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Timing Attacks

● Cooperative attacks – apply to:
– Mandatory Access Control (MAC) systems

[Kemmerer 83, Wray 91]

– Decentralized Information Flow Control (DIFC)
[Efstathopoulos 05, Zeldovich 06]

● Non-cooperative attacks – apply to:
– Processes/VMs sharing a CPU core

[Percival 05, Wang 06, Acıiҫmez 07, …]

– Including VM configurations typical of clouds
[Ristenpart 09]



  

Cooperative Attacks: Example

Trojan leaks secret information by modulating a
timing channel observable by unclassified app
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Non-Cooperative Attacks: Example

Apps unintentionally modulate shared resources
to reveal secrets when running standard code!
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The Big Question

Are timing attacks practical in the cloud?

● Answer 1:  Maybe.  [Ristenpart 09]

● Answer 2:  I don't know.

Answer is not the subject of this talk.



  

The Other Big Question

“Attacks never get worse;
they only get better.”

- NSA?

If timing attacks become practical in the cloud,
what can we do about them?



  

Talk Outline

✔ The Timing Channel Problem
● Why They're Worse in the Cloud
● A Deterministic, Timing-Hardened Cloud
● Feasible?  A Bit of Evidence

– (preliminary performance results)

● Conclusion



  

Why Pick On Cloud Computing?

Cloud computing exacerbates vulnerabilities:

1.Mutually distrustful tasks routinely co-resident

2.Clouds introduce massive parallelism

3.Cloud-based timing attacks won't get caught

4.Partitioning defeats elasticity of the cloud



  

1. Routine Co-Residency

On Private Infrastructure:
– Owner can manage all running software

– Attacker must get code installed locally
(e.g., malware) before starting attack

On Cloud Infrastructure:
– Provider doesn't manage running guest apps

– Attacker simply buys CPU time to run attack

– No protection comprimised → no alarms



  

2. Massive Parallelism

● All shared resources create timing channels
– CPUs, caches, interconnects, I/O devices, …

● Cloud jobs use many resources in parallel
– Multiply attack surface by N

Yesterday Today



  

3. Timing Attacks Won't Get Caught

On Private Infrastructure:
– Owner can monitor all running software

(antiviral software, intrusion analysis, …)

On Cloud Infrastructure:
– Customer A cannot monitor customer B's apps

– Provider can, but wouldn't want to
● Not their job to ask questions
● Might invite privacy lawsuits



  

4. Partitioning is Infeasible

Current timing hardening approaches are either:
● Specific to particular algorithms & resources

– Equalize AES path lengths, cache footprint, …

● General but contrary to cloud business model
– Partition CPU cores, cache, interconnect, …

– Can't oversubscribe, stat-mux resources
➔ Cloud loses its elasticity!
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Anatomy of a Timing Channel

Two elements required:  [Wray 91]
● A resource that can be modulated

by the signaling process (or victim)
● A reference clock enabling the attacker

to observe, extract the modulated signal

Remove either → no timing channel.



  

Prior Approaches

Attempt to eliminate modulation
– e.g., by partitioning hardware resources

Customer A's Job

Customer B's Job



  

Our Approach

Allow modulation, eliminate reference clocks

Customer A's Job

Customer B's Job



  

Our Approach

Allow modulation, eliminate reference clocks
– Dynamic statistical multiplexing allowed

Customer A's Job

Customer B's Job



  

Deterministic Execution

Definition:
– Given same inputs from external world

– Always yields same execution flow & outputs

What this means:
● Execution not affected by internal timing
● No internal reference clocks (only external)



  

A Timing-Hardened Cloud

Deterministic Cloud
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What We've Accomplished

Eliminated all internal timing channels
● Independent of resource (cache, disk, …)
● Independent of algorithm (AES, RSA, …)

Leaves one aggregated timing channel
● How long did the entire job take to run?

Can rate control by scheduling job outputs



  

Eliminating Reference Clocks

Just protect hardware clocks/timers from apps.

Easy, right?

Wrong.



  

A Thread is a Reference Clock

volatile long long timer = 0;

void *timer_func(void *)
  { while (1) timer++; }

main() {
  pthread_create(&timer_thread, NULL,
                 timer_func, NULL);
  ...
  // Read the "current time"
  long long timestamp = timer;
  ...
}



  

Deterministic Parallelism

Requires new approach to parallel execution
● Threads access memory deterministically
● Threads synchronize deterministically
● Processes access shared system resources

(e.g., file systems) deterministically

→ Parallelism introduces no reference clocks,

→ Hence no internal timing channels



  

Introducing Determinator

A Determinism-Enforcing Microkernel/Hypervisor
– “Efficient System-Enforced Parallelism”

(Jay Lepreau Best Paper Award, OSDI 2010)

– Explores a new, naturally deterministic
parallel application programming model 

Other Approaches
● DMP/CoreDet/dOS [Bergan 2009/2010]
● Grace [Berger 2009]



  

Determinator Microkernel

Determinator Architecture

Child Space Child Space

Grandchild Space Grandchild Space

Root Space

Hardware

A Determinism-Enforcing Microkernel/Hypervisor



  

Other Benefits of Determinism

Simpler Application Development/Debugging
● No races/heisenbugs → all bugs repeatable

More efficient logging/replay
● Log only external, not internal events

State machine replication, checking, analysis
● Bit-for-bit correspondence across replicas



  

Are Deterministic Clouds Practical?

Determinism could help control timing channels,
but:
● Can it offer a rich enough environment?
● Can it be made efficient enough?

Some open issues and possible solutions...



  

Can It Be Efficient Enough?

Some preliminary evidence...
– (see OSDI paper for more detailed evaluation)



  

Creating a Rich Cloud Environment

Sometimes apps need to tell the time
● External nodes or gateways supply 

timestamps as explicit, external inputs

May be some forms of “safe nondeterminism”
● Random numbers from provider's trusted RNG

Sometimes want application-level scheduling
● App can fork off “scheduler process,” but use

IFC to prevent it from affecting app's results



  

Conclusion

● Timing channels may be a serious challenge
– Clouds create massive untrusted co-residency

– Parallelism creates pervasive timing channels

– Timing attacks are unlikely to be caught

– Resource partitioning defeats business model

● Deterministic parallelism may offer a solution
– Eliminates all internal timing channels

– Performance practical at least for some apps

Further information: http://dedis.cs.yale.edu
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