
Evolving Mach 3.0 to a Migrating

Thread Model

Bryan Ford

Jay Lepreau

Center for Software Science

Department of Computer Science

University of Utah

{baford,lepreau}@cs.utah.edu

801-581-{4280,4285}

January 17, 1994

1



Terminology

Thread: A sequential flow of control.

RPC: A control transfer modeling a

procedure call, that crosses the protection

barrier between two processes.

Static thread model: RPC is implemented by

two separate threads, each confined to one

process, passing messages.

Migrating thread model: RPC is

implemented by one thread temporarily

crossing the protection barrier and “doing its

own work” in the server’s code.

2



Thread Models in RPC

RPC is supposed to model a procedure call.

So, what’s all the gunk on the left?!

Client Thread Client ThreadServer Thread

Work Function

Thread Switch

Work Function

Thread Migration

Switching Migrating

Client Server Client Server

"Active Objects" "Passive Objects"

Kernel Kernel

3



Research Overview

Questions: Is the migrating thread model a

good idea? Does it make much difference?

Project: Design and implement a version of

Mach based on migrating threads; compare

the two versions.

Result: Migrating threads are better in

speed, code simplicity, and functionality; do

not sacrifice protection or backward

compatibility.

4



Primary Issues

• What is the execution environment of a

client thread in a server?

• How can clients and servers be protected

from each other?

• How can good controllability be

provided?

5



Key Design Element:

Split Up the Thread

• “Thread” (migrating part)

∗ Logical flow of control

∗ Schedulable entity

(priority, policy, time quantum)

∗ Resource accounting statistics

• “Activation” (static part)

∗ Execution context

(PC, registers, stack)

∗ Exported point of control

(Mach “control port”)

6



Threads and Activations

Kernel

Task Task Task

activation activation activation

(e.g. Unix app) (e.g. file system) (e.g. device driver)

migrating RPC

thread

migrating RPC

7



Threads and Activations

activation

Client

Server 1

Server 2

activation

activation

thread

8



And the winner is. . .

Migrating threads provide better:

• Performance

• Simplicity of kernel code

• Functionality

9



Performance Comparison

Static RPC

Migrating RPC

Null RPC 32 bytes in 1K in

5000

0

4000

3000

2000

1000

H
P

7
0
0
 c

y
c
le

s

10



Why is it faster?

• Upcall semantics on server side

• Kernel-visible RPC (no “reply ports”)

• No scheduler involvement

11



Simpler

RPC paths:

Approx 2000 lines of code

replaced by 400.

Control mechanisms:

Approx 3000 lines of code

replaced by 1700.

12



Macrobenchmark Results

• “make” of gas: 2% faster

• link of HP-UX linker: 14% faster

Note: without additional leverage of

migrating RPC yet.

13



What made the RPC path

simpler?

Answer: the same things that made it faster!

• Reversed call semantics on server side:

146 instructions down to 33

• Kernel-visible RPC:

206 instructions down to 12

• No scheduler involvement:

408 instructions down to 30

14



More Functional

• Inherited thread attributes:

∗ Priority (real-time)

∗ Resource limits and accounting

• RPC call chain provides client-server

communication channel

15



Related Work

• Amoeba: exports RPC to user

• Alpha: real time, remote migration

• LRPC on Taos

• Spring: confronted Unix issues

• “Passive Object” Systems:

Emerald, Clouds, Psyche

16



LRPC Comparison

• LRPC addressed data transfer also

• We attempted to isolate control transfer

• We examined simplicity

• We fully addressed controllability issues

(Taos has weak protection semantics)

17



Issues/Future Work

• Leverage to further optimize Mach RPC

• Use improved functionality to simplify

servers

• Leverage for real-time support

• Extend to cross-node RPC

• Show another OS can be evolved

18



Conclusions

• A migrating thread model is faster,

simpler, and more powerful.

• Exported RPC abstraction a prerequsite;

synchronous invocation beats async.

• Existing systems can be adapted without

sacrificing backward compatibility.

19



Why We Don’t Use Spring’s

Terminology

• High-level concept of “thread”

fits the migrating entity better

• Encourages us to think in the new model

• Precedent: Alpha, LRPC

• Momentum

20


