
Immunizing Systems from Distant Failures
by Limiting Lamport Exposure

Cristina Băsescu
Swiss Federal Institute of Technology (EPFL)

cristina.basescu@epfl.ch

Bryan Ford
Swiss Federal Institute of Technology (EPFL)

bryan.ford@epfl.ch

A distributed system is one in which the failure of a
computer you didn’t even know existed can render your
own computer unusable.

Leslie Lamport

ABSTRACT
Failures far away from a user should intuitively be less likely
to affect that user. Today’s ecosystem miserably fails this test,
however, despite high-availability best practices. Correlated
and cascading failures – triggered by misconfigurations, bugs,
and network partitions – often invalidate assumptions of fail-
ure independence. We propose that distributed services need
not and should not expose local activities to distant failures
or partitions, no matter how severe. Limix is an exposure-
limiting architecture, guaranteeing that neither the availability
nor the performance of strongly-consistent accesses within a
local area may be impacted by distant failures. Preliminary
results suggest that infrastructures today could use Limix to
limit exposure at a manageable cost.

ACM Reference Format:
Cristina Băsescu and Bryan Ford. 2021. Immunizing Systems from
Distant Failures by Limiting Lamport Exposure. In The Twentieth
ACM Workshop on Hot Topics in Networks (HotNets ’21), November
10–12, 2021, Virtual Event, United Kingdom. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3484266.3487387

1 INTRODUCTION
Distributed services – especially cloud services – generally
aspire to be fast and always available from anywhere. The
CAP theorem [5, 6], however, presents us in theory a sim-
ple choice of two among the three properties of consistency,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487387

availability, and partition-tolerance. Cloud platforms attempt
to simplify this choice by reducing network partitions to “rare
events”: assuming partitions are sufficiently unlikely, we can
achieve strong consistency with high availability.

In practice, however, individually-rare but correlated or cas-
cading failures frequently puncture the cloud’s illusion of hav-
ing “solved” the CAP tradeoff. Leslie Lamport’s quote above,
while dating from the 80s, pointedly describes today’s state of
affairs. Reality abounds with unavailability and slowdowns,
caused by misconfiguration [18, 23], cascading failures due
to partially functional equipment [15], and partitions due to
software bugs [3, 9], despite best-practice geo-replication.
A single Fastly customer recently triggered a bug causing a
global outage [11]. Failures such as these result in widespread
downtime and loss of revenue [2].

We ask a simple question: is it truly acceptable that “the
failure of a computer you didn’t even know existed” – located
anywhere in the world and run by one of many companies you
also probably didn’t even know existed – “can render your
own computer unusable”? Is it fair or responsible that we ex-
pose users continually to a vast multitude of failure risks that
are both non-transparent (infrastructure and operators “you
didn’t know existed”) and unbounded (potentially located
anywhere) – no matter how simple or localized a user’s actual
computing needs might be? And what would the implications
be for distributed service designs if we were to decide that
the answer to this question is no?

Suppose Alice is conferencing with Bob, another user lo-
cated in the same city or corporate campus, while collabora-
tively editing a document that is similarly accessed primarily
by users in the same local area. We conceptually define the
Lamport exposure of Alice’s activity as the set of infrastruc-
ture elements anywhere that could contribute to halting her
work. That is, Alice’s Lamport exposure is the complete set
of infrastructure failure risks – including cloud services, net-
work, power, etc. – that her particular activities depends on,
directly or indirectly, and whose individual or joint failure
could ultimately grind her work to a halt.

We believe distributed systems should be designed to make
Lamport exposure transparent to users, under the control of
users, and ideally limited to the smallest set of failure risks
feasible for a given application. As a purely-illustrative exam-
ple, simple packet forwarding, in an idealized network run

https://doi.org/10.1145/3484266.3487387
https://doi.org/10.1145/3484266.3487387

HotNets ’21, November 10–12, 2021,
Virtual Event, United Kingdom

Cristina Băsescu and Bryan Ford

by a shortest-path routing algorithm, has a natural Lamport
exposure-limiting property. If Alice is communicating with
Bob at a network distance of Δ, then no combination of node
or link failures beyond a distance of Δ from Alice can halt
Alice’s activity – because nodes and links beyond this radius
cannot be on the shortest path. Alice’s chat with Bob is thus
“immune” to failures farther than Δ from her, hence her chat’s
Lamport exposure is limited to a radius of Δ.

The real Internet fails to guarantee such exposure limiting
even for basic TCP/IP communication, due to congestion or
complex off-path failures such as BGP hijacking, for example.
And almost no complex applications or services higher up
the stack – especially those requiring strong consistency –
currently guarantee any readily-definable exposure limits. If
Alice’s activity 𝐴 depends on strongly-consistent state repli-
cated globally, then 𝐴’s Lamport exposure is generally a large,
global set of devices that Alice probably “didn’t even know
existed” – so 𝐴 is vulnerable to correlated failures and parti-
tions arising anywhere even if they are uncommon.

But the most critical needs for access are often localized:
Alice cares most that her data and services are accessible from
where she usually access them. Trust is also localized: people
tend to trust local businesses [16] and governments [4] more
and may similarly be more willing to trust digital service
providers if they can show that critical services depend only
on local resources. Thus, limiting a service’s Lamport expo-
sure, if achievable, could translate into availability guarantees
more meaningful to users.

Failures far away from a user should intuitively be less
likely to affect that user, but the current ecosystem completely
fails to fulfill this intuition. Can we build services that are
usually available from anywhere, but which can offer trans-
parency about their dependencies, and guarantee accessibility
from where they are typically used or most needed – even
in the face of more distant failures or partitions? This paper
argues that that distributed systems designers and practition-
ers can and should build reliable, fast systems by making
Lamport exposure a core consideration in their design.

How exactly do we even define or measure Lamport ex-
posure precisely, let alone control or limit it systematically?
This paper only scratches the surface of this hard problem
by examining a few key principles, challenges, and potential
approaches to limiting exposure. The next section outlines the
current infrastructure context and opportunities. Section 3 de-
scribes key research questions for exposure-limiting systems,
and Section 4 sketches a preliminary system design, Limix,
that addresses practical concerns such as cost and scalability.

2 CONTEXT AND OPPORTUNITIES
We review the current context in terms of architectures for
distributed systems deployments. With example applications,

we explain that typical deployments may create implicit but
unnecessary dependencies, leading to a suboptimal Lamport
exposure. Finally, for each example, we give some insights of
how to design and deploy systems with a low exposure.

2.1 Geo-Replicated Cloud Services
It is customary to deploy cloud services on a region level
and manage cross-region deployments manually. This trend
matched the restricted offering of cloud providers that started
with a few disjoint, coarse-grained regions, roughly matching
(sub)continents. Several providers now lower their latency to
users by offering more than 25 geographic regions and 80
availability zones (AZs), with further expansion plans [1, 7,
17]. Despite this surge, the deployment of cross-region and
cross-AZ services remains largely the burden of the program-
mer, and perhaps for a good reason. Providers merely ensure
infrastructure-level independence between AZs, leaving cus-
tomers to handle application-specific dependencies.

Geo-replication is not enough. Best-practice geo-replication
across regions cannot alone limit Lamport exposure. Consider
a collaborative document-editing application where users in
different regions edit the document. Storing the document in
one fixed region penalizes far-away users with higher expo-
sure to latency and availability risks. Geo-replicating the doc-
ument across regions requires coordination for consistency
among replicas. Such an application typically masks inde-
pendent replica failures or partitions via consensus [13, 19],
which increases exposure in two ways: (1) Data-plane: Even
if the requested document has a nearby replica, the user may
be unable to access the item without synchronizing with a
quorum of replicas or with the leader, which may be slow
or unreachable. (2) Control-plane: Even if enough document
replicas are in the user’s zone, merely locating the document
often depends on global state that may be located anywhere.
Location metadata cannot usually migrate along with the data,
because the system requires a fixed, known entry point for
lookup. Akkio, a recent geo-replicated KV store [2], migrates
data but not the location database, for example.

Opportunity. We propose Limix, an exposure-limiting ar-
chitecture addresses this challenge by removing false or im-
plicit but unnecessary dependencies. In Limix’s control plane,
a set of potentially-overlapping protection areas or zones
each runs an independent distributed discovery service. Each
zone’s discovery service ensures that all users within the zone
can locate and access any data-plane object or item in the
same zone without availability or performance dependencies
outside that zone. If the (most recent version of the) document
is not in that zone, Limix’s lookup automatically proceeds
to the next-larger overlapping exposure zone. A data-plane
item may still be geo-replicated across multiple state-storage

Immunizing Systems from Distant Failures
by Limiting Lamport Exposure

HotNets ’21, November 10–12, 2021,
Virtual Event, United Kingdom

sites (e.g., data centers); but we consider an item to be within
a zone only if all of its replica sites are in that zone. For ex-
ample, if a data item is replicated across sites in Germany,
France, and Italy, with one replica each, then the item is “in”
the EU-West but not “in” Germany. EU-West users are guar-
anteed to contact a consensus quorum and make progress by
only relying on infrastructure and logic in the EU-West re-
gion. Lamport exposure metrics could be geographic distance
or latency, leveraging the clouds’ rare partitions and stable
inter-region latencies (Section 3.2).

2.2 Peer-to-peer Internet applications
Unlike clouds, which have private interconnects, decentral-
ized peer-to-peer applications must handle unpredictable wide-
area network delays. These delays might be due to attacks,
e.g., denial of service (DoS) or BGP prefix hijacking, but may
also have benign causes, such as autonomous system (AS)
misconfiguration or network sharing effects. Such events arise
because the Internet is a collaboration between ASes with
mutual trust. The BGP routing algorithm continues to operate
largely on a trust basis, though more secure proposals such as
BGPSec are advancing. Likewise, unrelated traffic shares the
Internet links on a best-effort basis, which is why these links
are susceptible to DoS attacks [25, 26].

Absent attacks and misconfigurations, Internet routing al-
gorithms have, in principle, the Lamport exposure property
we aim for. Specifically, these algorithms limit exposure de-
fined through AS routing policies. However, this property
gets lost in the upper software layers, as we explain later.

Blockchains over public networks. Consider consensus-
based public blockchains handling token transfers over the
Internet. Strong consistency is a must in order to avoid double
spending. Consider a transaction between a sender Alice in
France and a receiver Bob in Germany. Bob needs to wait for a
Byzantine quorum of validators to agree on the transaction. In
a global blockchain, this quorum likely involves participants
outside the borders of France and Germany, increasing the
Lamport exposure with all the components and networks
necessary for remote communication.

Opportunity. Blockchains might reduce Lamport exposure
with a “trust-but-verify” architecture. Such architectures have
been proposed in the past, but rely on selecting an unbiased
sample of validators [12]. If the selected sample is far away
from Alice and Bob, e.g., containing nodes in China, then
Lamport exposure remains large. One approach is to define
Lamport exposure along legal jurisdictions. The transaction
between Alice and Bob might require only enough validators
in their two countries to agree. Bob is likely to trust local val-
idators because they are in a common legal framework, and
consequences are more readily enforceable. The transaction

0 20 40 60 80 100
Link failures affecting the locality as % of daily total

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f e
xp

er
im

en
ta

l s
am

pl
es

Locality hop radius 1
Locality hop radius 2
Locality hop radius 3
Locality hop radius 4
Locality hop radius 5
Locality hop radius 6
Locality hop radius 7

Figure 1: CDF of the propagating effect of link failures in
January ’20 over various exposure localities.

still propagates globally along increasing exposure bound-
aries, which independently check the transaction and enable
Bob to enforce retroactive verification.

To get a rough, numerical estimate of exposure-limiting
opportunity, we make a simplistic computation of the failure
exposure of an imaginary exposure-limiting system deployed
over the Internet. This illustrative example has many limita-
tions: for example, we would like the experiment to use all
types of failures across the software stack, not just presumed
link-level failures. We used CAIDA data for the AS graph
from January ’20, which contains several daily snapshots. We
denote as “stable graph” the graph with edges appearing in at
least half of these snapshots, and we consider as failures those
edges that appear in the stable graph but are missing from a
daily snapshot. We run 1000 trials, where each trial builds
localities with a random AS center and hop-count radiuses 1
to 7. For each trial, we select a random day’s snapshot and
count the number of failed links in the locality compared to
the total number of link failures in the snapshot. Figure 1
depicts the CDF of the results. Smaller localities are exposed
to fewer failures, e.g., users connecting to ISP services within
a locality with hop radius 2, in 95% of the cases, are immune
to 90% of the failures. Our goal is to have the same level of
guarantee for the upper levels of the software stack.

3 CHALLENGES
The prospect of building systems that limit Lamport exposure
presents many questions and challenges, of which we briefly
explore three: layering, metrics, and zoning.

Setup. We define locality in terms of administratively-
defined zones: e.g., each country might be a zone. We define
data-plane access targets as items. Items may simply be, e.g.,
key/value pairs in a distributed data store. But Limix could
also be used as a control-plane system to manage the place-
ment, discovery, and migration of heavyweight data-plane
objects such as bulk storage volumes or VMs. For this paper,
we care only that items have a location and a set of exposure-
limiting constraints they must satisfy. We similarly define

HotNets ’21, November 10–12, 2021,
Virtual Event, United Kingdom

Cristina Băsescu and Bryan Ford

sites, which could be data centers, but also finer-grained edge-
network sites, storage nodes in a sensor network, etc. For
simplicity, a user accesses the system though some site.

3.1 Dependencies across layered systems
One challenge is complex cross-layer dependencies. Today’s
web/cloud paradigm is addicted to considering the location of
data, metadata, and code to be unimportant. While convenient
for development, this paradigm increases Lamport exposure.
While Alice and Bob collaboratively edit a document, for
example, layering creates many dependencies beyond the doc-
ument data itself: (1) Higher in the stack, web-based user
interfaces may pull icons and JavaScript from all over the
world. (2) Lower in the stack, Alice’s requests crossing the
public internet depend on BGP routing and many network
elements out of the application provider’s control. (3) Net-
work congestion or other loads on Alice’s zone from requests
coming from outside the zone might degrade Alice’s access.

We might try to apply Limix across all layers in a system.
This approach could in principle account for all dependencies,
but would require many stakeholders to coordinate. A more
tractable approach is to focus primarily on one layer, such as
the application, accepting that uncontrolled residual Lamport
exposure may persist in other layers. While likely impossi-
ble to eliminate, applications might reduce residual Lamport
exposure from lower layers by building on reservation-based
infrastructure proving performance isolation, such as MPLS
tunnels or leased lines at the network layer.

3.2 Metrics for Lamport exposure
To protect users from distant failures, we must precisely de-
fine what “distant” means. Several different matrics may be
appropriate, depending on the situation.

One approach leverages administrative or legal boundaries,
such as countries or economic areas. For data or services
in Germany, for example, regulatory considerations might
demand a metric that treats all sites outside the EU as more
distant than other sites in the EU, independent of geography.

A second obvious metric is geographic straight-line dis-
tance. Because users within geographical proximity tend to
interact more [22], this metric improves the resilience of
common-case interactions. These first two metrics could use
public geo-location databases to define zones, yielding static
zones incurring low administrative overhead.

A third distance metric is round-trip time (RTT), particu-
larly relevant for time-sensitive use cases such as gaming and
voice calls. A fourth metric might be network hop count, on
the grounds that network paths with fewer hops are likely to
have fewer hidden dependencies and thus be more resilient.

3.3 Defining exposure-limiting zones
Given a distance metric, how precisely do we define exposure-
limiting zones, and with what structure and granularity?

We may wish to locate sites not in just one zone each,
but in several overlapping zones to satisfy multiple exposure-
limiting constraints. Addressing concerns of data protection
and sovereignty [20, 21], Limix can simultaneously guarantee
for example that all users within Germany can access an item
in Germany without any availability dependencies outside
of Germany, and that all users within the broader European
Union (EU) can access the same item without dependencies
outside the EU. Limix parallelizes both reads and updates of
location hints across all relevant zones, ensuring that an item
may migrate from Germany to Austria for example, for ei-
ther automated or administrative reasons, while continuously
limiting exposure to the enclosing EU zone.

Even absent explicit contractual or regulatory constraints,
ordinary users dislike it when their local activities are brought
to a halt by distant outages across the globe. Addressing this
common-case challenge, Limix’s autozoning scheme builds
on compact graph summarization theory [27, 28] to construct
exposure-limiting zones automatically based on any distance
metric, such as those defined above in Section 3.2. For any
user accessing an item of interest from a distance Δ, auto-
zoning limits the access’s exposure to a perimeter of at most
𝑂 (log𝑁) ×Δ around the item. Limix thus guarantees that fail-
ures or slowdowns far away cannot impact the availability or
performance of this user activity. Although autozoning might
create several overlapping zones of varying sizes, it ensures
that any item need be in at most 𝑂 (log𝑁) zones, and that
each zone’s discovery service need only bear the aggregate
load of users within the same zone. A detailed description,
however, is out of the scope of this paper.

4 DESIGN
We now outline the design of Limix, motivated by four main
goals: (1) providing strong exposure-limiting guarantees, (2)
satisfying simultaneous constraints, (3) spreading workload
across zones, and (4) enforcing strong data-plane consistency.

4.1 Item discovery
Limix needs to enable clients to find data located anywhere,
regardless of where a lookup is initiated. Exposure-limiting
item discovery is challenging, however. Figure 2a illustrates a
straightforward but inadequate approach, relying on a central
service to store the item discovery metadata. This service
increases the user’s exposure beyond the perimeter of the
user’s and data’s common zone. The single zone may also
become overloaded with requests from all zones.

We can make this strawman scalable by distributing the
discovery service across many or all zones, using standard

Immunizing Systems from Distant Failures
by Limiting Lamport Exposure

HotNets ’21, November 10–12, 2021,
Virtual Event, United Kingdom

location
pointer

discovery service

data item

user
access

(a) Global discovery service
(DS), holds pointers to all data
items.

(b) Full DS per zone, each main-
taining pointers to all data items.

Global zone

(c) Local DS per zone, each hold-
ing pointers only to zone local
data items.

Global zone

EU zone

Global zone

(d) Limix DS with overlapping
zones, points to zone local data
items only.

Figure 2: Strawmen for the discovery service (DS).

techniques such as consistent hashing of keys. Physalia [3]
takes this approach in its discovery cache, for example. This
strawman still increases a node’s Lamport exposure beyond
its zone boundaries, however. To locate a particular item, a
client may need to query discovery service nodes outside the
zone one holding the requested data. A partition might thus
prevent the client from reading the item’s location, although
the partition did not isolate the client from the data itself.

Limix thus needs to ensure that a user in a given zone can
always find an item within the same zone using only resources
within that zone. Efficiently collocating data and metadata so
that they have the same Lamport exposure represents the first
major technical challenge for Limix, which we address by
having a distributed discovery service per zone.

4.2 Discovery load on (local) zones
To enable clients to find any item starting from any zone, our
next strawman would be to replicate all discovery metadata
within all zones, as depicted in Figure 2b. This approach in-
vites the question: What is the maintenance workload imposed
on each zone? Consider the case of updating the discovery
service after an item insertion or migration. Either the destina-
tion zone could push the item’s new location to all zones, or
the user’s zone could pull the item’s new location on demand.
Both the push and pull approaches may incur 𝑂 (𝑛) load and
communication overhead per client request for 𝑛 zones.

Limix instead spreads discovery loads, and limits the bur-
den on small zones, by organizing a default global zone that
overlaps with all local zones. While the global zone must
handle the storage and lookup costs of all items, it can also
spread this load globally across all sites. In our next strawman
illustrated in Figure 2c, local zones store the location only for
items they contain. In contrast, the global zone always serves
as the master reference point, whose globally-distributed dis-
covery service knows every item’s location. Every zone prop-
agates location updates to the global zone. Instead of 𝑂 (𝑛),
per-item update overhead becomes 𝑂 (1). A user queries only

one local discovery service and the global one, without incur-
ring load on other small zones. Location updates propagate
only eventually, off the critical path, to limit the source zone’s
exposure to failures beyond its borders.

With this approach, each zone has its own discovery service
that stores “location hints” for where an item was last known
to be located. Because the location hints propagate only even-
tually, however, metadata might get out of date. For example,
an item’s location could time out and get evicted from a zone’s
discovery service, e.g., due to a long-term network partition.
Then, clients on the “wrong side” of the partition cannot dis-
tinguish whether the target item no longer exists or is merely
unreachable momentarily. Despite each zone’s discovery ser-
vice being an eventually-consistent cache, Limix can ensure
strong consistency for the data plane (Section 4.4).

4.3 Item placement and zone overlap
Aside from the global zone, we assumed so far that local
zones are disjoint. This assumption has a significant limitation,
however: it cannot support simultaneous exposure-limiting
policies, which may apply by law or contractual obligation.
An item located in Germany may need to be accessible by
users in Germany with Lamport exposure limited to sites
within Germany, and also ensure that any user in the EU can
access the same item with exposure limited to the EU. In the
above strawman, EU users outside Germany must query the
global discovery service, yielding global Lamport exposure.

Fortunately, we can address this problem by allowing local
zones to overlap. All zones have a discovery service, and every
zone propagates location updates to larger overlapping zones,
up to the global zone. Update overhead increases slightly
compared to the single global zone, from𝑂 (1) to𝑂 (𝑣), where
𝑣 is the maximum overlap depth. However, this approach
limits Lamport exposure to the smallest zone containing both
the item and the user accessing it. Location updates propagate
only eventually, outside the critical path, to limit the source
zone’s exposure to failures outside its borders. Figure 2d
illustrates the final discovery service architecture.

HotNets ’21, November 10–12, 2021,
Virtual Event, United Kingdom

Cristina Băsescu and Bryan Ford

3 9 27 81 243 max
R1 RTT (ms)

20
40
60

80
100

su

cc
es

se
s

(a) Vanilla deployment.

3 9 27 81 243 max
R1 RTT (ms)

20
40
60

80
100

su

cc
es

se
s

equal (R2=R1)
close (R2=2*R1)
far (R2=5*R1)

(b) Limix autozoning.

Figure 3: Availability during network partitions on AWS.

4.4 Data-plane consistency and migration
Limix may be used only as a control-plane service agnostic to
the data plane design, but it might also be applied to the data
plane. We envision this data-plane design similarly leveraging
the zoned architecture to spread data-access overheads and
limit load on local zones. Each zone is still independent, e.g.,
a data store using its internal mechanisms to replicate the
data within the zone. For strong consistency across zones, we
can apply standard token-passing techniques [24] to identify
uniquely the most recent version of an item.

An item’s placement may need to change, e.g., due to
client-perceived performance and load-balancing algorithms.
A location change could also result from a policy change,
e.g., a new constraint on which zone(s) an item is allowed to
be placed in. One key technical challenge is ensuring strong
consistency during an item’s migration. Our prototype Limix
design takes the following approach: (1) Commit a record at
the old site indicating the item is being migrated to the new
site and should no longer be updated at the old site; (2) Mi-
grate the item’s data-plane state to the new site; (3) Commit
a record at the new site indicating migration is complete and
the item is now usable at its new site; (4) Update discovery
service information independently in parallel across all zones
containing either the item’s old or new location; and (5) Fi-
nally, delete the item’s state at the old site. This migration
process might be driven either by a zone hosting the item or
by a client with administrative control over the item.

4.5 Preliminary results
We implemented a preliminary Limix prototype including
the above discovery service and an autozoning scheme (Sec-
tion 3.3). We applied Limix to CockroachDB, a strongly-
consistent key-value store, without changing its code base.

Figures 3a, 3b depict experimental results on an AWS de-
ployment spanning 20 regions. The two graphs summarize
availability for CockroachDB accesses, where all users of a
data item of interest are located within a locality of a certain
radius 𝑅1. In each experiment, a network partition breaks all
connectivity beyond a certain radius 𝑅2 ≥ 𝑅1 from the same
center. Because vanilla CockroachDB uses consistent hash-
ing to spread replicas around the world disregarding access

locality, it exhibits catastrophic availability failures when a
localized set of users is sharing a data item while partitioned
from the rest of the Internet (the left half of the left figure).
Limix CockroachDB, in contrast, preserves availability with
almost perfect resilience in such “hard“ cases for traditional
geo-replicated systems, by ensuring that the replicas of an
item are reachable within the same zone as its principal users,
even when the rest of the network is unreachable.

5 RELATED WORK
CAP tradeoffs. Confronted with the CAP theorem, much
research focuses on flavors of consistency. Many systems
relax consistency in favor of availability during partitions,
for example. Segmentation [6] identifies parts of the appli-
cation or cases that require different flavors or consistency:
e.g., flight seat reservation requires strong consistency only
when a few seats are left. Gemini [14] distinguishes access
types that require a strongly- or eventually-consistent reply.
Seredinschi et al. [8] provide the user with several replies,
increasing in consistency guarantees, enabling the client to
perform speculative work. In Limix, all accesses are strongly
consistent, and the focus is to provide the smallest possible
exposure to availability failures and slowdowns.

Availability metrics. Unlike the availability metric that
Hauer et al. [10] recently proposed, which reactively analyzes
failures after they occur, Limix proactively limits exposure
in the first place. Limix’s Lamport exposure concept ensures
worst-case guarantees for a user, including rare events that
might not significantly affect the median availability, but still
account for many hours of downtime. In contrast with the
blast radius notion proposed by Brooker et al. [3], which
attempts to reduce the damage caused by a partition, Limix
focuses on users, aiming to insulate their accesses from any
partitions or slowdowns outside a relevant local zone.

6 CONCLUSION
We believe that distributed systems can, and should, limit the
Lamport exposure of local user activities to distant failures.
An exposure-limiting system design like Limix offers users
higher immunity to remote failures and slowdowns when
accessing the local data and services they need most. Pre-
liminary results suggest that exposure-limiting systems are
feasible despite many open questions and challenges.

Acknowledgments
We thank Carmela Troncoso, David Lazar, Vero Estrada-
Galiñanes, Kirill Nikitin, and the anonymous reviewers for
their valuable feedback. This research was supported in part
by EU Horizon 2020 grant 825377, Handshake, Oracle, the
AXA Research Fund, and US ONR grant N000141912361.

Immunizing Systems from Distant Failures
by Limiting Lamport Exposure

HotNets ’21, November 10–12, 2021,
Virtual Event, United Kingdom

REFERENCES
[1] Amazon. 2021. Amazon Web Services cloud regions. https://aws.

amazon.com/about-aws/global-infrastructure/?p=ngi&loc=1. (2021).
[2] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas,

Igor Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael
Stumm. 2018. Sharding the Shards: Managing Datastore Locality at
Scale with Akkio. In Conference on Operating Systems Design and
Implementation (OSDI).

[3] Marc Brooker, Tao Chen, and Fan Ping. 2020. Millions of Tiny
Databases. In Conference on Networked Systems Design and Implemen-
tation (NSDI).

[4] Kathy Frankovic. 2020. Americans trust local govern-
ments over the federal government on COVID-19. https:
//today.yougov.com/topics/politics/articles-reports/2020/04/27/
americans-trust-local-governments. (2020).

[5] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-tolerant Web Services.
ACM SIGACT News 33, 2 (2002).

[6] S. Gilbert and N. Lynch. 2012. Perspectives on the CAP Theorem.
Computer 45, 2 (Feb. 2012).

[7] Google. 2021. Google cloud regions. https://cloud.google.com/about/
locations. (2021).

[8] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi.
2016. Incremental Consistency Guarantees for Replicated Objects. In
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI). 169–184.

[9] Andreas Haeberlen, Alan Mislove, and Peter Druschel. 2005. Glacier:
Highly Durable, Decentralized Storage Despite Massive Correlated Fail-
ures. In Symposium on Networked Systems Design and Implementation
(NSDI).

[10] Tamás Hauer, Philipp Hoffmann, John Lunney, Dan Ardelean, and
Amer Diwan. 2020. Meaningful Availability. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

[11] Alex Hern. 2021. Fastly says single customer triggered bug behind mass
internet outage. https://www.theguardian.com/technology/2021/jun/09/
fastly-says-single-customer-triggered-bug-that-caused-mass-outage.
(May 2021).

[12] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-
Out, Decentralized Ledger via Sharding. In SPIEEE Symposium on
Security and Privacy (SP). IEEE, 19–34.

[13] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News 32, 4
(Dec. 2001), 51–58.

[14] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno
Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-Replicated Sys-
tems Fast as Possible, Consistent When Necessary. In Conference on
Operating Systems Design and Implementation (OSDI).

[15] Tom Lianza and Chris Snook. 2020. Cloudflare outage. https://blog.
cloudflare.com/a-byzantine-failure-in-the-real-world/. (Nov. 2020).

[16] Ben Lobel. 2020. Local businesses are more trusted than large
enterprises, finds survey by Yell. https://smallbusiness.co.uk/
local-businesses-trusted-large-enterprises-2538416/. (2020).

[17] Microsoft. 2021. Microsoft Azure cloud regions. https://azure.
microsoft.com/en-us/global-infrastructure/geographies/. (2021).

[18] Netscout. 2021. Netscout security report. (2021). https://www.
arbornetworks.com/resources/infrastructure-security-report.

[19] Diego Ongaro and John Ousterhout. 2014. In Search of an Understand-
able Consensus Algorithm. In USENIX Annual Technical Conference
(ATC).

[20] Zachary N. J. Peterson, Mark Gondree, and Robert Beverly. 2011. A
Position Paper on Data Sovereignty: The Importance of Geolocating

Data in the Cloud. In 3rd USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud).

[21] Renata Ávila Pinto. 2018. Digital Sovereignty or Digital Colonialism?
SUR 15, 27 (July 2018), 15–27.

[22] Salvatore Scellato, Cecilia Mascolo, Mirco Musolesi, and Jon
Crowcroft. 2011. Track Globally, Deliver Locally: Improving Content
Delivery Networks by Tracking Geographic Social Cascades. In Pro-
ceedings of the International Conference on World Wide Web (WWW).

[23] Laura Stevens. 2017. Amazon Finds the Cause of Its AWS
Outage: A Typo. (2017). https://www.wsj.com/articles/
amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506/.

[24] D. Stevenson. 1989. Token-based consistency of replicated servers. In
Digest of Papers. COMPCON Spring 89. Thirty-Fourth IEEE Computer
Society International Conference: Intellectual Leverage.

[25] Ahren Studer and Adrian Perrig. 2009. The Coremelt Attack. In ES-
ORICS.

[26] Min Suk Kang, Soo Bum Lee, and V.D. Gligor. 2013. The Crossfire
Attack. IEEE Symposium on Security and Privacy (S&P).

[27] Mikkel Thorup and Uri Zwick. 2001. Approximate distance oracles. In
ACM Symposium on Theory of Computing. 183–192. https://doi.org/
10.1145/1044731.1044732

[28] Mikkel Thorup and Uri Zwick. 2001. Compact routing schemes. In
ACM Symposium on Parallel Algorithms and Architectures (SPAA).
ACM Press, New York, NY, USA, 1–10. https://doi.org/10.1145/
378580.378581

https://aws.amazon.com/about-aws/global-infrastructure/?p=ngi&loc=1
https://aws.amazon.com/about-aws/global-infrastructure/?p=ngi&loc=1
https://today.yougov.com/topics/politics/articles-reports/2020/04/27/americans-trust-local-governments
https://today.yougov.com/topics/politics/articles-reports/2020/04/27/americans-trust-local-governments
https://today.yougov.com/topics/politics/articles-reports/2020/04/27/americans-trust-local-governments
https://cloud.google.com/about/locations
https://cloud.google.com/about/locations
https://www.usenix.org/system/files/conference/osdi16/osdi16-guerraoui.pdf
https://www.theguardian.com/technology/2021/jun/09/fastly-says-single-customer-triggered-bug-that-caused-mass-outage
https://www.theguardian.com/technology/2021/jun/09/fastly-says-single-customer-triggered-bug-that-caused-mass-outage
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2017/406.pdf
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://smallbusiness.co.uk/local-businesses-trusted-large-enterprises-2538416/
https://smallbusiness.co.uk/local-businesses-trusted-large-enterprises-2538416/
https://azure.microsoft.com/en-us/global-infrastructure/geographies/
https://azure.microsoft.com/en-us/global-infrastructure/geographies/
https://www.arbornetworks.com/resources/infrastructure-security-report
https://www.arbornetworks.com/resources/infrastructure-security-report
https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506/
https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506/
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/378580.378581
https://doi.org/10.1145/378580.378581

	Abstract
	1 Introduction
	2 Context and Opportunities
	2.1 Geo-Replicated Cloud Services
	2.2 Peer-to-peer Internet applications

	3 Challenges
	3.1 Dependencies across layered systems
	3.2 Metrics for Lamport exposure
	3.3 Defining exposure-limiting zones

	4 Design
	4.1 Item discovery
	4.2 Discovery load on (local) zones
	4.3 Item placement and zone overlap
	4.4 Data-plane consistency and migration
	4.5 Preliminary results

	5 Related Work
	6 Conclusion
	References

