
.;.;

THE TMG RECOGNItION SCHEMA

Alexander Birman
'"

A DISSERTATION

PRESENTED· TO THE

FACULTY OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE BY THE

DEPARTMENT OF

ELECTRICAL ENGINEERING

February, 1970

ii

Acknowledgements

I am deeply indebted to Professor Jeffrey D. Ullman who, as my

thesis advisor, guided my research.

Part of this work was done during the summer 1969, at the

T.J. Watson Research Center of IBM.

Chapter

I

II

III

IV

V

VI

VII

VIII

iii

Table of Contents

Introduction

The TMG Recognition Schema and its Automaton

TS and Deterministic PDA's

Failure types and Additional Properties for TS

Time Complexity of TSL

TS and Phrase Structure Grammars

Generalizations of TS

The gTS and Abstract Families of Deterministic
Languages

References

Abstract

Page

1

2

14

20

34

41

46

81

92

93

[1] •

1

.. I; . . INTRODUCTION

TMG is a compiler writing system reported by McClure in

As part of the TMG system, TMGt is a language for describing

translation procedures. A sentence in TMGt can be thought of as a

recognition subroutine which performs the syntactic analysis of a

string; it is executed dynamically and has definite rules of flow.

This is in contrast to the usual syntax directed compiler, in which

the order of analysis is not specified by the writer. Once the

analysis has been accomplished, the output is then constructed.

The formalization of the syntatic analysis schema used

in TMG and the investigation of it~ properties form the scope of this

work. The results presented here can be then extended to include

translations into a suitably defined output alphabet.

In Chapter II we define the "TMG Recognition Schema" (TS);

then we describe an automaton (TSA) corresponding to a given TS and

we show that the TSA accepts exactly the language "recognized" by

the TS. In Chapter III we show that the languages recognized by

a subclass of TS, the so called "well-formed TS", include all deter

ministic cfl.

In Chapter IV we study the various ways in which the TS

could fail to recognize an input string; we call these "failures".

Then, these types of failures are investigated and among other results,

2

some closure properties and decidability results are obtained.

Chapter V discusses tfme complexity: it is shown that the

languages "recognized" by the TS, the TSt, can be recognized in

linear tfme by a given algorithm.

In Chapter VI the relation between TSt and other classes

of languages is investigated. It is shown that the TSt are context

sensitive, they include some non-cflts and the TSt over a one letter

alphabet are not regular.

Chapter VII and Chapter VIII relate to generalizations of

the TS. Two of these models, the gTS and the (~,m)-TS, which are

shown to be equivalent, are studied; it is shown that they compare

favorab~y with the original model. A third model (the eTS) is

briefly. described and is shown . to be eCl.uivalent to. the gTS. Finally

'it is shown that there exists a class of one way deterministic

balloon automata which accepts the class of languages recognized by

the gTS.

II. THE THG RECOGNITION SCHEMA AND ITS AUTOMATON

First, we will give an informal description of our basic

concept.

The "THG recognition schema", or shortly TS, has a set of

variables, a set of terminal symbols, a distinguished symbol and a set

of rules, just like a phrase structure grammar. The rules have one

3

of the forms A •• a or A •• BC/D where A,B,C,D are variables, "a" is a

terminal symbol or the null string £ or the metasymbol "f".

Unlike a grammar there is at most one rule for each

variable in a TS. A variable in a TS behaves very much like a sub-

routine; given a string, a variable is "called". If its rule is of

the form A •• BC/D, it will "call" another variable. If the rule is

of the form A •• a, for some input symbol a, it will try to match the

next input symbol. The outcome of a variable "call" can be success

or failure. Suppose variable A is called on string x$ {$ is a special

symbol called endmarker} and the rule for A is A •• BC/D. Then A

calls B and two cases arise:

Case 1 B succeeds and recognizes a substring Xl' where xly - x

for some y. Then C is called on string y$ •

. Case la C succeeds and accepts Yl' YlY2 ~ Y for some Y2'

Then A succeeds and accepts xlyl •

Case lb C fails. D is called on x$ (i.e. we have back

tracking). If D succeeds and accepts x2, x2x3 - x for

some x3' then A succeeds and accepts x2• If D fails then

A fails.

Case 2 B fails. Then D is called on x$ and we proceed as in

Case lb.

We should also mention at this point that a string can be

rejected by a TS for other reasons beside failure in the sense

described above (which we call "recognition failure"), for example,

4

if the procedure stops because a variable is called for which thel:~. _____ .~ __ •. _.

is no rule in the TS (we call it a "subroutine failure").

Now we give a formal definition for the TS:

Definition2.1 A THG Recognition Schema (T5) R is as-tuple

R • (V,L,P,S,$) in which:

V is a finite set of variables

L is a finite set of terminal symbols

5 is an element of V

$ is a symbol called endmarker, $ not in L. (For any

input alphabet L we will use the notation L for the set
e

LU{$}) •

. P is a finite set of rules of the form a) or b):

a) A •• BC/D, A,B,C,D in V.

1» A •• a, a in E eU h , f}, f is a me tasymbol

not in Land £ is the null string.
e

For any variable A there is at most one rule with A on the lefthand

side.

*

n
We define the set of relations for each n in N, A ==t(xty,i),

It
x,y in Ee ' i in {O,l}, as follows:

1) If A •• a is in P, a in L , then e

I *
A ~ (atx, 0) for all x in Ee ' and

R

1 * A~ (tbx, 1), for all x in Le ' b in L , b"a.
R e

--

2)

5

1
(In the derivation A ~ (atx,O), A has outcome ° - i.e.

R
success - on ax and it recognizes the substring a, which

is indicated by the fact that the marker ~ follows the
1

substring which has been recognized. In A ~(~bx, 1),
R

A has outcome 1 - i.e. recognition failure - on string bx

and, as is a1way~ the case for outcome 1, the string

recognized is the null string or equivalently the marker ~

precedes the string bx).

If A •• £ is in P, then
1

A ~ (tx, 0) for
R

all x in I
e
*

(The outcome for a rule A •• E is success,. the string recognized being E).

3) If A •• f is in .p, then
1

A =+ (tx, 1) for all
R

x in I
e
*

(The outcome for a rule A~.f is 1, the string recognized being, of course E).

4) * Let A •• BC/D be in P. For each x1 ,x2,x3 and x4 in r ,if:
t m f

(a) B ~ (xlx2x3,0), C => (xix3'0), then A ~ (xl x2tx3JO),
R R R

k-t+m+1. (B and C succeed; then A succeeds and it recog-

nizes the concatenation of xl and x2).

t m ~ p ~
(b) B 1" (x/ x2 ,0), C =t (, x2 ,1), D 't (x3, x4 ,0, and

xl x2 .. x3x4 .. x, then A ~ kl x4 ' 0), k :I Hm-t-p+l.

(B succeeds on x1x2 ' recognizing xl' but C fails on x2 •

Then D is called; A recognizes whatever D recognizes).

6

(c) B..!<txl x2,l); D ~(xl~x2'O), then
k ·R . R

A -====P (xlX2 ,.0), k ... f:hi+1. (This case is similar to
R

b). B fails and D is caLled; A recognizes whatever D

recognizes) •

R. mt- P"
(d) B =+ (xlx

2
,0), C =t (r x2 ,1), D--:- (Ixl x2 ,l),

then A ~ (~xlx2,l), k - !+.+p+1 • . (The same as b),

only that D fails; A fails too).

R. m · k
(e) B ~ (txl ,l) and D -===+ (tx

l
,1), then A-==;' (txl ,1),

R R .R
k ~ R.+m+l. (The same as c), only that D fails; hence,

A fail,,).
n

* x.y 1n re ' 1 1n {O,l}, we say that A derives If A ~ (xty , 1),
R

(xty,i) in n steps. (Equivalently. we will say A has outcome i on

xyand it recognizes the substring x). We say that A derives (xty,i)

if A derives (xty.i) in r steps for some r, and we write A ~ (xty,i).

Remarks

The language recognized by R is:

T(R) - {x I x in 1:*, S ~ (x$t,O)} •
R

R

1. Let A "* (x~y,i), for some xy in 1: * If i ~ 0 we say that A
R e

succeeds on xy. If i = 1, we have a recognition failure (or simply

failure) •

2. We generalize the form of the rules in P, to include expressions

+ A •• al /a2 / ••• /an , where a i in V , for l.£. i £: nand n)} 1. We do

7

this recursively in the following way:

a) The expression A •• B, A and B in V, stands for the set of

rules A •• BXI /X2, XI •• E, X2 .• f where Xl' X2 are new variables, to be

added to V, and which do not appear in any other rule in P.

b) The expression A •• Bl B
2

stands for the set of rules A •• Bl B
2

!XI ,

Xl •• f and Xl is a new variable which does not appear in any other rule

in P.

c) The expression A •• BI B2 ••••• Bk , for k ~ 3 stands for the set

of rules A •• XlBk , Xl •• BlB2 •••• ~_1 where Xl is a new variable which

does not appear in any other rule in P.

d) + The expression A •• a!B, A and B in V, a in V , stands for the

set of rules A •• Xl X2/B, Y~ •• a, X2 •• £ where Xl ,X2 are variables which

do not appear in any otht'r rule in P.

e) The expression A •• al/ai/ •••• /an' for n ~ 2 and ai in

v+, l~ i ~ n, stands for the set of rules A •• al/~'Xl··a2/a3.···1 an

and Xl is a new variable which does not appear in any other rule in P.

3. We generalize further the form of the rules in P to include

* expressions A •• al /a2/ •••• /an , where a i in (VbEeU{f,E}) for 1 ~ i ~ n,

'* n ~ 1. Let ai = aaY for some 1 ~ i ~ n, a and Y in (VUEeU{f,E}) and

a in E U{f,E}. Then, in a recursive manner, the expression above e
'" , stands for the set of rules A •• al!a2/ •••• /an, Xl •• a where a

j
- a

j

if j ~ i and ai = aXlY and Xl is a new variable which does not appear

in any other rule in P.

8

As an example, consider the TS R ~ (V,r,p,S,$) where

v • is, A, X , x$}' r = {a}, P = {S •• AX$' A •• X X A/£, X •• a, a a a a

n Given an input string a $, it can be shown that if n is even then

nt. n-l...) A ~(a 1$,0), otherwise A ~(a 'a$,O .Using now the rule for S,

S •• AX$ we get: for n even A ? (ant$,O), X$ '=i' ($~ ,0) and S ~ (an$ t,O);

for n odd A 7(an-lta$,0),x$lf (~a$, 1) and S =t (~an$,l) hence

n a is in T(R) if and only if n is even:

T(R) = {an I n 1 ° and n even} •

Let R ~ (V,L,P,S,$) be a TS. We will show that the TS can be thought

of as an automaton and for this purpose we define the "TS-automaton" A(R):

Definition 2.2 Let R. (V,r,P,S,$)be a T8.

The tape alphabet of A(R) is r = V U~l x2/x31 Xi in V or Xi ~ A and A in V,

for i - 1,2,3}.

The internal states of A(R) are {s,r}.

A configuration of A(R) is a 3-tuple (q,X,IIl) where q is in {s,d, x • XlX'2'

* xl ,x2 in r e , ~ is a special symbol (which indicates the position of

* the read head on string x
l
x2), III is in (i"xN) , N being the set of

natural numbers. The position of ~ in x is denoted by the function

* * ~ p: r/re -+ N, as follows: if x ~ x'1Ix 2, IXll - k (by Ix: we denote

the length of the string X'), then p(z') ~ k.

We define the relation IA(R) between two configurations a, S, and

we write aIA(R)B, as follows: assume a .. (q,x,IIl), III - (Xl,il)".(~'~)'

9

,
~ ... (q , x, w'), x = lIJ. ~~, x - ~h~ and

, .,

"
- (l1,i1)"'(~-l'~-l) w

,
in {s,r}, w

1) Let q = s, Xk "" A, A 1n V, A •• Be/D in P; then q • s, x • x

" and w = (fielD, p(X» (B, p (x».

2) Let q ... s, Xk ~ A, A in V, A •• a in P, a in r e' then if x •
2 , , ,

" aX we have X - \a, x ... x q = sand w ., E; if x = b~3' 3 1 2 3' 2 ,
"

b "
a, we have X "" x, q ... rand w = E.

,
3) If q .. s, ~ • A, A in V, A .. E in P, then x "" x, q = sand

" w = t.
,

ll) If q ... s, Xk "" A, A 1n V, A .• f in P, then x .. x, q - r

" and w .. t.
,

5) Let ~ = ABle, A,B,e in V; if q "" s then q .. s, x - x and

w = (ABle, ~) (B, p(x»; if q = r then q "
,

= s, p(x) = ~ and

" w - (AB/C, 1k) (e, ~).

6) Let ~ = ABle, A,B,e in V; 1f q = 8 then q "" St X - X

"
, ,

" andw = E. I£q .. r then q -.8, p(x) = ~, w • (AB/Ct~) (e,~).
, ,

7) Let Xk = AB/C, A,B,e in V; if q "" s then q • s, x - x and

" , , " w c t. lf q .,. r then q a r, p(x) = ~, w ... t.

If a lx (R) S, we say A (R) makes one ~ from configuration a to

* configuration a. We write alA(R)S if there are aI' a2 , .•• ,an ,

a = al' S a an and ai I A(R)ai +1, for 1 ~ 1 ~ n -1 and some n,

the number of moves.

* * The language accepted by A(R) is {wlw in L , (s,lw$,(S,O»\ A(R)

(8, w$ t ,E) 1.

We will show now that the language accepted by A(R), for a given

10

R, is exactly T(R).

Theorem 2.1 The language accepted by A(R) is T(R).

Proof Let R = (V,~,p,S,$) be a TS.

Part One. First we show:

n * * (a) If AT (xII x2 ,0), xl x2 in ~ $, then for all x3 in ~ ,Yin

* * ~ (rx N) we have (s, x3~xlx2' yeA, Ix3 1»I A(R) (s, x3Xl IX2,y).

n * * * (b) If A=f(l'x, 1), x in ~ $, then for all y in E ,Yin (rx N) ,

* we have (s, y~x, yeA, lyl»~A(R) (r, yrX,y). We prove (a) and (b)

simultaneously, by induction on n.

n - lea) Assume the rule for A in P is A •• a, a in ~ V{E} and
e

Ay (a~x2' 0). From configuration (s, xJtax2, yeA, Ix31», A(R) will

go in one move to ~s, x3a~x2'Y)'

(b) Assume the rule for A in P is A •• a, a in ~ and
e

Ay(tbx, 1), b ~ a. From configuration (s,y~bx,Y(A, Iyl», A(R)

will go to (r, y~bx,y), according to Definition 2.2.

Finally, assume the rule for A is A •• f, and A ¥' (~x, 1). Then

(s, ytx, Y(A,lyl»r-A(R) (r, y~~,y).
n

Induction .;;;.ap (a) A~(xfx2'0), n > 1. The first move must come

from a rule of the form A •• BC/D in P.

Case 1 B Y(Yl\Y2X2'O), C~(y}x2'0), Xl • YlY2' Consider in A(R) ,

(s, x3tYlY2X2' yeA, Ix31». Using Definition 2.2, in one move we get

the configuration in A(R) (s, x3~YlY2X2' (BC/D, Ix31»(B,lx31). Using the

inductive hypothesis on (a) and the derivation Bif (YlY2x2'0) from

above, we get (s, X3YltY2x2' Y(BC/D, IX31» and then (s, x3YltY2x2'

(Be/D, Ix31) (C, Ix3yl l». Repeating the same argument for C we get

11

(s, x3Y1Y2tx2' Y(BC/D, Ix31» and finally the configuration

(s, x
3
x

1
tx

2
, 'Y).

Case 2 By(tx
1

x2 , 1), Di'(xlx2 , 0). We have in A(R) in one move

(s, x} xl x2 ' Y (A, 1 x31» ... A (R) (6, xl Xl x2 ,'Y (fiC/D, 1 x31) (B, 1 x31 » .
Using the inductive hypothesis on (b) this time, we get (r, x3txlx2'

y(BC/D, Ix31» and then (s, x}x1x 2 , Y (BC/D, Ix31) (D,lx31»t-A~R)

(s, x 3X1'X2 ,Y (BC/D, Ix31» I A(R) (s. x3x1~x2' 'Y).

Case 3 BY(Y1~Y2'0), Cy (ty2 • 1), n-=t (X
1tx2• 0) and YlY2 .. x1x 2 •

This case is treated similarly.
n

(b) A][>(tx, 1), n > 1. The first step muat come from a rule

of the form A •• BC /D in P.

Case 1 Bf{tx, 1), DT(~x, I"). We have in one move in A(R)

(a, ytx,~(A, lyl»IA(Rl (s, yrx,Y(BC/D, Iyl) (B, Iyf>). The inductive

hypothesis and B t (tx, 1) imply A(R) goes to (r, y~x, Y (BC/D, Iyl»

and then (a, y~x, 'Y (BC/D, 1 y I) (D, 1 y 1)) • Using this time the

inductive hypothesis on D, Di (tx, 1), we get the final configuration

of A(R) as (r, y~X,Y).

Case 2 B-;,(x1~x2' 0), Cy (~x2' 1), Dt(~x1x2' 1) and x - x1x2 •

This case is treated similarly.

Part Two. We want to prove:

* * * (c) For all y in 1: , Yin (I'x N) , if (s, Ylx
l

x
2

, 'Y (A, Iyl»t-A(R)

(8. yxl rx2,y), xl x2 in 1:*$, chen AJr(x1~x2' 0).

* * " * (d) For all y in 1: ,lin (fx N) , if (s. ylx.y(A, lyl»)~(R)

(r. ',... '* " y.x ."", x in 1: $, then A? (tx, 1), y::l Y and x = x.

12

We prove (c), (d) by induction on n, the number of moves of the

automaton A(R).

u.....::-1.. (c) A one move derivation in this case implies, by Definition

2.2, xl .,. a in E~{d and A •• a is in P. It follows that Ay (atx2, 0).

(d) By Definition 2.2 we have either xl a b, b in Ee' and

A •• a which implies x = bx2, A~(rb x2 ' 1), or we have A •• f in P which

implies A 7' (~x, 1).

Induction step: n > 1. (a) First we have: (s, Y\Xl x2,y(A, IYI»~A~R)

(B, Iyl», where A •• BC/D is in P. It is

assumed in (c) that the tape cell with (B, Iyl) will be eventually

replaced by E in some configuration of A(R).

Case I We assume that (B, IYI~ is replaced by E in state Ss

moreove~, when (C, k) is written in its place, for some k, this one

i~ also eventually erased and we assume that (C, k) is replaced by E

in state r. From the first assumption follows, by the inductive
*

hypothesis (c), that if x = xl x-2' and (s, y~x, Y(iic/D,lyl){B,lyl). A(R)

(s, y x/x4, Y(BC/D, Iyl», x = x3x4 ' then Bi((xlx4 , 0). Next

A(R) goes to (s, y X3tx4' Y(BC/D, Iyl) (C, IYX3 1» and finally to

(r, YX3tx4' Y(BC/D, Iyl». By the inductive hypothesis (d) follows

Cy (tx4, 1). Finally A(R) goes to (s, yrX1X2, Y(BC/D, Iyl) (D, lyl»J(:(R)

(s, YXI x2,). The last part implies D~(xltx2' 0). By Definition

2.1 we have AIr (X/X2' 0).

Case 2 When (B, Iy I) and (C, k) are repl~ed by E ,A(R) is in state s.

Case 3 When (B, Iyl) is replaced by E A(R) is in state c.

13

The cases Z and 3 are treated similarly.

(d) First we have (s, y~x, YeA, lyl»IA~R) (s, y~x,'Y(iiC/D, Iyl)

(B, Iyl», where A •• BC/D is in P.

Case 1 We assume (B, Iyl) is replaced by E in state r. Then we get

the configuration (r, y~x, Y(BC/D t Iyl» which goes in one move to

(s, y~x, Y(BC/D, Iyl) (D,lyl». It follows that (D, Iyl) must also

be replaced by E in state r (otherwise the symbol (A, Iyl) would be

finally replaced by £ in state s). By the inductive hypothesis (d)

we conclude B=t (rx, 1) and also D=t (tXt 1). The final configuration

is (s, y~x, Y) and hence y' - y, x-x. Also it follows, since

A •• BC/D, B -=* (tx, 1), D~ <I'x, 1) that A -:d!f (tx, 1).
R R R

Case Z (B, Iyl) is replaced by € in state s. This case 1s treated

similarly.

t.. * t- ~ From (a) if SOy (XI, 0), X in ~ $ then (s, I x, (S,O»'A(R)

(s, xt,E). From (c) follows the reverse, i.e., if X is accepted by

A(R) then it belongs to T(R).

We will now prove a "unique~sEl" result, which in conjunction with

the previous theorem will be used in establishing later results.

Lemma 2.1 Let R - (V,~,P,S,$) be a TS. Assume that (q, x~y,y) IA~R)

(ql' xltyl,yl) and (q, XIY'Y)~A~R) (q2' xZtYZ'Y2> for some

* * q,ql,qZ in {s,r}, xy • xlYl - x2Y2 in E $, Y'Yl 'Y2 in (fx N) and in

configurations (ql' xl~Yl'~)' (ql' x2rYz 'Yi) A(R) has no next move.

Then ql = Q2' Xl - Xz and YI = Y2 •

QED

14

Proof According to Definition 2.2, in any configuration of A(R) there

is at most one possi.b1e move and therefore A(R) is deterministic.

The lemma follows immediately. QED

III. TSANDDETERMINISTIC PDA'S

In this chapter we define a subclass of TS, the "well-formed TS",

and we show that the class of languages they recognize include all

deterministic cfl's ([4], [5], [6).

Definition 3.1 A well-formed TS (or shortly wfTS) R - (V,E,P,S,$) is

* a TS with the property: for all x in E either S~(x$~,O) or

S r (tx$, 1). (We mentio~ at this point that, as we will show later,

siven a TS R it is undecidable whether R is also a wfTS).

We first give the definition of a DPDA (the notation used is

similar to the one in [14):

Definition 3.2 A deterministic pushdown automata (DPDA) is a 7-tuple

Q D (K,E,r,o,Z ,q ,F), where:
o 0

K is a finite set of states.

E is a finite set of input symbols.

r is a finite set of pushdown symbols.

* 6 is a mapping from K x (EU{t}) x r into K x r such that for each

q in K and Z in 'r, if 6(q, £,Z) " 0 then 6(q,a,Z) • 0 for all a in E.

Z is an element of r.
o

qo is in K (the initial state)

F is a subset of K (the set of final states).

15

* * Let ~be
1)

the relation on K x E x r defined as follows:

For a in EU{El,z in r, if ~(q,a,Z) D (p,y) then we write

(q,aw,aZ) ~(p,w,ay), and this is called a move.

* 2) For a and a in r and xi in EU{El, 1 ~ i ~ k, we write

* (q, xl •••• ~w,a) ~(p,w,a) if there exist ql - q, ••• , qk+l • p in

* K and al z a, ••• , ak+1 - a in r such that (qi' xi ••• ~w,ai) ~

(qi+l' xi+l····~w,ai+l) for 1 ~ i , k.

* A word w is accepted by Q if (q ,w,Z)~Q (q,£,a) for some q in
o 0

* F and a in r. The set of all words accepted by Q is denoted by T(Q).

Theorem 3.1 Let Ql a (~,E,r,61,Zo,qo,Fl) be a DPDA and let the

language accepted by Ql be T(Ql). There exists a wfTS R such that

T(R) om T(Ql>.

* Proof The lallguage accepted by Ql by final state is T(Q1) •. {xix in 1:

. ... *
and (q ,x,Z) ~Q" (q,E,Y) for any y in rand q in Fl. According to

(l 0 1

* [2], p. 168, we can assume that for all x in 1: , there are p in K and a

* * iu r such that (q ,x,Z) ~Q (~,£,a), which means that the automaton
o 0 1

Ql always scans the input string. We will construct from Ql a new

* DPDA Q which will accept x$, for some x in 1: , if and only if x is in T(Ql)

and in aduition Q will always erase its storage tape before accepting or' .

rejecting. Let E = {aill ~ i ~ ml and Kl = {qi\l ~ i ~ n-2l. Then

Q = (K,E,r,o,Z ,q ,F) where K = {qil1 ~ i ~ n}, K contains two new states o 0

~-l' ~, F - {~}. Q will simulate Ql until the endmarker is reached;

then if Ql is in an accepting state, Q goes to ~ which erases the tape

16

and accepts the string. If, however, Ql is in a non-accepting state,

then Q goes to ~-l which will erase the tape. Then: 6(q,$,Z) • (<<lu' Z)

if q is in F and 6(q,$,Z) - (~-l' Z) if q is not in F, for all Z in r.

Also 6(~,£,Z) - (~,£) and 6(~_1'£'Z) - (~-l'£) for all Z in r.

Now consider the IS R - (V,E,P,[q Z a],$) where: V includes the set
00"0

{[qi Z qj]1 qi,qj in K, Z in r}U{[qizqj;a]lqi,qj in K, Z in r, a in

E }; V also contains variables which are implicitly defined in the
e

handshort notation of the rules in P. (A variable of the form [qizqj]

will have outcome 0 and will recognize a string x only if Q, in state

qi and with Z on its storage tape will eventually erase Z in state qj

having scanned Bubstring x on its input tape; for variables [qi Z s],

where s + qj'. the out'come will be 1).

P contains the following rules (according to [14] we can assume

for Q that if 6(q,a,Z) - (p,y) for some q, p in K, a in E U{£}, Z in r, . e

thenlyl ~ 2):

1) if o(qi'£'Z) = 0 (i.e. there are no £-rules for qi in K, Z in r)

then P can tains

(PI) [qiZqj]" al[q1Zqj;all/a2[q1Zqj;a21/ ••••• /am[qizqj;am] for all

qj in K (variables of the form [qizqj;a1 are used to register the fact

that a sYBbol a has been recognized).

2) if o(qi'~'Z) - (ql,Xi
Yl), Xt'Yt in r, the~

(P2) [q1Zqj;~] •• [qtXtq1][q1ytqj]/ •••• /[qlXt~][«luylqj]' for all qj 1n K.

3) if o(qi'~'Z) = (ql'Xt), Xt in r, then

(P3) [qizqj;~] •• [qlXlqjJ for all qj in K.

17

4) if o(qi'~ ,Z)_ (ql,E), then

(P4) [qiZqtj~) •• E, and [qizqjj~] f, for all qj in K, qj P qt.

5) if O(qi,E,Z) - (qt,XtYt), then

(PS) [qizqj) •• [qtXtql)[qlYtqj)/ ••••• /[qtXt~][~Ytqj) for all qj in K.

6) if o(qi,t,Z) = (qt'Xt), then

(P6) [qiZqt) •• [qtXtqj)' for all qj in K.

7) if O(qi,E,Z) - (qt,E), then

(P7) [qiZqt) •• E, and [qizqj] •. f, for all qj in K, qj P qt.

* * Part One .We show that if (q,x,Z) ~ (p,E,E), x in Le' Z in r, then

[qZp) =t (x~,o) and [qZs) =p(tx, 1) for all s in K and s P p.
, .

The proof is py induction on n , the number of 'moves of Q.
,

Base: n = 1 Case 1 x - ai,ai in Le and o(q,ai,Z) = (p,E). Then

[qZpja1) •• E, [qZs;a1) •• f for all s ;: p and [qZp] •• al[qZpja1)/ ••••• 1

am[qZp;am). It follows [qZp jai) -=T (~, 0) and [qZp) =7 (a/ ,0). Also

in P we have [qZs] .• al[qZsjal]/ •.••• /am [qZs;am). It follows

[qZs; ai] =ra, 1) for s + p and hence [qzs)::::!>(ta1 , 1).

Case 2 x = £ and O(q,E,Z) = (p,E). [qZp] •• E, [qZs) f for

s ;: p and hence [qZp] ==f"(t,O), [qZs] =yet, 1) for all s "p. These

two cases are the only possible ones and the base of the induction is

thus proved.

Induction step Case 1 We first assume the first move from configuration

(q,x,Z) is not an £-move. Suppose x - 8i Y, 8i in E, and o(q,ai,Z) -
" ,

(p ,XY), X,Y in r, p in K. Then (q,8i Y,Z) ~(p ,y,XY). For some

18

" '*" * p in k we will also have (p 'YIY2'XY) ~ (p 'Y2'Y) ~ (p,E,t). By
, " " ,

induction [p Xp] If (Yl~Y2' 0) and [p Yp] It (Y2L 0); also [p Xs] =t
II " ,..

(~YlY2' 1), s ~ p and [p Ys] ~(IY2' 1), s ; p. We have the rule

" " [qZp; ai] •• [p xql] [qlYp]/ ••• /[p X~][~Yp]. Let k be such that p - qk.

From above [p 'Xq
j

] =r (tY
l Y2' 1) for all j ~ k.

We also have [p"yp] =r (Y/' 0) and together with [p'Xp"] 7 (y
l
ty

2
, 0)

we get [qZp; ail if' (y
1
yl, 0). Finally the rule for [qZp]: [qZp] ••

a1 [qZp; a 1]/ ••••• /am[qZp; am] gives us [qZp] '1 (aiYIY2~' 0).

Consider now the rule for [qZs; ail, s ; p. [qZs; ail

" ,
[p X ql][qlYs]/ •••• / [p X~][~Ys]. We know already that [p Xq

j
]=*

(tYl Y2' 1) for j '" k, p". qk and [P'Xqk] R,'>(ylY2' 0). We also have

[qkYs] -r (~Y2' 1), s ;. p 'which i~plies [qZs; ail -t. (ty1y2 , 1) and

finally [qzs]y (~aiYlY2' 1) for all s 1: p.
, ,

Next, assume o(q;ai~Z) g Ep ,X). Then [qZp; ail •• [p Xp] and
,

by induction [p Xp] =t (y~, 0), hence [qZp] =t (aiY~' 0); [qZs; ail ••

[pXs] and [pXs] =t (~Y' 1), al1!i '" p, hence [qzs]=t (~aiY' 1) for all
, ,

s '" p. If o(q,ai,z)-(p ,E) then [qZp , ail •• E and [qZs; ail •• f,
,

all s '" p and the theorem follows.
,

Case 2 First move is an E-move, o(q,.~Z) = (p ,XY). Then let

, *" *
x = xl x 2 such that (p , ~ x2 ' XY) t-ij- (p ,x2 , Y) ref (p, E, £) • By indue don

'"", " II [p Xp] Y (XII x2 , 0) and [p Xs] Ir (~x1 x2 , 1), all s '" p ; [p Yp] -=r
h " ~

(X21, 0) and [p Ys] =]r(IX2 , 1), all s '" p. The rule for [qZp]:

" " [qZp) •• [p xql][qlYp]/ ••••• /[p X~][~yp]; let k be such that qk m p •

Then [q'Xqk] =1?(Xl~x2' 0), [qkYp] ~(X2~' 0) and from above follows the

19

theorem. Other cases are treated similarly.

Part Two We show that if [qZp] =r (x~, 0), x in L *, p,q in K, Z in r,

* then (q,x,Z) tQ (p,E,E).
,

The proof is by induction on n •

n' -1. The only possible case is [qZp] .. E and [qzp]~(~,O), x· E.

Hence, 6(q,E,Z) - (p,t) and (q,E,Z) ~ (p,E,E).

Induction step Case 1 Suppose the rule for [qZp] is: [qZp] •• a1[qZp; al]1
, ~

..... /am[qZp; am]; also [qZp; ai] .. [p xql][qlypll ·/[p X~)[CluYp];,

Then there are xl ,x2 and k such that x - 8 i x1x2 and [P'Xqk] ~(~~x2' 0),
, ,

[qkYp] =1 (x/' 0), o(q,ai,Z) = (p ,XY), Z,X,Y in r, q,p in K. By

, * * induction (p ,x1x2,XY) ~ (qk'x2 ,Y) tQ (p,E,E) which proves the case.
, .

Case 2 The rule for [qZplis: [q~p1 •• [p xql][q1Yp]/ 1
, ,

[p X~][~Yp]. Then, there are x1 ,x2 ,k such that x - x1x2 ' [p xqkJ ~

(x1tx2, 0), (qkYp] ~(x2~' 0), O(q,E,Z) - (p' ,XY). By induction

, * . *
(q,x1x2,Z) ~ (p ,x1x2,XY) ~ (qk'x2 ,Y) ~ (p,E,E).

* Now we can show that for all x in E , x$ is in T(Q) ifE x is in

* T(R). Assume x$ is in T(Q). Then (q ,x$,Z) ~Q (q ,E,E). Using o 0 n

Part One we get [qozo~] Jt (x$~, 0), [qozos] T(~x$, 1), for all s ~ ~.

Assume now x is in T(R); then [qoZo~] =i (x$~, 0) and using

* Part Two we get (qo,x$,Zo) rQ (~, E,~.

Part Three We have to show that R 1s a wfTS, that 1s for all x in E
11:

20

* * of Q we must have fo" all x in E either (qo,x$,Zo) \Q (IIu,E ,E) or

~ (qo,x$,Zo) 'Q (qn_l,E,E) and using new Part One the theorem follows.

IV. FAILURE TYPES AND ADDITIONAL . PROPERTIES FOR TS

In this chapter we discuss the ways in which the TS could fail to

recognize an input string. These "failure types" are: recognition,

subroutine, end, partial-acceptance and loop failures. We show that

partial-acceptance and end failures can be eliminated; moreover,

subroutine failures can be replaced by loop failures so that for any

TS, an equivalent TS can be constructed which has only recognition or

loop failures. Using these results we prove some closure properties:

The TSL are closed under intersection, the complement of a wfTSL is a

TSL, the wfTSL are closed under union. Also, we show the following

* problems to be unsolvable: the E -problem for wfTS, the emptiness

problem for wfTS, the problem of deciding whether a given TS is a wfTS.

We start by defining the various types of failures:

Definition 4.1 Let R - (V,E,P,S,$) be a TS. * For A in V, x in E :

1) A has a recognition failure (or simply failure) on x if

*
(sJx$,(A,o» IA(R) (r,tx$,E).

2) A has a subroutine failure on x if either there is no rule

*
for A in P or (sJX$,(A,o»tA(R) (s,x1tx2 ,Y(B,n» for some y in (rxN)*,

n in N, B in V such that xl x2 • x$ and there is no rule for B in P.

QED

21

3) A has an end failure on x if (S,rX$,(A,o»lA~R) (s,x$~,y(B,n»

* for some y in (fxN) , n in N, B in V, and the rule for B in P is B •• a,

for some a in EI (In case 2) above A(R) halts because no rule is

available for some variable. In case 3) A(R) halts because the read

head "falls off" the input tape).

4) R has a partial-acceptance (p~~ failure on x if (s,~~x2$,

(S,o»\A~R) (s,x1~x2$,e:) for some x2 in E*. (We will say equivalently,

that S has a p-a failure on x. The definition of a p-a failure shows

that if S has outcome 0 but has not scanned the whole string, the

string is rejected and it does not belong to T(R».

5) A has a loop failure on x if A(R) in configuration (s,~x$,(A,O»
can make an unbounded number of moves.

In the following theorem we wili show that those are the only

possible failures.

* Theorem 4.1 Let R - (V,E,P,S,$) be a TS and x in E , x 1s not in T(R).

If S does not have on x a subroutine, end, partial-acceptance or loop

failure then Shas a recognition failure on x.

Proof A(R) in configuration (s,tx$,(S,o)} can only make a finite number

of moves, since otherwise S would have a loop failure on x. By Lemma 2.1

there is a unique configuration (q,xl~X2'Y) such that xl x2 a x$,

(S,tx$,(S,o»IA~R) (q,xl tx2,y) and A(R) has no move in this configuration.

First, assume y + £; by the definition of A(R) we must have y = Yl (B,n)

for some B in V. n in N (since otherwise a move is possible). Also, we

must have a rule for B in P, since otherwise we would have a subroutine

22

failure. The rule for B cannot be B •• E or B •• f; if the rule is B •• a,

for some a in Ee' a move is still possible unless x2 • E in which

case we have an end failure. Therefore the assumption y P E leads to

a contradiction.

Assume now y - E; we cannot have q - St since we would have a

p-a failure. If q - r then, according to the definition of A(R), we

have backtracking and xl • E. We conclude that (s,~x$,(S,o» IA~R)

(r,tx$,E) and we have a recognition failure. QED

Consider a variable A which has the rule A •• E .This variable

has the following property: if we start A(R) in configuration

(s,~x,(A,o», for some x in r*$O{E}, the storage tape is eventually

erased and no input symbol is checked for a match (we notice x can be E).

In other words, when A(R) has scanned the input string and has also

successfully matched the endmarker, every variable called afterwards

has to have this property if A(R) is to accept the input, since the

first attempt to match a symbol in E will cause the read-head to e

"fall off" the input tape and A(R) will halt.

Next we study the set of variables in V which have this property

and which belong to one of the sets U(R), VCR):

Definition 4.2 Let R be a TS, R - (V,E,P,S,$). Construct U(R)~ V and

V (R) s; V as follows:

1) U - {AlA in V, A •• £ 'in p},V - {AlA in V,A •• f in Pl. o 0

2) Ui +l - Ui U {Alif A • • Bc/D in P for some B,C,D in V then (B,C in Ut)

or (B in Vi and Din Ui) or (B,D in Ui and C in Vi)}' Vi+l -VP{Alif A .. BC/D

in P for some B,C,D in V then (B,D in Vi) or (B in Ui and C,D in Vi)}'

for i) O.

23

3) Let I be the smallest integer such that UI+l m UI and

VI+l = VI (the existence of I is assured by the finiteness of V). Let

U(R) = U
1

, V(R) ~ VI'

The following lemma gives a precise description to the mentioned

property of the elements of U(R), V(R):

* Lemma 4.1 a) (s,t,(A,o»~(R) (s,~,£) iff A in U(R).

b) . * (s,~,(A'O»~(R) (r,~,£) iff A in V(R).

Proof

The "only if" part. l1le proof is by induction on n, the number of

moves in A(R).

n m 1 In (a) we must have the'rul~ A •• f, hence A 1n U. For (b) we
o

must have the rule A •• f, hence A is in V •
o

Induction step (a) Assume A •• BC/D is the rule for A. Then several cases

* arise. First let A succeed through Band C, that is (s,t,(B,o»rA(R)

* (s,~,£), (s,t,(C,o»/A(R) (s,~,£). By induction B is in U(R) and

C is in U(R) , and by construction of U follows that A is in U(R).

All other cases are similarly treated.

(b) Assume A •• BC/D is the rule for A. Consider first the case

* * Band D fail: (s,~,(B'O»~A(R) (r,t,£), (s,I',(D,o»\A(R) (r,LE). By

induction B is in VCR) and D is in VCR). We finally get that A is in

VCR). The other case is similar.

"if" Consider the sets Uo' U1 ""'UI and Vo,Vl, ••• ,VI • Given a

variable A in U(R) we can associate with A an integer i such

that A is the Ui and not in U
j

for j < i. Similarly, if

24

A is in VCR), let i be such that A is in Vi and not in Vj for all

j < i. The proof is by induction on i associated with A in V.

Base (a)

(b)

i - ° or A in U ; the theorem follows. o

A in V and the theorem follows.
o

Induction step (a) Assume A is in Ui • Consider first the case

where A •• BC/D in P and A is in Ui because BtC in Ui _l • By induction

* * (sl ,(B'O»/A(R) (St~,£) and (s,~,(Cto» IA(R) (S,~,E). It follows

(St~t(A'O»~(R) (s,f',(BC/D,O)(B,O»tA~R) (s,f',(C,o»'A~R) (sJ ,d. All

other cases are similarly treated.

(b) A in Vi' A •• BC/D in P. Consider the case where B is in

Ui _l , C,D in Vi_I. We apply the inductive hypothesis to obtain

(s", (B,o» IA~R) (SJ,E) and .also (sJ, (C,O» IA~R) (r,~ ,E) and a

similar ,exPression for D. The theorem follows.

In order to prove some important properties of the TS, such as

closure under intersection, we have to show that partial-acceptance

QED

failures can be eliminated. We make use of the previous lemma in order

to prove:

,
Theorem 4.2 Given a TS R· (V,L,P,S,$), there is a TS R which has no

,
p-a failures and T(R) a T(R).

, , '- ,
Proof Consider the TS R - (V ,L,P ,S,$) where V - {A,AI all A in V}

U{J} and J is not in V. The significance of the pair of variables A, A
, ,

in V corresponding to the variable A in V is the following: A in R

25

behaves like A in R, accepting the same strings; however A will ~ccept

* only strings in E $ and only those which are also accepted by A. For

example, assume the rule for 5 in R is s •• AB/C; first we notice that
I

in R • we have to use S as the distinguished symbol. Then (assume

for the moment that B is not in U(R» on a recursive argument we have
- I _

to write the rule for 5 in R as: 5 •• AB/C. In other words we keep

track of the variable which accepts the last symbol of the string and
I

make sure this one is the endmarker. Formally. P is formed as follows:
,

1) if A •• E is in P, then P contains A •• J and A •• E.

I -2) if A •• a is in P, a in E, then P has A •• aJ and A •• a.
,

3) if A •• $ is in P, then A •• $, A •• $ are in P •
,

4) if A •• f is in P, then P contains A •• f. A •• f.
,

5) if A •• BC/D is in P and C is not in U(R) , then P contains

A .. BC/D and.A •• BC/D.
,

6) if A •• BC/D is in P and C is in U(R) , then P contains A . . Hc/D

and A •• Bc/D.

The rest of the proof follows in three parts:

* Part One First we show: for all ~x2 in Le ' i in {O,l}, A=i (~~x2,i)

iff AJr. (xlt x2 , i). The proof is easily obtained by induction. first on

the number of steps in the derivation in R and then for the "if" part,
I

the induction is on the number of steps in the derivation in R •

* Part Two For all x in 1: ,

(a) A =t (x$t ,0) iff A ~ (x$~,o)

(b) A =r (tx$, 1) iff A~ (Ix$, 1)

26

The "only ie' part By induction on the number of steps in the derivation

in R.

Base (a) A one step derivation implies AJr ($~to)t and A •• $ in P.
I

We get A •• $ in P , A"'P ($~ ,0).
I

(b) Several cases arise. If A •• f is in P, then A .. f is in P and

- I
the theorem holds. If A •• a is in P, a in r, then A •• aJ is in P and

in R' we get AJRT (~x$, 1). Finally, the case A •• $ in P is also easily

verified.

Induction step (a) Again, several cases are possible:

Case 1 A •• BC/D is in P, C is not in U(R).

la) B ~ (X/X2$, 0), C =t(X2$~, 0) for some ~ in r*, ~x2 - x.

Then by induction C IV (X2$~, 0). Also, A •• Bc/n 1s 1n p', B IV (xlt x2$, 0),

'hence A ~ (x$~, 0).

lb) B =ir (~x$, 1), D lR (x$~, 0). By induction D ~ (x$~,O)

and we get A Rt (x$~, 0).

Ie) Similar.

Case 2 A •• BC/D in P, C in U(R). This case is similarly treated.

(b) Given A "7 (~x$, 1).

Case 1 A •• BC/D is in P, C is not in U(R).

la) B y (tx$, 1), D =f (tx$, 1). By induction n 'at (~x$, 1).

Also we have A • • Bc/D in P I and B R' (~x$, 1}rhence A ~ (~x$, 1).

lb) BIt(x
1
tx2$, 0), C ,¥(~x2$, 1), IF=f(~x$, 1), for some

Xl in r*, x
1

x 2 - x. By induction C RT'(i'x2$, 1), D ~(tx$, 1).

i .. BC/n is in pI and B ~(x/x2$, 0), hence A F(t-x$, 1).

27

Case 2 A •• Bc/D in P, C in U (R) • The only possibility is: B .=t (/x$, 1)

and D if (~x$, 1). We have A •• ficIn in P I and applying the inductive

hypothesis we get A :Rt (~x$, 1).

"if" By induction on the number of steps in the derivation in RI.

This part of the proof is similar to the one above.

Part three We will show RI has no partial-acceptance failures by

* showing that for no A in V and no xl ,x2 in L we have A ~ (xl x2$, 0).

The proof is by induction on the number of steps in the derivation in RI.

Base Assume we have a one step derivation in RI. The rule in pi

corresponding to the derivation step cannot be of the form A •• aJ or

A .. J or A .. f. The only remaining possibility is A .. $ but this does

* not apply either because we assumed ~x2 in L •

Induction'step Two cases arise:

Case 1 let the rule for A in P' be A .. BC/n.

la} let B V (x} x4x2$, O}, C~(x4tx2$, 0); but this contradicts

the hypothesis, hence it is not possible.

lb} and Ic} are similar.

Case 2 let A •• fic/D be in pl. The reasoning from above applies here

too and we conclude RI has no partial-acceptance failures. QED

Remarks

I} By using techniques similar to the ones in Theorem 4.2 it

can be shown that in a TS the end failures can also be eliminated.

Therefore we can replace all p-a and end failures by subroutine failures.

MOreover, any subroutine failure can be replaced by a loop failure; for

28

example, if there is no rule for variable A, we write for A the rule

A •• AA/A which will produce a loop failure instead. Hence, for any

given TS R there exists a TS R' such that T(R) • T(R') and R' has only

recognition or loop failures.

2) Another way of eliminating subroutine failure is to replace

them by end failure. Assume there is no rule for A in P; we will

include in P: A •• a1A/a2A1 ... lanA where {ai I 1 ~ i ~ n} ... Ee' It is

easy to see that when A is called an end failure will result.

Using the result from above we can now prove that the TS languages

are closed under intersection.

Theorem 4.3 Let Ri - (Vi,E,Pi,Si,$), i ... 1,2, be two TS. There is a

TS R such that T(R) m T(Rl)~T(R2)'

Proof We will assume ~, R2 have no partial-accep~ance failures and

also that V~V2 ... ~. Consider the TS R ... (V,E,P,S,$) in which:

V - V UV2U{S,X,J,Y,Z} where S,X,J,Y,Z are new variables,
1

P .. PlUP2U{S •• XY/52 ,y .. f,X .. Sl Z/J,z •• d. We will show: 5 =i (x$/'-, 0)

iff 5i T (x$l', 0), i ... 1,2.
i

The "only if" part Assume S a (x$~, 0). The rule for 5 is S •. XY/S2;

we notice that X cannot have a recognition failure (due to the rule

x •. SlZ/J and to the fact that J has no rule in P), hence the only way

for S to succeed is for X and 52 to succeed. But X succeeds only if Sl

succeeds and since 51 ,52 cannot have partial-acceptance failures, it

follows 51 Ri (x$ ~, 0) and 52 72 (x$ ~, 0).

"if" Assume 5i =t. (x$~, 0), i -1,2. We have Z=t(~, 0) and using
i

the rule for X we get X "t (x$t', 0). We have in R: Y =r (~, 1) and

29

S2 Jt (x$~, 0); using the rule for S we finally get S it (x$ t, 0). QED

Theorem 4.4 The complement of a wfTS language is a TS language.

~ Let R m (V,E,P,S,$) be a wiTS. Consider the TS R' - (V',E,P',S',$)

as follows: V' includes the set VU{S', J,A}, where S', A, J are new

variables.

Let E a {ai I 1 ~ i ~ k }; p' contains the rules in P and also the

rules: S' •• SJ/A, A •• alA/a2A/ ••••• /~A/$.
'Ie

First we show: for all x in E , if x is in T(R) then x is not

in T(R'). Indeed, x in T(R) means S ~(x$~, 0); then by the rule

S' •• SJ/A we have in R' a subroutine failure (there is no rule for J in

P'). By Lemma 2.1 the result'is unique, hence x is not in T(R').

On the other hand, suppose x is not in T(R). We must have, under

the assu~tion R is wfTS, S =t(tx$, 1). Now A R7 (x$/', 0) for all

* x in E, and the rule S' •• SJ/Awill finally give S' R'7(x$t-, 0), hence

X is in T(R'). We conclude that T(R') = T(R).

Next, we show that the wfTSL are closed under union.

Theorem 4.5 Let R1 - (Vi~E,PitSi'$)' 1 = 1,2, be two wiTS. There

exists a wfTS R such that T(R) '" T(Rl)(JT(R2).

Proof We will assume VJ0V2 -~. Consider the wfTS R • (V,E,P,S,$) as

follows: V includes the set VlUV2; it also contains S, a new variable.

P includes PlUP2 and it also contains the rules S •• Sl/52• We will

* show: for all x in E , x is in T(R) iff x 1s in T(Rl)UT(R2). First

assume x is in T(R); this implies 5 ~(x$~,O). The rule for 5 in R:

QED

30

S •• Sl'S2. The de~ivation S '7(x$t, 0) is produced either by Sl =:
(x$t, 0), which implies x is in T(Rl) , or by Sl]R'(IX$, 1) and

S2 it (x$t, 0), which implies x is in T(R2). In either case x is in

T(~)UT(R2). On the other hand, suppose x is in T(~>UT(R2). If x

is in T(Rl) then He also have Sl =r (x$~, 0) and S =t (x$l', 0), Le.

x is in T(R); if x is in T(R
2

) and not in T(Rl) , we easily get x is in

T(R). Finally R is well formed: suppose x is not in T(R). Then x is

not in T(Rl)UT(R2) which implies Sl ~ (Ix$, 1) and S2 ~ (tx$, 1).

We also have Sl :::t (~x$, 1), S2 -r (f'x$, 1) and finally S '==t' (f' x$, 1). QED

..
In the next theorem we show the E -problem for wiTS is unsolvable

(for definitions see [2]).

Theorem 4.6 It is unsolvable whether the language recognized by an

arbitrary wfTS contains all the strings over its input alphabet.

Proof We know tnat the question (Ql) whether the intersection of two

languages accepted by two arbitrary DPDA's is empty, is unsolvable ([2]).

Let Ll , L2 be languages accepted by the arbitrary DPDA's ~,A2. We

know ([2]) that we can construct two DPDA's, Ai and A2 such that the

languages accepted by those are Ll and L2• By Theorem 3.1 we can

effectively find two wiTS, R1 and R2 such that T(~) - L1 and T(R2) - L2•

Moreover, by Theorem 4.5, we can construct a wfTS R such that T(R) •

* Suppose now that the question whether T(R) - E was solvable.

- - * Then we could decide whether LlUL2 • E or, equivalently, whether

Lt'L2 -~. This implies we could solve the given instance of Ql' which

is a contradiction. QED

31

At this point we can show that the emptiness problem for wfTS is

unsolvable.

Theorem 4.7 It is unsolvable whether the language recognized by an

arbitrary wfTS is empty.

Proof Consider the question Ql as in Theorem 4.6 and the instance of

Ql with DPDA's Al and A2 which accept the languages LI and L2 respectively.

We will make the following assumption about AI' A2 : let U be a

new symbol; the input alphabet of ~ and A2 will contain D, and if this

symbol appears in a string_ the string is rejected. This assumption

does not change the generality of the proof, because given an arbitrary

DPDA, an equivalent DPDA with the above property can be constructed.

Consider the wfTS RI ,R2 ,R for which an effective construction was

provided in Theorem 4.6; it was shown that if we could decide whether

* T(R) • r we would have a solution for the given instance of QI'

Next we will describe the effective construction of a wfTS R3

* such that T(R) = riff T(R3) -;. (The existence of a TS R3 is

guaranteed by Theorem 4.4. However, we are about to show that a well-

formed R3 can be found). It follows that if we could decide whether

T(R3) = ; we then would have a solution for the instance of QI'

Let R = (V,rU{U},p,S,$). Consider R3 - (v3,r
l ,P

3
,S3,D) where:

EI = rU{$}; let r - {aill ~ i ~ ml. V3 includes VU{S3,S4,X,A},

S3,S4,X,A are new variables. P3 includes P and also the set of rules:

S3" XS4' X •• SX/£, S4 •• AD,

A •• aIA/a2A/ ••• amA/$ •

32

* * We first show: if T(R) - r then T(R3) .~. Assume T(R) a r. Let

* y in r l be an input string for R3• We write y: y - xl$x2$ ••• xn_1$xn for

* some integern and some strings xi in r , 1!- i ~ n. We have

i ~ n-1, because S '7 (xi$r, 0) as we assumed S 7 (xi$~, 0) for 1 ~

3 * T(R) - r. Since any string with II is rejected we have S ~R (~x D, 1),
3 n

which together with X •• SX/€ implies X ~ (X1$ •• xn_1$ xn#, 0). And

* 3 since A ~R (~xfl, 1) for all x in r , we have A ~R ax II, 1). '!ben
3 3 n

54 R~ (~xn"' 1) and finally S3 ~ (tyH, 1), which implies that y

* * Next we show: if T(R) ; r then T(R
3

) ;~. Let x in r and

5 =t (~x$, 0).

and finally S3

* that T(R) .. r

Then, in R3,X y (tx$lI, 0), A -t (x$tn, 0), S4 7 (x$fl t, 0)
3 3 3

"7 (x$fI~, 0) which implies T(R
3

) ; e. We then conclude
3

iff T(R3) - ~ and thus the proof is complete. QED

Corollary It is unsolvable whether the language recognized by an

* arbitrary TS is empty or accepts r .

The above result, expressed in terms of the TMG system from which

the T5 was modeled, implies that given a program in the TMG language,

we cannot know if this program does anything at all. Since the

emptiness problem is decidable for cf1's, the TS languages are, from

this point of view, at a disadvantage for practical applications.

As we mentioned earlier, given a TS we can eliminate certain

types of failures. For instance, Theorem 4.2 shows that p-a failures

can be eliminated if we are willing to tolerate subroutine failures.

It was also pointed out that given any TS R, a TS R' can be constructed

33

such that T(R) - T(R') and any failure in R' is either a recognition

or a loop failure. The question which arises is whether we can

eliminate the loop failures in a given TS. Moreover, if we could

eliminate all the loop failures without introducing other types of

failures except recognition failures then we would reduce the given TS

to a well-formed TS (In fact to a slightly restricted wfTS since the

definition of a wfTS requires only S, the distinguished variable, to

have only recognition failures). We suspect that loop failures cannot

be eliminated in a TS and the following result seems to support this

view.

Theorem 4.8 It is unsolvable whether an arbitrary TS is a wfTS.

~ It was shown in Theorem 4.6 that it is unsolvable, for an arbitrary

* wfTS ~, whether T(~) a E. Let ~ - (V1E,Pl ,Sl,$) be a wfTS. Consider

the TS R m (V,r,p,S,$) where: V includes VI and also contains a new

variable S. P includes PI and the rules: S"Sl/E~ We will show that

* R is a wfTS if and only if T(~) - E. If we could decide whether R

* is a wfTS we could decide whether T(~) = L •

* is a wfTS then T(~) - E. The rule for S:

* no x in r , SI il (rx$, 1), because we would

First we show that if R

S"Sl/£ implies that for

have then S it (~x$, 0)

and this is not possible in a wfTS. Hence we must have 81 -r (X$t, 0),

* * for all x in L , or T(Rl) - L •

Now suppose T(~) - E*; then S -t (x$t, 0) for all x in E* and

therefore R is a wfTS. QID

34

V. TIME COMPLEXITY OF TSL

We will describe a procedure which, given a TS and an input

string of length n, will accept the string if and only if it is in the

language recognized by the TS. Then we will prove the procedure halts

after at UIOstc.n steps from some constant c.

Algorithm 5.1 Let R ~ (V,E,P,S,$) be a TS andw - al a2 ••• an_l $,

* w in E $, the input string.

The recognition matrix M of w is a r x n matrix, r being the number

of elements in V, where each entry m(i,j) is in the set {(O,k)1

1 ~ k' n}U{E,1,2}. Initially for all i,j.m(i,j) - E. Let i,j be

integers; i will designate the row, j will designate the column. Let

V = {Aill ~ i ~ d,s • AI' and write the elements of P as {Pill, i ~ r}

where Pi is the rule for Ai if there is such a rule in p, otherwise

Pi -~. The meaning of m(i,j) is the following:

-if m(i,j) - (o,k), for some integer k, j-l~ k ~ n, then

Ai =r (ajaj+l • •• ~~~+l ••• $, 0).

- if m(i,j) - 1 then Ai =y (taj ••• $, 1)

- if m(i,j) • 2 then Ai has on aja
j
+l •••• $ a subroutine failure

or an end failure or a loop failure. (See Definition 4.1).

The main part of the algorithm consists of filling in the entries

of the recognition matrix M of w; this is described by the block

diagram in Fig. 5.1:

1) The entr~s of M are filled in by columns from right to left,

the last column is filled in first.

35

2) The entries of a given column j are filled in as follows:

the column is scanned from top down (we call this a "pass") considering

all entries m(i,j) = E, until an entry is found which can be filled

in. After this is done, another pass is initiated, starting from the

first row. An entry m(i.j) can be filled in in several cases:

a) There is no rule for Ai' i.e. Pi • ~; then we have a sub

routine failure and m(i,j) is set to 2.

b) The rule for Ai has the form Ai •• a, for some a in EeU{E,fl.

if a is in Ee' then it is matched against a
j

• the symbol corresponding

to column j; if a = aj the m(i,j) is set to (o,j). In case a ~ aj

or if a - f we have a recognition failure and m(i,j) is set to 1. If

a = e then m(i,j) is set to (~, j-l) which indicates that the symbol

aj has yet to be checked against a symbol in Ee.

c) Let the rule for Ai be Ai •• ~At/As. In order to fill in

m(i.j), we must first have m(k,j) ~ E. Let m(k,j) - (o,nl), for some

nl , j ~ nl < n (other cases are similar). Next consider met, nl+l); under

the assumptions made m(t,ul+l) ~ e. If m(t, nl+l) a (0, n2) for some

n2 , n2~ n, then m(i,j) is set to (o,n2). If met, nl+1)· 2 then

m(i,j) is set to 2 and we have a subroutine failure. If met, nl+l) - 1

then we consider m(s,j) - if m(i,j) is to be filled in we must have

m(s,j) ~ E - and we set m(i,j) • m(s,j).

3) After r passes, the column to the left is considered.

However, if less than r passes have been made and no other entry can

be filled in, all entries (i,j) such that m(i,j) - E are set to 2 (we

have in this case loop failures). When finally M is filled in, the

value of m(l,l) is checked. If m(l,l) - (o,n) the string is accepted.

Accept
string

13

36

36

Fig.5.1 Block Diagram for A1goritm 5.1

(over)

37

;:::.

38

Example 5.1 Consider R - (V,r,p,S,$) where:

v - fAill { i (6}, S - AI.

r _ {aL

P - ~ •• AZA6' AZ··A4As /A3, A3··E, A4 ··ASAZ' AS··a, A6 •• $

Let the input string be w D aaaaaa$. By applying the Algorithm 5.1 we

get from M on w:

1

Z

3

4

5

· 6

1

(0,7)

(0,6)

(0,0)

(0,5)

(0,1)

1

2

1

(0,5)

(0,1)

(0,4)

(0,2)

1

3

1

(0,4)

(0,2)

(0,3)

.(0,3)

1

4

1

(0,3)

(0,3)

(0,6)

(0,4)

1

5

(0,7)

(0,6)

(0,4)

(0,5)

(0,5)

1

6

1

(0,5)

(0,5)

(0,6)

(0,6)

1

7

(0,7)

(0,6)

(0,6)

1

1

(0,7)

To illustrate how the algorithm works, suppose columns 4 through

7 have been filed in and column 3 is considered next. The first pass

will skip over m(1,3), m(2,3); m(3,3) will be set to (O,Z). On the

next pass m(s,3) is set to (0,3). The third pass will consider m(4,3);

as m(S,3) - (0,3) and the rule for A4 is A4 .. ASAZ' we consider

m(2,4) - (0,3) and we set m(4,3) to (0,3). When M is completed, we

check that m(l,l) - (O,n); in this case (0,7), and the string is

2(2n 1) accepted. It will be shown later that T(R) - {a - In. 0,l,2, ••• }.

In Fig. 5.1 various steps in the algorithm were designated by

numbers from 1 to 45. It can be shown that each of these steps takes a

39

finite amount of time to perform on any computer. (For a more

formal treatment of a "random access machine" see [11], [13]). The

next theorem gives a bound for the number of steps, 1n the sense

described above, required by Algorithm 5.1.

Theorem 5.1 For a given IS, Algorithm 5.1 recognizes a string of

length n in less than c.n steps, for some constant c.

Proof Consider the three integers n-j, K,i where n ia the length of

the input string, j,k,i are the contents of the counters for,

respectively, column number, number of passes and the row number.

The algorithm can make at most r l steps, r l < 45 by Fig. 5.1, before i

or K is increased; an upper bound for the number of steps, for a given

2
j, is r ,r

l
.

. 2
Let c .. r.rl ; it follows that the matrix is completely

processed after c.n steps. We w~ll show that for all i,j, 1 ~ 1 ~ r,

1 ~ j ~ n:

(a) m(i,j) - (o,k) iff Ai Ir(aj" .. ~t~+l •••• an$,o).

(b) m(1,j) - 1 iff Ai y(t'ar ... an$, 1).

The "only if" part We will prove (a), (b) Simultaneously by induction

on the number of passes on the columns of M.

Base m(i,j) is filled in on the first pass (which implies j - n).

(a) We have m(i,n) - (o,k) for some k, two cases are possible.

We could have Ai •• $ and then k • n or we could have Ai •• E and then

k = n-l. In both cases the theorem is easily verified.

40

(b) We have m<.1,n> - 1; then either Ai •• a and a rI- $ for some

a in t, or Ai •• f. In both cases Ai ~(~$, 1).

Induction step Let P contain Ai •• AtAm/Ap'

(a) We have m(i,j) - (o,k), for some k. Several cases arise:

Case 1 m(R.,j) -I, m(p,j) - (o,k). By induction At -t(~aj •••• an$, 1),

Ap ""1 (ar ·· .ak~ ~+1·· .an$, 0). Using the rule for Ai we get

Ai it (ar ·· .~t~+l·· .an$, 0). Other cases are similarly treated.

(b) m(i,j) - 1.

Case 1 m(R.,j) - 1, m(p,j) - 1. By induction At ~(~aj ••• an$, 1),

Ap""t aaj •••• an$, 1). Using the rule for Ai: Ai -t (taj •••• an$, 1).

The other case is treated similarly.

"if" .We prove (a), (b) Simultaneously, by induction on the number of

derivation steps in R (see Definition 2.1).

Base For one step derivation the theorem is easily checked.

Induction step Let P contain Ai •• AtAm/Ap' (a) We have Ai -=t (wlw2, 0)

where WI - aj"" ,~, w2 - ~+1'" • an_l $. As before, se'7eral cases

arise. Suppose At ~ (twl w2 t 1), Ap Y (w/w2' 0) .Then~ by induction

m(i,j) - 1, m(p,j) - (o,k). The algorithm will give m(i,j) - (o,k).

Other cases are proved Similarly.

(b) Assume Ai -=a aw, 1), where w - a
j
•.•• an_l $. Also let

Ai y(tw1 , 1), Ap =t (~wl' 1). Then by Algorithm 5.1 and using the

inductive hypothesis we get m(R.,j) ~ 1, m(p,j) - 1 and m(i,j) • 1.

The proof is similar for the other case.
QED

41

VI. TS AND THE PHRASE STRUCTURE GRAMMARS

In this chapter we will show that the TSL are context sensitive

and that they include some non - cf1's. Also, it will be shown that

the TSL over a one letter alphabet are not regular.

In showing that the TSL are context sensitive we will use the

concept of a deterministic linear bounded automaton. The linear

bounded automaton (lba) was studied in [9J, [10J. We will use the

following definition of a deterministic tba:

Definition 6.1 A deterministic linear bounded automaton M is a

6-tup1e M - (K,EM,rM,6,qo,F) in Which:

K is a finite set of states

~ is a finite set of input symbols; EM contains two speCial

symbols: the left marker ¢ and the right marker $.

rM is a finite set of tape symbols, t M£ rM•

q is an element of K
o

F is the set of final states, F C;; K.

6 is a mapping from K x rM into K x rM x {C,L,R}.

A configuration of M is denoted (q, ZlZ2 ••• Zn,i) where q is in K, Zl,Z2' ••• '

Zn in r M' and i is an integer, 1 ~ i ~ n. We define the relation t"M

between two configurations of M as follows:

1) If 6(q,Zi) a (p,Z,L) and i > 1 then we say that (q,zlZ2 ••• Zn,i)

~ (P'ZlZ2···Zi_1ZZi+l····Zn,i-1).

2) If 6(q,Zi) - (p,Z,C) then we say that (q'zlZ2 •••• Zn,i)

~(P'ZlZ2····Zi_1ZZi+1····Zn,i).

42

3) If O(q,Zi) = (p,Z,R) then we say that (q,Zl Z2··· .Zn;L)

the reflexive, transitive closure

* is {wlw is in (tM-¢,$) , (qo,¢W$,

* a in rM ' and integer i}.

* We define the relation J-- as
M

of fM. The !!!!guage accepted by M

* .
1) lif (q,a,i) for some q in F,

Theorem 6.1 For any TS R - (V,t,P,S,$) there exists a deterministic

tba M such that t~e language accepted by M is T(R).

Proof First we notice that Algorithm 5.1 does not illustrate the

point of this theorem; to implement Algorithm 5.1 on a multitape

Turing machine in the natural way would require nlogn tape. The

reason is the following: an entry has to store elements in the

set {(o,k) I 1 ~ k ~ n which encoded wiil take an amount of tape

proportional to logn; as there are n columns in the matrix, we need

nlogn tape. Consider the deterministic tba M m (K,tM,rM,6,qo,F) in

which:

K - {qo,ql,q2}U{[p,a]lp in {s,r}, a in VU{t,E}}.

tM "" EU{¢,$}.

r
M

= {~,E}.E.(rU{E})r where r = Ivi (by Ixi we denote the number

of elements in the set X), and r is the tape alphabet of A(R).

(In the course of the computation, input symbols are not erased, but

* they can be rewritten followed by a string over r of length r or

less). Let the tape of M contain initially ¢al a2 •••• an$.

o is given by the following rules:

1) For all a in t , o(q ,a) - ({s,E),taS,C). (The marker e. 0

moves along the tape in the course of the computation. The rule

43

above writes the marker at the beginning of the computation, pOinting

to the first input symbol).

2) If A •. BC/D is in P, then for all y.o([s,E],yA) • ([S,E],

y(BC/D)B,C). If A •• E is in P, then for all y,O([S,E], yA) •

([S,E], y, C). Also, if A •. f is in P then for all y.O([S,E], yA)-

([r,£],y, C). (In a given state in K, the symbols s,r show the last

variable called has succeeded or failed, respectively.

3) If A •• a is in P, a in Ee' then for all ai in Ee' a1 ; a

and all a, O([S,E],taiaA) • ([r,£],taia,C).

4) ·If A •• ai 1n P, a in E. then for all a.o([s,E],taiaA) •

([s,~], aia,R). and also o([s,t].a
j

) = .([s,£],ta
j

, L) for all aj in Ee •

If A •• $ in P, then ' 6([s,£],~$aA) - ([s,£], $a,C).(When there is a

match, the marker is moved to the next cell. For $ the marker is

erased and any attempt to match another symbol will cause M to halt).

5) o([s,£],ai) • ([s,£],ai,L) for all ai in Le' O([S,E],

y(AB/C» • ([S,E], y(AB/C)B,C), o([s,£], y(A}VC» • ([~£],y,C) and

O([S,E], y(AB/C» • ([s,£],y,C) for all yand all AtBtC in V.

6) If A •• a is in P, a in Le' then o([s,£], aiaA) • ([StA], aia,R)

for all a i in Le' o([s,A], ai) - ([s.A),ai,R) and o([s,A]tta
j

) ~

([S,E],tajAtC) for all a1,a
j

in Le' A in V. (In state [StA] M moves to

the right searching for the marker t and when this is found, A is called).

7) For all y and all B,C,D, in V: O~,E], y(SC/D» • ([S,E],

y(BC/D),C), o([rtE], y(BC/D» • ([S,E], y(BC/D),C) and o([r,E],

y(BC/D» - ([r,£],y, C). (In state [r,£l, or [S,E], M moves to the

44

left to report a failure, or success). We also have for all ai in

Le and all a: 6([r,£],tai) - ([r,t),ai,L), 6([r,~],ai) m ([r,~],

a1 ,L), 6([r,t], a1a) • ([r,£],~aia,C). (In state [r,t] M backtracks

after a recognition failure and the marker is moved to the place the

last rule was called from).

8) 6([s,£],¢)· (ql,¢,R), 6(ql,ai) - (ql,ai,R) for all ai in L

and 6(ql,$) - (qz,$,C). (The symbol ¢ is reached when S succeeds;

then M, 1n state ql' verifies the marker ~ has been erased which means

the string has been accepted. q2 is the final state).

* It remains to show that x in L is accepted by M iff x in T(R).

The following can be shown by induction: let the input string be

¢ al a2 ••• an$, let a conf~guration of M be described as (q,w,i) where

q in K, w -(YI)(YZ)"" each Y~ in rM, 1 an integer, I { i ~ n, wh1ch

shows the location of the read-head; then ([s,£],y(ra1aA)(a1+l)(a1+2)

••• (aj) ••• (an)$, 1) ~ ([s,£], y(aia)(ai~l) ••• (~aj)(aj+l) ••• $, j)

* * for some Y in rM ' a in r , A in V, i,j in {1,2, ••• n}, iff A ~

(ai aj_l~aj ... an$' 0) and ([s,£],y(~aiaA) ••• $, 1) I: ([r,£],

y(taia)(ai +l) ••• $, i) iff A =y (tai $, 1). The theorem follows

immediately. QED

It was shown in Theorem 5.1 that any TS language can be

recognized in linear time on a suitable '~chine" using Algorithm

5.1. On the other hand, it is not known if there is a efl which cannot

be recognized in linear time by a suitable alg~rithm. In view of

these facts we conjecture that there are cfl which are not TS.

4S

It is easy to see that there are TS languages which are not

context-free. For example consider the deterministic cfl

n.nml mnnl} Ll • {a D a n,m ~ I} and L2 a {a b a n,m~ 1. Their inster-

n.nn I } section L ,.. Ll'L2 ,.. {a b c n ~ 1 is not a efl but according to

The orem 3.2 and Theorem 4. S there is a TS R such tha t L - T.(R).

Next we will prove that the TSL over a one letter alphabet are

not regular by producing such a non-regular language. (The cfl's over

a one letter alphabet are regular, [12]). Consider Example S.l:

R - (V,t,P,Al ,$), where V - {Ai 1 1 ~ i .'= 6}, E'" {a},

P - {Al •• A2A6 , A2·.A4AS/A3, A3··E, A4 ··ASA2 , AS·.a, A6 •• $}.

. 2(2n -1)
Theorem 6.2 Let R be the TS described above. Then T(R) - {a

n - 0,1,2, •••• }.

m
~ Let the input string be w = a , let N be the largest integer

such that m • 2(2N_l) + k for some positive k; then 0 < k ~ 2N+l

(It is easy to see there is always such an integer N). We will show

2(k-l)r- m-2(k-l) that for any m, A2 If (a I a $, 0). The proof follows

by induction on m.

Base The cases m - 1 through m - 6 are verified in the example

mentioned above (The recognition matrix M).

Induction step Assume the theorem is true for 1,2, ••• ,m-l.

N+l 2(k-2)r- m-1-2(k2) Case 1 1 < k ~ 2 ; then by induction A2 it (a I a $, 0).

We put k-l for k and m-l for m). Consider the rule in P,A4 •• ASA2 •

t m-l AS it (a a $, 0) and with the derivation above we get A4 ~

(a2 (k-2)+ll\am-1-2(k-2)$, 0). I
I Apply now the rule A2·.A4AS A3 ;

46

I- m-2-2(k-2)
AS ir (al a $, 0) can be written AS

and finally A2 il (a2(k-l)~am-2(k-l)$, 0).

Case 2 k = 1. We use now the inductive hypothesis applied to a string

N (m-lt of length m - 1; we get,m-l • 2(2 -1) and A2 1t a $, 0). Applying

the rule A4 •• ASA2 we get A4 =i (amt$, 0) and the rule ~ •• A4A5/A3

leads to AS "1 (t$, 1) and A3 =t (~, 0) and finally A.z=t (ta
m

$, 0),

which proves the theorem.

m (ml-) Given a string a $, ~ will succeed iff ~ T a 1$, 0 and

using the result above, this happens iff m - 2(k-l) which implies

n
m - 2(2 -1) for some n. QED

VII. GENERALIZATIONS OF TS

In previous chapters we developed and studied the properties of the

TS, a formal model for the recognition schema used in the TMG

system ([1]). The following question arises: '\mat extensions or

variations of this model are possible and how do they relate to the

original model from a practical point of view?".

In this chapter we develop two extensions of the TS, namely the

"generalized TS" (gTS) and the (l,m)-TS. We show that these models

are equivalent; they include the TS as a particular case and maintain

some of its properties such as: (1) they can be recognized in linear

time (by a modified version of Algorithm 5.1), (2) to every gTS (or

(l,m)-TS) there corresponds an automaton (similar to the one in

Definition 2.2) Which accepts the language recognized by the gTS.

-~'.

47

However, we will show an important result which belongs to the

generalized models and does not, we believe, belong to the TS,

namely that for any gTS (or (l,m)-TS) an equivalent gTS can be

constructed which recognizes the same language and has only recognition

failures. Finally, another extension of the TS, the eTS, is briefly

discussed.

First we define the "generalized TS":

Definition 7.1 A. generalized T8 (gT8) R is as-tuple R· (V,l:,P,S,$)

in which:

V is a finite set of variables,

l: is a finite set of terminal symbols,

S is.an element of V,

$ is the endmarker, $ is not in E,

P is a finite set of rules of the form a) or b):

a) A •• B(e,D) A,B,e and D in V,

b) A •• a a in l: U{£,fl,l: - 1:U{$L e e

For any variable A there is at most one rule with A on the lefthand

side.

Define the set of relations for each n in N, Ay(xty,i),

* x,y in 1:e ' i in {O,U, as follows:

1) If A •• a is in P, a in 1: , then A
e

1 =y(arx, * 0) for all x in E ,
e

and A"""*Rl (tbx,l) for all x in 1: *, b in 1: , e e

2) If A •• £ is in P, then A !,(tx,o)

b " a.

for all x in l:
e
*

48

1 ~ * 3) If A •• f is in P, then A ~vx, 1) for all x in ~e •

* 4) Let A •• B(C,D) be in P. For each xl' x2 and x3 in ~e ' if:

a) B ~(Xl~X2X3' 0), C :~(X2tx3' 0) then A ~~(Xlx2tx3' 0),

k = R.+m+l.

B -+ (x/x2'
m

1) then A -+ (t xl x2 ' 1), b) 0) , Cy (tx2•

k - R.+m+l.
R.

1), D +- (xl tx2, 0) then A =i- (xl X2' 0), c) B ""y (~xl x2 '

k - R.+m+l.
R.

1), D7(rxl , 1) then A~(IXl' 1), d) B -=f ({'xl'

k - R.+m+l.

n
If A =r (:cry, i), x, * y in ~ ,i in {o,l}, we say that A derives e

(xty,i) in n steps. We say A derives (x~y, i) if A derives (xty , i) in

r steps for some r, and we write A =t (xf y, i). (Equivalently, we

w1~1 say A has outcome i on x y and it recognizes x). The language

* recognized by R is: T (R) - {x I x in ~ , S"'t (x$f', o)}.

Remarks

1. The difference between the TS and the gTS can be explained

informally as follows: suppose we have a rule A •• B(C,D) in a given

* gTS and an input x in ~ $; if A is called, A calls B and two cases arise:

Case 1 B succeeds and recognizes some substring xl of the input string

x. Let xly • x; then C is called on y . If C succeeds and accepts Yl

for some Yl and Y2' Y1Y2 • y, then A succeeds and accepts xl Y1.

C fails then A fails (In the TS, in a similar Case D is called.

fact this is the only difference between the two schemas).

If

In

49

Case 2 B fails; then D is called on x and if D fails then A fails.

If D succeeds then A succeeds and accepts whatever D accepts.

2. We generalize, in a recursive manner, the form of the rules in P:

a) The expression A •• B,A and B in V, stands for the set of

rules A •• B(Xi,~)t Xi.·E, X2 .. f , where Xi'X2 are new variables which

do not appear in any other rule in P.

b) The expression A •• B1B2 stands for the set of rules

A •• BI (B2 ,XI) and .xl •• f, where'Xi is a new variable which does not

appear in any other rule in P.

c) The expression A •• BI B2 •••• Bk for some k > 2, stands for the

set of rules A •• X1Bk , XI •• BIB2 •••• Bk_1 where Xl is a new variable

which does not appear in any other rule 'in P.

d) Consider .the expression A •• al a2 ••• ak where ai in VUreU{E,f}

for 1 ~ i ~,k, k) 2. If ak is in V then the expression stands for

the set of rules A •• Xlak , XI •• ala2 ••• ak_l' where Xl is a new variable

which does not appear in any other rule in P. If ~ is in reU{E,f}

then the expression above stands for the set of rules A •• al a2 ••••

ak_l X1, Xl •• ak and ~ is a new variable which does not appear in any

other rule in P.

e)
+ The expression A •• a/B, A and B in V, a in (vur U{E,f})

e

stands for the set of rules A"Xl(~,B), Xl •• a, X2 •• E where XI ,X2 are

new variables which do not appear in any other rule in P. (The

expression A •• a/B has the same meaning as in TS; a formal proof is

given in Theorem 7.1).

50

f) The expression A •• al/a2/ ••••• /an , for n ~2 , ai in

+ (VUE U{€,f}) , I ~ i ~ n, stands for the set of rules
e

A •• al/XI , XI •• a2/a3/ •••• /an and Xl is a new variable which does not

appear in any other rule in P.

3. + The expression A •• a(e,y) where a,e and y in (VUE U{€,f}) , stands e

for the set of rules A •• XI(X2,X3) Xl •• a, x2 •• e X3 •• y, where

XI,X2 ,X3 are new variables which do not appear in any other rule in P.

+ The expression A •• (a)(e,y), where a,e and yare in (VUE U{E,f}) ,
e 4.

stands for · the set of rules A •• XI(y,e), Xl •• a(f,€), where Xl is a

new variable which does not appear in any other rule in P.

Informally, the outcome of a will determine only which expression is

processed next, e or y, but the string recognized by a is irrelevant:

if a succeeds we have backtracking and e is "called"; if a fails,

y is called and we have backtracking as usual.

5. As in the case of the TS, a "gTS-automaton" A(R) corresponding to

the gTS R can be defined such that the language accepted by A(R) is

T(R). Using the same notations for A(R), of a given gTS R, as in the

case of the TS we will applY ,Definition 4.1 for various types of

failures in the gTS.

In [15] Knuth descl'ibes the "parsing machine" (PM) which is

similar to the gTS and the languages accepted by PM are the gTSt.

The problem studied in [15] is the following: given a BNF grammar

~.

51

the "corresponding PM program" is defined; then the question is

asked whether the "corresponding PM program" accepts the language

generated by the given grammar.

In the next theorem we show that the class of languages

recognized by gTS, the gTSL, includes all the TSL.

Theorem 7.1 For any TS R - (V,~,P,S,$) there is a gTS R' such that

T(R') = T(R).

Proof Consider the gTS R' = (V',I, P',S,$) where V' includes the set

VU{xAI all A in V} and also all the variables which are implicitly

defined in the shorthand notation of the rules in pl. p' is formed

as follows:

1)

2)

if A •• a is in P, a in I Uh,f}, then A •• a is in P'.
e .

. if A •• BC/D is in P, A,B,C and D in V then P' contains A •• XA(e:,D)

and X
A

•• B(C,!).

It can be shown by induction that T(R) = T(R '). QED

Some of the results for the TS can be extended to gTS. One

example is the result concerning the time complexity of TSL. The

Algorithm 5.1 can be, with little change, applied to any given gTS and

so we have the following theorem:

Theorem 7.2 For any gTS R, there is an algorithm Which recognizes

a string of length n in T(R) in less than c.n steps, for some constant c.

The Theorem 6.1 can also be extended to gTS:

52

Theorem 7.3 For any gTS R, there exists a deterministic linear

bounded automaton M such that the language accepted by M is T(R).

Next we will display a gTS which accepts the language L -
2

{an In ~ 1}. We conjecture that there is no TS which recognizes L

and subsequently the inclusion TSL ~ gTSL is proper.

Let Q - (V,r,p,S,$) be a gTS where: V contains the set

{S,A,A',B,C} and also the variables which are implicitly included

in the shorthand notation of the rules in P, r = {a}; P contains

the rules: S .• C(£,A')

A •• (S) (f ,BS)

B •• (S)(£,aBa)

C •• a$ (£ ,aaaa$)

A' •• aaA

Theorem 7.4 Let Q,L as defined above. Then T(Q) • L.

Proof n Let the input string be a $, n ~ O. For n ~ 4 the therem can

be checked with the following recognition matrix (the entries here

have the same meaning as in Algorithm 5.1; see also Theorem 7.2):

1

S 1

A 1

A' 1

B 0,2)

C 1

2

(0,6)

1

1

(0,1)

(0,6)

3

1

1

1

1

1

4

1

1

1

(0,5)

1

5

(0,6)

1

1

(0,4)

(0,6)

6

1

1

1

1

1

53

2 For n ~ 5, let k be the largest integer such that n • k + m, for

some non negative integer m. We will show by induction on n that:

a) B Q (a2mtan-2m$, 0)

b) if m- 0 then A' Q(an$~, 0), otherwise A' (f(~an$, 1).

(These statements do not hold for n < 5 and for this reason we start

the induction with n - 5).

Base The case n - 5 can be checked with the matrix above.

n
Induction step Case 1 Assume m - 0; let input string be a $,

2 n~ 2 n-k. On input a $, we had n-2-(k-l) + 2k-3; by the inductive

hypothesis B =qr(a2(2k-3)~an-2-2(2k-3)$, 0). We can write n-2-2(2k-3)

2 (k 2)2 (k 2)2
= (k-2) ; again by induction on a - $ we get S cr (a - $~, 0)

and finally A' :=Q (an$~, 0) " which proves statement b). Statement

a) follows immediately using the rule for B and the fact tpat S

succeeds' on an$; we get B "1(~an$, 0).

2 Case 2 We assume m ; 0; let n ~ k + m. We claim that A fails on

n-2 '" n-2 n a $, i.e. A ~(Ia $, 1), and this implies At fails on a $ and,

n n-2 finally, S fails on a $. To show A fails on a $, there are two

cases to consider.

Case 2a: m a 2;

k2
A Q (~a $, 1).

then n-2 = k2 and using the rule for A we get

n-2 Case 2b m; 2; then S fails on a $ and for A to

n-2 2 succeed, BS must succeed on a $. We write n-2 = k +m-2 and by the

2 (m-2h. k
2

-(m-2) inductive hypothesis B ~ (a • a $, 0); A will succeed on

n~ 2 2
a $ only if k -(m-2) D p for some p. Assume such an integer p

exists. Then m = k2_p2+2 - (k+P)(k-p)+2 ~ (k+k-l) (k-k+l)+2) 2k + 1.

54

On the other hand, we assumed k takes the largest integer such that

2 n-k +m, hence m ~ 2k, and the contradiction obtained shows BS

n-2 n cannot succeed on a $, therefore A' (and also S) fails on a $.

2m-2 ... n-2m+l By applying the inductive hypothesis on a) we get B Q (a I a $,0) •

Th 1 f B (S) (aB) 1 d i n$ i B~(a2mtan-2m$,0) e ru e or : B. • £, a app ie on str ng a g ves,
Q

which is the desired result. QED

Next we define the (R.,m)-TS. The (l,m)-TS is a generalization

of the TS and the gTS; whenever a variable is called over an input

string,m outcomes are possible: 1 of these are considered

successful, the rest are failures and we have backtracking.

Definit!on 7.2 An (R.,m)-TS R, R. ~ 1, m~'2, is a 6-tuple R - (V,E,P,S,g,$)

in which:

V is a finite set of variables,

t is a finite set of terminal symbols,

S is an element of V,

$ is a symbol called endmarker, $ is not in r. (We use the

notation E for the set rU{$}). e

P is a finite set of rules of the form a) or b):

a) A .. (Ql,Q2'''''~)' A in V, for 1 ~ j ~ mt QjC;; EeU{d such

that for all a in LeU{£} a belongs to exactly one Qj •

b) A •• B(C
l

,C2 , ••• ,Cm), A,B in V, Cj in V for l~ j~ m.

For any A in V there is exactly one rule with A on the lefthand side.

55

g: U x U + U , where U "" {1,2, •• ,m}. We define the set of m m m m

relations, for each positive integer n, A ,~(xty,i), x,y in Ee*' i in

U as follows:
m

1) If A •• (Q1,Q2' ••• ' ~) is in P and E belongs to Qj for some

j, then A ~(tx,j), for all x in Ee* (In this case we can assume

that all Qi' i ; j, are empty).

2) Let A •• (Q1'Q2' •••• ' ~) be in P and for no j, Qj contains E;

* 1 also let a be in Qi. For all x in Ee ' if i ~ 1 then A~(arx, i), and

if i > 1 then A ~(tax, i).

* 3) ·Let A •• B(Cl 'C2 ' •••• ,Cm) be in P. For all xl ,x2,x3 in Le ' if:
nl n2

a) B ~ (xl 'x2x3, j), Cj ~ (x2tx3, k), g(j ,k) - 1 and i ~ 1
n R . . R •

then A ~(xlx2tx3" i) where n - nl + n 2 + 1.
n· n

b) B ~ (xl x2x3 ' j), C j =l (xl X3 ' k), g (j , k) "" 1 and i > 1,
R

then A ~(~xlx2x3' 1), wh~re n = nl + n2 + 1. (Informally, when A is

"called" on x x x A first calls B. Let us assume B "returns" with 1 2 3'

outcome j, recognizing the substring xl; here, we could have j > 1,

in which case xl C E. Next Cj is called on x2x3 and it is assumed C
j

returns with outcome k, recognizing the substring x2 • The function g

will determine the outcome for A, specifically the outcome is i • g (j,k).

In case a) the outcome is "success" since i ~ 1 and therefore

A will recognize the substring xl x2 • In case b) i > 1 and we have

backtracking).

If A + (xty, * i), x,y in E , i in U , we say A derives (xly,i) e m

in n steps. We say that A derives (xty, i) if A derives (xty,i) in r

steps for some r, and we write A =t (xt y ,i).

56

The language recognized by R is: T(R)· {xix in t*, Sit (x$t, I)}.

As in previous cases (for the TS or the gTS) an automaton A(R) can

be defined corresponding to an (!,m)-TS R such that the language

accepted by A(R) is T(R).

Definition 7.3 Let R • (V,t,P,S,g,$) be an (1,m)-TS. The .tape alphabet

of A(R) is r - {A(i) I all A in V, 0 ~ i ~ m}. (Whenever variable

A is called in R, A(R) will print on its tape A(O), the superscript (0)

indicating that no processing has been done yet. However if the rule

for A is A •• B(CI, ••• ,C
IIi

) and B "returns" with outcome i, then before

C
i

is called, the symbol A(o) on the tape is changed to A(i), to

indicate the result of the "call" of B). The set of internal states of

A(R) is K· {qi I 0 ~ i ~·m}. (There exists a state for every possible

outcome when the head of the storage tape moves inwards, and also the

state q which indicates a variable call when the head moves outward).
o

A configuration of A(R) is a 3-tuple (q,xl tx2,w) where q is in K, xl x2

* is in t ,~is an abstract symbol (it indicates the position of the e

* read head on string xl x2), w is in (rxN) , N being the set of natural

numbers.

We define the relation 'A(R) between two configurations a,a, and

we write aK(R)t3

= x'x' III = 1 2'

as follows: assume a a (q,x1tx2,W), t3 - (q',xi~X2'W'),

* r(X,i) for some y in(rxN) , X in r, i in N.

1) Let q - qo' X = A(o) for some A in V, the rule for A in P

is A •• B(Cl, •••• ,Cm); then q' = qo' xi - Xl' w' = IIl(B(o), i). (The

rule indicates that with a rule of the form A •• B(Cl, ••• Cm) the processing

of A starts by having B called).

57

(0) () 2) Let q - qo' X = A , P contains A.. QI'.'.'~ ; then 1f

x2 ~ a x3 ' a in Qj' j $ 1 we have xi - xla, q' D qj' Wi - y; if

x2 ~ a x3 , a in Qj' j > 1 we have xi - Xl' q' a qj' Wi a y. (The

processing of A in this case consists in matching the input symbol

scanned with a set Qj ; if j > 1 we have backtracking of one symbol,

i.e the symbol has to be matched again).

(0)
3) Let q .. qo' X - A , P contains A •• (Ql •• "~) and £ belongs

to Q . then x' ~ x ql - q and Wi - y.
j' I l' j

4) Let q a qj' X = A(o), P contains A •• B(Cl, ••• ,Cm); then

ql - qo' xi - ~ and Wi • y(A(j), i)(Cj (0) ,IXII).
5) Let q - qk' X a A(j), P contains A •• B(CI, ••• ,Cm), g(j,k) - h;

if h ~ R. then q I - qh' xi - Xl' w' - . y; if h > 1 then q' .. qh' I xi I .. i,

w' .. y.

If al(R)e, we say A(R) makeS a ~ from configuration a to

* configuration 6. We write ai(R)6 if there are al, ••• ,an such that a • aI'

a '" a n' and ai I A(R) ai+l for I ~ i ~ n-l and some n, the number of

moves.

The language recognized by A(R) is {wlw in r*, (q ,tw$, (S(o) ,0»
o

* IA(R) (ql.W$t ,e:) }.

In a way similar to the proof of Theorem 2.1, it can be shown that

the language recognized by A(R) is T(R). We notice that by the

definition of the (1,m)-TS, there exists a rule for every variable and

therefore no subroutine failures are possible. Otherwise we can define

various types of failures as for the TS (Definition 4.1).

58

Definition 7.4 Let R - (v.r.p,S,g,$) be an (l.m)-TS. For A in V.

* x in I :

1) A has a recognition failure (or simply failure) on x if

A '7 (tx$,j) for some j > 1.

,. (0) L.-!-
2) A has an end failure on x if (qo.,x$, (A , O»'A(R)

(qo' x$~,Y(B(o), n» for some Y in (rxN)*, n in N. Bin V. and the

rule for B in P is B •• (Ql' ••• ,~), no Qi contains E, 1 ~ i ~ m.

3) R has a partial-acceptance failure (p-a failure) on x if

S -t(x/x2$, 1) for some ~,x2 in r*, xl x2 = x.

4) A has a loop failure on x if A(R) in configuration (q ,tx$,
o

(A (0), 0» can make an unbounded number of moves.

The following theorem shows that any gTS can be "simulated" by

an (t,m)-TS.

Theorem 7.5 For any gTS R there exist an (t,m)-TS R' such that

T (R) - T (R ') •

Proof Let R - (V,r,p,S,$) be a gTS and consider the (1,3)-TS

R' • (V',r,p',S,g,$) as follows: V' includes the set VU{X}where X is

not in V (V' contains also variables included in the shorthand

notation of the rules in p'). The set of indices for R' is U3 =

{O,l,2}, g is defined by: g(i,j) = j for all i,j in U
3

• P' contains

the rules:

2) if A •• B(C,D) is in P, then A •• B(C,n,X),

3) if A •• E is in P, then A •• ({E}, ,,0),

59

4) if A •• f is in p. then A •• (;.{e:}, ;,)

5)

6)

if A •• a, a in E , is in P, then A •• ({a},E ~{a},;) e e

if A has no rule in P, then A •• (;',;',{d).

Since the (~,m)-TS is defined so that no subroutine failure is possible

(there exists a rule for every variable), we simulate this failure

by introducing an additional outcome (2). Otherwise, it can be shown

* A -r (xiy, i) iff A 7r (xty ,i), for all A in V, x,y in Ee ' i in

{O,l}'

The theorem follows. QED

At this point, the following question can be asked: given an

(l,m)-TS, is it possible to find a gTS which accepts the same

language? We will show that the answer is positive, but we first

prove it for a restricted case.

Definition 7.5 An (~,m)-TS, or a gTS, is reduced if it has only

recognition failures.

In the definition which follows,a gTS is constructed corresponding

to any reduced (l,m)-TS. It will be shown that they recognize the

same language.

Definition 7.6 Let R a (V,r,p,S,g,$) be an (l,m)-TS. We define

1 the gTS M ~ (Vl,r,Pl,s ,$) as follows: VI includes the set

{AiIA in V, 1 ~ i ~ m}U{[Ai,j]II .{ i,j , m, A in V.} (For every

i variable A in V there are m variables in VI' namely, A for 1 S i " m.

For any input string x, exactly one variable in this set will succeed

and all the others will fail. Moreover, as it will be shown later, if

~.

60

A has outcome j in R, on some input x, then Aj will succeed in M and

it will recognize the same string that A recognizes in R, or if

j > 1,Aj will recognize the null string).

PI

1)

If Q ..
i

If Q -i

If Q -i

2)

contains the rules:

let A •• (Ql'Q2' •••• '~) be

{ aI' ... , ~}, k ~ 1, i ~ R.,

{al""'~}' k ~ 1, i > R.,

i /J then A •• f.

in P and for no j, Q
j

contains E.

i
then A •• al/a2/ •••• /~.

i then A •• (al/ ••••• /~)(E,f).

let A •• (Ql""'~) be in P and suppose there exists j such

that Qj
i j contains E; then A •• f, for i ~ j, and A •• E.

3)

- j, for some j ~ R.; then

j iq empty, A •• f. (Since Aj

succeeds in M only if A has outcome j in R we need to consider in the

rule for Aj only the pairs in G
j
).

4) let A •. B(Cl, •••• ,Cm) be in P, let G
j

= {(Pi,qi)ll ~ i ~ k}

be the set of patrs such that g(Pi,qi) • j for some j > 1; then
j PI ql j j Pi qi j

A .• (B C)(E, [A ,2]);[A ,i] .. (B C) (E,[A ,i+1]), i • 2,3, ••. ,k-l;
PI Pi

j Pk qk
[A ,k] .. (B C)(E,f) •

Pk
j If G

j
is empty, then A •• f. (The case is different from the one

above in as far as we have backtracking. This is the reason we use

rules of the form A •• (a)(e,y), since ~ is only checked for outcome and

backtracking will always occur on the substring recognized by a).

61

In order to show T(R) • T(M) we need the following lemmas.

* Lemma 7.1 Consider R,M as above. For any y,z in L ,if there exists e

j, 1 , j ,m, such that Aj =w(ytz, 0), for some n, then Ai 7(tyz ,1)

for all i f- j.

Proof By induction on n.

n - 1 The rule for A in P has the form A •• (Ql' ••• '~).

Case 1 Q
j

contains E. Then, according to the definition of M we have

i A •• f, for all i f- j; the theorem follows.

Case "2 Q
j

does not contain E. We can write y ~ a for some a in Le;

also a is in Q
j

. Using the definition of M it follows that Ai fails

on az, for all i f- j.

Induction st~p Let A •• B(C
I

,C2f ••• ,,cm) be in P.

j Pi qi
Case 1 j ~ t; the rule for A contains all the pat~s B C

Pi
that g(Pi,qi) • j. Let (p,q) be such that BP ~(Yl~Y2Z,0),

such

By induction P and q are unique, that is for no

succeeds on yz and therefore no Ai, for i ; j,

can succeed.

Case 2 j > t; this case is proved in a similar way. QED

Lemma 7.2 Consider R,M as before.

iff Ai ~(xtYI 0).

* For all A in V I xy in Le' A ==t (xty,1)

Proof First we show: The proof

is by induction on n.

n • I Let P contain A •• (QI' ••• ,~) •

62

Case 1 Qi contains E. i i t-Then x - E, A •• E and A =we y,o).

Case 2 Qi does not contain E. Then x - a, for some a in r and e

a is in Qi' Finally, in M.Ai =w(a~y, 0).

Induction step Let the rule for A be A •• B(Cl, ••• ,Cm). We will

consider the case i ~ 1 • (The other case is similar). There are

j,k in Um, such that B ~(xltx2y'j)' Cj ~(x2~y,k), xl x2 - x and

g(j,k) - 1. Let Gi - {(p,q)lp,q in Um, g(p,q) - iL By induction

B
j ~(xltx2Y' 0), C~ ~(x2~Y' 0). Using now the rule for Ai in

M, for all pairs (p,q) others than (j,k),BPCq will fail on xy
p

according to Lemma 7.1; therefore Ai ~(xlx2ty, 0).

Now we show: if Ai :t(xty, 0) then A T(xty,i). The proof is

by induction on n.

~ This· case is easily verified.

Induction step Let the rule for A be A •. B(C1, ••• ,Cm). We will

consider the case i > l (the other case is similar). Then x - E;

also let (p,q) be such that BP ~(YltY2Z, 0), C:~(Y2~Z, 0),

YlY2z .. y. By induction B =t(Yl\Y2Z' p), Cp -y(y2tz, q) and

g(p,q) - i; it follows that A ~(~YlY2Z, i). QED

Theorem 7.6 For any reduced (l,m)-TS R, there exists a reduced gTS

M such that T(R) = T(M).

Proof Using Lemma 7.2 above: S =f (x$~, 1) if and only if sl 7
(x$~, 0); it follows that T(R) ~ T(M) and also that M is reduced.

QED

63

We would like to show that given any (l,m)-TS R there exists

a reduced (l',m')-TS R' such that T(R) • T(R'). For this purpose

we will show: a) loop failures can be eliminated; b) p-a and end

failures can be eliminated (no loop failures being introduced).

Next we show that loop failures can be eliminated in any given

(l,m)-TS. We will proceed in two steps: given an ~ ,m)-TS R we

first construct the (l',m')-TS RI ; from ~ we will construct later

on the desired (l',m')-TS R', which has no loop failures and

recognizes T(R).

Definition 7.7 Let R - (V,E,P,S,g,$) be an (l,m)-TS. We define

the (l',m')-TS ~, ~ - (VI,E,PI,S,gl,$) ,as follows: l' 8 21,

m' = l+m+l. (We introduce additioqal outcomes with the following

meaning: .if the outcome of a derivation in R is i, i ~ 1, and the
.

string recognized is ~ the null string, then the same derivation

holds in RI • However if i ~ 1 and the string recognized is the null

string or if i > 1 in R, then the outcome in Rl is 1 + i, the string

recognized being the null string. The purpose is to separate the

derivations in which the null string is recognized and which, as it

wil be shown later on, could give rise to a loop. The outcome 1+m+1

is reserved for cases in Which a loop occurs in R and though it will

be used only later in R', it is introduced here for ease of notation).

VI = VU{X}, X is a new variable not in V. PI contains the following

rules:

64

1) if A •• (Q1' ••• '~) is in P and for no i Qi contains £,

then PI contains A··(Qi,····,Q~,) where Qi - Qi for i ~ £, Qi - ~

for £ < i , 2£, or i = R.+m+1, Qi+£"" Qi for £ < i , m.

2) if A •• (Q1' ••• '~) is in P and Qj contains £ for some j,

then PI contains A··(Qi'·.·'~') Where Qi+j - {£} and Qi - ~ for

all i rf R.+j.

3) if A •• B(C1 , ••• ,Cm) is in P, then PI contains A •• B(X1 ••• ,Xm,)

where Xi .. Ci .. XR.+i for 1 ~ i ~ R., X£+i = Ci for £ < i ~ m,

XR.+m+1 .. X.

Let, for 1 ~ i ~ m, 1 = i if i ~ R. and i undefined otherwise.

Then, gl is defined as follows:

1) If g(1,j.) - k, k ~ 2. then 81 (i,R.+j) .. g1 (R.+i,i) - 81 (i,i) - k

and gl(R.+i, .2.+j) .. £+ k.

2) If g(i.j) .. k, k > £, then gl (i,J) • gl(l,£+j) - gl(2+i,£+j) -

Sl(£+i,J) -1 + k.

3) gl (i, R.+m+1) ~ gl(£+m+l, i) .. £+m+l for 1 ~ i ~ R.+m+1.

Lemma 7.3 Consider R, ~ as above.

a) Let A + (xty ,i), for some integer n. If i ~ R. and x '" £

then A ~(xty,i), otherwise A~ (xty,R.+i).
L 1

b) Let A ~ (xty,i). If i ~ £ then A =y (xty,i). If i > £,

then x - £ and A ~(~y,i-£).

Proof a) By induction on n.

n - 1 This case is easily verified.

6S

Induction step Let A •• B(Cl, •••• ,Cm) be in P. Also, let B ~(Xl~x2X3' p),

Cp ~(x2tx3' q), xl x2x3 - xy and g(p,q) - i.

Case 1 p,q,i $ 1 ; then xl x2 - x, x) .. y. If i, R. and x .. e: then

xl - x2 .. e: and by induction B ~ (tx3 , p+1),Cp-+ ~ (~x3'q+R..);

using the definition of ~ we get A~ dx3, gl (p+1 ,q+R..» or A ~

(sty,Hi).

If x ~ e: then xl or x2 or both are not the null string, in which

case, by induction, B ~ (xlt x2 x3 ' p') and Cp R~ (xl x3' q') where

p' - p or q' .. q or both. Finally by the definition of Rl A =ii
(xty , i).

Other cases are similarly treated.

b) By induction on n. This proof is similar to a).

Corollary .T(R) - T(~).

In the following definition we construct the (1',m')-TS R'

which, as we will show later, has no loop failures and T(R')-T(R).

Definition 7.8 Consider R, Rl as given in Definition 7.7. We define

the (1',m')-TS R' as R' - (V',E,P',[S,.n,8l ,$) where: V' - {(A,W] I
all A in VI' W S;; VI}' P contains the following rules:

(1) if A •• (Ql""'~') is in PI' then [A,W) •• (Ql, ••. ,Qm') for

all W ~ VI - {A}.

(2) if A .. B(Cl, ,Cm') is in PI' then for all We;. VI ~ {A},

[A,W] •• [B,W'] ([Cl 'Wl l, ,[Cm"Wm']), where Wi .. ~ for i ~ 1,

Wi - W, - WU{A} for i > 1.

QED

66

(3) [X,W] •• (~, ••• ,~,{£}) for all W~ V.

(4) for all A in V, Ws;, V, [A,WU{A}] •. (~, •••• ,~,{t}).

In R' defined above, every variable has the form [A,W] where A

is a variable of Rl and W is a subset of VI. The rules in R' are

simulating those in Rl and in addition the set corresponding to each

variable (W for the variable [A,W), keeps track of those variables

which could give rise to a loop in~. For instance, if a variable [A,W]

is called in R't this corresponds to variable A being called in~.

Further, if variable A in turn, calls in ~ any variable belonging to

the set W, then a loop occurs in~. In R' the loop is prevented by

rule (4) above which guarantees the derivation will end with outcome

m+Hl.

We will show now the relation between R1 ,R'. But first, we have

the following d~f1nition:

Definition 7.9 Let R m (V,~,P,S,g,$) be an (~,m)-TS. We define the

* set L(A,x) for all A in V, x in ~e as: L(A,x)" {ZIZ in Vand3y

* to (0) ~ t (0) U{} in (rxN) such that (qo,lx,(A ,O)hi(R) (qo' x,y(Z ,O»} A.

Informally, the set L(A,x) will contain a variable B if the automaton

A(R) starting with x on the input tape and with A(o) on its storage

tape will eventually reach a configuration in which B is called and the

read-head is in the same position as in the beginning, i.e. it points

to the first symbol of x. For instance, if the rule for A is A •• B(C1 , ••• ,Cm),

* then B is in L(A,x), for all x in E • e

67

Lemma 7.4 Consider ~,R' as given by Definition 7.8.

and all integers i, 1 ~ i < m':
n

* For all xy in 1: , e

a) if Ai\ (x~y,i), for some integer n, then [A,W] R:7 (xty,i) for

all sets W, W~ V - L(A,xy).

b) if [A,W] 7(xty,i) for some set W G V - L(A,xy) and some

integer n, then A Ri (xty, i).

Proof a) By induction on n.

n • 1 This case is easily verified using Definition 7.B.

Induction step Let the rule for A in PI be A •• B(Cl, ••• ,Cm'); also let

B ~ (xl tx2x3, p), Cp ~ (x2~x3' q), xl x2x3 - xy, gl(P,q) • i.

Let WI - V-L(B,xy), W2 - V-L(Cp'XY), W3 ~ V-L(A,xy); then by induction

[B, Wl l R? (x/x2x3~P)' .[Cp ,W21 ~ (xlX3,q). There are two cases

possible:

Case 1 xl" E (which impl.ies p ~ R.); we claim that L(B,xy) • L(A,xy)

{A}. First, if x is in L(B,xy) then X is in L(A,xy), as we have in

A(~): (qoJxy,(A(o),O» IA(R) (qo,txy, (A(o),O)(B(o) ,0». Suppose now

1 () *
that X is in L(A,xy)-w. As ~ " E , we must have (qo,txy, (B 0 ,0) ~I-A-(~-)

(ql,txy,y(x(o) ,0» for some y (otherwise B(o) will be erased and the

read-head will move past the first symbol in xl); therefore X is in

L(B,xy). It follows, then, that W3 • Wl -{ Al. Further, we observe that

*, t for all xl x2 in Le ' I ~ i < m , Z in V, W~ V, if [Z,W] jRt (Xl x2 ,i)

then [Z,W'] ~ (xI~x2,i) for all W, £ W (since i < m' we do not have a

loop in R and by Definition 7.8 the rule for [Z,W] in R' can be written

with any set W', W, ~ W). Thus, we have [B,WI] ~ (xIX2x3'p),

68

[Cp ';] ~ (x/x3 ,q) ; using the rule fall [A,W3] we get [A,W3] R7
(x~y,i), where W3 ~ V-L(A,xy).

Case 2 xl - E (which implies p > 1); using an argument similar to the

one before we can show that L(A,xy)-{A} m L(B,xy)UL(C ,xy). It follows
p

that W3U{A} - WI - L(Cp'XY) - W2 ... L(B,xy); also [B,W30fA}] "~

(xlx2x3, p), [C
P

,W3U{A}] aT (x/x3, q) and finally [A,W3l ? (xty ,i).

b) The proof is similar to a).

Corollary T(~). T(R').

It remains to be shown that R' has no loop failures.

Lemma 7.5 Let R' be given by Definition 7.8. R' has no loop-failures.

Proof Assume the contrary; then we must have a variable [A,L] in V'

* .. (0) ~ t and a Btring x in r $ such that ~qo,rx, ([A,L] ,O»'A(R') (qo' x,Y

([A,L] (0) ,0», for some y in (rxN)*. (The n~tation [A,Ll(o) is derived

from [A,L] as a variabie in V' and the superscript (0) in r , as in

Definition 7.3). Let the rule for A in PI be A •• B(Cl, ••• ,cm,); then

p' contains [A,L] •• [B,L']([CI,LI], ••• ,[Cm"Lm,]) where Li = ,s for

i $ 1 and Li = L' ~ LU{A} for i > 1. Two cases are possible:

QED

Case I [B,L'](O) is written on the tape and though its superscript (in

this case (0» might change the symbol is never replaced by E ; then,

the second symbol of the stt:ing y in (rxN) * is ([B ,L'] (i) ",I) for some

i, ° ~ i ~ m', and since L' - LU{A} we have L'~L.

f.!!!....! [B,L'] ~ctx,j) for some j, R. <j ~ m'; in this case the second

symbol of y is ([CrL'l(i), 1) for some i, 1 ~ i~ m', and L' ... LU{A}.

69

We notice that in both cases the set of variables associated with

the second symbol of Y(namely L') properly includes the set corresponding

to the first symbol (L). Since the length of Y is finite, we can repeat

the same argument for every symbol in y and therefore the set of

(0)
variables associated with the last symbol in y([A,L) ,1), i.e. L, must

properly include the set corresponding to the first symbol, L, which is

a contradiction. QED

Theorem 7.7 Given any (l,m)-TS R there exists an (1' ,m')-TS R' such

that T(R) - T(R') and R' contains no loop failures.

~ The theorem follows from lemmas 7.3, 7.4, 7.5. QED

Remark We define an "E-free TS" as ·a TS R - (V,l:,P,S,$) which has no

rule of the form A •• £ , A in V. Using techniques similar to the ones

used in lemmas 7.4, 7.S it can b~ shown that for any £-free TS the loop

failures can be eliminated (some subroutine failures might be introduced at
this time). In what follows we will show that p-a and end failures can also
be eliminated from any given (1,m)-TS. First we have the definition:

Definition 7.10 Let R-(V,r,p,S,g,$) be an (l,m)-TS; we define the

(1' ,m')-TS R' &I (V' ,r,p' ,S,s' ,$) as follows: 1'::a 21, m' ... 1+m+l,

V' a {A,A lall A in v}U{XIX is not in V}, (Intuitively, for every

successful outcome i ~ 1 in R there are two successful outcomes in R',

namely i and i + 1; also for every variable A in V there are two

variables, A and A, in V'. The variable A in R' simulates A in R as

* follows: if A -r-(xty,i) for some xy in r then A R! (xty,i+R.);

70

if A a (xly,i) for some x in E*$, then A ~ (xfy,i). In other words,

if the string recognized in R with outcome i does not contain $, the

outcome in R' is 1+i; once $ is recognized the outcome is i. Moreover,

for any A in V, A is called in !: only after the endmarker has been

scanned successfully by the read-head. The purpose of this schema is

twofold: firstly, if $ is not recognized and the outcome in R is 1,

the outcome in R' is 1+1 (and not 1) and thus p-a failures are avoided;

secondly, after $ has been scanned successfully only variables of the

form A, A in V, are called and we can see to it that no attempts are

then made to match an input symbol which would cause an end failure).

p' contains the following rules:

1) If A •• (Ql' ••• '~) is in P and no Qi contains E for 1 ~ i'm,

then let k be such that $ is in Qk. In p' we have the rule A .• (Qi,Qi' ••• '~)

where Q~i ,. Qi for 1 ~ i ~ m and i ;. k; if k > 1 then Qk+l ,. Qk'

otherwise Qk+l • Qk-{$}, Qk D {$}. Also in P' we have A •• {d, •••• ,~,{E}).

(According to the rule for A, an outcome i ~ 1 will occur in R' only

when the endmarker has been successfully matched. We notice that all

sets Qi, 1 ~ i ~ m', which have not been specifically described are

implicitly defined as empty according to the restrictions in Definition

7.2) •

2) If A •• (Ql' ••• '~) is in P and ~ contains E, for some k, then

, -" ') P contains A •• (Ql'Q2' •••• '~ and A··(Ql,Q2' •• "~1) where Qk+l" {E},

Q' .. " for 1 ~ i $ m' and i " k+l; 0"" {£} Q" .. " for 1 ~ i ~ m' and i p , i

i ~ p, where p .. k if k ~ 1, P = k+R. if k > 1.

71

3) If A •• B(C1 •••• ,C
m

) is in P, p' contains A •• S (X1'X2""'Xm')

and A •• B(Y1 'Y2 ' •••• Ym') where Xi = Ci for 1 ~ i ~ 1, X1+1 • C1 for

1 ~ i $ m. Xm, • X; Yi :a C1 for 1 $ i , 1, Y 1+1 • Ci for 1 ~ i ~ m.

Y , - X. m

4) X •• (~, •••• ,~,{£}). g' is defined as follows:

1) If g(i.j) a k, i,j,k , 1, then g'(1+i,1+j) • 1+k, g'(1+i,j) D

g'(i,j) • g'(i,j+1) - k.

2) If g(i,j) • k, i,k ~ 1, j > 1, then g'(1+i,1+j) - 1+k,

g' (i,R.+j) - k.

3) If g(i,j) D k, j,k ~ 1, i > 1, then g'(1+1,1+j) - 1+k,

g' (R.+i,j) .. k.

4) If g(i,j) • k, k ~ 1, i,j > R. then g'(1+i,1+j) • 1+k.

5) If g(1,j) .. k, k > 1, then g'(1,j) - g'(i+1,j) = g'(1,j+1) D

g'(1+R.,j+1) = k+1.

6) g'(i,t+m+l)" g'(1+m+1.i) m t+m+l for 1 ~ 1 , R.+m+l.

Lemma 7.6 Consider R,R' as given by Definition 7.10. Then for all A

* * in V, x in r , y in r $:

a) A ,,¥(x~y,1), 1 ~ i ~ m iff A ~ (xty, 1+i)

b) A T (y~ ,i), i~1 iff A ~ (y~ ,i)

c) A y (1" i) , 1 ~ 1H iff A R' (t .i) or A "Rt (f' .1+1)

d) A it 0 ,i) ,1<1 ... < m iff A ? (~,R.+i).

72

Proof "Only if" We prove these statements simultaneously, by induction

on n, the number of steps in the derivation in R.

n - I Let the rule for A be A •. (QI,Q2""'~)'

I r * * a) A~(x y,i), x in E , Y in E $.

Case Iii 1 and no Qj contains £; then x ~ a for some a in E, also

a is in Qi' Using the rule for A we get A ~ (ary ,Hi).

Case 2 i ~ 1 and Qi contains £; then A .. (Qi,Qi"."~') in R' where

Qi+1 - {£}. Thus, we have A ~ (ty,1+i).

Case 3 i > 1; since the outcome is a failure we have x =E. Using now

the rule for A we get A? (t y ,1+i).

b) A ~(yt,i), i ~ 1; we must have y a $ and $ is in Qi' In R'

A .. (Qi,Q2, ••• ,~,)·whe~e Qi - {$} and therefore A ~ ($t ,i).

c,d) A it(~,i) implies Qi contains £;.1£ i ~ 1 A 'Rt (~,i) otherwise

A RT"<t,l+i).

Induction step Let the rule for A in P be A •. B(CI, ••• ,Cm).

n .. * * " a) AT(xly,i), x in E , Y in E $. We assume B-=t (xII x2x3' j),

Cj .., (x2tx3,k), xl x2x3 = xy, g(j ,k) - 1.

* Case I x3 + £; then xl ,x2 in E and we can use the inductive hypothesis

a) as follows: B 'F (xl tx2x3 ,1+j), Cj ~ (X2~X3,1+k). Using now the

rule for A we get A ? (xty,Hi).

Case 2 x3 - e:, x2 -; £; by indue tion B ~ (xl x21- +j) • Using the

inductive hypothesis b) we have Cj ~ (x2t, k). However, we must

have in this case i > 1 (otherwise y = e:) and applying the definition

for g' we get A F (x~y, Hi) •

73

Case 3 x3 - X2 a E; this case is similarly treated.

b) A :')(y~,i), i ~ 1 j let B ~(YltY2' j), Cj =fey} ,k), Y1Y2 - y,

g(j ,k) - 1.

Case 1 Y2· Ej by induction B ~ (Yl~ ,j). Applying the inductive

hypothesis c) we have C
j

Rt (t ,k) or Cj ~ (t ,k+1). In both cases,

the rule for A and the definition of g' lead to A ~(yt,i).

Case 2 Y2 ~ E; this case is similar to case 1.

c) A :",(~,i), i ~ 1; B =y(t,j), C
j
T(~,k), g(j,k) - 1. By

induction B 7 (~ ,j), c
j

R'" (~,k) where j is either j or 1+j, k

is either k or 1+k; by the definition of g' we get g'(j,k) is either

i or 2.+i.

d) A ;~€t,i), i > 2.; using the.definition of g' and the inductive

hypothesis we get A ~ (t, 1+i) •

The "if" part can be proved in the same way.

Lemma 7.7 Consider R,R' as given by Definition 7.10. Then R' has

no p-a or end failures.

* * Proof First we prove that for no A in V, x in r , y in r $, integer

- n " i, i ~ 2., we have A ~ (XI y, i) • The proof is by induction on n.

n - 1 The rule for A in P must have the form: A •• (QI' .•• '~); it

is easily checked, with the rule for A in R', that the claim made is

tuue.

Induction step Let the rule for A be A .. B(X1 ,X2 , ••• ,Xm,>. If the

derivat1.on A :,\ (xty,i) holds, we must have B ~(xltx2x3' j), Xj

(x2tx3, k), x1x2x3 - xy, g(j,k) a i.

QED

~
R'

74

Case 1 x3 = E; then i must be a failure (otherwise we have y -E) and

if so it is not true that i ~ 1.

Case 2 x3 1 E; we cannot have j ~ 1, by induction. If j > 1 then

Xj - C
j

for some Cj in V; again by induction we cannot have k ~ 1 and

by the definition of g' we cannot have i ~ 1.

* * - ,... Thus, for no x in I , Y in I $ we have S F (XIY, 1) and

therefore p-a failures are not possible. It remains to be shown that

R' has no end failures.

We notice that in the definition of g', whenever one of the two

variables of g' is smaller or equal to 1, the value of g' is also

smaller or equal to 1 unless it is a failure. In A(R') an outcome

smaller or equal to 1 is obtained for the first time only when the

endmarker has been successfully matched; moreover, if no backtracking

o~curs afterwards, then according to the observation above the outcome

will always be smaller or equal to 1. Now, by the rules in P', only

variables of the type A, for some A in V, are called following these

outcomes and, as it is easy to verify, these variables will never

attempt to match an input symbol. In other words, after the endmarker

has been successfully scanned (for the last time, if this happens more

than once) only variables of the type A, for some A in V, are called

and, as it was shown before, these variables never attempt to match an

input symbol. Hence, no end failures are possible.

Theorem 7.S Given any (l,m)-TS R there exists an (l',m')-TS R' such

that T(R)-T(R') and R' has no p-a or end failures. Moreover, if R

has no loop failures, then R' will have none either.

QED

75

Proof From Lemma 7.6, statement b), we conclude that T(R)-T(R').

By Lemma 7.7 R' has no p-a or end. failures. Assume that R has no

loop failures. If R' has loop failures, suppose A has a loop failure

* on x, x in r $. In R we cannot have A ~ (xl tx2,i) for xl x2 D x,

I ~ i ~ m (this will contradict Lemma 7.6). The only possibility is

that A has (in R) on x an end failure; the attempt in R to match an

input symbol after the endmarker has been successfully scanned

corresponds in R' to outcome l+m+l. By the rules in R', this will

also be the outcome of the derivation and no loop is thus possible in R'.

QED

The previous results can now be summarized in the following

two theorems:

Theorem 7.8 Given any (l,m)-TS R there exists a reduced (l:m')-TS R'

such that T(R) - T(R').

Proof The theorem follows from Theorem 7.7, 7.8 and the observation

by by Definition 7.2 an (l,m)-TS does not have any subroutine failures.

QED
As a corollary to this theorem we get the following important

result:

Corollary Given any (l,m)-TS R, there exists a gTS R' such that

T(R)-T(R').

~ Using the theorem above we go from R to ~, which is reduced.

By Theorem 7.6 we get a (reduced) gTS R' such that T(R')-T(R
l
). QED

Theorem 7.9 Given any gTS R, R· (V,E,P,S,$), there exists a reduced

gTS R' such that T(R) = T(R').

76

Proof This theorem follows from Theorem 7.5, 7.6, 7.8.

Theorem 7.9 shows that in a gTS all loop, p-a and end failures can be

eliminated and the proof provides a procedure for constructing the

reduced gTS. From a practical point of view, a recognition schema

which is "reduced" seems to be desired since the program will always

terminate and it will never loop or halt before coming up with the

final answer.

QED

As was mentioned before, the TS is a formalization of the recognition

schema used in the TMG system. The concept of a ''well-formed'' was

introduced in order to describe the same desirable features in a TS that

the concept of "reduced!' underlines for the gTS model. By comparing

the definition 3.1 and 7.5 we notice that the property of being '~ell

formed" for a recognition schema is a restriction of the "reduced"

property to be distinguished symbol S. Since the distinguished symbol

is our main interest in this case, the concept of "reduced" was

introduced only to illustrate a stronger result in the case of the gTS.

We do not know if a given TS can be made ''well-formed'' and various

observations, and among them Theorem 4.8, ("It is undecidable whether an

arbitrary TS is a wfTS") lead us to believe that this is not possible.

The fact, illustrated by Theorem 7.9, that every gTS can be made "reduced"

seems to indicate an advantage in using the gTS instead of the TS.

The STSL include,properly - we believe, the TSL and moreover, there

is no apparent difficulty in using the gTS instead of the TS.

77

Next, we will describe the eTS, another abstract model of a

recognition schema and a generalization of the TS.

Definition 7.11 An extendedTS (eTS) R is a 5-tuple R • (V,E,P,S,$)

in which:

V is a finite set of variables,

1: is a finite set of terminal symbols,

S is an element of V,

$ is the endmarker, $ is not in I:,

P is a finite set of rules of the form a) or b):

a) A •• B(C,D), A,B,C and D in V,.

b) A •• a, a in l:eU{e:}U{fAlall A in V}, where fA are metasymbols

not in Ee and e: is the null string. (Instead of one metasymbol f t we

have in eTS one metasymbol fA fo~ every variable A in V. The outcome

of a derivation can be in eTS either in {O,l} or in {fAIA in V}. If

the outcome is fA' for some A in V, this outcome "propagates" until

it reaches the rule for A; in other words, an outcome fA will cause

every rule, of which it is part of, to have outcome fA' until the

rule involved is the rule for A, in which case the outcome becomes 1).

For any variable A there is at most one rule with A on the

lefthand side.

We define the set of relations for each n in N, A ~(xty, p),

* xy in l:e ' p in {O,l}U{fAIA in V}, as follows:

1) If A •• a is in P, a in

and A ~(rbx, 1) for all x in

Ee , then A -~(atx,o) for all x in I:e*'

* I:e ' b in l:e' b ~ a.

78

2) If A •• £ is in P, then A~(rX,O) for all x in Ee*'

3) If A .. f
A

is in P, then A f(/x,l) for all x in Ee*

1 " * 4) If A •• f
B

is in P, B {> A, then A'Y (IX, f
B

) for all X in re •

* 5) Let A •• B(C,D) be in P. For each x1 ,x2 ' and x3 in Ee ' if:

a) B -t (xlx2x
3

,O), C + (x2tx
3

,O) then A'f (x1x2tx3
,O),

k -£+m+1.

k - R.+m+1.

k - 1+m+1.

k • 1tm+1.

e) B + (~xl ,fA) then A ~ (~xl ,1), k. D 1 + 1.

f) B ~(~x1,fE) and E {> A then A ~<~x1,fE)' k· 1+1.

f) B +<xlx2 ,O), c +(tx2 , f E), E; A then A-f (tx1x2,fE) ,

k - .t+m+1.

k - 1+m+1.
R.

D '+ (tx1 ,fE), E ; A then A + (tx1 ,fE) , h) B 7 (tx1 ,1) ,

k :II 1+m+1.
1

then A ~ (~xl ,1), i) B =t (txl ,1), D y(tx1 ,fA)

k =: 2.+m+1.

If A y(xty,p), xy in te*' P in '{O,llVU
A

IA in V}, we say A

derives (x~y,p)in nsteps. We say A 'derives (x~y,p) if A derives (xty,p) in

79

r steps for some r, and we write A'~ (xty,p).The language recognized

~ is: T(R) a {xix in E*, S ~ (x$~,O)}.

Theorem 7.10 Given anyeTS R there exists a gTS ~ such thatT(Rl) - T(R).

Proof Let R - (V,E,P,S,$). We will construct an (1,m)-TS R' such that

T(R') a T(R). The theorem will follow according to the corollary of

Theorem 7.B.

Consider the (1,m)-TS R' - (V',E,P',S,g,$) in which: 1 ~ 1,

m = r+4 where r is the number of variables in V. (There are in R'

r+2 new outcomes, all of them failures; outcome r+4 will correspond to

subroutine failures in R. Outcomes 3 thTough r+2, one for every

variable in V, are desi~ated for carrying over the failures of type fA

for A in V). Let V - {Xii 1 ~ i ~ r}; then V' - {Xi,x~1 1 ~ i ~ rlU{Z,W},

where Z, Ware not in V.

p' contains the following rules:

1) If A •• a is in P, a in Ee' then p' contains A •• (Ql,Q2""'~)

where Ql - {a}, Q2 = Ee -{a}, Q
j

= ; for j > 2. (The outcome 1 stands

for success, outcome 2 corresponds to a recognition failure in R).

2) If A •• E is in P then p' contains A .• (Ql' •••• '~) where Ql D {El,

Q
j
~ ~ for j > 1.

3) If A •• f B is in P, then let A = Xi' B = X
j

; if i = j then p'

contains A •• (Ql""~) where Q2 m {E}; if i ~ j then A •• (Ql""'~) is

in p' where Q
j

= {E}.

80

4) Let A .. B(CtD) be in P and let A· Xi; in P' A' .. B(Yl, ••• ,Ym)

where Yl ... C, Y2 ~ D, and Yj ... Z for j not in {1,2}. Also in P'

A •• A'(Yi' ••• 'Y~) where Yi - w, Yj - Z for j ; i. (For every rule in

P there are two rules in P'; let A be in V and A •• B(C,D) in P. Then

the rule for A' in p' will register success or recognition failure as

outcomes 1 or 2; however, if the outcome for A is f D, for some D in V -

let D - Xi_ A' will register outcome i+2. The rule for A in p' is

intended to propagate all outcomes i, save outcome j+2 where j is such

that A • Xj • For this reason variable W was introduced and the definition

of g insures that in this case the outcome is 2, i.e. recognition failure).

5) If there is no rule for A in P, p' contains A •• (Ql' ••• '~)

where ~ - {E}; also in P'~W •• (Qi' ••• '~) where ~-l - {Eland Z·.(Ql, .•• ,q;)
where q; - {d.

g is defined as follows: .

1) g(k,m) - k for 1 ~ k ! m

2) g(l,k). g(2,k) - k for 1 ~ k ~ m-2

3) g(k,m-l) ... 2 for 1 ~ k ~ m-2

It can be shown by induction that T(R) • T(R'). QED

Remark It is straightforward to show that the converse of Theorem 7.10

also holds, i.e. for any gTS R there exists an eTS ~ such that T(R).T(~).

. '.
" I -,'

81

VIII. THE gTS AND THE ABSTRACT FAMILIES OF DETERMINISTIC LANGUAGES

An abstract family of deterministic languages (AFDL) is defined

in [3] as a family of languages closed under the operations of '~rked

union", "marked*" (marked kleene closure) and inverse "marked gsm"

mapping. It was shown that a fam-ily of languages is an AFDL if and

only if there exists a lDBA (one-way deterministic balloon automaton)

which accepts exactly that family. (The concept of balloon automaton

is found in [7]).

In a previous chapter we have shown that corresponding to a gTS

is an automaton which accepts exactly the languages recognized by gTS's.

However, this automaton is not similar to any class of balloon automata

in the sense that it cannot be viewed as having an (unrestricted) finite

control which operates on a read-only input tape and some sort of

additional memory. In fact a distinctive restriction in a gTSA is on

the number of states in the finite control. Such a restriction, regarded

from a practical point of view, does not seem justified since in most

cases a finite control unit is easily implemented in hardware. For

this reason it is desirable to find out whether there exists a class of

balloon automata which accepts the gTSL. We will show the answer to,

this question is positive by showing that the gTSL form an AFDL and

using the mentioned result from [3].

First we will recall the definitions of "marked union, "marked*"

and ''marked gsm" mapping.
~

* * Definition 8.1 Let LI G 1:1 ' L2CS 1:2 ' and the symbols a,b not in

1:IU1: 2 , The sets (aLI)U(bL2) and (aLl)* are called, respectively, a

marked union of Ll and L2, a marked * of LI •

I

82

A marked generalizeds!gaential ·machine (mgsm) is a 7-tuple

G • (K,L,6,6,A, qo,$) where:

X is a finite set of states,

L is a finite set of input symbols,

6 is a finite set of output symbols,

qo is an element of X, the initial state,

$ is a symbol called endmarker, $ is not in tU6,

6 is a mapping from X x E into X, (we use the notation t for e e

}, is a mapping

q is in K and }'(q,a)

* y 1s 1n l:J $.

'* * from X x Ee into ~ U 6 $, such that if a is

'* - x then x is in ~ ; also if },(q.$) • y then

'* The functions 6 and X are extended to mappings from Xx t by

in E,

defining 6(q,d'" q, A(q,d .. E. Hq,wa) .. 6[6(q,w),a] and X(q,wa) •

'* A(q,W)· A[6(q,w),a] for all q in X, w in L , a in E.

'* '* Let G ... (X,E,l:J,6,A,q ,$) be a mgsm: the function G:2 E
+ 26 defined

o

by G(X) .. {yIA(q ,x$) ... y$, x in X} is called a mgsm mapping. The .0 '*
function a1

: 2l:J+ 2E defined by G1 (y) • {xl},(q ,x$) in Y$} is called
o

an inverse mgsm mapping.

Lemma 8.1 The gTSL are closed under marked union.

Proof Let R1 and ~ be two gTS, R1 - (V1 ,tl ,PI ,Sl,$) and R2 • (V2,t2,P2 ,S2,$);

assume vInv2 -~. Consider the gTS R - (V,L,P,S,$) and the symbols a,b

not in t lU E2V{$}. v .. V1UV2U{S} where S is a new variable, not in vlUv2,

E ... LlUEiJ{a,b}, P includes PIUP2; it also contains S •• aS1/bS2•

83

'* Let x be in T(R), x in r •

Using the rule for S, we have either x = aX1 and Sl ~(~$t,O) or

x = bX2 and 52 ~(x2$t,0); it follows that either x is in a.T(~)

or x is in b.T(R2). Also,

(x$t ,0) and S ? (ax$t ,0) •

'* if x is in T(~), x in t1 ' then 51 ¥
Similarly for x in T(RZ). QED

Lemma 8.2 The gTSL are closed under marked '*.
Proof Let ~ = (Vl ,tl ,P1 ,Sl,$) be a gTS; according to Theorem 7.9 we

can assume ~ is reduced and therefore there are no partial-acceptance

or end failures. Consider also the gTS Ri - (Vi.rl.Pi,Si,a) which is

identical to R1 except for a different notation for variables (V~Vi·~)

and the endmarker (a is not in t 1); otherwise the rules are similar

and T(~) • T(Ri).

Consider the gT5 R = (V,t,P,S,$) where: V includes the set

V1UViU{S,A,B},S,A,B not in VlUVi; V also contains the variables which

are implicitly defined by the shorthand notation of the rules in P.

t = r1U{al. Let 1:1 ::a {ai 11 ~ i ~ ml. P includes PlUPi and also the

following rules:

s .. $/aA

A •• (B) (S1,SiA)

B •• a1B/aZB/ ••••• /amB/$.

'* We will show T(R) = [aT(~)] • Let x be in T(R). We write x • Xo axl aX2

* •••• a~$, for some integer k and Xi in r1 ' 0 ~ i ~ k. First we notice

x - E since the rule for S shows any word in T(R) must have $ or a as the o

first letter. We can write 5i =f (xi at ,0) for 1 ~ i ~ k-1; also Sl ~

84

(~$t,O). We conclude that xi is in T(~) for 1 ~ i (k and therefore

* x is in [aT(~)] .

* Suppose now x is in [aT(~)] ; it can be shown by simply applying

the rules in P that x is in T(R).

Next we will show the gTSL are closed under inverse mgsm mapping.

But first, we have the following definitions:

Definition 8.2 Let G' - (K',~,E,6',A',qo~) be a mgsm. We define the

mgsm G - (K,~,E,6,A,qO.,$) as follows:

1) If 6'(q,b) - p, A'(q,b) - E for q,p in K', b in E , then K e

contains q,p and o(q,b) a p, A(q,b) - E.

2) If 6'(q,b).- p, A'(q,b) = a1a2 •••• ~' q,p in K', b in 6e

QED

and a i in Ee for 1 ~ i ~ k and some k, k ~ 1, then K contains q'q1' •••• 'qk-l

where qi for 1 ~ i ~ k-1, are new states, not in K', and o(q,b) - q1'

A(q,b) - a1 ; 6(qi,d - qi+l' A(qi,e:) • ai +1 for 1 ~ i' k-2; also

o(qk_l,e:) - p, A(qk_l,e:) m ~.

The mappings, * A, 6, extensions of A,o over the domain K x~ ,
e

are defined as follows

1) If 6(q,E) is not defined above, then 6(q,e:) - q, X(q,E)-E.

2) If o(qi,e:) .. qi+l' A(qi,e:) - a i for 1 ~ i ~ k-l and some k > 1,

and O(qk,E) is undefined, then 6(ql,e:) - qk and X(ql,e:)· a1a2··.·~_1·

* 3) For all x in ~ ,b in 6 U{E}: 6(q,xb) - 0(6(q,x),b) and e e

X(q,xb) - X(q,x). A(6(q,x),b). (We notice that the range of 6 includes

no state q which has an e:-move).

* We define the set of mappings {opl all p in K} from Kx6e to K,

85

. I * * and the set of mapping {~ all pinK} from ~ to ~ , pee (These

mappingsare intended to facilitate the notation in later proofs. The

subscript p, for some p in K, implies that 0 has the value p or
p

else is undefined; when, given an input string, 6 takes an initial

state (ql) to a final state (~) such that a number of E-moves occur

before reaching the final state ~, then 0p will take ql to p if P is

one of the states on which the E-moves have occurred)~

1) If O(q,E) is undefined, then 0 (q,E) • q, ° (q,E) is undefined q p

for all p ~ q, A (q,E) • E, A (q,E) is undefined for all p ~ q. q . p

2) Let 6(qi,e:) .. qi+l' A(qi,E) .. a i for 1 ~ i ~ k-1 and some

k > 1, and O(qk,E) is undefined; if qj .. p for some 1 ~ j , k, then

0p(q,E) .. p and Ap(q,E) .. a1a2 •••• a
j

_1 • If qj ~ p for all j, 1 ~ j $ k,

then 6 (q,~), A (q,e:) are undefined. p p .

3) If o(q,b) .. ql' b in ~e' then 0p(q,b) .. ~p (q1,E) and

A (q,b) .. A(q,b).
p

4)

A (q,xb) • r(q,x). A (6(q,x),b). p p

Definition 8.3 Let R .. (V,E,P,S,$) be a gTS, let G be the mgsm in

Definition 8.2, E .. {ail 1 ~ i ~ m}, ~ .. fbi! 1 ~ i ~ n}, K ..

{qi l 1 ~ i ~ r}. We define the gTSR' .. (V'.~.p'.S'.$) as follows:

V' .. {[qAP),[qAP;AJ! q,p in K, A in V}U{S'}U{[qAP;iJ! q, pinK, A in

V, i = 2,3, ••••• r}. (The variables in V' of the form [qAP] will simulate

* derivations in R on strings in ~ $ and in the same time, they will keep

track of the states in G. Variables [qAP ;Al are intended to recognize

* strings in ~ which map into E. Variables [q~;i] are introduced to

~ ..

86

facilitate the writting of the rules in P').

P' contains the following rules:

(1) Let K1 be ~ a {qlq in K and 6(q.e) undefined}; we denote the

elements of IS. by IS. ,. {Pill, i ,R.}. Then, S' •• [qosPI]/[qoSP2]/.····

/[qoSql]' (11 contains only states with no e-move).

(2) Let P contain A •• B(C,D); for all q.P in K,P' contains:

[qAp] •• [qBql] ([qlCp], [qAp; 2]), [qAP;1] •• [qBqi)([qiCp],[qAp;i+l]),

for i • 2,3, •••• r-1. [qAp;r) •• [qBqr]([qrCp],[qDp]).

(3) Let A - {bl b in A and A(q,b) - e}; we denote the elements of q e

A by A • {b(i)1 1 ~ i ~ 1}. Then, [qAP;A] •• b(l)[q(1)AP]/b(2)[q(2)AP]/
qq .

••••• /b(R.)[q(!)AP] where q(i) • 6(q,b(i»,l ~ i ~ 1.

(4) Let A •• a be in P, a in E ; if there are p,q in K such that e

6(q,£) ~ p, A(q,£) - a, then [qAp] •• £ and [qAB) •• f for all s in k, s ~ p.

I~ there is b in Ae' q,p in k such that 6(q,b) • p, A(q,b) - a, then

[qAP) •• [qAP;A)/b. For any other case [qAp] •• f.

(5) If A •• £ is in P, then for all q,p in k and q ~ p, [qAq] •• £,

[q~P] •• f •

(6) If A .• f is in P, then [qAP) •• f for all q,p in K.

Now we can prove the following lemma:

Lemma 8.3 The gTSL are closed under inverse mgsm mapping.

Proof Consider R,R',G as given by definitions 8.2, 8.3.
it

Part one Let x be in T(R'), x in A ; we will show A(q ,x$) • y$ and
o

y is in T(R). First ·we prove the following statements:

87

n(p)
b) If [qApl ~ (tx, 1) for £11 pinK and some integers n(p),

then A T (ty , 1) where y. r (q,x).

Let n' • max [n(p»). We prove these statements simultaneously, by
p

induction on n'.

n' • 1 a) [qApJ ~ .. (x/x2 ' 0) implies a rule [qAq] •• t was used in

the derivation and therefore Xl - E, P • q. Then Aq(q,E) • t - Yl and

using the rule A •• t in P we get A ~(~Y2' 0).

b) We must have in this case [qAp) •• f for all p in K. This

implies A •• f in P and therefore A ~(~y,l).

n' Induction step a) Assume [qApJ ~(xlx2' 0), n' > 1. There are
R'

only three cases possible:

Case 1 The first rule used in the derivation is of the form

[qAp) •• [qAp;AJ/b: Assume first that [qApjAJ succeeds on xl x2 ' (qAPjA]

jRt (xl tx2, '0). Then using the rule for [qAp;), there is b(j) in be

- (j) (j)] (") and Xl b x3 ; also [q AP. F x3' x2 ' O. Using the inductive

hypothesis and the relation A(q,b(j» -t we get A ~(YltY2' 0).

If [qAPjA) fails, then Xl • band 6(q,b) - pj we have }.(q,b) - a and

A •• a in P. Therefore A ? (atY2' 0).

Case 2 The rule for [qAp) has the form (2) in the definition of P'

and there is an integer j such that [qBqj] succeeds on xl x2• Let

[qBqj] jR? (X3tx4x2' 0), for some x3 ' x3x4 - Xl; then [qjCp] ~

(x/x2 ' 0). By induction B T (Y3 ~ Y 4Y2' 0), C T (y lY2' 0) where

Y3 Q A (q,x3), Y4 - A (qj'X4); using the rule for A, A •• B(C,D)
qj p

we get A y(y3Y4h 2, 0) where Y3Y4 .. Ap (Q,x3x4) D . "p(q,x1).

:?-

88

Case 3 [qBqj] fails, for all qj in K, and [q~] succeeds on xl x2 :

[qBqj] F (txl x2, 1), [qDpJ ~ (xl X2 ' 0). By the inductive hypothesis

b) we have B T (txl x2 , 1); finally we get D '=i (YltY2' 0) where

Yl - Ap (q,xl) and using the rule A •• B(C,D) we get A ~(YltY2' 0).

b) Asstme [qA,pl n(gl a, 1) for all p in K and some integers n(p),
R'

n' > 1. There are three possible cases:

Case 1 The rule for [qA J has the form (4) in the definition of P', that
p

is the corresponding rule in P has the form A •• a, a in 1:. SUppose e

Y - aYl; then there is b in 1: , b is mapped into a by A. It follows, e

according to rules (4) that in this case we will have [qA~) at '(xl btx2,O),

for some s in k and x2,x3 such that X - xl bx2• Since this contradicts

the hypothesiS, we must have Y • a'Yl , a' ~ a; we conclude that A ~(ty,l).

,Case 2 The rule for [qAp) has the form (2) and [qBqi1 fails on x,

1 * i ~ j-l, [qBqj 1 succeeds on x. Let [qBqj l ~ (xlx2 ,0); then

[qjCP] will fail on x2 for all p in K. By the inductive hypothesis

follows B ~(Yl~Y2'O), where Yl - A~j(q'~l)' Y2 • A(qj'x2), also C ~

(rY2,l). Finally the rule A •• B(C,D) leads to A it (ty,l), y - YlY2 2

A(q,x).

Case 3 [qBqi] fails on x for all qi in K. Then [qDp] will fail on x

too, for all p in K; by induction we get B"1 (ry,l), y • A(q,x) and

finally A l' (ry,l).

Consider a string x in T(R'); [qosqi1 R' (x$t ,0) for some qi in K

such that 6(qi'£) is not defined. Then S =;r(Y$~,O). where y$ -

A- (q ,x$) - r (q ,x$) and therefore A(q ,x$) is in T(R).
qi 0 0 0

89

* X(q ,x$) Part two We will show that if x is in ~ and is in T(R)$
0

in T(R'). + * then x is Consider, xl in ~e' x2 in ~ and q in K such e

Xl • x' b for some b in ~ and ~(q,"i) - p for some p in K then
1 e

Mp,b) -; E. (This restriction on all 3-tuples (xI,x2 ,q) means that

when Xl is the input on G from state q, the last symbol of Xl will

that if

produce some output). + * For all ~ in Ae , x2 in ~e' q in K with the above

restriction:

a) Let Yl .,. \ (q,xl) for some p in K, 12 - . i(p ,x2);

(yly2,0) then [qAp] p (xlx2 ,O) and [qAs] at' (~xl x2 ,1)

K and s -; p.

,
if A ~

R

for all s in

X' n I b) Let Yl - . (q,x1); if A "'-r'<ty1,l) then [qAp) ~ axl,l) for

all p in K.

The proof is by induction on n ' •
1 .

n I • 1 a) A T (ylrY2 ,0) implies Y1 .. a, a in LeU {e:} and A •• a in P.

Case 1 a in Le; let IXII - 1(bylxl we designate the length of the

string x). We prove this case by induction on 1. First, if 1 m ° we

have b - E; also 6(q,E) - P and).(q,E) :a a. It follows that [qAp) •• E

and [qAsl •• f, for all s in It, s ~ p; this leads to the desired result.

For the induction step let IX11 = 1, 1 >0. There is b in A such that e

Xl- x)bx4' 6(q,x3) - Pl' X(q,x3)'" E, A(P1,b) - a; also 1f o(Pl,b) - P2

then I(P2'x4) - E from which we conclude that x4 .,. E. Therefore

~ - x3b, and r(q,x3) - E. Applying the rule for [qAp), of the form (4),

[qAP;-).) succeeds on x3b; let x3 - b (l)xj. Then,. by induction on xjb we

get · [q (1) Ap] ~ (x3btx2,0) and finally [qAp) R1' (xl X2 ,0).

90

Case 2 a - E is treated similarly.

b) A ;!J(t Yl ,1); two cases arise:

Case 1 A has a rule A •• f; then according to rules (6) in the definition

of pt, [qAP) •• f for all p in K and the result follows.

Case 2 A has a rule A •• a, a in re and Yl - a tY2 for some at in re ,

at ;. a. First assume 6(q,E) • Pl. Then A(q,E) - at and according to

rules (4), [qAP) •• f for all p in .IS:; the result follows. Now, suppose

* 6(q,E) is undefined; we have x3 in 6e ' b t in 6e such that Xl - x3b tx4 ,

~(q'X3) - PI' A(q,x3)::z E, A (pI'b t) - at. Let I X31 • 1; if 1 • 0

then applying rules (4) we get [qAsl .•• f for all B in K. For 2. > 0 it

can be shown inductively the result still holds.
n t .

Induction step a) A T (yl Y2 ,0), n t > 1. Then the rule for A has

the form A •• B(C,D). Two cases are possible:

Case 1 B ~(Y3tY4Y2'O), C ~(Y4tY2'O) and Yl - Y3Y4• Consider the

rule (2) for [qAP); let x3 be the shortest string such that Xl - x3x4

and Y3 - ApI (q,x3) for some PI in K. Then if x3 - xjb, for some b in

~e' A(6(q,xj), b) ;. E because otherwise the assumption x3 is the shortest

string is contradicted. By the inductive hypothesis [qBP1] ~

(x3tx4x2,O) and [qBs] R1 (txl x2 ,1) for all s in K, s ;. PI; also by

induction [PICP) 7 (xl x2 ,0) which establishes the claim.

Case 2 B =ir(tYI Y2' 1), D ~(Yl~Y2'0). Applying the inductive

hypothesis a) and b) we get [qBp) R,1 (txl x2,1) for all p in K and

[qDP] R" (xltxz'O). Using the rule (2) for [qAp] we get the desired

result.

91

n' t b) A ~ (yl,l), n' > 1. The rule for A: A •• B(C,D). Two

cases are possible:

Case 1 B ~ (y3ty4 ,O), C It (ty4 ,1), Y
l

... Y
3Y4. We define x

3
,x

4

as above and by induction we get [qBPl] jRt (x
3
tx

4
,O) for some PI in

K and [qBs] Ri' (tx3x4, 1) for all sinK, 8 ~ Pl. Also by induction

we have [PlCp] iV" (tx4 ,1). Using the rule (2) for [qAp] we get

[qAp] Rt (txl,l) for all P in K.

Case 2 B F (I'yl ,l), C ~ (tyl,l). This case is similarly treated.

* Consider x in ~ ; let y$ - r(qo,x$) and S ~(Y$~,O). By

applying the result above we get [q S q] ~R' (x$t ,0), where q. ~ (q ,x$) ,
o ' 0

and [qoS p] Ri' (tx$,1) for all pinK, P ~ q, which imply x is in T(R').

QED

Theorem 8.1 The g,£SL form an AFDt •

Proof Follo~s from the definition of an AFDL and lemmas 8.1, 8.2, 8.3.

QED

92

REFERENCES

[1] R.M. McClure, "THG - A syntax directed compiler", Proc. ACM
20th National Conference, pp. 262 - 274, 1965.

[2] J.E. Hopcroft and J.D. Ullman, Formal Languages and Their Relation
to Automata, Addison-Wesley, Reading, Mass., 1969.

[3] W.J. Chandler, "Abstract families of deterministic languages",
Proe. ACM Symp. on Theory of Computing, pp. 21-30, Marina del Rey,
California, May, 1969.

[4] P.C. Fisher, '~computability hy certain classes of restricted
Turing machines", Proceedings Fourth Annual Symposium on Switching
Circuit Theory and Logical Design, Chicago, Ill., pp. 23-32, 1963.

[5] S. Ginsburg and S.A. Greibach, '~eterministic context-free
languages", Inf. and Control, Vol. 9, p,p. 620-648, 1966.

[6] L.H. Haines, Generation and recognition of formal languages,
Doctoral Thesis, MIT, Cambridge, Massachusetts, 1965.

[7] J .E. Hopcroft and J.D. Ullman, "An approach to a unified theory of
automata", Bell System Tech. Journal, vol. 46, pp. 1763-1829,1967.

[8] D.E. Knuth, "On the translation of languages from left to right",
Inf. and Control, vol. 8, pp. 607-639, 1965.

{9] S.Y. Kuroda, "Classes of languages and linear-bounded automata",
Inf. and Control, vol. 7, pp. 207-223, 1964.

[10] P.S. Landweber, "Three theorems on phrase structure grammars of
type 1", Inf. and Control, vol. 6, pp. 131-136, 1963. .

[11] J. Earley, An efficient context-free parsing algorithm, Doctoral
Thesis, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1965.

[12] S. Ginsburg and H.G. Rice, "Two families of languages related to
ALGOL", ~, vol. 9, pp. 350-371, 1962.

[13] J.C. Shepherdson and M.E. SturgiS, "Computability of recursive
functions", ~, vol. 10, pp. 217-255, 1963.

'"' [14] S. Ginsburg, The Mathematical Theory of Context-Free Languages,
McGraw-Hill, New York.

[15] D.E . Knuth, Lecture notes, International Summer School on Computer
Programming, Copenhagen, Denmark, (August 1967).

93

THE TMG RECOGNITION SCHEMA

Abstract

In [1] McClure describes !MG, a compiler writing system. Although

TMG is a syntax directed system, its recognition schema differs in some

respects from previously known schemas. The formalization of this

recognition schema and the study of its properties form the goal of this

work.

First, the "TMG Recognition Schema", shortly TS, is defined; also,

an automaton (TSA) corresponding to a given TS is described and it is

shown that the TSA accepts exactly the language "recognized" by the TS.

A subclass of TS, the so called ''well-formed TS", is then defined

and it is shown to have the property~ the class of languages it

"recognizes." includes all determinis tic context-free languages.

A given string can be recognized by a TS or it can be rejected,

in which case we have a "failure". The various types of failures are

described and the relations between them are investigated. Some closure

properties and decidab1lity results follow.

Next, the time complexity of the languages "recognized" by the TS,

the TSL, is considered; it is shown that the TSL can be recognized in

linear time by a suitable algorithm.

The question how the TS relates to the phrase structure grammars

is also investigated; it is shown that the TSL are context sensitive,

they include some non-cfl's and is conjectured that there are cf1's which

are not TSL. It is also shown that the TSL over a one letter alphabet are

not regular.

94

Another question of interest is whether the TS, our model of a

recognition schema, can be improved. Several extensions and generalization

of the TS are studied and it is shown that they compare favorably with

the original model. One of these extensions, the so called "generalized

TS" (gTS), has the following property: there exists a class of balloon

automata which accepts exactly the gTSL, i.e. the class of languages

recognized by the gTS.

