
Notes on Thread Models in Mach ���

Bryan Ford
Mike Hibler
Jay Lepreau

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ������ USA

April� ����

Abstract

During the Mach In�Kernel Servers work� we explored two alternate thread models that
could be used to support traps to in�kernel servers� In the 	migrating threads
 model we
used� the client�s thread temporarily moves into the server�s task for the duration of the
call� In the 	thread switching
 model� an actual server thread is dispatched to handle client
traps� Based on our experience� we �nd that the migrating threads model is quite complex
and di
cult to implement in the context of the current design of Mach and the Unix single
server� The thread switching model would �t more naturally and would probably be much
simpler and more robust than migrating threads� making it a valuable approach to explore in
the near future� However� we believe migrating threads inherently to be faster than thread
switching� and ultimately to be the best long term direction��

�This research was sponsored by the Hewlett�Packard Research Grants Program�



Introduction

In our Mach In�Kernel Servers �INKS� work���� one important implementation issue we had
to confront is the thread semantics employed during traps to in�kernel servers� Should the
client�s thread 	move
 into the server task for the duration of the RPC� or should the kernel
switch to a 	real
 thread created and owned by the server� The latter adheres to existing
Mach semantics� and therefore would be more straightforward� However� for our initial
implementation we chose the former option� for several reasons�

� It o�ers the greatest potential for performance improvement from INKS�

� It tests the feasibility of such a stretching of Mach semantics�

� It o�ers the �exibility to support other specialized communication

mechanisms�

� We did not realize the extent to which the Unix server relied on the traditional imple�
mentation of server threads�

We now discuss the bene�ts and drawbacks of the 	migrating threads
 approach we took�
as well as the alternate 	thread�switching
 method�

Migrating Threads

In our implementation of INKS� when a client takes a trap to an in�kernel server� its thread
temporarily moves from the client task to the server task� The thread�s task pointer is
changed to indicate the server task� and a new server stack is attached to the thread� allocated
from a pool of free server stacks allocated speci�cally for the use of INKS traps� When the
server work function returns� the thread moves back to the client�s task and the original
client stack is re�attached� While this approach sounds reasonably clean and natural� there
are many complications that showed up in actual implementation�

� Allowing threads to migrate to the server task creates a major security issue� Mach
threads can normally be manipulated at any time by any code that has access to the
thread�s control port� Generally� this control port is not highly sensitive and is made
available to client tasks� However� if other threads in a client task were allowed to
perform operations like thread�set�state on a thread while executing in the server
as an INKS trap� a serious security breach would occur� We have not yet attempted
to handle this problem� but it probably could be solved in a backward�compatible way
by blocking any operations on such a thread until it returns from the INKS trap to its
	home
 task�

�



In the future� to provide a server the ability to change the state of any thread running
in its own space� even if it is a 	visiting
 thread� alternate versions of the thread
control operations could be introduced to which the task control port is speci�ed as
a parameter as well as the thread control port� These calls would then operate on a
thread only while it is running in the speci�ed task� They would block if the thread
has an execution context in the speci�ed task but is temporarily executing in another
one� or fail if the thread has no execution context in that task�

� It may seem at �rst that� in a migrating thread model� it would be di
cult to im�
plement things like interruptible system calls and Unix signals� In fact� however� the
interruptible call problem is mostly unrelated to the thread model and must be dealt
with specially in either case� When an RPC client� such as a Unix program� blocks
in a mach�msg call� technically another thread in the client has the option of forcibly
aborting that mach�msg call by sending a command to the thread�s control port� In
a migrating thread model� this option does not exist� which is what intuitively makes
it seem like a problem exists with this model� However� in actual practice� it is a bad
idea anyway to 	blindly
 abort a mach�msg call� as the server would still continue to
process the request� eventually sending back an 	orphan
 reply message� and unde�
sirable complications could easily result� To correctly implement interruptible system
calls and signals� the server must be involved�it must provide speci�c mechanisms for
detecting interruption requests and aborting operations when possible� It is just as
easy for a server thread� recognizing an 	interrupt
 request from the client� to respond
by returning the thread to the client through a migrating thread mechanism� as to
respond by sending a reply message to an RPC client�

� If more than one in�kernel server is to be supported at once� there is the possibility
that one server� running on an INKS trap� will call the other through a nested INKS
trap� It is even possible that a set of servers could be mutually recursive� making it
necessary to support an arbitrary number of 	levels
 of traps� each with its own user
stack� Because this is not a problem in the case of the OSF�� server� we do not yet
deal with it� However� multi�server systems stand to bene�t the most from INKS� so
this is an important issue�

� There is a thread analog to the 	task identity
 problem discussed in the INKS paper�
Just as server code may make the assumption that mach task self refers to its own
task rather than the user task� it may also assume that mach thread self refers to
one of its own threads and not a client�s thread� An example of this in the OSF��
server is the exit system call which attempted to terminate the currently active user
task and threads� one of which is running the exit code�

� Twice the amount of virtual memory in the server as usual is used for stacks� because
two sets of stacks must be maintained� one for the threads receiving messages� and the
other for the use of INKS traps� However� in practice this is not a major problem� be�

�



cause INKS trap stacks are used for almost all system calls� This means 	real
 threads
are used only rarely� allowing most of their stacks to remain paged out inde�nitely�

� Cthreads� the lightweight user�level thread package employed by the single server�
maintains a special data structure at the bottom of every user�level stack which it
may reference at any time during execution of server code� Therefore� the stacks used
for INKS trap execution cannot be produced by simply allocating blocks of memory�
Instead� the server must create and supply to the kernel� extra 	pseudo�Cthreads
 with
correctly initialized stacks�

In addition� some of Cthreads� automatic thread management operations would cause
serious problems if they were allowed on these pseudo�Cthreads� For example� when
OSF�� server code blocks �i�e� sleeps�� it uses Cthread primitives which normally will
schedule another Cthread on the current kernel thread rather than actually blocking
the kernel thread and switching to another� This would not work� as the kernel thread
being used 	belongs
 to the client task and must be returned to the client immediately
when the RPC work function is complete� We solved this problem by marking every
pseudo�Cthread 	wired
 to its kernel thread�

� Determining how many stacks should be allocated for INKS traps can be tricky� and
it may be necessary to 	grow
 and 	shrink
 the stack pool dynamically to adjust
for system load and other conditions� This problem is basically equivalent to the
problems already handled by the server� in maintaining its thread pool� However� it
does introduce additional complications and potential for performance problems if not
handled well� We currently do not handle it well� We have a �xed�sized pool of stacks
allocated at server initialization that is large enough to handle the maximum number
of concurrent system calls in any of the benchmarks we ran� The stacks are recorded
in a list from which the kernel selects the �rst available� using a linear scan�

� If this INKS mechanism is to be applied to a server that uses only a single service
thread instead of a thread pool� it must be ensured that that service thread and an
INKS trap do not execute simultaneously� This could be handled in several ways�
For small servers� the easiest way might be to use a mutex lock in the server� which
is acquired on entry to every server work function and released on return� A more
transparent method would be for the kernel to check the server port�s queue of threads
waiting for a message� and if the service thread is on it� remove it for the duration of
the INKS trap� If the thread queue is empty� the kernel would have to abort the INKS
trap with a mach send interrupted error� forcing the client to queue a message
instead� Since we know of no single�threaded servers worth running in the kernel� we
currently do not deal with this problem�

In general� there may also be other unanticipated problems from violating Mach semantics
by allowing allowing threads to migrate to other tasks� For example� does our revectoring of

�



the thread�s task pointer cause problems we have not yet seen� or not yet recognized� There
are probably a few surprises yet in store�

Many of the complexities and shortcomings cited could be avoided by altogether eliminat�
ing the notion of a separate server task� By viewing the server code as down�loadable kernel
code running as part of the 	kernel task
 we no longer have to worry about thread migration
or service threads� User threads trapping into the server are just trapping into an extended
kernel� and the user thread is just 	running in kernel mode
� The semantics of thread op�
erations applied to user threads running in the kernel are well�de�ned� so threads running
in server code introduce no new problems� Coupling this with short�circuiting server�kernel
calls� we have essentially re�created a monolithic kernel�

There are drawbacks� however� One is the kernel�server stack issue� User threads entering
the kernel will still need to switch to a service stack or 	prepare
 the kernel stack so it appears
as the server expects� For the latter� the size and non�pageable nature of kernel stacks would
again be a concern� In either case� the kernel would have to be modi�ed to avoid using
the continuation and stack hando� optimizations� or else those optimizations would have to
be modi�ed extensively� This approach also does not address the preemptability problem�
Since server threads would now be true kernel threads� they would no longer be preemptible�
leading to all the attendant latency problems�

Thread�Switching

In the alternate model� actual server threads could be used for the execution of server work
functions invoked by INKS traps� One possible implementation of this model is described
here�

When an INKS trap is caught and the destination port and server are found� the kernel
would �rst 	steal
 a thread from the port�s list of server threads waiting to receive messages
�the ip�blocked �eld of the ipc�port structure�� It would fetch the thread�s user stack
pointer and push onto that stack the stolen thread�s continuation state �i�e�� the message
receive parameters�� Then it would hando� to the stolen thread� leaving an appropriate
continuation state in the original thread� Finally� the stolen thread would be used to call the
server work function on the server�s user stack� After the work function returns� the process
is reversed� the stolen thread switches back to the original client thread� the stolen thread�s
continuation parameters are popped from its stack and restored� the thread is returned to
the waiting queue on the ipc�port� and the client�s thread exits from the trap�

This implementation has several advantages over the 	migrating threads
 approach�

� Since server threads already contain user stacks appropriate for executing server RPC
work functions� very little special stack�handling code would be needed� In particular�
it is not necessary for servers to explicitly allocate a pool of stacks for the use of INKS
traps�

�



� Since the client�s thread is not used for execution of server code� there would be no
security problems from external parties attempting to manipulate client threads while
they are running in the server�

� Single�threaded servers would be handled implicitly� because INKS trap stacks would
be allocated from the same 	resource pool
 �the waiting�thread queue on the server�s
receive port��

There are some disadvantages to this approach� however�

� The Cthreads library can no longer know exactly how many threads are waiting on
the server�s request port at a particular time� because the kernel may steal threads
without notice� This might cause serious performance problems related to Cthreads�
normal handling of the thread pool�

� If all of the server�s threads are removed by the kernel for INKS trap execution at
a given time� the server becomes unable to process any additional requests until one
of the traps returns� In the case of multiple in�kernel servers that call each other�
this problem could even result in deadlock� The kernel could be instructed never to
steal the last thread �i�e�� abort with mach send interrupted if there is only one
thread on the port�s waiting queue�� However� this policy would have to be disabled
for single�threaded servers� otherwise no INKS traps would ever be made to the server�

� In general� this approach is likely to be slower� since switching from one thread to
another entails a signi�cant amount of processing overhead associated with handling
the kernel stack and other necessary operations�

Conclusion

In summary� a thread switching model would have resulted in a cleaner� safer� more robust
implementation and would have �t better with Mach�s current thread semantics� It would
probably be slower than a migrating threads implementation� but perhaps not signi�cantly
overall� especially for a single server system� Therefore� for practical purposes� we believe an
implementation of INKS based on the thread switching model would be highly valuable in
the short term�

In the long term� however� we believe that thread�switching is only a temporary way to
work around a problem deeply woven into Mach� If a general�purpose migrating threads
model such as that exploited in LRPC��� were to be introduced in the future� this approach
to in�kernel server traps would become both faster and cleaner than thread switching� Our
INKS work suggests such a model may be feasible� and we expect to explore it�

�



References

��� Brian N� Bershad� Thomas E� Anderson� Edward D� Lazowska� and Henry M� Levy�
Lightweight remote procedure call� ACM Transactions on Computer Systems� ��������
��� February �����

��� Jay Lepreau� Mike Hibler� Bryan Ford� and Je� Law� In�kernel servers on Mach ����
Implementation and performance� In Proc� of the Third Usenix Mach Symposium� Santa
Fe� NM� April �����

�


