

Determinating Timing Channels
in Compute Clouds

Amittai Aviram, Sen Hu, Bryan Ford
Yale University

http://dedis.cs.yale.edu/

Ramakrishna Gummadi
University of Massechusetts Amherst

CCSW, October 8, 2010

http://dedis.cs.yale.edu/

Timing Attacks

● Cooperative attacks – apply to:
– Mandatory Access Control (MAC) systems

[Kemmerer 83, Wray 91]

– Decentralized Information Flow Control (DIFC)
[Efstathopoulos 05, Zeldovich 06]

● Non-cooperative attacks – apply to:
– Processes/VMs sharing a CPU core

[Percival 05, Wang 06, Acıiҫmez 07, …]

– Including VM configurations typical of clouds
[Ristenpart 09]

Cooperative Attacks: Example

Trojan leaks secret information by modulating a
timing channel observable by unclassified app

Secret Level
Trojan App

MAC/DIFC Protection Boundary

Unclassified Level
Conspiring App

use a lot,
use a little

how fast am
I running?

Timeshared
Host

Non-Cooperative Attacks: Example

Apps unintentionally modulate shared resources
to reveal secrets when running standard code!

Acme Data, Inc.
Crypto (AES, RSA, ...)

Discretionary Protection Boundary

Eviltron
Passive Attacker

key-dependent
usage patterns

watch memory
access timing

Cloud
Host

The Big Question

Are timing attacks practical in the cloud?

● Answer 1: Maybe. [Ristenpart 09]

● Answer 2: I don't know.

Answer is not the subject of this talk.

The Other Big Question

“Attacks never get worse;
they only get better.”

- NSA?

If timing attacks become practical in the cloud,
what can we do about them?

Talk Outline

✔ The Timing Channel Problem
● Why They're Worse in the Cloud
● A Deterministic, Timing-Hardened Cloud
● Feasible? A Bit of Evidence

– (preliminary performance results)

● Conclusion

Why Pick On Cloud Computing?

Cloud computing exacerbates vulnerabilities:

1.Mutually distrustful tasks routinely co-resident

2.Clouds introduce massive parallelism

3.Cloud-based timing attacks won't get caught

4.Partitioning defeats elasticity of the cloud

1. Routine Co-Residency

On Private Infrastructure:
– Owner can manage all running software

– Attacker must get code installed locally
(e.g., malware) before starting attack

On Cloud Infrastructure:
– Provider doesn't manage running guest apps

– Attacker simply buys CPU time to run attack

– No protection comprimised → no alarms

2. Massive Parallelism

● All shared resources create timing channels
– CPUs, caches, interconnects, I/O devices, …

● Cloud jobs use many resources in parallel
– Multiply attack surface by N

Yesterday Today

3. Timing Attacks Won't Get Caught

On Private Infrastructure:
– Owner can monitor all running software

(antiviral software, intrusion analysis, …)

On Cloud Infrastructure:
– Customer A cannot monitor customer B's apps

– Provider can, but wouldn't want to
● Not their job to ask questions
● Might invite privacy lawsuits

4. Partitioning is Infeasible

Current timing hardening approaches are either:
● Specific to particular algorithms & resources

– Equalize AES path lengths, cache footprint, …

● General but contrary to cloud business model
– Partition CPU cores, cache, interconnect, …

– Can't oversubscribe, stat-mux resources
➔ Cloud loses its elasticity!

Talk Outline

✔ The Timing Channel Problem
● Why They're Worse in the Cloud
● A Deterministic, Timing-Hardened Cloud
● Feasible? A Bit of Evidence

– (preliminary performance results)

● Conclusion

Anatomy of a Timing Channel

Two elements required: [Wray 91]
● A resource that can be modulated

by the signaling process (or victim)
● A reference clock enabling the attacker

to observe, extract the modulated signal

Remove either → no timing channel.

Prior Approaches

Attempt to eliminate modulation
– e.g., by partitioning hardware resources

Customer A's Job

Customer B's Job

Our Approach

Allow modulation, eliminate reference clocks

Customer A's Job

Customer B's Job

Our Approach

Allow modulation, eliminate reference clocks
– Dynamic statistical multiplexing allowed

Customer A's Job

Customer B's Job

Deterministic Execution

Definition:
– Given same inputs from external world

– Always yields same execution flow & outputs

What this means:
● Execution not affected by internal timing
● No internal reference clocks (only external)

A Timing-Hardened Cloud

Deterministic Cloud

Gateway Gateway

Customer A's Job

Customer B's Job

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Storage
Node

Storage
Node

Storage
Node

Storage
Node

Job
Inputs

Job
Outputs

Gateway

Job
Inputs

Job
Outputs

Gateway

What We've Accomplished

Eliminated all internal timing channels
● Independent of resource (cache, disk, …)
● Independent of algorithm (AES, RSA, …)

Leaves one aggregated timing channel
● How long did the entire job take to run?

Can rate control by scheduling job outputs

Eliminating Reference Clocks

Just protect hardware clocks/timers from apps.

Easy, right?

Wrong.

A Thread is a Reference Clock

volatile long long timer = 0;

void *timer_func(void *)
 { while (1) timer++; }

main() {
 pthread_create(&timer_thread, NULL,
 timer_func, NULL);
 ...
 // Read the "current time"
 long long timestamp = timer;
 ...
}

Deterministic Parallelism

Requires new approach to parallel execution
● Threads access memory deterministically
● Threads synchronize deterministically
● Processes access shared system resources

(e.g., file systems) deterministically

→ Parallelism introduces no reference clocks,

→ Hence no internal timing channels

Introducing Determinator

A Determinism-Enforcing Microkernel/Hypervisor
– “Efficient System-Enforced Parallelism”

(Jay Lepreau Best Paper Award, OSDI 2010)

– Explores a new, naturally deterministic
parallel application programming model

Other Approaches
● DMP/CoreDet/dOS [Bergan 2009/2010]
● Grace [Berger 2009]

Determinator Microkernel

Determinator Architecture

Child Space Child Space

Grandchild Space Grandchild Space

Root Space

Hardware

A Determinism-Enforcing Microkernel/Hypervisor

Other Benefits of Determinism

Simpler Application Development/Debugging
● No races/heisenbugs → all bugs repeatable

More efficient logging/replay
● Log only external, not internal events

State machine replication, checking, analysis
● Bit-for-bit correspondence across replicas

Are Deterministic Clouds Practical?

Determinism could help control timing channels,
but:
● Can it offer a rich enough environment?
● Can it be made efficient enough?

Some open issues and possible solutions...

Can It Be Efficient Enough?

Some preliminary evidence...
– (see OSDI paper for more detailed evaluation)

Creating a Rich Cloud Environment

Sometimes apps need to tell the time
● External nodes or gateways supply

timestamps as explicit, external inputs

May be some forms of “safe nondeterminism”
● Random numbers from provider's trusted RNG

Sometimes want application-level scheduling
● App can fork off “scheduler process,” but use

IFC to prevent it from affecting app's results

Conclusion

● Timing channels may be a serious challenge
– Clouds create massive untrusted co-residency

– Parallelism creates pervasive timing channels

– Timing attacks are unlikely to be caught

– Resource partitioning defeats business model

● Deterministic parallelism may offer a solution
– Eliminates all internal timing channels

– Performance practical at least for some apps

Further information: http://dedis.cs.yale.edu

http://dedis.cs.yale.edu/

