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Abstract

Modern operating systems must support a wide variety of services for a diverse set of users. Designers
of these systems face a tradeoff between functionality and performance. Systems like Mach provide a set
of general abstractions and attempt to handle every situation, which can lead to poor performance for
common cases. Other systems, such as Unix, provide a small set of abstractions that can be made very
efficient, at the expense of functionality. We are implementing a flexible system building tool, FLEX,
that allows us to support a powerful operating systems interface efficiently by constructing specialized
module implementations at runtime. FLEX improves the performance of ezxisting systems by optimizing
interprocess communications paths and relocating servers and clients to reduce communications overhead.
These facilities improve the performance of Unix system calls on Mach from 20-400%. Furthermore, FLEX
can dynamically extend the kernel in a controlled fashion, which gives user programs access to privileged
data and devices not envisioned by the original operating system implementor.

1 Overview

Operating systems consist of a collection of inter-related entities that provide a variety of services. Beyond
this general description, the specifics of individual operating systems varies widely depending on the decisions
made by each system’s designers. We believe that there is no “optimal” organization, because the “optimal”
design is dependent on a particular system’s resources and the needs of its clients. No single operating
system structure can perform optimally in a wide variety of environments. The most important aspect of an
operating system from the user’s point of view is its application programming interface definition. As long as
the operating system efficiently supports its interface and protection requirements, 1t is irrelevant whether
this is provided via functions found at known locations in the user address space (e.g., MS-DOS), via traps
to the kernel (e.g., Unix), via remote procedure calls (RPCs) to server processes (e.g., much of Mach 3.0), or
any combination of these options. To exploit the flexibility that this perspective provides, we are developing
the FLEX system building tool.

FLEX is a coarse-grained system building service that allows systems to be dynamically constructed
using the implementation most appropriate to a given situation. In this context, a “system” is an entity
that interacts with the operating system, plus the operating system itself. FLEX provides functionality to an
operating system similar to, but more powerful than, that provided to a programming system by a linker.
FLEX works by reading modules, manipulating them as specified by module manipulation files, and writing
the resulting executable either to a user’s address space or to a file for later use. The active entity in
FLEX is the OMOS server[12], which runs as a privileged process. It performs several functions, including:
generating, relocating and binding object files, caching relocated object files for later use, managing address
spaces, and interacting with the kernel to add or delete kernel routines on demand. FLEX can improve an
operating system in two different ways: (i) by improving the performance of existing system implementations
and (ii) by dynamically extending operating system functionality.

One of the goals of FLEX is to allow the implementations of existing systems to be improved, without
requiring their component modules or interfaces to change. FLEX uses interface definition specifications
to define how individual system components interact with one another. This specification allows FLEX to
specialize instances of a system resource or communications channel to a particular situation. For example,
when a client program first connects to a particular service, FLEX can determine where the server is phys-
ically located and provide the most efficient interprocess communications mechanism for this client-server
interaction. If the server is on a remote machine, then RPC is appropriate, while if the client and server have
been placed in the same address space, a capability of FLEX discussed below, then some form of procedure
call is preferable. Similarly, if FLEX is able to determine that most of the interactions with a server are



coming from a particular client, it can intervene to make those interactions less expensive (e.g., by mapping
the client into the server address space in a controlled manner).

FLEX’s other aspect is its ability to extend or modify the operating system dynamically in a (mostly)
transparent way. FLEX can modify the operating system on the fly by binding routines to the kernel on a per-
client basis. This ability allows users or operating systems designers to add or modify kernel functionality.
The means by which this can be done safely is discussed in the following section. This feature of FLEX can be
exploited in a number of ways. For example, this might be used to give an unprivileged user program direct
control over its physical memory so that it can use a paging algorithm tuned to its particular access behavior
or real-time needs. A long term goal of this aspect of FLEX is to allow operating systems researchers and
vendors to distribute functional modifications or extensions to existing operating systems to sites without
access to the operating system source code.

2 Design of FLEX

FLEX’s power comes from OMOS’s ability to manipulate modules in complex ways, its full access to interface
definitions, its ability to derive specialized implementations of modules and their interactions, and its gener-
alized constraint system for managing address spaces. A module is an entity containing a number of symbols,
or linkage points, and optionally a fragment of executable code in the machine language of the target sys-
tem. Most modules processed by FLEX are normal relocatable object files produced by a compiler, but there
are also several kinds of interface definition modules. FLEX uses a Lisp-like module manipulation language
developed as part of the Jigsaw framework [3] to specify how particular modules are to be combined. This
language provides a complete implementation of module name manipulation, much more powerful than exist-
ing linkers. Augmented with detailed knowledge of communication mechanisms and corresponding argument
semantics, this allows FLEX to transparently specialize inter-module communication.

Within a module, a symbol can either be a declaration or a reference. Declarations are most often
associated with code fragments that implement a particular system service, while references are most often
associated with code fragments that invoke a particular system service. FLEX is able to improve upon
existing system implementations by transparently substituting a particular declaration of a symbol with
a functionally equivalent implementation that provides the same interface and semantics. The details of
the low-level binding mechanism are beyond the scope of this paper, but are described elsewhere [7]. For
example, if a client process contains a reference to a system call that normally is implemented as an RPC to
a user-level server process, which is how many Unix system calls are emulated in Mach 3.0 [1], it can replace
the RPC interface with an LRPC-like interface if it recognizes that the server is always local. LRPC [2]
exploits memory sharing and thread migration to reduce the overhead of an RPC, but it is only possible
between two processes on the same machine. Implementing the full LRPC mechanism requires modifications
to the Mach thread model to support thread migration[6]. Similarly, if the service is currently being provided
by a server that has been loaded into the kernel address space, FLEX can replace the RPC with a trap that
directly invokes the desired service. These examples demonstrate the potential that FLEX has for improving
the quality of existing systems.

In addition to being able to specialize interfaces, FLEX is able to dynamically extend the operating system
kernel or relocate services in a transparent way. The simplest example of how this can be accomplished arises
when FLEX detects that a desired service is not currently being provided, as can occur if the server crashes
or chooses to quit due to inactivity. In this case, FLEX can restart the appropriate server. An incremental
improvement upon this is that FLEX can start a new instance of the server that is specialized to the client’s
needs and make the appropriate binding. FLEX goes beyond these simple mechanisms by allowing modules
to be relocated between address spaces to provide more efficient inter-module interactions. For example, if
FLEX observes or is informed that a particular user-level service is used frequently and the server 1s trusted,
it can bind the service into the kernel and replace calls to that server with traps. This use of FLEX blurs the
distinction between macrokernels and microkernels, which we believe should be the case. The microkernel
organization improves code modularity and provides an easy to understand design philosophy, but when a
rigid enforcement of the microkernel philosophy impacts performance without significant gains, it should be
relaxed transparently to regain the performance benefits of a macrokernel system. Enabling optimization of
more interactions, FLEX can transparently load clients and trusted servers in a single address space, while



protecting the servers from client accesses. We view support for these “in-server clients” and “in-kernel
servers” as the first step in an evolution towards a single address space system that can efficiently support
existing programs written for existing systems [4].

Finally, we have experimented with the option of linking specially authorized routines into the kernel on
a per-client basis. FLEX lets kernel level services and associated trap vectors be added, allowing users to
access privileged data and devices in a controlled fashion, not envisioned by the original operating system
implementor, and thus not supported by an existing system call. This gives FLEX’d programs the ability to
read or modify kernel data structures (e.g., a controlled way to reintroduce the functionality of /dev/kmem),
the ability to invoke functions not provided by the default kernel (e.g., direct control over its physical memory
and paging algorithm), and the ability to override or modify existing kernel services (e.g., interposing a
message logging layer in a particular process’ IPC routines to support fault tolerance). Routines that interact
with existing kernel routines, such as those that modify existing kernel data structures or device drivers,
must be written with great care to avoid corrupting the system. Our current authentication mechanism is
quite simple — only the OMOS server can install kernel-level routines, and it will install only authorized
library routines that are provided by a superuser. However, these routines can be installed on behalf of any
process. While simple, this mechanism lets us protect the integrity of the OS kernel without significantly
reducing overall flexibility.

Figure 1 illustrates how FLEX can restructure the way that a particular user program interacts with the
operating system. In this example, the user process is using four services: a database server, a file server, an
authentication server, and a special extension to the kernel that lets the user program control its own physical
memory. Because of the frequency of interactions, the user process has been loaded into the database server’s
address space. Thus, communications between the user process and database server occur via protected
procedure calls (involving traps) or directly through normal procedure calls and shared memory, depending
on the desired level of protection [4]. Additionally, because this user process needs real-time performance
guarantees, it uses its own paging mechanism (implemented as an in-kernel server) to control its paging
behavior. This mechanism uses normal kernel-level services to access disk and the VM hardware, but
otherwise it is independent of the virtual memory subsystem after it acquires the desired amount of physical
memory. Similarly, the fileserver is a user-level process being executed locally, so interactions with it use
LRPC to reduce communications overhead. Finally, the system authentication server is running remotely, so
all communications with it use standard RPC. FLEX’s ability to restructure systems in this way can greatly
enhance both performance and flexibility.
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Figure 1 Example of How FLEX Can Restructure Programs



3 Results and Current Status

The core of FLEX is the OMOS server. OMOS has been integrated into the Mach 3.0 OSF/1 server’s exec
function, so it 1s invoked when FLEX’d programs are executed. As part of the preliminary implementation of
FLEX, OMOS has been used to reduce the overhead of communications between mutually-trusting client and
server processes by replacing RPC invocations with procedure calls. In addition, OMOS was augmented to
support a protected region in a user’s address space. This support allows OMOS to load routines representing
extended operating system functionality into that region, reconcile unresolved references found in the added
modules with entry points defined in the kernel, and provide special gating routines to the user process so
that it can safely access the new functionality. Work is continuing on augmenting OMOS’s interface definition
support to handle many variations of argument semantics used by different communication mechanisms. In
addition to its role in FLEX, OMOS has been able to improve the performance of a number of running
systems by an average of 10% by optimizing the locality of instruction references performed by the systems,
and thereby improving cache and paging behavior[13]. In addition, OMOS is providing a fast and portable
shared library service for an 800,000 line CAD system[11], with substantial speedups due to its caching of
relocated images.

We have performed three experiments that demonstrate the value of evolving an existing operating
system, Mach 3.0 and the OSF/1 Unix server, into a flexibly structured system.

(i) We transparently merged a frequently accessed and trusted user-level server, the Unix server, into
the kernel’s protection domain, while fully preserving semantics [9]. We refer to this mechanism as in-kernel
servers, or INKS. Client calls to the server are bound either to a simple system call interface, or to a full
RPC mechanism, depending on the server’s location. This optimization reduces the amount of work done
copying arguments and executing the RPC control path to handle complex and infrequently encountered
message types. We found that RPC performance improves by a factor of three, Unix system calls to the
server improve by 20-200%, and the overall performance of large benchmarks improves by 4-13%.

(i1) While performing the INKS work, we discovered that many performance optimizations could be
introduced if the Mach kernel supported a full migrating-threads model[6]. We have implemented such a
mechanism, fully decoupling threads from tasks. Our prototype implementation of this mechanism has a
faster call path than the most optimized message path in the existing Mach kernel.

(iii) In order to take full advantage of the potential of FLEX, protection domains must be decoupled
from address spaces. We have prototyped this on Mach and the Unix server, using the HP PA-RISC’s
fine-grained protection mechanisms to provide protection between tasks in the same address space. This
mechanism allows clients to be loaded into servers. We have successfully executed several unmodified user
programs in the same address space as the OSF/1 server, while protecting servers from client accesses.
Individual system calls demonstrate dramatic speedups, as much as a factor of four, due to the avoidance of
microkernel calls to access system call arguments. Even for I/O intensive programs, such as 1s, the use of
in-server client technology reduced the total running time by 10%.

4 Related Work

There are a number of systems that provide various aspects of FLEX, although none supports its full generality
of optimizations. Like FLEX, Lipto [5] provides architectural support for modules that is independent of
protection domains, and thereby allows communications between modules to be optimized using techniques
similar to those described above. However, it was not designed to work with existing system implementations,
and currently does not include support for FLEX-like dynamic kernel extensions. Psyche [14] uses module
interface information to construct systems composed of modules implemented by radically different operating
systems and languages, so-called multi-model programming. It does not reconfigure modules for performance
purposes. Synthesis [10] generates both specialized OS interfaces and actual operating systems functions, but
does not reconfigure processes or move functions between modules. Finally, the VMS operating system [8]
gave users the ability to extend the system dynamically by installing specially authorized trap handlers. VMS
supported this capability by associating a per-process dispatcher routine with each protected shareable image
that was installed and querying the appropriate dispatchers when an unrecognized trap was encountered.
FLEX allows references to added routines to be installed directly in a single per-process trap table, because
all such installations are performed by OMOS, which will improve the performance of this mechanism[4].



5 Conclusions

FLEX can improve an operating system in two different ways: (i) by improving the performance of existing
system implementations and (ii) by dynamically extending operating system functionality. The core of FLEX
is the OMOS server. FLEX’s power comes from OMOS’s ability to manipulate modules in complex ways,
its full access to interface definitions, its ability to derive specialized implementations of modules and their
interactions, and its generalized constraint system for managing address spaces. A major source of overhead
in modern operating systems is the time spent executing general-purpose communications abstractions.
FLEX allows systems to be dynamically constructed using the implementation most appropriate to a given
situation. Preliminary results demonstrate the value of evolving an existing operating system into a flexibly
structured system. By restructuring existing systems, FLEX has been able to improve the performance of
Unix system calls on Mach 3.0 from 20-400%. In addition, FLEX allows programs to extend the functionality
of the operating system, which gives user programs controlled access to privileged data and devices in ways
not anticipated by the original operating system implementor. These results indicate that a dynamic system
restructuring tool like FLEX can significantly improve the performance of existing systems and at the same
time act as a cornerstone for future system development.
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