
Seeking Anonymity in an Internet Panopticon

Joan Feigenbaum and Bryan Ford
Yale University

1. INTRODUCTION
In today’s “Big Data” Internet, users often need to assume that,

by default, their every statement or action online is monitored and
tracked. Users’ statements and actions are routinely linked with
detailed profiles built by entities ranging from commercial vendors
and advertisers to state surveillance agencies to online stalkers and
criminal organizations. Indeed, recent events have raised the stakes
in Internet monitoring enormously. Documents leaked by Edward
Snowden have revealed that the US government is conducting war-
rantless surveillance on a massive scale and, in particular, that the
long-term goal of the National Security Agency is to be “able to
collect virtually everything available in the digital world” [18].

Internet users often have legitimate need to be anonymous – i.e.,
“not named or identified” by Webster’s definition of the term – to
protect their online speech and activities from being linked to their
real-world identities. Although the study of anonymous-communi-
cation technology is often motivated by high-stakes use cases such
as battlefield communication, espionage, or political protest against
authoritarian regimes, anonymity actually plays many well accepted
roles in established democratic societies. For example, paying cash,
voting, opinion polling, browsing printed material in a book store or
library, and displaying creativity and low-risk experimentalism in
forums such as slashdot or 4chan are everyday examples of anony-
mous activity. Author JK Rowling used a pen name on a recent
post-Harry Potter novel, presumably not out of any fear of censor-
ship or reprisal, but merely “to publish without hype or expectation
and . . . to get feedback under a different name” [22].

Obtaining and maintaining anonymity on the Internet is chal-
lenging, however. The state of the art in deployed tools, such as
Tor [1], uses onion routing (OR) to relay encrypted connections on
a detour passing through randomly chosen relays scattered around
the Internet. OR is scalable, supports general-purpose point-to-
point communication, and appears to be effective against many of
the attacks currently known to be in use [12]. Unfortunately, OR is
known to be vulnerable to several classes of attacks for which no
solution is known or believed to be forthcoming soon. For exam-
ple, via traffic confirmation, an attacker who compromises a major
ISP or Internet exchange might in principle de-anonymize many
Tor users in a matter of days [14]. Through intersection attacks,
an adversary can rapidly narrow the anonymity of a target via ac-
tions linkable across time, in much the same way Paula Broadwell
and the “High Country Bandits” were de-anonymized [19]. Finally,

c© ACM, 2015. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version to appear in Communications of the ACM. This ma-
terial is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) and SPAWAR Systems Center Pacific, Contract
No. N66001-11-C-4018.

through software exploits or user error, an attacker can often cir-
cumvent anonymity tools entirely [24].

Current approaches to anonymity also appear unable to offer ac-
curate, principled measurement of the level or quality of anonym-
ity a user might obtain. Considerable theoretical work analyzes
onion routing [10], but relies on idealized formal models making
assumptions that are unenforceable and may be untrue in real sys-
tems – such as that users choose relays and communication partners
at random – or depending on parameters that are unknown in prac-
tice, such as probability distributions representing user behavior.

We believe the vulnerabilities and measurability limitations of
onion routing may stem from an attempt to achieve an impossi-
ble set of goals and to defend an ultimately indefensible position.
Current tools offer a general-purpose, unconstrained, and individ-
ualistic form of anonymous Internet access. However, there are
many ways for unconstrained, individualistic uses of the Internet to
be fingerprinted and tied to individual users. We suspect that the
only way to achieve measurable and provable levels of anonymity,
and to stake out a position defensible in the long term, is to develop
more collective anonymity protocols and tools. It may be necessary
to constrain the normally individualistic behaviors of participating
nodes, the expectations of users, and possibly the set of applications
and usage models to which these protocols and tools apply.

Toward this end, we offer a high-level view of the Dissent project,
a “clean-slate” effort to build practical anonymity systems embody-
ing a collective model for anonymous communication. Dissent’s
collective approach to anonymity is not and may never be a “drop-
in” functional replacement for Tor or the individualistic, point-to-
point onion routing model it implements. Instead, Dissent sets out
to explore radically different territory in the anonymous-commu-
nication design space, an approach that presents advantages, disad-
vantages, and many as-yet-unanswered questions. An advantage is
that the collective approach makes it easier to design protocols that
provably guarantee certain well defined anonymity metrics under
arguably realistic environmental assumptions. A disadvantage is
that the collective approach is most readily applicable to multicast-
oriented communication, and currently much less efficient or scal-
able than OR for point-to-point communication.

Dissent follows in the tradition of Herbivore [20], the first at-
tempt to build provable anonymity guarantees into a practical sys-
tem, and to employ dining cryptographers or DC-nets [5]. Dissent
utilizes both DC-nets and verifiable shuffles [17], showing for the
first time how to scale the formal guarantees embodied in these
techniques to offer measurable anonymity sets on the order of thou-
sands of participants [23]. Dissent’s methods of scaling individual
anonymity sets are complementary and synergistic with techniques
Herbivore pioneered for managing and subdividing large peer-to-

http://www.merriam-webster.com/dictionary/anonymous
http://slashdot.org
http://www.4chan.org
https://www.aclu.org/blog/technology-and-liberty-national-security/surveillance-and-security-lessons-petraeus-scandal
http://arstechnica.com/tech-policy/2013/08/how-cell-tower-dumps-caught-the-high-country-bandits-and-why-it-matters/
http://cacm.acm.org
http://www.wired.com/threatlevel/2013/08/freedom-hosting/
http://www.wired.com/threatlevel/2013/08/freedom-hosting/


peer anonymity networks; combining these approaches could en-
able further scalability improvements in the future.

Dissent incorporates the first systematic countermeasures to ma-
jor classes of known attacks, such as global traffic analysis and
intersection attacks [16, 25]. Because anonymity protocols alone
cannot address risks such as software exploits or accidental self-
identification, the Dissent project also includes Nymix, a proto-
type operating system that hardens the user’s computing platform
against such attacks [24]. Dissent and Nymix OS can of course
offer only network-level anonymity, in which the act of commu-
nicating does not reveal which user sent which message. No ano-
nymity system can offer users personal anonymity if, for example,
they disclose their real-world identities in their message content.

While at this time Dissent is still a research prototype not yet
ready for widespread deployment, and may never be a direct re-
placement for OR tools such as Tor because of possibly fundamen-
tal tradeoffs, we hope that it will increase the diversity of practical
approaches and tools available for obtaining anonymity online.

Section 2 presents the basics of OR and Tor. In Section 3, we
describe four problems with OR that have gone unsolved for many
years and may unfortunately be unsolvable. Section 4 provides an
overview of the Dissent approach to anonymous communication,
and Section 5 contains open problems and future directions.

2. ONION ROUTING AND TOR
Currently the most widely deployed, general-purpose system for

anonymous Internet communication is Tor [1]. Tor’s technical foun-
dation is onion routing [13], derived in turn from mixnets [7].

Onion routing (OR) uses successive layers of encryption to route
messages through an overlay network, such that each node knows
the previous and the next node in the route but nothing else. More
precisely, let (V,E) be a connected, undirected network and R ⊆
V be a set of nodes serving as relays. The set R is known to all
nodes in V , as is the public key Kr , usable in some globally agreed-
upon public-key cryptosystem, for each node r ∈ R. There is a
routing protocol that any node in V can use to send a message to
any other node, but the nodes need not know the topology (V,E).

If node s wishes to send message M to node d anonymously,
s first chooses a sequence (r1, r2, . . . , rn) of relays. It then con-
structs an “onion” whose n layers contain both the message and the
routing information needed to deliver it without revealing node s’s
identity to any node except the first relay r1. The core of the onion
is (d,M), i.e., the destination node and the message itself. The nth

or innermost layer of the onion is

On = (rn, ENCKrn
(d,M)),

i.e., the nth relay node and the encryption of the core under the nth

relay’s public key. More generally, the ith layer Oi, 1 ≤ i ≤ k− 1,
is formed by encrypting the (i + 1)st layer under the public key of
the ith relay and then prepending the ith relay’s identity ri:

Oi = (ri, ENCKri
(Oi+1)).

Once it has finished constructing the outermost layer

O1 = (r1, ENCKr1
(O2)),

node s sends ENCKr1
(O2) to r1, using the routing protocol of

the underlay network (V,E). When relay ri, 1 ≤ i ≤ n, re-
ceives ENCKri

(Oi+1), it decrypts it using the private key kri
corresponding to Kri , thus obtaining both the identity of the next
node in the route and the message that it needs to send to this next
node (which it sends using the underlying routing protocol). When

Figure 1: Onion routing (OR).

i = n, the message is just the core (d,M), because, strictly speak-
ing, there is no On+1. We assume that d can infer from routing-
protocol “header fields” of M that it is the intended recipient and
need not decrypt and forward. See Figure 1.

Tor is a popular free-software suite based on OR. As explained
on the Torproject website [1], “Tor protects you by bouncing your
communications around a distributed network of relays run by vol-
unteers all around the world; it prevents somebody watching your
Internet connection from learning what sites you visit, and it pre-
vents the sites you visit from learning your [network] location.”
The project provides free application software that can be used for
web browsing, email, instant messaging, Internet relay chat, file
transfer, and other common Internet activities; users can also ob-
tain free downloads that integrate the underlying Tor protocol with
established browsers, email clients, etc. Importantly, Tor users can
easily (but are not required to) transform their Tor installations into
Tor relays, thus contributing to the overall capacity of the Tor net-
work. Currently, there are approximately 40M “mean daily users”
of Tor worldwide, slightly over 10% of whom are in the United
States, and approximately 4700 relays. These and other statistics
are regularly updated on the Tor Metrics Portal [2].

The IP addresses of Tor relays are listed in a public directory so
that Tor clients can find them when building circuits. (Tor refers
to routes as “circuits,” presumably because Tor is typically used
for web browsing and other TCP-based applications in which traf-
fic flows in both directions between the endpoints.) Clearly, this
makes it possible for a network operator to prevent its users from
accessing Tor. The operator can simply disconnect the first hop in
a circuit, i.e., the connection between the client and the first Tor
relay, because the former is inside the network and the latter is out-
side; this forces the Tor traffic to flow through a network gateway,
at which the operator can block it. Several countries that operate
national networks, including China and Iran, have blocked Tor in
precisely this way. Similarly, website operators can block Tor users
simply by refusing connections from the last relay in a Tor circuit;
Craigslist is an example of a US-based website that does so. As a
partial solution, the Tor project supports bridges, or relays whose
IP addresses are not listed in the public directory, of which there are
currently approximately 2000. Tor bridges are just one of several
anti-blocking or censorship-circumvention technologies.

There is inherent tension in OR between low latency, one as-
pect of which is short routes (or, equivalently, low values of k),
and strong anonymity. Because its goal is to be a low-latency
anonymous-communication mechanism, usable in interactive, real-
time applications, Tor uses 3-layer onions, i.e., sets k = 3 as in
Figure 1. Despite this choice of small k, many potential users re-
ject Tor because of its performance impact [8].

3. ATTACKS ON ONION ROUTING
We now summarize four categories of known attacks to which

OR is vulnerable and for which no general defenses are known.



Figure 2: Traffic confirmation or fingerprinting to de-
anonymize onion-routing circuits

Figure 3: Example of a congestion-based active attack

Global traffic analysis.
OR was designed to be secure against a local adversary, i.e., one

that might eavesdrop on some network links and/or compromise
some relay nodes but only a small percentage of each. It was not
designed for security against traffic analysis by a global adversary
that can monitor large portions of the network constantly.

The most well known global-traffic-analysis attack—traffic con-
firmation—was understood by Tor’s designers but considered an
unrealistically strong attack model and too costly to defend against
[1]. In the standard scenario illustrated in Figure 2, we assume that
the attacker cannot break Tor’s encryption but can monitor both the
encrypted traffic flowing from the user to the first or entry relay and
the traffic flowing from the final or exit relay to the user’s commu-
nication partner. This situation, while unlikely a decade ago, might
be realistic today if both the user and her communication target are
located in a single country, and the attacker is an ISP controlled
or compromised by a state-level surveillance agency. In this case,
the attacker in principle need only monitor the entry and exit traffic
streams and correlate them via known fingerprinting methods.

For decades, this global-passive-adversary attack model was re-
garded as unrealistically strong, and used to justify “conservative”
assumptions in formal models [10]. Unfortunately, this adversar-
ial model is now not only realistic but in fact too weak. With the
commercialization and widespread deployment of routers that can
perform deep packet inspection and modification, including “Man-
in-the-Middle attacks” against encrypted SSL streams at line rate
[11], it has become clear that any realistic adversary must be as-
sumed to be active, i.e., able to modify traffic streams at will.

Active attacks.
The ability for an attacker to interfere actively in an anonymity

network creates a wide array of new attacks as well as ways to
strengthen existing traffic-analysis attacks. Figure 3 illustrates one
example of a congestion attack [9]. In this scenario, we assume
that the attacker can directly monitor only one hop of a Tor circuit,
e.g., the traffic from the exit relay to the target web server. The
attacker in this case might be “in the network” or might simply
own or have compromised the web server. The attacker wishes

Figure 4: Example of an intersection attack

to determine the set of relays through which a long-lived circuit
owned by a particular user passes.

The attacker chooses one relay at a time from Tor’s public da-
tabase and remotely attempts to increase that relay’s load by con-
gesting it. For example, the attacker might simulate many ordinary
Tor users to launch a denial-of-service attack on the relay. The at-
tacker can amplify his power by creating artificially long “flower-
petal” circuits that visit the target relay multiple times, each visit
interspersed with a visit to another relay, as shown in Figure 3. Re-
gardless of how congestion is incurred, it slows all circuits passing
through this relay, including the victim circuit, if and only if that
circuit passes through the targeted relay. The attacker can there-
fore test whether a particular victim circuit flows through a par-
ticular router, simply by checking whether the victim circuit’s av-
erage throughput (which can be measured at any point along the
circuit) slows down during the period of attacker-generated con-
gestion. The attacker repeatedly probes different relays this way
until he identifies the victim’s entry and middle relays. Finally,
the attacker might fully de-anonymize the user by focusing traffic
analysis on, or hacking, the user’s entry relay.

Intersection attacks.
In most practical uses of anonymous communication, a user typ-

ically needs to send not just a single “one-off” message anony-
mously but a sequence of messages that are explicitly related and
hence inherently linkable to each other. For example, Tor clients
need to maintain persistent TCP connections and engage in back-
and-forth “conversations” with web sites in order to support inter-
active communication, sending new HTTP requests that depend on
the web server’s responses to the client’s previous HTTP requests.
It is manifestly obvious at least to the web server (and probably to
any eavesdropper who can monitor the connection between the Tor
exit relay and the web site) which packets comprise the same Web
communication session, even if it is not (yet) clear who initiated
that session. Further, if the user leaves an anonymous browser win-
dow open for an extended period or regularly logs into the same
anonymous Web mail account, an eavesdropper may be able to link
many of the user’s browsing sessions together over a long period
of time. Even if each message gives the attacker only a small and
statistically uncertain amount of information just slightly narrow-
ing the identity of the anonymous user, combining this information
across many observation points at different times rapidly strength-
ens the attacker’s knowledge.

In one example of this attack illustrated in Figure 4, an authori-
tarian government compels its ISPs or cellular carriers to turn over
logs of which customers were online and actively using the network
during which periods of time. An anonymous dissident posts blog
entries to a pseudonymous blog at different points in time. Assume



Figure 5: Example of a software-exploit attack

that the attacker controls none of the user’s onion relays. Nor does
he control the blog server; he merely observes the times at which
the blog entries appeared and the fact that the posts are manifestly
linkable to each other, and he can correlate this information with
the ISP logs. Perhaps the subject of the blog is official corruption
in a particular city, enabling the authoritarian state to guess that the
dissident lives in that city and narrow attention to a small set of lo-
cal ISPs. The attacker merely retrieves the sets of users who were
online at each time a blog post appeared and intersects those sets.
Although there may be many thousands of users online at each of
these posting times individually, all users other than the dissident in
question are likely to have gone offline during at least one of these
times (because of normal churn – the partly random comings and
goings of most users), allowing the attacker to eliminate them from
the victim’s anonymity set. The attacker simply needs to “wait and
watch” until the dissident has posted enough blog entries, and the
intersection of the online-user sets will shrink to a singleton.

The strength of this attack in practice is amply demonstrated by
the fact that similar reasoning is used regularly in law enforce-
ment [19]. The FBI caught a Harvard student who used Tor to
post a bomb threat by effectively intersecting the sets of Tor users
and Harvard network users at the relevant time. Paula Broadwell
was de-anonymized via the equivalent of an intersection attack, as
were the “High Country Bandits”. Intersection attacks also form
the foundation of the NSA’s CO-TRAVELER program, which links
known surveillance targets with unknown potential targets as their
respective cellphones move together from one cell tower to another.

Software exploits and self-identification.
No anonymous communication system can succeed if other soft-

ware the user is running gives away his network location. In a re-
cent attack against the Tor network, illustrated in Figure 5, a num-
ber of hidden services (web sites whose locations are protected by
Tor and which can be accessed only via Tor) were compromised
so as to send malicious JavaScript code to all Tor clients who con-
nected to them. This malicious JavaScript exploited a vulnerabil-
ity in a particular version of Firefox distributed as part of the Tor
Browser Bundle. This exploit effectively “broke out” of the usual
JavaScript sandbox and ran native code as part of the browser’s pro-
cess. This native code simply invoked the host operating system to
learn the client’s true (de-anonymized) IP address, MAC address,
etc., and sent them to an attacker-controlled server.

4. COLLECTIVE ANONYMITY IN DISSENT
As a step toward addressing these challenges, we now intro-

duce Dissent, a project that expands the design space and explores
starkly contrasting foundations for anonymous communication.

4.1 Alternative foundations for anonymity
Quantification and formal analysis of OR security under realis-

tic conditions has proven an elusive goal [10]. Dissent therefore
builds on alternative anonymity primitives with more readily prov-
able properties: verifiable shuffles and dining cryptographers.

Verifiable shuffles.
In a typical cryptographic shuffle, participating nodes play two

disjoint roles: there is a set of n clients with messages to send and
a set of m shufflers that randomly permute those messages. Com-
munication proceeds in synchronous rounds. In each round, each
of the n clients encrypts a single message under m concentric lay-
ers of public-key encryption, using each of the m shufflers’ public
keys, in a standardized order. All n clients send their ciphertexts
to the first shuffler, which holds the private key to the outermost
layer of encryption in all the clients’ ciphertexts. The first shuf-
fler waits until it receives all n clients’ ciphertexts, then unwraps
this outermost encryption layer, randomly permutes the entire set
of ciphertexts, and forwards the permuted batch of n ciphertexts
to the next shuffler. Each shuffler in turn unwraps another layer of
encryption, permutes the batch of ciphertexts, then forwards them
to the next shuffler. The final shuffler then broadcasts all the fully
decrypted cleartexts to all potentially interested recipients.

In an “honest-but-curious” security model in which we assume
each shuffler correctly follows the protocol (without, for example,
inserting, removing, or modifying any ciphertexts), the output from
the last shuffler offers provable anonymity among all non-colluding
clients, provided at least one of the shufflers keeps its random per-
mutation secret. Unfortunately, if any of the shufflers is actively
dishonest, this anonymity is easily broken. For example, if the first
shuffler duplicates the ciphertext of some attacker-chosen client,
then the attacker may be able to distinguish the victim’s cleartext
in the shuffle’s final output simply by looking for the cleartext that
appears twice in the otherwise-anonymized output batch.

A substantial body of work addresses these vulnerabilities to
such active attacks. In a sender-verifiable shuffle [4, 6], each client
inspects the shuffle’s output to ensure that its own message was not
dropped, modified, or duplicated before allowing the shuffled mes-
sages to be fully decrypted and used. More sophisticated and com-
plex provable shuffles, such as Neff’s [17], enable each shuffler to
prove to all observers the correctness of its entire shuffle, i.e., that
the shuffler’s output is a correct permutation of its input, without
revealing any information about which permutation it chose.

Both types of verifiable shuffles offer cryptographic guarantees
that the process of shuffling reveals no information about which of
the n clients submitted a given message appearing in the shuffled
output. Shuffling has the practical disadvantage that the level of
security achievable against potentially compromised shufflers de-
pends on the number of shufflers in the path, and multiple shuf-
flers must inherently be placed in sequence to improve security; in
essence, latency is inversely proportional to security. The typical
cascade arrangement above, where all clients send their messages
through the same sequence of shufflers at the same time, is most
amenable to formal anonymity proofs, but exacerbates the perfor-
mance problem by creating the “worst possible congestion” at each
shuffler in succession instead of randomly distributing load across
many shufflers as an ad hoc, individualistic OR network would.

For these reasons, verifiable shuffles may be practical only when
high latencies are tolerable, and shufflers are well provisioned. One
relevant application is electronic voting, for which some shuffle
schemes were specifically intended, and which might readily toler-
ate minutes or hours of latency. A second application that arguably
fits this model is anonymous remailers [7], which were popular be-

http://nakedsecurity.sophos.com/2013/12/20/use-of-tor-pointed-fbi-to-harvard-university-bomb-hoax-suspect/
http://nakedsecurity.sophos.com/2013/12/20/use-of-tor-pointed-fbi-to-harvard-university-bomb-hoax-suspect/
https://www.aclu.org/blog/technology-and-liberty-national-security/surveillance-and-security-lessons-petraeus-scandal
https://www.aclu.org/blog/technology-and-liberty-national-security/surveillance-and-security-lessons-petraeus-scandal
http://arstechnica.com/tech-policy/2013/08/how-cell-tower-dumps-caught-the-high-country-bandits-and-why-it-matters/
http://apps.washingtonpost.com/g/page/national/how-the-nsa-is-tracking-people-right-now/634/


Figure 6: The Dining Cryptographers approach to anonymous
communication. Alice reveals a 1-bit secret to the group, but
neither Bob nor Charlie learn which of the other two members
sent this message.

fore onion routing. Practical remailer systems have never to our
knowledge employed state-of-the-art verifiable shuffles featuring
anonymity proofs, however, and were vulnerable to active attacks
analogous to the message duplication attack mentioned above.

Dining cryptographers.
The only well studied foundation for anonymity not based on se-

quential relaying is Dining Cryptographers or DC-nets, invented by
David Chaum in the late 1980s [5] but never used in practical sys-
tems until two decades later by Herbivore [20]. Instead of relaying,
DC-nets build on information-coding methods.

Consider Chaum’s standard scenario, illustrated in Figure 6. Three
cryptographers are dining at a restaurant when the waiter informs
them that their meal has been paid for. Growing suspicious, they
wish to learn whether one of their group paid the bill anonymously,
or NSA agents at the next table paid it. So each adjacent pair of
cryptographers flips a coin that only the two can see. Each cryp-
tographer XORs the coins to his left and right and writes the re-
sult on a napkin everyone can see—except any cryptographer who
paid the bill (Alice in this case), who flips the result of the XOR.
The cryptographers then XOR together the values written on all the
napkins. Because each coin toss affects the values of exactly two
napkins, the effects of the coins cancel out of the final result, leav-
ing a 1 if any cryptographer paid the bill (and lied about the XOR)
or a 0 if no cryptographer paid. A 1 outcome provably reveals no
information about which cryptographer paid the bill, however: Bob
and Charlie cannot tell which of the other two cryptographers paid
it (unless of course they collude against Alice).

DC-nets generalize readily to support larger groups and trans-
mission of longer messages. Typically each pair of cryptographers
uses Diffie-Hellman key exchange to agree on a shared seed for a
standard pseudorandom-bit generator, which efficiently produces
the many “coin flips” needed to anonymize multi-bit messages.
While theoretically appealing, however, DC-nets have not been per-
ceived as practical, for at least three reasons illustrated in Figure 7.
First, in groups of size N , optimal security normally requires all
pairs of cryptographers to share coins, yielding complexity Ω(N2),
both computational and communication. Second, large networks
of “peer-to-peer” clients invariably exhibit high churn, with clients
going offline at inopportune times; if a DC-nets group member dis-
appears during a round, the results of the round become unusable
and must be restarted from scratch. Third, large groups are more
likely to be infiltrated by misbehaving members who might wish to
block communication, and any member of a basic DC-nets group
can trivially—and anonymously—jam all communication simply
by transmitting a constant stream of random bits.

Figure 7: Why DC-nets are hard to scale in practice: (1) worst-
case N × N coin-sharing matrix; (2) network churn requires
rounds to start over; (3) malicious members can anonymously
jam the group.

4.2 Practical dining cryptographers
Utilizing the DC-nets foundation in practical systems requires

solving two main challenges: jamming and scalability. Herbivore [20]
pioneered the exploration of practical solutions to both of these
problems, and the Dissent project continues this work.

The jamming problem.
Both Chaum’s original paper [5] and many follow-up works stud-

ied theoretical solutions to the jamming problem, but were complex
and to our knowledge never put into practice. Herbivore sidestepped
the jamming problem by securely dividing a large peer-to-peer net-
work into many smaller DC-nets groups, enabling a peer who finds
himself in an unreliable or jammed group to switch groups until he
finds a functioning one. This design has the advantage of scaling to
support arbitrary-sized networks, with the downside that each peer
obtains provable anonymity only within his own group – typically
tens of nodes at most – and not guaranteeing anonymity within the
larger network. A second downside of switching groups to avoid
jamming is that an attacker who runs many Sybil nodes and selec-
tively jams only groups he cannot compromise completely, while
offering good service in groups in which he has isolated a single
“victim” node, can make it more likely that a victim “settles” in a
compromised group than an uncompromised one [3].

Dissent, the only system since Herbivore to put DC-nets into
practice, explores different solutions to these challenges. First,
Dissent addresses the jamming problem by implementing account-
ability mechanisms, allowing the group to revoke the anonymity
of any peer found to be attempting to jam communication ma-
liciously while preserving strong anonymity protection for peers
who “play by the rules.” Dissent’s first version introduced a con-
ceptually simple and clean accountability mechanism that lever-
aged the verifiable-shuffle primitive discussed above, at the cost of
requiring a high-latency shuffle between each round of (otherwise
more efficient) DC-nets communication. The next version [23] in-
troduced a more efficient but complex retroactive-blame mecha-
nism, allowing lower-latency DC-nets rounds to be performed “back-
to-back” in the absence of jamming and requiring an expensive
shuffle only once per detected jamming attempt.



Figure 8: Improving scalability and churn resistance through
an asymmetric, client/server DC-nets architecture.

An adversary who manages to infiltrate a group with many ma-
licious nodes, however, could still “sacrifice” them one-by-one to
create extended denial-of-service attacks. Addressing this risk, Dis-
sent’s most recent incarnation [6] replaces the “coins” of classic
DC-nets with pseudorandom elliptic-curve group elements, replaces
the XOR combining operator with group multiplication, and re-
quires clients to prove their DC-nets ciphertexts correct on sub-
mission, using zero-knowledge proofs. To avoid the costs of us-
ing elliptic-curve cryptography all the time, Dissent implements a
hybrid mode that uses XOR-based DC-nets unless jamming is de-
tected, at which point the system switches to elliptic-curve DC-nets
only briefly to enable the jamming victim to broadcast an accusa-
tion, yielding a more efficient retroactive-blame mechanism.

Scaling and network churn.
Even with multiple realistic solutions to the jamming problem

now available, DC-nets cannot offer useful anonymity if they can
guarantee anonymity-set sizes of at most tens of members. Herbi-
vore addressed the N×N communication complexity problem via
a star topology, in which a designated member of each group col-
lects other members’ ciphertexts, XORs them together, and broad-
casts the results to all members. Without a general solution to the
network churn and jamming problems, however, both Herbivore
and the first version of Dissent were limited in practice to small
anonymity sets comprising at most tens of nodes.

To address churn and scale DC-nets further, Dissent now adopts
a client/multi-server model with trust split across several servers,
preferably administered independently. No single server is trusted;
in fact, Dissent preserves maximum security provided only that not
all of a group’s servers maliciously collude against their clients.
The clients need not know or guess which server is trustworthy but
must merely trust that at least one trustworthy server exists.

When a Dissent group is formed, the group creator defines both
the set of servers to support the group and the client-admission pol-
icy; in the simplest case, the policy is simply a list of public keys
representing group members. Dissent servers thus play a role anal-
ogous to relays in Tor, serving to support the anonymity needs of
many different clients and groups. Like Tor relays, the Dissent
servers supporting a new group might be chosen automatically from
a public directory of available servers to balance load. Choosing the
servers for each group from a larger “cloud” of available servers in
this way in principle enables Dissent’s design to support an arbi-
trary number of groups, but the degree to which an individual group
scales may be more limited. If a particular logical group becomes
extremely popular, Herbivore’s technique of splitting a large group
into multiple smaller groups may be applicable. Our current Dis-
sent prototype does not yet implement either a directory service or
Herbivore-style subdivision of large networks, however.

While individual groups do not scale indefinitely, Dissent ex-
ploits its client/multi-server architecture to make groups scale two
orders of magnitude beyond prior DC-nets designs [23]. As illus-

Figure 9: Fingerprinting or staining attacks

trated in Figure 8, clients no longer share secret “coins” directly
with other clients but only with each of the group’s servers. Since
the number of servers in each group is typically small (e.g., 3–5,
comparable to the number of Tor relays supporting a circuit), the
number of pseudorandom strings each client must compute is sub-
stantially reduced. This change does not reduce anonymity, how-
ever, subject to Dissent’s assumption that at least one server is hon-
est. Chaum’s DC-nets security proof [5] ensures ideal anonymity
provided all honest nodes are connected via the coin-sharing graph;
Dissent satisfies this requirement, because the one honest server as-
sumed to exist shares coins directly with all honest clients.

More importantly in practice, Dissent’s client/multi-server coin-
sharing design addresses network churn by making the composition
of client ciphertexts independent of the set of other clients online in
a given round. The servers set a deadline, and all clients currently
online must submit their ciphertexts by that deadline or risk being
“left out” of the round. Unlike prior DC-nets designs, if some Dis-
sent clients miss the deadline, the other clients’ ciphertexts remain
usable. The servers merely adjust the set of client/server-shared
secrets they use to compute their server-side DC-net ciphertexts.
Because each client’s ciphertext depends on secrets it shares with
all servers, no client’s ciphertext can be used or decrypted unless all
servers agree on the same set of online clients in the round and pro-
duce correct server-side ciphertexts based on that agreement. Mali-
cious servers can at most corrupt a round and cannot de-anonymize
clients except by colluding with all other servers.

4.3 How Dissent handles attacks
We now summarize how Dissent handles the attacks in Section 3.

Global traffic analysis.
Dissent builds on anonymity primitives that have formal secu-

rity proofs in a model where the attacker is assumed to monitor all
network traffic sent among all participating nodes but cannot break
the encryption. We have extended these formal security proofs to
cover the first version of the full Dissent protocol [21], and formal
analysis of subsequent versions is in progress. Although verifiable
shuffles differ from DC-nets in their details, both approaches share
one key property that enables formal anonymity proofs: All par-
ticipants act collectively under a common “control plane” rather
than individually as in an ad hoc OR system. For example, they
send identical amounts of network traffic in each round, although
amounts and allocations may vary from round to round.



Active attacks.
One countermeasure to traffic analysis in OR is to “pad” connec-

tions to a common bit rate. While padding may limit passive traffic
analysis, it often fails against active attacks, for reasons illustrated
in Figure 9. Suppose a set of OR users pad the traffic they send to
a common rate, but a compromised upstream ISP wishes to “mark”
or “stain” each client’s traffic by delaying packets with a distinctive
timing pattern. An OR network, which handles each client’s circuit
individually, preserves this recognizable timing pattern (with some
noise) as it passes through the relays, at which point the attacker
might recognize the timing pattern at the egress more readily than
would be feasible with a traffic-confirmation attack alone. Active
attacks also need not mark circuits solely via timing. A sustained
attack deployed against Tor last year exploited another subtle pro-
tocol side-channel to mark and correlate circuits, going undetected
for five months before being discovered and thwarted last July.

The collective-anonymity primitives underlying Herbivore and
Dissent, in contrast, structurally keep the clients comprising an
anonymity set in “lock-step,” under the direction of a common,
collective control plane. As in the popular children’s game “Si-
mon Says,” participants transmit when and how much the collec-
tive control plane tells them to transmit. A client’s network-visible
communication behavior does not leave a trackable fingerprint or
stain, even under active attacks such as those above, because its
network-visible behavior depends only on this anonymized, collec-
tive control state; that is, a client’s visible behavior never depends
directly on individual client state. Further, the Dissent servers im-
plementing this collective control plane do not know which user
owns which pseudonym or DC-nets transmission slot and thus can-
not leak that information via their decisions, even accidentally.

Contrary to the intuition that defense against global traffic anal-
ysis and active attacks require padding traffic to a constant rate,
Dissent’s control plane can adapt flow rates to client demand by
scheduling future rounds based on (public) results from prior rounds.
For example, the control-plane scheduler dynamically allocates DC-
nets transmission bandwidth to pseudonyms who in prior rounds
anonymously indicated a desire to transmit and hence avoids wast-
ing network bandwidth or computation effort when no one has any-
thing useful to say. Aqua, a recent project to strengthen OR secu-
rity, employs a similar collective-control philosophy to normalize
flow rates dynamically across an anonymity set [15]. In this way,
a collective control plane can in principle not only protect against
both passive and active attacks but, ironically, can also improve ef-
ficiency over padding traffic to a constant bit rate.

Intersection attacks.
While the power and generality of intersection attacks has been

extensively studied in the past decade, there has been scant work on
actually building mechanisms to protect users of practical systems
against intersection attacks. The nearest precedents we are aware of
are suggestions that traffic padding may make intersection attacks
more difficult [16]. To the best of our knowledge, such proposals
have never been implemented, in part because there is no obvious
way to measure how much protection against intersection attacks a
given padding scheme will provide in a real environment.

Dissent is the first anonymity system designed with mechanisms
both to measure potential vulnerability to intersection attacks, us-
ing formally grounded but plausibly realistic metrics, and to of-
fer users active control over anonymity loss under intersection at-
tacks [25]. Dissent implements two different anonymity metrics:
possinymity, a possibilistic measurement of anonymity-set size mo-
tivated by “plausible-deniability” arguments, and indinymity, an in-

Figure 10: Nymix: using per-pseudonym virtual machines or
NymBoxes to harden the client operating system against soft-
ware exploits, staining, and self-identification

distinguishability metric effective against stronger adversaries that
may make probabilistic “guesses” via statistical disclosure [16].

Users may set policies for long-lived pseudonyms limiting the
rate at which measured possinymity or indinymity may be lost, or
setting a threshold below which these metrics must not fall. Dis-
sent’s collective control plane enforces these policies in essence by
detecting when allowing a communication round to proceed might
reduce a pseudonym’s possinymity or indinymity “too much” and,
in response, suppressing or delaying communication temporarily.
The control plane can compute these metrics and enforce these
policies even though its logic does not “know” which user actu-
ally owns each pseudonym. The downside is that employing these
controls to resist intersection attacks can reduce the responsiveness,
availability, and/or lifetime of a pseudonym. We believe this cost
reflects a fundamental tradeoff between anonymity and availability.

Software exploits and self-identification.
No anonymity protocol, by itself, can prevent de-anonymization

via software exploits or user self-identification. Nevertheless, the
Dissent project is exploring system-level solutions to this problem
via Nymix, a prototype USB-bootable Linux distribution that em-
ploys virtual machines (VMs) to improve resistance to exploits [24].

As shown in Figure 10, Nymix runs anonymity-client software
(currently either Tor or Dissent) in the platform’s host operating
system but isolates the browser and any plug-ins and other exten-
sions it may depend on in a separate Guest VM. No software in this
guest VM is given access to information about the physical host OS
or its network configuration. For example, the guest VM sees only
a standard private (NATted) IP address such as 192.168.1.1 and the
fake MAC address of a virtual device. Even native code injected
by the recent Tor Browser Bundle exploit would thus not be able to
“leak” the client’s IP address without also breaking out of the VM
(which of course may be possible, but raises the attack difficulty).

Nymix binds guest-VM state instances to pseudonyms managed
by the anonymity layer, enabling users to launch multiple simulta-
neous pseudonyms in different VMs or NymBoxes. Nymix securely
discards all pseudonym state embodied in a NymBox when desired
to minimize the user’s long-term exposure to intersection attacks.
This binding of pseudonyms to VMs makes it easy for the user to
maintain state related to the context of one logical pseudonym (such
as Web cookies, open logins, etc.), while offering stronger pro-
tection against the user’s accidentally linking different pseudonym

http://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
http://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
http://www.wired.com/2014/08/operation_torpedo/


VMs, because they appear as entirely separate OS environments
and not just different browser windows or tabs.

To reduce the risk of self-identification, Nymix allows the user
to “move” data between non-anonymous contexts, such as personal
JPEG photos stored on the host OS, and pseudonym-VM contexts
only via a quarantine file system “drop box.” Any files the user
moves across browsing contexts in this way undergoes a suite of
tests for possibly compromising information, such as EXIF meta-
data within JPEGs. The quarantine system warns the user of any
detected compromise risks and gives him the opportunity to scrub
the file or decide not to transfer it at all. While all of these de-
fenses are inherently “soft,” because there is only so much we can
do to prevent users from shooting themselves in the foot, Nymix
combines these VM-based isolation and structuring principles in
an effort to make it easier for users to make appropriate and well
informed uses of today’s and tomorrow’s anonymity tools.

5. CHALLENGES AND FUTURE WORK
Dissent takes a few steps in developing a collective approach to

anonymous communication, but many practical challenges remain.
First, while DC-nets now scale to thousands of users, they need

to scale to hundreds of thousands or more. One approach is to
combine Dissent’s scaling techniques with those of Herbivore [20]
by dividing large anonymity networks into manageable anonym-
ity sets (e.g., hundreds or thousands of nodes), balancing perfor-
mance against anonymity guarantees. A second approach is to use
small, localized Dissent clusters, which already offer performance
adequate for interactive Web browsing [23, 24], as a decentralized
implementation for the crucial entry-relay role in a Tor circuit [1].
Much of a Tor user’s security depends on his entry relay’s being
uncompromised [14]; replacing this single point of failure with a
Dissent group could distribute the user’s trust among the members
of this group and further protect traffic between the user and the
Tor relays from traffic analysis by “last mile” ISP adversaries.

Second, while Dissent can measure vulnerability to intersection
attack and control anonymity loss [25], it cannot also ensure avail-
ability if users exhibit high churn and individualistic, “every user
for himself” behavior. Securing long-lived pseudonyms may be
feasible only in applications that incentivize users to keep commu-
nication devices online consistently, even if at low rates of activ-
ity, to reduce anonymity decay caused by churn. Further, robust
intersection-attack resistance may be practical only in applications
designed to encourage users to act collectively, rather than individ-
ually, and optimized for these collective uses.

Applications in which users cooperatively produce collective in-
formation “feeds” consumed by many others users may be well
suited to Dissent’s collective anonymity model: e.g., the interac-
tion models of IRC, forums like Twitter or Slashdot, or applications
supporting voting, deliberating, or “town hall” meetings. Given the
close relationship between collective deliberation and the founda-
tions of democracy and freedom of speech, such applications may
also represent some of the most socially important use cases for
online anonymity. How best to support and incentivize cooperative
behavior, however, remains an important open problem.

Finally, it is clear that large anonymity sets require widespread
public demand for anonymity. Tor’s 40M “mean daily users” are
dwarfed in number by the users of Google, Facebook, Yahoo!, and
other services that do not provide anonymity – and cannot provide
it, because their business models depend crucially on exploitation
of personal information. Public demand for anonymity online may
rise as a result of the ongoing surveillance scandal, thereby provid-
ing an opportunity to deploy new anonymity tools.

6. REFERENCES
[1] Tor: Anonymity online.

https://www.torproject.org.
[2] Tor metrics portal.

http://metrics.torproject.org/.
[3] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa

Tabriz. Denial of service or denial of security? How attacks
on reliability can compromise anonymity. In Proceedings of
the 14th ACM Conference on Computer and
Communications Security.

[4] Justin Brickell and Vitaly Shmatikov. Efficient
anonymity-preserving data collection. In 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD), August 2006.

[5] David Chaum. The Dining Cryptographers problem:
Unconditional sender and recipient untraceability. Journal of
Cryptology, pages 65–75, January 1988.

[6] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan
Ford. Proactively accountable anonymous messaging in
Verdict. In 22nd USENIX Security Symposium, August 2013.

[7] George Danezis, Roger Dingledine, and Nick Mathewson.
Mixminion: Design of a Type III anonymous remailer
protocol. In IEEE Security and Privacy (SP), pages 2–15,
May 2003.

[8] Roger Dingledine and Steven J. Murdoch. Performance
improvements on Tor or, why Tor is slow and what we’re
going to do about it. In DEFCON 17, July 2009.

[9] Nathan S. Evans, Roger Dingledine, and Christian Grothoff.
A practical congestion attack on Tor using long paths. In
18th USENIX Security Symposium, August 2009.

[10] Joan Feigenbaum, Aaron Johnson, and Paul Syverson.
Probabilistic analysis of onion routing in a black-box model.
ACM Transactions on Information and System Security,
15(3):14:1–14:28, November 2012.

[11] Ryan Gallagher. New Snowden documents show NSA
deemed Google networks a “target”. Slate, September 9,
2013.

[12] Barton Gellman, Craig Timberg, and Steven Rich. Secret
NSA documents show campaign against Tor encrypted
network. The Washington Post, October 4, 2013.

[13] David M. Goldschlag, Michael G. Reed, and Paul F.
Syverson. Hiding Routing Information. In 1st International
Workshop on Information Hiding, May 1996.

[14] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and
Paul Syverson. Users get routed: Traffic correlation on Tor
by realistic adversaries. In 20th ACM Conference on
Computer and Communications Security (CCS), November
2013.

[15] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter
Druschel, Hitesh Ballani, and Paul Francis. Towards efficient
traffic-analysis resistant anonymity networks. In ACM
SIGCOMM, August 2013.

[16] Nick Mathewson and Roger Dingledine. Practical traffic
analysis: extending and resisting statistical disclosure. In 4th
International Workshop on Privacy Enhancing Technologies
(PETS), May 2004.

[17] C. Andrew Neff. A verifiable secret shuffle and its
application to e-voting. In 8th ACM Conference on Computer
and Communications Security (CCS), November 2001.

[18] James Risen and Laura Poitras. NSA report outlined goals
for more power. The New York Times, November 22, 2013.

https://www.torproject.org
http://metrics.torproject.org/


[19] Aaron Segal, Bryan Ford, and Joan Feigenbaum. Catching
bandits and only bandits: Privacy-preserving intersection
warrants for lawful surveillance. In 4th USENIX Workshop
on Free and Open Communications on the Internet
(FOCI’14), August 2014.

[20] Emin Gün Sirer, Sharad Goel, Mark Robson, and Dǒgan
Engin. Eluding carnivores: File sharing with strong
anonymity. In 11th ACM SIGOPS European Workshop,
September 2004.

[21] Ewa Syta, Aaron Johnson, Henry Corrigan-Gibbs, Shu-Chun
Weng, David Isaac Wolinsky, and Bryan Ford. Security
analysis of accountable anonymity in Dissent. ACM
Transactions on Information and System Security (TISSEC),
17(1), August 2014.

[22] Robert Watts. JK Rowling unmasked as author of acclaimed
detective novel. The Telegraph, July 13, 2013.

[23] David Isaac Wolinsky, Henry Corrigan-Gibbs, Aaron
Johnson, and Bryan Ford. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
October 2012.

[24] David Isaac Wolinsky, Daniel Jackowitz, and Bryan Ford.
Managing NymBoxes for identity and tracking protection. In
USENIX Conference on Timely Results in Operating
Systems, October 2014.

[25] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. Hang with
your buddies to resist intersection attacks. In 20th ACM
Conference on Computer and Communications Security
(CCS), November 2013.


	Introduction
	Onion Routing and Tor
	Attacks on Onion Routing
	Collective Anonymity in Dissent
	Alternative foundations for anonymity
	Practical dining cryptographers
	How Dissent handles attacks

	Challenges and Future Work
	References

