
 

Object-Oriented Display Refreshing
CallLists is a refreshing way to keep your

interactive programs up to date.

By Bryan Ford

INTERACTIVE PROGRAMS(containing complex user in-
terfaces) pose problems that you don’t have to deal with in
batch processing programs. When writing a batch program,
such as a compiler, you process a completeset of input data
in a certain format and write it out in another format. An in-
teractive program, on the other hand, has to process input

data that comes from the userin little pieces at a time (events).

These events usually are entered in no particular order, and
often change or even reverse the results of previous events.
An interactive program must generate new, updated output

very soon—nouserlikes to wait for a slow program—after

each inputevent.
Thisarticle deals with one of the main problemsin writing

interactive programs: refreshing the various parts of a pro-

gram’s display at appropriate times. Some programs have
many different windows, possibly with several separate dis-
play areas in each window. When somepart ofthe projectis
changed (a new event is received), the program must imme-

diately update the appropriate windowsto reflect the changes.
Probably the simplest method of refreshing displays is to

create one big function thatcalls all other screen refresh func-
tions one by one:

void RefreshAll()

{
RefreshViews();

RefreshQuickMenu();

RefreshThis();

RefreshThat();

}

This methodis very simple, and assures that everything is

up-to-date after it has been called. While this method works
well for simple requesters or very small programs, once you
add a more windowsorotherdisplay areas, the program be-
comesslow andflickery.
On the opposite extreme, you couldcall the appropriatere-

fresh functions immediately after each change is input. Al-
though this method can eliminate unnecessary refreshing,it
requires you to rememberall of the program’s interdepen-

dencies.It also tendsto create subtle bugs and makerevision
difficult at best.
Twoother problems are not adequately addressed in either

of these methods.First, whatif one refresh function depends
on another? For example, in a 3-D modeling program, Draw-
Polygons() might depend on CalculatePolygons(). These func-
tions mustbecalled in the correct order to ensurethat thefi-
nal display is completely up-to-date—if you draw objects
before you recalculate their positions,the display will always

remain one step behind the rest of the program. A reliable
method mustbe found to ensure the correct calling sequence.

The second problem arises when refresh functionis called
many times quickly. For example, a user mightselect sever-

al menu-based commandsat once, each of which performs
somesimple operation on the project. A poorly written pro-

gram will often refresh the display after each operation, even
thoughit really only needs to be refreshed onceat the end.
A more common exampleis repetition of an operation—how
many times have youbriefly held down somerepeating key
in a program andhadto wait a longtime afterwardsforit to
finish processing your keystrokes?
These problemscan be solved using various combinations

of functions and functioncalls. Using flags to keep track of
items that need refreshing can also help. No matter how care-
fully you lay out the function calls and flags, however, you
will still run into problemsas the program gets bigger.

A BETTER WAY

A cleaner and moreefficient method of handling refresh-
ing is “object-oriented refreshing,” which uses data struc-
tures andlists rather than direct functioncalls. As you will
see, it can conveniently solve all of the problems I’ve men-

tioned using a small amountof extra code.It also helps pre-
vent obscure bugs and makes program revision simpler.
The basic data structure used by the system is as follows:

struct CallNode

{
struct Node Node;

LONG (*CallFunction)(LONG GlobalData, LONG LocalData);

LONGLocalData;

}
#define CNT_INLIST NT_USER

A CallNoderepresents a function that mustbe called some-
time in the future. Thinkof it as a “computer agendaitem.”
As you can see,it is based on Exec’s standard Node structure

and is meantto be linked into a standard Exec MinList (the

stripped-down versionof the standard List).
Whenan eventoccurs causing a particular part of the dis-

play to need refreshing, a CallNodeis addedto a List(a Call-
List). Insteadof calling the refresh function immediately, the
call is “remembered”forlater. After adding the CallNode, the

program can continue processing other events immediately.
A typical program will have one global CallList in the main

module and many small CallNodes defined in other mod-

ules, each one representing a particular refresh functionthat
might becalled at some time. For example: >

The AW TechJournal 27



Display Refreshing

static void RefreshQuickMenu(long globaldata,long localdata)

{
(do all refreshing of the quick menu)

}

struct CallNode CallQuickMenu = {

{0,0,0,<priority>},RefreshQuickMenu,<local data>};

Then, wherever the quick menuis changed (or for some

other reason needsrefreshing), instead of immediately call-
ing RefreshQuickMenu(), just make this call:

AddCallNode(&RefreshCallList,&CallQuickMenu)

(If a particular CallListis used often, you might wantto de-
fine a macro that adds CallNodesto a specific CallList.) This
adds the CallNodeto the specified CallList. The AddCall-
Node() function is defined as follows:

void AddCallNode(struct CallList *I,struct CallNode “n)

{
if(n—>Node.In_Type != CNT_INLIST)

{
n—>Node.In_Type =CNT_INLIST;

Enqueue((struct List*)I,&n-—>Node);

}

}

Whenit’s timeto refresh the display (probablyjustafterall of
Intuition’s IntuiMessages are handled, butbefore youcall
Wait()), you simply makea singlecall to the function CallRem():

long CallRem(struct CallList *l,long GlobalData)

{
struct CallNode ‘*n;

long ret;

while(n = (struct CallNode*)RemHead((struct List*)!))

{
n—>Node.In_Type=0;

if(ret=(*n—>CallFunction)(GlobalData,n—>LocalData));

return(ret);

}
return(0);

}

This function traverses the entire CallList, removing each

CallNodeasit progresses, andcalls each refresh function in
turn. (Note that CallRem(), in the source code in the accom-

panying disk’s Ford drawer,is actually a macro that uses a
more powerful version ofthis function, explainedlater.) Each
CallFunction must return zero if it wants the CallList pro-
cessing to continue (the usual case) or nonzero if it wants to
stop processingthelist (if an error occurred, for example).
By now you should havea general idea of how the system

operates. The rule of thumbis: Save the refresh functioncalls
until later, and then onlycall them whenthe useris no longer
doing anything.

MAPPINGTHELISTS

The use of the CallNode’s In_Typefield prevents any Call-
Node from being added to a CallList more than once. This
helps to prevent corrupting thelist, makes thecaller’s life
easier and conveniently solves the problem of queueing up
many identical or similar refresh events. You can make as
many AddCallNode() calls for a particular CallNode as you
want, but the function is only called once at the end, elimi-
nating the need for “dirty” flags and such.

28 March/April 1992

Because Enqueue() is used to add nodes to a CallList,thelist

always remains sorted accordingto priority. Because CallRem()
starts at the headofthe list and works towardthetail, it always
calls CallNodes with the highestpriorities first to ensurethatall
refreshing is donein the correct sequence. For example,in our
3-D modeler example, CalculatePolygons() would simply be as-
signed a higher priority than DrawPolygons() and, therefore,
would alwaysbe called before DrawPolygons().

Asyouset up your CallLists and CallNodes, keeptrack of
which functions depend on which otherfunctions, andset the
CallNode priorities appropriately. I recommend keeping

handya textfile that lists all the CallNodes for a given Call-
List, their priorities, and where in your source codethey are
located. This will help you assign priorities to new CallNodes
andwill give you a good overview of which refresh functions
are beingcalled, in which order.

In general, CallLists and CallNodes can simply be defined

as globalorstatic variables. I generally define a CallList near
the correspondingcall to CallRem(), and put CallNodes just

“As you set up your CallLists and

CallNodes, keep track ofwhichfunctions

depend on whichotherfunctions, and set

the CallNodepriorities appropriately.”

below the functions they pointto. In some cases, however,
dynamically allocating CallNodes may be more appropriate.
Just make sure you always allocate the memory with
MEMF_CLEAR,oratleastinitialize the Flagsfield to zero be-

fore using the CallNode. You can also have more than one
CallRem() call for a given CallList, if you find this beneficial.
Just rememberthat each call to CallRem() completely emp-
ties the list, so the next call won't do anything unless youfirst
add additional CallNodes.
Any CallFunction (a function pointed to by a CallNode

and called by CallRem()) may makecalls to AddCallNode(),

even on the CallList that’s currently being traversed. This
provides a convenientsolution to another dependency prob-
lem. In our 3-D modeler example, CalculatePolygons() calls
AddCallNode() with the CallNode for DrawPolygons(), forc-

ing a redraw to occur sometimeafter any recalculation, with-

outeither of the functions actually calling the other directly.
In general, you should add other CallNodes with lowerpri-
ority only this way, althoughit is safe to add any CallNode
if you are careful about interdependencies.

MORESYSTEM FEATURES

For flexibility, the system provides a general-purpose
mechanism for passing parameters to the CallFunctions. The
GlobalData variable is a LONG (you mayuseit as a pointer
if you wish) that is given to CallRem() and passed through
to all of the functions onthe CallList, as they are beingcalled.

This provides a convenient way to “broadcast” a piece of
datato all the called functions. Similarly, each CallNode con-
tains a LocalData variable that is passed to the CallFunction
whenit is activated. This is particularly useful if you dy-

Continued on p. 63



Display Refreshing

Fromp. 28
namically allocate CallNodes—the LocalData might be a
pointer back to the CallNodeor to someotherdata structure
associated with this particular CallNode.
There are several other functions provided in thelibrary

that add additional functionality to the system and makeit
useful for applications other than refreshing.
The function RemCallNode()is exactly the opposite of Add-

CallNode()—it removes a CallNode from a CallList without

actually calling the function. Simply call it as you would
Exec’s Remove() function. As you can AddCallNode(), you

can safely call this function with a CallNodethat wasnotpre-
viously on anylist. (See the source code on disk for the actu-
al definition of this function.)

Finally, if you wantto call all of the CallNodesin a Call-
List, but leave thelist intact so you can later use the samelist
again, just use the Call() function.In this case, an explicit call
to RemCallNode() is required to remove a CallNode. This
will generally not be useful for refreshing, but may be useful
in other applications of this system.

If you use this variation, you should not call AddCall-
Node() from within the CallFunctions, because newly added

nodes maybe accidentally skipped (even if they have a low-
er priority than the current node). You should also notcall
RemCallNode() on other nodesin the samelist from within a

CallFunction. However, you may RemCallNode() the current

node from within its own function, to indicate that that func-
tion doesn’t need to be called anymore.
There are also two variations of Call() and CallRem(),

named CallExt() and CallRemExt(), respectively. These vari-

ations accept the same arguments as the regular versions,

plus an extra parameter: a pointer to a function to call after

each CallFunction onthelist is called. You can usethis facil-
ity, for example, to check for such signals as CTRL-C while

the list is being processed. See the source code on disk for
more details about these functions.
By now,you haveprobably noticed that CallLists can be

used for applications other than display refreshing. For ex-
ample, during your program you can maintain a CallList that
is called only once, when your program is aboutto exit. When
a module in your program allocates some memory or opens
a window,it simply adds a CallNodeto this global CallList.
Whenthe program is aboutto exit, this CallNode will auto-
matically be called, so the module can free anything it pre-
viously allocated.
Using CallLists can help make screen refreshing elegant

andefficient. Unnecessary processingis eliminated and inter-
dependencies can be handled easily. Because the CallListli-
brary functions use no global variables, they can be reused
as much as necessary in one program, andwill cause no prob-
lems (if used correctly) in re-entrant code such as run-timeli-

braries. Remember, CallLists are useful for many purposes,
display refreshingis just one of them. @

Bryan Ford is a studentat the University of Utah and works on

freelance programming projects for local companies. Contact him
c/o The AmigaWorld Tech Journal, 80 Elm St., Peterborough,
NH 03458,or on Internet (bryan.ford@m.cc.utah.edu).

The AW TechJournal 63


