
FLEX� A Tool for Building E�cient and Flexible Systems

John B� Carter� Bryan Ford� Mike Hibler� Ravindra Kuramkote�
Je�rey Law� Jay Lepreau� Douglas B� Orr� Leigh Stoller� and Mark Swanson

University of Utah� Department of Computer Science

Abstract

Modern operating systems must support a wide variety of services for a diverse set of users� Designers

of these systems face a tradeo� between functionality and performance� Systems like Mach provide a set
of general abstractions and attempt to handle every situation� which can lead to poor performance for

common cases� Other systems� such as Unix� provide a small set of abstractions that can be made very

e�cient� at the expense of functionality� We are implementing a �exible system building tool� FLEX�
that allows us to support a powerful operating systems interface e�ciently by constructing specialized

module implementations at runtime� FLEX improves the performance of existing systems by optimizing

interprocess communications paths and relocating servers and clients to reduce communications overhead�
These facilities improve the performance of Unix system calls on Mach from ������	� Furthermore� FLEX

can dynamically extend the kernel in a controlled fashion� which gives user programs access to privileged

data and devices not envisioned by the original operating system implementor�

� Overview

Operating systems consist of a collection of inter�related entities that provide a variety of services� Beyond
this general description� the speci�cs of individual operating systems varies widely depending on the decisions
made by each system�s designers� We believe that there is no �optimal� organization� because the �optimal�
design is dependent on a particular system�s resources and the needs of its clients� No single operating
system structure can perform optimally in a wide variety of environments� The most important aspect of an
operating system from the user�s point of view is its application programming interface de�nition� As long as
the operating system e�ciently supports its interface and protection requirements� it is irrelevant whether
this is provided via functions found at known locations in the user address space �e�g�� MS�DOS	� via traps
to the kernel �e�g�� Unix	� via remote procedure calls �RPCs	 to server processes �e�g�� much of Mach 
��	� or
any combination of these options� To exploit the �exibility that this perspective provides� we are developing
the FLEX system building tool�

FLEX is a coarse�grained system building service that allows systems to be dynamically constructed
using the implementation most appropriate to a given situation� In this context� a �system� is an entity
that interacts with the operating system� plus the operating system itself� FLEX provides functionality to an
operating system similar to� but more powerful than� that provided to a programming system by a linker�
FLEX works by reading modules� manipulating them as speci�ed by module manipulation �les� and writing
the resulting executable either to a user�s address space or to a �le for later use� The active entity in
FLEX is the OMOS server
���� which runs as a privileged process� It performs several functions� including�
generating� relocating and binding object �les� caching relocated object �les for later use� managing address
spaces� and interacting with the kernel to add or delete kernel routines on demand� FLEX can improve an
operating system in two di�erent ways� �i	 by improving the performance of existing system implementations
and �ii	 by dynamically extending operating system functionality�

One of the goals of FLEX is to allow the implementations of existing systems to be improved� without
requiring their component modules or interfaces to change� FLEX uses interface de�nition speci�cations
to de�ne how individual system components interact with one another� This speci�cation allows FLEX to
specialize instances of a system resource or communications channel to a particular situation� For example�
when a client program �rst connects to a particular service� FLEX can determine where the server is phys�
ically located and provide the most e�cient interprocess communications mechanism for this client�server
interaction� If the server is on a remote machine� then RPC is appropriate� while if the client and server have
been placed in the same address space� a capability of FLEX discussed below� then some form of procedure
call is preferable� Similarly� if FLEX is able to determine that most of the interactions with a server are

�



coming from a particular client� it can intervene to make those interactions less expensive �e�g�� by mapping
the client into the server address space in a controlled manner	�

FLEX�s other aspect is its ability to extend or modify the operating system dynamically in a �mostly	
transparent way� FLEX can modify the operating system on the �y by binding routines to the kernel on a per�
client basis� This ability allows users or operating systems designers to add or modify kernel functionality�
The means by which this can be done safely is discussed in the following section� This feature of FLEX can be
exploited in a number of ways� For example� this might be used to give an unprivileged user program direct
control over its physical memory so that it can use a paging algorithm tuned to its particular access behavior
or real�time needs� A long term goal of this aspect of FLEX is to allow operating systems researchers and
vendors to distribute functional modi�cations or extensions to existing operating systems to sites without
access to the operating system source code�

� Design of FLEX

FLEX�s power comes from OMOS�s ability to manipulate modules in complex ways� its full access to interface
de�nitions� its ability to derive specialized implementations of modules and their interactions� and its gener�
alized constraint system for managing address spaces� A module is an entity containing a number of symbols�
or linkage points� and optionally a fragment of executable code in the machine language of the target sys�
tem� Most modules processed by FLEX are normal relocatable object �les produced by a compiler� but there
are also several kinds of interface de�nition modules� FLEX uses a Lisp�like module manipulation language
developed as part of the Jigsaw framework 

� to specify how particular modules are to be combined� This
language provides a complete implementation of module name manipulation� much more powerful than exist�
ing linkers� Augmented with detailed knowledge of communicationmechanisms and corresponding argument
semantics� this allows FLEX to transparently specialize inter�module communication�

Within a module� a symbol can either be a declaration or a reference� Declarations are most often
associated with code fragments that implement a particular system service� while references are most often
associated with code fragments that invoke a particular system service� FLEX is able to improve upon
existing system implementations by transparently substituting a particular declaration of a symbol with
a functionally equivalent implementation that provides the same interface and semantics� The details of
the low�level binding mechanism are beyond the scope of this paper� but are described elsewhere 
��� For
example� if a client process contains a reference to a system call that normally is implemented as an RPC to
a user�level server process� which is how many Unix system calls are emulated in Mach 
�� 
��� it can replace
the RPC interface with an LRPC�like interface if it recognizes that the server is always local� LRPC 
��
exploits memory sharing and thread migration to reduce the overhead of an RPC� but it is only possible
between two processes on the same machine� Implementing the full LRPC mechanism requires modi�cations
to the Mach thread model to support thread migration
��� Similarly� if the service is currently being provided
by a server that has been loaded into the kernel address space� FLEX can replace the RPC with a trap that
directly invokes the desired service� These examples demonstrate the potential that FLEX has for improving
the quality of existing systems�

In addition to being able to specialize interfaces� FLEX is able to dynamically extend the operating system
kernel or relocate services in a transparent way� The simplest example of how this can be accomplished arises
when FLEX detects that a desired service is not currently being provided� as can occur if the server crashes
or chooses to quit due to inactivity� In this case� FLEX can restart the appropriate server� An incremental
improvement upon this is that FLEX can start a new instance of the server that is specialized to the client�s
needs and make the appropriate binding� FLEX goes beyond these simple mechanisms by allowing modules
to be relocated between address spaces to provide more e�cient inter�module interactions� For example� if
FLEX observes or is informed that a particular user�level service is used frequently and the server is trusted�
it can bind the service into the kernel and replace calls to that server with traps� This use of FLEX blurs the
distinction between macrokernels and microkernels� which we believe should be the case� The microkernel
organization improves code modularity and provides an easy to understand design philosophy� but when a
rigid enforcement of the microkernel philosophy impacts performance without signi�cant gains� it should be
relaxed transparently to regain the performance bene�ts of a macrokernel system� Enabling optimization of
more interactions� FLEX can transparently load clients and trusted servers in a single address space� while

�



protecting the servers from client accesses� We view support for these �in�server clients� and �in�kernel
servers� as the �rst step in an evolution towards a single address space system that can e�ciently support
existing programs written for existing systems 
���

Finally� we have experimented with the option of linking specially authorized routines into the kernel on
a per�client basis� FLEX lets kernel level services and associated trap vectors be added� allowing users to
access privileged data and devices in a controlled fashion� not envisioned by the original operating system
implementor� and thus not supported by an existing system call� This gives FLEX�d programs the ability to
read or modify kernel data structures �e�g�� a controlled way to reintroduce the functionality of �dev�kmem	�
the ability to invoke functions not provided by the default kernel �e�g�� direct control over its physical memory
and paging algorithm	� and the ability to override or modify existing kernel services �e�g�� interposing a
message logging layer in a particular process� IPC routines to support fault tolerance	� Routines that interact
with existing kernel routines� such as those that modify existing kernel data structures or device drivers�
must be written with great care to avoid corrupting the system� Our current authentication mechanism is
quite simple � only the OMOS server can install kernel�level routines� and it will install only authorized
library routines that are provided by a superuser� However� these routines can be installed on behalf of any
process� While simple� this mechanism lets us protect the integrity of the OS kernel without signi�cantly
reducing overall �exibility�

Figure � illustrates how FLEX can restructure the way that a particular user program interacts with the
operating system� In this example� the user process is using four services� a database server� a �le server� an
authentication server� and a special extension to the kernel that lets the user program control its own physical
memory� Because of the frequency of interactions� the user process has been loaded into the database server�s
address space� Thus� communications between the user process and database server occur via protected
procedure calls �involving traps	 or directly through normal procedure calls and shared memory� depending
on the desired level of protection 
��� Additionally� because this user process needs real�time performance
guarantees� it uses its own paging mechanism �implemented as an in�kernel server	 to control its paging
behavior� This mechanism uses normal kernel�level services to access disk and the VM hardware� but
otherwise it is independent of the virtual memory subsystem after it acquires the desired amount of physical
memory� Similarly� the �leserver is a user�level process being executed locally� so interactions with it use
LRPC to reduce communications overhead� Finally� the system authentication server is running remotely� so
all communications with it use standard RPC� FLEX�s ability to restructure systems in this way can greatly
enhance both performance and �exibility�

Local
Server

Remote
Server

LR
P

C

Con
ve

nt
ion

al

RPC
pageout()

authenticate()

read()

lookup()

USER

PROCESS

T
R

A
P

Colocated

Database

Server

ProcessProcess

Kernel

Operating System
Server

In-Kernel

Figure � Example of How FLEX Can Restructure Programs






� Results and Current Status

The core of FLEX is the OMOS server� OMOS has been integrated into the Mach 
�� OSF�� server�s exec
function� so it is invoked when FLEX�d programs are executed� As part of the preliminary implementation of
FLEX� OMOS has been used to reduce the overhead of communications between mutually�trusting client and
server processes by replacing RPC invocations with procedure calls� In addition� OMOS was augmented to
support a protected region in a user�s address space� This support allows OMOS to load routines representing
extended operating system functionality into that region� reconcile unresolved references found in the added
modules with entry points de�ned in the kernel� and provide special gating routines to the user process so
that it can safely access the new functionality� Work is continuing on augmenting OMOS�s interface de�nition
support to handle many variations of argument semantics used by di�erent communication mechanisms� In
addition to its role in FLEX� OMOS has been able to improve the performance of a number of running
systems by an average of ��� by optimizing the locality of instruction references performed by the systems�
and thereby improving cache and paging behavior
�
�� In addition� OMOS is providing a fast and portable
shared library service for an ������� line CAD system
���� with substantial speedups due to its caching of
relocated images�

We have performed three experiments that demonstrate the value of evolving an existing operating
system� Mach 
�� and the OSF�� Unix server� into a �exibly structured system�

�i	 We transparently merged a frequently accessed and trusted user�level server� the Unix server� into
the kernel�s protection domain� while fully preserving semantics 
��� We refer to this mechanism as in�kernel
servers� or INKS� Client calls to the server are bound either to a simple system call interface� or to a full
RPC mechanism� depending on the server�s location� This optimization reduces the amount of work done
copying arguments and executing the RPC control path to handle complex and infrequently encountered
message types� We found that RPC performance improves by a factor of three� Unix system calls to the
server improve by �������� and the overall performance of large benchmarks improves by ���
��

�ii	 While performing the INKS work� we discovered that many performance optimizations could be
introduced if the Mach kernel supported a full migrating�threads model
��� We have implemented such a
mechanism� fully decoupling threads from tasks� Our prototype implementation of this mechanism has a
faster call path than the most optimized message path in the existing Mach kernel�

�iii	 In order to take full advantage of the potential of FLEX� protection domains must be decoupled
from address spaces� We have prototyped this on Mach and the Unix server� using the HP PA�RISC�s
�ne�grained protection mechanisms to provide protection between tasks in the same address space� This
mechanism allows clients to be loaded into servers� We have successfully executed several unmodi�ed user
programs in the same address space as the OSF�� server� while protecting servers from client accesses�
Individual system calls demonstrate dramatic speedups� as much as a factor of four� due to the avoidance of
microkernel calls to access system call arguments� Even for I�O intensive programs� such as ls� the use of
in�server client technology reduced the total running time by ����

� Related Work

There are a number of systems that provide various aspects of FLEX� although none supports its full generality
of optimizations� Like FLEX� Lipto 
�� provides architectural support for modules that is independent of
protection domains� and thereby allows communications between modules to be optimized using techniques
similar to those described above� However� it was not designed to work with existing system implementations�
and currently does not include support for FLEX�like dynamic kernel extensions� Psyche 
��� uses module
interface information to construct systems composed of modules implemented by radically di�erent operating
systems and languages� so�calledmulti�model programming� It does not recon�gure modules for performance
purposes� Synthesis 
��� generates both specialized OS interfaces and actual operating systems functions� but
does not recon�gure processes or move functions between modules� Finally� the VMS operating system 
��
gave users the ability to extend the system dynamically by installing specially authorized trap handlers� VMS
supported this capability by associating a per�process dispatcher routine with each protected shareable image
that was installed and querying the appropriate dispatchers when an unrecognized trap was encountered�
FLEX allows references to added routines to be installed directly in a single per�process trap table� because
all such installations are performed by OMOS� which will improve the performance of this mechanism
���

�



� Conclusions

FLEX can improve an operating system in two di�erent ways� �i	 by improving the performance of existing
system implementations and �ii	 by dynamically extending operating system functionality� The core of FLEX
is the OMOS server� FLEX�s power comes from OMOS�s ability to manipulate modules in complex ways�
its full access to interface de�nitions� its ability to derive specialized implementations of modules and their
interactions� and its generalized constraint system for managing address spaces� A major source of overhead
in modern operating systems is the time spent executing general�purpose communications abstractions�
FLEX allows systems to be dynamically constructed using the implementation most appropriate to a given
situation� Preliminary results demonstrate the value of evolving an existing operating system into a �exibly
structured system� By restructuring existing systems� FLEX has been able to improve the performance of
Unix system calls on Mach 
�� from �������� In addition� FLEX allows programs to extend the functionality
of the operating system� which gives user programs controlled access to privileged data and devices in ways
not anticipated by the original operating system implementor� These results indicate that a dynamic system
restructuring tool like FLEX can signi�cantly improve the performance of existing systems and at the same
time act as a cornerstone for future system development�

References


�� M� Accetta� R� Baron� W� Bolosky� D� Golub� R� Rashid� A� Tevanian� and M� Young� Mach� A new
kernel foundation for Unix development� In Proceedings of the Summer Usenix Conference� July �����


�� B�N� Bershad� T�E� Anderson� E�D� Lazowska� and H�M� Levy� Lightweight remote procedure call�
ACM Transactions on Computer Systems� ���	�
����� February �����



� G� Bracha� The Programming Language Jigsaw � Mixins� Modularity� and Multiple Inheritance� PhD
thesis� University of Utah� March �����


�� J�B� Carter� A� Cox� D� Johnson� and W� Zwaenepoel� Distributed operating systems based on a
protected global virtual address space� In Third Workshop on Workstation Operating Systems� May
�����


�� P� Druschel� L�L� Peterson� and N�C� Hutchinson� Beyond micro�kernel design� Decoupling modularity
and protection in Lipto� In Proceedings of the ��th International Conference on Distributed Computing
Systems� pages �������� June �����


�� B� Ford� M� Hibler� and J� Lepreau� Notes on thread models in Mach 
��� Technical Report UUCS�
�
����� University of Utah Computer Science Department� April ���
�


�� B� Ford� J� Lepreau� and D� Orr� Remote procedure call specialization with the OMOS object server�
Technical report� University of Utah� June ���
�


�� L�J� Kenah� R�E� Goldenberg� and S�F� Bate� VAX�VMS Internals and Data Structures� Digital Press�
Bedford� Massachusetts� �����


�� J� Lepreau� M� Hibler� B� Ford� and J� Law� In�kernel servers on Mach 
��� Implementation and
performance� In Proceedings of the Third Usenix Mach Symposium� pages 
����� April ���
�


��� H� Massalin and C� Pu� Threads and input�output in the Synthesis kernel� In Proceedings of the ��th
ACM Symposium on Operating Systems Principles� pages �������� December �����


��� D�B� Orr� J� Bonn� J� Lepreau� and R� Mecklenburg� Fast and �exible shared libraries� In Proceedings
of the Summer ���� USENIX Conference� Cincinnati� OH� Summer ���
� To appear�


��� D�B� Orr and R� Mecklenburg� OMOS � an object server for program execution� In Proceedings
of the Second International Workshop on Object Orientation in Operating Systems� pages ��������
September �����


�
� D�B� Orr� R�W� Mecklenburg� P�J� Hoogenboom� and J� Lepreau� Dynamic program monitoring and
transformation using the OMOS object server� In Proceedings of the Twenty�Sixth Annual Hawaii
International Conference on System Sciences� pages �
������ January ���
�


��� M�L� Scott� T�J� LeBlanc� and B�D� Marsh� Multi�model parallel programming in Psyche� In Pro�
ceedings of the ���	 Conference on the Principles and Practice of Parallel Programming� pages ������
March �����

�


