8,OT1-2) We anticipate that our kernel

code will be written in variants or subsets of assembly and C, each of which is extended with a set

of library primitives (implemented by code at an abstraction layer below), and each is equipped

with a DSL to lift programming to a higher abstraction layer. A large portion of these code,

however, can be certified using the traditional automated program verification method as done

by Boogie [7]. Given a C-like program annotated with proper loop invariants and assertions for

all procedures, the automated verifier can calculate a verification condition (for the program) and

feed it to a Z3-like SMT solver to determine whether the program indeed satisfies the required

specification. The existing Boogie-Z3 framework is not extensible because it uses a rather limited

logic. With VeriML, we can implement the Boogie-like program verifiers, the Z3-like solvers, and

the proof scripts for higher-order logic, in a single typed framework. In fact, the program verifier

itself is just yet another type-safe proof tactic (e.g., for an Hoare triple). Depending on the needs

of the kernel code, we also plan to implement automated static analysis tool for synthesize loop

invariants and produce proof witnesses. The advantage of VeriML is that we can decompose a
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large program into different components, each may be certified using different tactics, yet in the

end they can all be linked together—in VeriML—to form the proof-witness for the entire program.

To turn certified C programs into certified assembly components suitable for linking in the

OCAP framework, we also plan to use VeriML to build a certifying compiler [75] for a small

subset of C. Leroy [62] has already built a certified compiler named CompCert in Coq, but it does

not handle concurrent programs and it is unclear how the generated code from CompCert can be

linked with other certified assembly code. The VeriML type system allows us to express precisely

what program properties needs to be preserved during compilation. For the Option, we plan to

extend the basic tools developed under the base to handle more realistic languages.

3 Prior Work

Zhong Shao During the past 10 years, Dr. Shao and his FLINT group at Yale have worked

extensively on various aspects of proof-carrying code [49, 50, 71, 89, 98], certified OS kernels and

runtime systems [10, 28–30, 66, 68, 78], certified low-level programming [25–27, 31, 77, 98, 99],

optimistic concurrency [44], relaxed memory models [32], certifying compilers [59,60,85,87,88],

and proof assistants and automated theorem proving [92]. Here are a list of prior projects that are

most related to the current proposal.

In their PLDI’08 and JAR’09 papers [28, 30], Shao and his students successfully developed a

sequence of specialized program logics (DSLs) for certifying low-level system programs involv-

ing both hardware interrupts and preemptive threads. They showed that enabling and disabling

interrupts can be formalized precisely using simple ownership-transfer semantics, and the same

technique also extends to the concurrent setting. By carefully reasoning about the interaction

among interrupt handlers, context switching, and synchronization libraries, they are able to—for

the first time—successfully certify a preemptive thread implementation and a large number of com-

mon synchronization primitives. The Coq implementation of this certified thread implementation

is made publicly available. In their VSTTE’08 paper [29], Shao and his students showed how to

apply their OCAP framework and domain-specific logics to build end-to-end certified systems.

In their PLDI’07 and TASE’07 papers [66, 68], Shao and his students have successfully de-

veloped new program logics and used them to mechanically verify assembly implementations of

mark-sweep, copying and incremental copying garbage collectors (with read or write barriers) in

Coq. They have also verified sample mutator programs and linked them with any of the GCs to

produce a fully-verified garbage-collected program. The Coq implementation of these certified

garbage collectors was made publicly available and later extended to support more realistic certi-

fied collectors by researchers at Portland State University [67] and Microsoft Research [51, 96].

In their PLDI’07 paper [10], Shao and his student have successfully developed a set of DSLs

for supporting modular verification of general von-Neumann machine code with runtime code

manipulation. They have used these logics to certify a realistic OS boot loader that can directly boot

on stock x86 hardware and a wide range of applications requiring dynamic loading and linking,

runtime code generation and optimization, dynamic code encryption and obfuscation.

In their PLDI’06 paper [31], Shao and his students have successfully developed a set of DSLs

for supporting modular verification of low-level programs involving stack-based control abstrac-
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tion, ranging from simple function call/return, stack cutting and unwinding, coroutines, to thread

context switch. In their POPL’06 paper [77], Shao and his student have successfully developed new

program logics for certifying embedded code pointers; in the subsequent TPHOL’07 paper [78],

they presented a realistic x86 implementation of the machine context management library.

In their ICFP’10 paper [92], Shao and his student designed and developed a prototype imple-

mentation of VeriML —a novel language design that couples a type-safe effectful computational

language with first-class support for manipulating logical terms such as propositions and proofs.

In their CONCUR’10 paper [44], Shao and his students a novel program logic that uses invari-

ants on history traces to reason about optimistic concurrency algorithms. They have successfully

used it to certify Michael’s non-blocking stack algorithm [69] as well as an TL2-style time-stamp-

based implementation of Software Transactional Memory [16].

Bryan Ford Dr. Ford has a long track record in building experimental kernels [6,38,40,41], and

other relevant research such as lightweight kernel IPC mechanisms [42], novel CPU scheduling

architectures [43], and code sandboxing via dynamic instruction translation [36, 39].

In his Fluke kernel [40, 41], Ford and his colleagues designed and built a research kernel from

the ground up around the concept of recursive virtual machines, as embodied in a novel nested

process model. This hybrid microkernel/VM model foreshadowed today’s popular hypervisors,

and enabled virtual machines to be nested more deeply, without the severe slowdown or reductions

in functionality commonly observed when recursively nesting conventional virtual machines. Ef-

ficient recursive virtualization enables more flexible system composition while retaining the full

power and security of the virtual machine model: with full recursive virtualization, for example,

an untrusted Java applet downloaded into a Web browser might have the capability of creating and

supervising a nested virtual machine, emulating a complete x86 PC and hosting a native guest OS

logically running “within” the Java applet. Since this system composition flexibility is showing

ever-increasing importance in today’s world of ubiquitous virtualization and cobe mobility, our

proposed kernel design will incorporate and further develop these system structuring concepts.

In his Flux OS Kit [38], Ford and his colleagues explored methods of building modular kernels

out of “plug-and-play” components, in many cases adapted from existing operating systems and

encapsulated into libraries with clean, well-defined interfaces. Our proposed kernel design in a

sense takes the OS Kit one step further, building a modular kernel structure whose component

interfaces are formally defined and suitable for modular certification.

More recently, Ford’s Vx32 sandbox [39] and VXA archival storage system [36] developed new

techniques for lightweight sandboxing of untrusted, native x86 code within a user-level process,

enabling untrusted application plug-ins to run safely but with full performance and unrestricted

choice of programming language, unlike typesafe language environments like Java and C#. Ford’s

Vx32 work in part inspired both Google’s Native Client [97] and Microsoft’s Xax [17] environ-

ments for sandboxed native Web applications. At least one of the protected code executors for

the proposed OS kernel (see Section 2.1) will build on these native code sandboxing techniques,

enabling untrusted code written in legacy languages to interact with the kernel and other processes

efficiently under fine-grained protection schemes, by avoiding the high cost of hardware-supported

protection changes (kernel entry/exit) when entering or leaving sandboxed code.
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Finally, Ford’s ongoing work in system-enforced deterministic execution [4–6] will serve as

a building block for the history-based recovery and accountability mechanisms in the proposed

kernel, enabling the efficient logging, spot-checking, and replay of past computations and data to

verify system integrity and recover from hardware or application-level failures or compromises.

In addition to his work in system building, Dr. Ford’s work has crossed into programming

language theory and practice, in his work on Parsing Expression Grammars [35] and Packrat Pars-

ing [34]. This experience and understanding of formal techniques will be crucial in enabling a

close collaboration with Dr. Shao for the proposed kernel design and certification work.

Most of Ford’s research results has been publicly released in open source software, including

the prototypes resulting from the projects listed above. Many of his research results have seen

substantial direct use and indirect impact in the community, such as his OS Kit [38], Vx32 sand-

box [36, 39], parsing expression grammars [34, 35], and Structured Stream Transport [37].

4 Comparison with Current Technology

OS Kernel Verification The seL4 group [58] recently demonstrated that it is possible to verify

a nontrivial sized microkernel. The seL4 kernel consists of 8700 lines of C and 600 lines of

assembler. They have proved a refinement property for the 7500 lines of their C code (meaning that

they satisfy some high-level specifications); from this property they can derive the basic memory-

and control-flow safety properties. Their work is impressive in that all the proofs were done inside

a high-assurance mechanized proof assistant (Isabelle/HOL [81]).

Our proposed work differs from seL4 in many significant ways. First, the focus of our project

is not to verify a specific kernel, but rather to take the certified kernel approach to facilitate the

co-development of new kernels suitable for the resilient, adaptive, and secure hosts. Second, our

proposed work will eliminate many major limitations in the current seL4 effort. For example,

their virtual memory manager (in C), the 1200 lines of the initialization code (in C), and the 600

lines assembly code are not verified; they have significantly modified the kernel so that it does not

support any concurrency (in the kernel) and provides no explicit memory allocation; all resource

management is pushed outside the microkernel; general interrupts are not supported; the capabil-

ity system in seL4 is less general than the information flow control mechanism in HiStar; these

restrictions are precisely those addressed by our research tasks described in Section 2. Third, our

DSL-centric approach and new VeriML-based proof environment will make it easier to maintain,

develop, and scale our certified kernel effort. Even with all of the above limitations, the seL4 effort

still took more than 20-person years. We believe that we can do much better.

One evidence that automated proving tools can dramatically cut down the proof effort is the

recent Verve project [96] at Microsoft Research. The Verve kernel consists of mostly C# code

taken from the Singularity kernel [55] plus a small nucleus written in 1400 lines assembly. Verve

managed to prove the type safety of the entire kernel by combining the partial correctness proof of

the nucleus and the type-safety guarantee from a certifying C# compiler (for the rest of the kernel).

By using powerful automated proving tools (e.g., Boogie and Z3), Verve managed to certify the

nucleus in 9 person-months. Of course, the Verve effort does have quite a few caveats: the linking

between the nucleus and the rest of the kernel is not verified; the kernel does not support interrupts;
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the rest of the kernel is only shown to be type safe which is far from enough for certifying the

integrity of most of the kernel mechanisms (for security and resilience).

Our proposed work would combine the benefits of automated theorem proving with the modu-

larity and expressiveness of the VeriML/OCAP-based certified programming framework. Both the

Verve and seL4 kernels only work for uniprocessors which our multicore extension will address.

We have the right set of new technologies (see Section 2) which fit together naturally. We have the

experience and the right software base to do this (see Section 3).

Extensible Operating Systems Many approaches have been explored to building extensible op-

erating systems. The microkernel design philosophy [64, 65] is to minimize the functionality in

the kernel itself so that most system functionality, implemented in user-level servers, can be modi-

fied and extended without modifying the kernel. Exokernels [21] take this philosophy even further

by exposing bare, “abstraction-free” protected resource access mechanisms in the kernel’s basic

API. Our approach builds on lessons from microkernels and exokernels but we will also address

modularity and formal decomposition of functionality within our certified kernel.

Another well-explored approach to extensibility is to allow applications to download extensions

into the kernel: e.g., via domain-specific languages [70], typesafe languages [8], static software

fault isolation [93], and architecture-specific tricks [12]. All of these approaches address only a

rigid, low-level notion of safety, however: e.g., ensuring an extension cannot harm the kernel or

other processes via wild pointer writes. Our approach to kernel extensibility, in contrast, focuses

on supporting certified extensions that are not only safe but also semantically correct according to

a formal specification of their required functionality: e.g., a memory management extension must

never allocate the same block to two purposes at once; a scheduler extension must not lose track of

threads or run more than one thread at a time; a protected executor extension must not only ensure

that untrusted code can be run safely, but that it can be preempted if it loops forever.

Programming Languages and Formal Methods Mainstream languages today offer rather poor

support to certified programming. JML [61] and Spec# [7] extended an existing object-oriented

language with assertions, but their assertion language is rather limited; they also took the one-

logic-for-all view which is not suitable for capturing diverse kernel abstraction layers and plug-ins.

Although high-level languages (e.g., Java and C#) have their benefits, they are not suitable for

low-level kernel programming. They require a very complex native interface library which makes

end-to-end kernel verification much more difficult. They also provide a rather rigid concurrency

library which is not what we want in the context of an extensible kernel. Our DSL-centric OCAP

framework will address these problems: it supports certified programming at a higher abstraction

level, yet without sacrificing the flexibility, the code performance, and the firm control of hardware

resources. The DSL approach is also important for supporting domain-specific decision procedures

which are not possible in the one-logic-for-all or one-language-for-all approach.

The LTac language [14,15] available in the Coq proof assistant is an obvious point of reference

for our VeriML work. LTac is an untyped domain-specific language that can be used to define

new tactics by combining existing ones, employing pattern matching on propositions and proof

contexts. Our VeriML is strongly typed, statically guarantees correct behavior with regards to

binding, and gives access to a richer set of programming constructs, including effectful ones; this,

we believe, enables the development of more robust and complex tactics and decision procedures.
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The comparison with the LCF approach [47] is interesting both from a technical as well as from

a historical standpoint, seeing how ML was originally developed toward the same goals as VeriML

aims to accomplish. The LCF approach to building a theorem prover for a meta logic would

amount to building a library inside ML that contained implementations for each axiom, yielding

a term of the abstract thm datatype. VeriML is different in that the equivalent of the thm datatype

is dependent on the proposition that the theorem shows. Essentially, where such manipulation is

done in an untyped manner following the usual LCF approach, it is done in a strongly typed way

in VeriML. We believe that this leads to a more principled and modular programming paradigm.

In recent years many languages with rich dependent type systems [11, 33, 73, 79] have been

proposed. Our approach differs from these languages in that we are not primarily interested in

certifying properties of code written in VeriML itself. We rather view VeriML as a foundational

“meta” language for an “extensible” proof assistant, where proofs about code written in other

(however richly typed or untyped) languages can be developed in a scalable manner.

5 Summary Chart

Advanced Development of Certified OS Kernels
Prof. Zhong Shao (PI) & Prof. Bryan Ford (Co-PI),  Yale University

A crash-proof computing host needs to have a certified OS kernel to serve as its bedrock. 

MAIN OBJECTIVE:

To develop a novel certified OS kernel that offer 
(1) safe & application-specific extensibility, (2) 
provable security properties with information 
flow control, and (3) accountability & recovery 
from hardware or application failures.

KEY INNOVATIONS: 

• Secure & flexible kernel via certified plug-ins

• History-based accountability & recovery mechanism

• Provably correct security monitor for IFC

• A new DSL-centric open framework for certified 
decomposition & programming & linking

• New DSLs/history-logic for certifying kernel modules

• Novel VeriML language & tools that can combine 
automation with modular proofs

Components in traditional OS 
kernels can interfere with each 
other in arbitrary way.

• A single kernel bug can wreck the 
entire system’s integrity & protection

• Poor support for recovery & security

Synergistic co-development  
effort combining novel 
advances in OS, prog lang & 
env, and formal methods

•New VeriML/OCAP 
programming evironment for 
building certified system software
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• Structure the kernel using certified  
abstraction layers will minimize 
unwanted interferences & maximize 
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• A new programming  
paradigm for building 
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