Evolving Mach 3.0 to a Migrating
Thread Model

Bryan Ford
Jay Lepreau

Center for Software Science
Department of Computer Science
University of Utah

{baford,lepreau}@cs.utah.edu
801-581-{4280,4285}

January 17, 1994



Terminology

Thread: A sequential flow of control.

RPC: A control transfer modeling a
procedure call, that crosses the protection
barrier between two processes.

Static thread model: RPC is implemented by
two separate threads, each confined to one
process, passing messages.

Migrating thread model: RPC is
implemented by one thread temporarily
crossing the protection barrier and ‘“doing its
own work”™ in the server’'s code.



T hread Models in RPC

RPC is supposed to model a procedure call.

So, what's all the gunk on the left?!

Switching

"Active Objects"

Client

Server

J

Migrating

"Passive Objects"

Work Function

e

Thread Switch

N

Client Thread

-~

Server Thread

&

ernel

Client

d

Thread Migration

Server

Work Function

Client Thread

ILKernel



Research Overview

Questions: Is the migrating thread model a
good idea? Does it make much difference?

Project: Design and implement a version of
Mach based on migrating threads; compare
the two versions.

Result: Migrating threads are better in
speed, code simplicity, and functionality; do
not sacrifice protection or backward
compatibility.



Primary Issues

e What is the execution environment of a
client thread in a server?

e How can clients and servers be protected
from each other?

e How can good controllability be
provided?



Key Design Element:
Split Up the Thread

e “Thread” (migrating part)
x Logical flow of control

x Schedulable entity
(priority, policy, time quantum)

x Resource accounting statistics

e “Activation” (static part)

x Execution context
(PC, registers, stack)

x Exported point of control
(Mach “control port")



Threads and Activations

Task Task Task
(e.g. Unix app) (e.g. file system) (e.g. device driver)

activation

7 U

migrating RPC migrating RPC
thread Kernel




Threads and Activations

/‘f\ Server 2
O/

activation
Server 1
VR
</ ..
activation
Client
()

\factivation

thread



And the winner is...

Migrating threads provide better:

e Performance

e Simplicity of kernel code

e Functionality



HP700 cycles

Performance Comparison

5000 —1 [T static Rec
m Migrating RPC
4000 —
3000 —
2000 —
1000 —
0

Null RPC 32 bytes in 1Kin

10



Why is it faster?

e Upcall semantics on server side

e Kernel-visible RPC (no ‘“reply ports")

e NO scheduler involvement

11



Simpler

RPC paths:
Approx 2000 lines of code
replaced by 400.

Control mechanisms:
Approx 3000 lines of code
replaced by 1700.

12



Macrobenchmark Results

e “make” of gas: 2% faster

e link of HP-UX linker: 149% faster

Note: without additional leverage of
migrating RPC yet.

13



What made the RPC path

simpler?

Answer: the same things that made it faster!

e Reversed call semantics on server side:
146 instructions down to 33

e Kernel-visible RPC:
206 instructions down to 12

e NoO scheduler involvement:
408 instructions down to 30

14



More Functional

e Inherited thread attributes:
*x Priority (real-time)

x Resource limits and accounting

e RPC call chain provides client-server
communication channel

15



Related Work

Amoeba: exports RPC to user

Alpha: real time, remote migration

LRPC on Taos

Spring: confronted Unix issues

“Passive Object” Systems:
Emerald, Clouds, Psyche

16



LRPC Comparison

LRPC addressed data transfer also

We attempted to isolate control transfer

We examined simplicity

We fully addressed controllability issues
(Taos has weak protection semantics)

17



Issues/Future Work

Leverage to further optimize Mach RPC

Use improved functionality to simplify
servers

LLeverage for real-time support

Extend to cross-node RPC

Show another OS can be evolved

18



Conclusions

e A migrating thread model is faster,
simpler, and more powerful.

e Exported RPC abstraction a prerequsite;
synchronous invocation beats async.

e EXisting systems can be adapted without
sacrificing backward compatibility.

19



Why We Don’t Use Spring’s

Terminology

High-level concept of “thread”
fits the migrating entity better

Encourages us to think in the new model

Precedent: Alpha, LRPC

Momentum

20



