

Structured Streams:
A New Transport Abstraction

Bryan Ford
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

ACM SIGCOMM, August 30, 2007

http://pdos.csail.mit.edu/uia/sst/

Current Transport Abstractions

Streams
– Extended lifetime
– In-order delivery

Examples:
– TCP
– SCTP

Datagrams
– Ephemeral lifetime
– Independent delivery

Examples:
– UDP
– RDP
– DCCP

Simplistic Overview

The Problem:
● Streams don't quite match applications' needs
● Datagrams make the application do everything

The Solution:
● Structured Streams: like streams, only better

How Applications Use TCP

Natural approach: streams as transactions or
application data units (ADUs) [Clark/Tennenhouse]

Example: HTTP/1.0

GET

200 OK
<...>

GET

200 OK
<...>

GET
200 OK

<...>

TCP
Stream

Web
Client

Web
Server

GET
200 OK

<...>

TCP Streams as Transactions/ADUs

Advantages:
– Reliability, ordering within each ADU
– Independence, parallelism between ADUs

☞ Application-Layer Framing [Clark/Tennenhouse]

Disadvantages:
– Setup cost: 3-way handshake per stream
– Setup cost: slow start per stream
– Shutdown cost: 4-minute TIME-WAIT period
– Network cost: firewall/NAT state per stream
– Network cost: unfair congestion control behavior

How Applications Use TCP

Practical approach: streams as sessions

Cmd
Echo

TCP
Stream

SSH
Client

SSH
Server

CR
Echo

Cmd
Output

Cmd
Echo

CR
Echo

LIST
+OK

1 <...>

TCP
Stream

POP
Client

POP
Server

RETR

+OK
<...>

DELE
+OK

RETR
+OK
<...>

GET
200 OK

<...>

TCP
Stream

Web
Client

Web
Server

GET

200 OK
<...>

GET

200 OK
<...>

TCP Streams as Sessions

Advantages:
– Stream costs amortized across many ADUs

Disadvantages:
– TCP's reliability/ordering applies across many ADUs

Unnecessary serialization: no parallelism between ADUs

Head-of-line blocking: one loss delays everything behind

⇒ TCP unusable for real-time video/voice conferencing

⇒ HTTP/1.1 made web browsers slower! [Nielsen/W3C]

– Makes applications more complicated
Pipelined HTTP/1.1 still not widely used after 7 years!

What about Datagrams?

“Do Everything Yourself”:
– Tag & associate related ADUs
– Fragment large ADUs (> ~8KB)
– Retransmit lost datagrams (except w/ RDP)
– Perform flow control
– Perform congestion control (except w/ DCCP)

⇒ complexity, fragility, duplication of effort...

Structured Stream Transport

“Don't give up on streams; fix 'em!”

Goals:
– Make streams cheap

● Let application use one stream per ADU, efficiently

– Make streams independent
● Preserve natural parallelism between ADUs

– Make streams easy to manage
● Don't have to bind, pass IP address & port number,

separately authenticate each new stream

What is a Structured Stream?

Unix “fork” model
for stream creation

Given parent stream s
between A and B

● B listens on s
● A creates child s' on s
● B accepts s' on s

Image
Image

Web Browser: Top-level Stream

Multimedia Plug-in: Control Stream

Video Codec Stream

Audio Codec Stream

Video Frames (Ephemeral Streams)

Audio Frames (Ephemeral Streams)

Web Page Download: HTML

Image
Image

Talk Outline

✔ Introduction to Structured Streams
● SST Protocol Design
● Prototype Implementation
● Evaluation, Related Work
● Conclusion

SST Protocol Design

SST Transport Services

Independent per stream:
– Data ordering
– Reliable delivery (optional)
– Flow control (receive window)

Shared among all streams:
– Congestion control
– Replay/hijacking protection
– Transport security (optional)

SST Organization

Stream Protocol

Channel Protocol Negotiation Protocol

Underlying Protocol (e.g., UDP, IP, link layer)

Application Protocol

Structured
Stream

Transport
(SST)

Streams

Channels

Sessions

Streams, Channels, Packets

Top-level Application Stream

Channel 1

Channel 2

Streams

Time

Substream 1

Substream 2 Substream 3

1.1 1.2 … … …

multiplex streams onto channel 1

multiplex streams onto channel 2
Channels

channel 1 nears end of life;
migrate streams to channel 2

Packets

3.1 3.2

SST Packet Header

Transmit Sequence Number (TSN)

Acknowledgment Sequence Number (ASN)

Channel ID

— AckCt

Channel
Header
(8 bytes)

Application Data
Stream
Payload
(variable)

Message Authentication Check (MAC)

E
n
cry

p
te
d

(o
p
tio

n
a
lly)

31 015162324 78

Type

Additional Stream Header Fields (depends on Type)

Local Stream Identifier (LSID)Stream
Header

(4–8 bytes)

Flags Window—

(Typical header overhead: 16 bytes + MAC)

Channel Protocol Design

● Sequencing
● Acknowledgment
● Congestion Control
● Security (see paper)

Channel Protocol: Sequencing

Every transmission gets new packet sequence #
– Including acks, retransmissions [DCCP]

3 41 56 7 982

Transmissions

1 3

Arrivals

4 56 8

(retransmit #2)

9

Channel Protocol: Acknowledgment

● All acknowledgments are selective [DCCP]
– No cumulative ack point as in TCP, SCTP

Channel Protocol: Acknowledgment

● All acknowledgments are selective [DCCP]
● Each packet acknowledges a sequence range

2 3 5 6 7

Packet
Received

Acknowledgment Sent in Return Packet
(acknowledged sequence number range)

1

Ack 1

Ack 1–2

Ack 1–3

Ack 5

Ack 5–6

Ack 5–7

1

2

3

5

6

7

4

Sequence Number Space

Time

(packet 4 dropped)4

Channel Protocol: Acknowledgment

● All acknowledgments are selective [DCCP]
● Each packet acknowledges a sequence range

– Successive ACKs usually overlap

⇒ redundancy against lost ACKs

– No variable-length SACK headers needed

⇒ all info in fixed header

Channel Protocol: Acknowledgment

● All acknowledgments are selective [DCCP]
● Each packet acknowledges a sequence range
● Congestion control at channel granularity

– Many streams share congestion state

Stream Protocol Design

● Stream Creation
● Data Transfer
● Best-effort Datagrams
● Stream Shutdown/Reset (see paper)
● Stream Migration (see paper)

Stream Protocol: Creating Streams

Goal:

Create & start sending data on new stream
without round-trip handshake delay

Challenges:

1.What happens to subsequent data segments
if initial “create-stream” packet is lost?

2.Flow control: may send how much data before
seeing receiver's initial window update?

Stream Protocol: Creating Streams

Solution:
– All segments during 1st round-trip carry “create” info

(special segment type, parent & child stream IDs)

– Child borrows from parent stream's receive window
(“create” packets belong to parent stream for flow control)

Application Payload

31 015162324 78

Parent Stream Identifier (PSID) Byte Sequence Number (BSN)

TypeLocal Stream Identifier (LSID) C WindowP— —

Stream Protocol: Data Transfer

Regular data transfer (after 1st round-trip):
– 32-bit wraparound byte sequence numbers (BSNs)

(just like TCP)

– Unlimited stream lifetime
(just like TCP)

Application Payload

31 015162324 78

Byte Sequence Number (BSN)

TypeLocal Stream Identifier (LSID) C WindowP— —

Stream Protocol:
Best-effort Datagrams

“Datagrams” are ephemeral streams

Semantically equivalent to:
1.Create child stream

2.Send data on child stream

3.Close child stream

...but without buffering data for retransmission
(like setting a short SO_LINGER timeout)

Stream Protocol:
Best-effort Datagrams

When datagram is small:
– Stateless best-effort delivery optimization

(avoids need to assign stream identifier to child)

TypeParent Stream Identifier (PSID) L WindowF—

Application Payload

—

31 015162324 78

Flags:
F First Fragment
L Last Fragment

Stream Protocol:
Best-effort Datagrams

When datagram is small:
– Stateless best-effort delivery optimization

When datagram is large:
– Fall back to delivery using regular child stream

Makes no difference to application;
datagrams of any size “just work”!

Implementation
&

Evaluation

Current Prototype

User-space library in C++

● Application-linkable ⇒ simple deployment

● Runs atop UDP ⇒ NAT/firewall compatibility

● ~13,000 lines; ~4,400 semicolons

(including crypto security & key agreement)

Available at:

http://pdos.csail.mit.edu/uia/sst/

Performance

Transfer performance vs native kernel TCP
– Minimal slowdown at DSL, WiFi LAN speeds

TCP-friendliness

– Congestion control fair to TCP within ± 2%

Transaction microbenchmark: SST vs TCP, UDP

Web browsing workloads
– Performance: HTTP on SST vs TCP
– Responsiveness: request prioritization

Transaction Microbenchmark

Web Browsing Workloads

Performance of transactional HTTP/1.0 on SST:
● Much faster than HTTP/1.0 on TCP
● Faster than persistent HTTP/1.1 on TCP [most browsers]
● As fast as pipelined HTTP/1.1 on TCP [Opera browser]

Web Browsing Workloads

HTTP/1.0 over SST can be more responsive
– No unnecessary request serialization
– Simple out-of-band communication via substreams

⇨Easy to dynamically prioritize requests

(Demo)

Related Work

● Application-Layer Framing [Clark/Tennenhouse]

● Transports: TCP, RDP, VMTP, SCTP, DCCP
● Multiplexers: SSL, SSH, MUX, BXXP/BEEP
● T/TCP: TCP for Transactions [Braden]

● TCP congestion state sharing [Touch],
Congestion Manager [Balakrishnan]

● Transport-layer migration support [Snoeren]

● Network-layer prioritization for QoS [...many...]

Conclusion

SST enables applications to use streams as:
– Sessions (as in legacy TCP apps), or
– ADUs/Transactions (as in HTTP/1.0), or
– Datagrams (as in VoIP, RPC over UDP)

...without:
– TCP's per-stream costs, unnecessary serialization
– UDP's datagram size limits

http://pdos.csail.mit.edu/uia/sst/

“Can't HTTP/1.1 over TCP do this?”

Answer: “Sort of, if you work really hard.”

1.Enable HTTP/1.1 pipelining
● Most browsers still don't because servers get it wrong!

2.Fragment large downloads via Range requests
● Pummel server with many small HTTP requests
● Risk atomicity issues with dynamic content

3.Track round-trip time, bandwidth in application
● Try to keep pipeline full without adding extra delay

But:

Still get head-of-line blocking on TCP segment loss!

Comparing SST to SCTP

SCTP:
● No dynamic stream creation/destruction
● No per-stream flow control (just per session)
● Best-effort datagrams limited in size

SST:
● No multihoming/failover (yet)

...but channel/stream split should facilitate

Comparing SST to DCCP

DCCP:
● No reliability, ordering, flow control
● No association between packets
● No cryptographic security

SST:
● No congestion control negotiation (yet)

Channel Protocol: Security

Design based on IPsec
● Cryptographic security mode :

– Encrypt-then-MAC + replay protection [IPsec]

● TCP-grade security mode:
– No encryption
– MAC = 32-bit checksum + 32-bit “key”

depends on system time [Tomlinson], secret data [Bellovin]

stronger protection than TCP: “validity window” size = 1

