
The Flux OSKit:A Substrate for Kernel andLanguage ResearchBryan Ford Godmar BackGreg Benson Jay LepreauAlbert Lin Olin ShiversComputer Systems LaboratoryUniversity of California, DavisMIT AI Labflux@cs.utah.eduhttp://www.cs.utah.edu/projects/flux/October 6, 1997 1

Motivation
OS research and development has a high costof entry due to mundane infrastructure:� Bootstrapping� Basic kernel runtime environment� Device drivers for diverse hardware� Compatibility with existing systems 2

Reusable Components forOS Development

Drivers

FreeBSD GlueLinux Glue

Kernel Support

Minimal C Library

Malloc
Debugging

List-based
Memory Manager

SMP

Address Map
Manager

Executable

Bootp

Language Run-Time System

File System
Reader

Disk
Partitioning

FreeBSD
Math Library

Hardware

Linux

Glue

Client Operating System or
Encapsulated Legacy Code
Native OSKit Code

Networking

Loading

FreeBSD NetBSD
File System

Glue

Generic Device Driver Support

Generic Device Driver Support

Drivers
FreeBSD

3

Key Concepts
Our approach to component-based OS's:� Don't create a new OS; instead create com-ponents that can be used in other OS's.� Don't rewrite from scratch when possible;reuse existing OS code in a maintainableway by encapsulating it within glue code.� Emphasis on usability and practicality, notreligion or buzzword-compliance. 4

Reusable Components forArbitrary Environments
Component must have some expectations ofits environment.For reusability, expectations should be:� Simple� Well-de�ned� Unconstraining 5

Important Properties of OSKitComponents
Inter-component interfaces based on Microsoft'sComponent Object Model (COM).Minimal interdependencies, no mandatory globalinfrastructure.Common uniprocessor/blocking concurrency model.

6

COM interfaces� Similar to Java interfaces� Standardized and well-known in industry� Separates interface from implementation� Supports independent interface extensionand evolution� No required runtime support code 7

Diagram of a COM Interface
Release method pointer

Function table pointer Query method pointer

AddRef method pointer

Method pointer 4

Method pointer 5

Method pointer 6

Method pointer 7

. . .

(opaque to client)

Private object state
Interface function table

Interface pointer

Functions
implementing

interface
methods

8

No Implicit Dependencies
Components depend on only a handful of well-de�ned, easily reimplementable functions:� Memory allocation� Synchronization primitives� Error printing/logging� Hardware access (for device drivers)Other facilities used by particular componentsare parameterized through COM interfaces.9

No Implicit Dependencies
e.g., contrasts with:� BSD's VFS and networking architecture:requires common vnode/mbuf code.� Win32-based COM environment:requires various parts of the Win32 API

10

OSKit Concurrency Model
De�nes:� How and when component can be invoked� How and when the component can makecallbacks to its surrounding environment.OSKit uses the well-known blocking model,carefully de�ned and documented in a component-centric way. 11

OSKit Concurrency Model
Component

OSKit

Environment
blocking
callback

12

Encapsulation ofLegacy Code

Environment Environment

File Systems

Device Drivers

Linux

OSKit Glue Code

Networking Code

FreeBSD

OSKit Glue Code OSKit Glue Code

NetBSD

OS Environment OSKit Glue Code Encapsulated Code from Existing OS

OS EnvironmentOSKit Interfaces

OSKit Interfaces

OSKit Interfaces 13

Challenges for Encapsulation
Imported code makes many assumptions:� proc/task structures� The \current process" variable� Memory allocation and mapping facilities� Sleep/wakeup facilities� Interrupt priority levels� mbuf, skbuff, vnode infrastructure, etc.14

Solution: Lots of Ugly Magic
To avoid changing the imported code, all ofthese assumptions must be emulated:� Glue routines translate memory allocation,synchronization, and other primitives.� Create dummy proc structures on entry,destroy them on return.� Preprocessor magic to ensure namespacecleanliness(e.g., tsleep ! oskit freebsd tsleep).It's ugly, but the ugliness is con�ned! 15

Current OSKit Components

Drivers

FreeBSD GlueLinux Glue

Kernel Support

Minimal C Library

Malloc
Debugging

List-based
Memory Manager

SMP

Address Map
Manager

Executable

Bootp

Language Run-Time System

File System
Reader

Disk
Partitioning

FreeBSD
Math Library

Hardware

Linux

Glue

Client Operating System or
Encapsulated Legacy Code
Native OSKit Code

Networking

Loading

FreeBSD NetBSD
File System

Glue

Generic Device Driver Support

Generic Device Driver Support

Drivers
FreeBSD

16

E�ciencyTCP throughput (Mbit/sec):Receiver:Linux FreeBSD OSKitSender:Linux 72.4 71.2 71.3FreeBSD 60.0 78.6 78.7OSKit 56.4 68.3 68.2TCP latency (�sec):Server:Linux FreeBSD OSKitClient:Linux 152 168 180FreeBSD 168 197 210OSKit 180 210 222 17

Experiences� Fluke OS� ML-based OS� SR-based OS� Java-based network PC� : : :other users 18

Fluke
First and most closely bound OSKit customerOver half of Fluke comes from the OSKit:� C library� Debugging� File systems (as user-mode servers)� Networking (as user-mode servers)� Device drivers (in supervisor and user mode)19

ML-based OS
ML is a high-level functional language:Lisp with strong typing and a syntax.ML/OS created at MIT AI Lab as �rst externalclient of the OSKit; took a few months.Only uses OSKit's bootstrap support and Clibrary; everything else written in ML.Unique language runtime features that bene�tfrom direct hardware access:� Stackless implementation� Continuation-based multithreading 20

SR-based OS
Parallel/distributed programming language.SR/OS developed by Greg Benson from U.C.Davis, working at Utah.Initial implementation took one week; networksupport took another week.Uses Arizona's x-kernel for networking, but withthe OSKit's Linux network drivers. 21

Java
Developed by Godmar Back at Utah.Uses Ka�e, a free JVM.Took 14 hours to get \Hello World" running;JIT compiler took another day; multithreadedJigsaw web server running in three weeks.Functionally similar to JavaOS, but uses stablenative components instead of rewriting every-thing in Java. 22

Status
Fully functional and fairly well documented.Preliminary release was made earlier this year.Latest version available athttp://www.cs.utah.eduh/projects/flux.

23

Future Work� Interoperability with typesafe languages suchas Java and ML.� Direct support for multithreaded code andmultithreaded environments� IDL compiler support for COM interfaces
24

Conclusion
Key ideas:� New reusable OS components instead ofnew OS's� Encapsulation allows unmodi�ed legacy codeto present clean interfaces� Emphasis on practicality and usability� Catalyzes OS research and specialized OSdevelopment. 25

Example COM Interfacetypedef struct blkio {struct blkio_ops *ops;} blkio_t;struct blkio_ops {error_t (*query)(blkio_t *io,const struct guid *iid,void **out_ihandle);unsigned (*addref)(blkio_t *io);unsigned (*release)(blkio_t *io);unsigned (*getblocksize)(blkio_t *io);error_t (*read)(blkio_t *io, void *buf,off_t offset, size_t amount,size_t *out_actual);error_t (*write)(blkio_t *io, const void *buf,off_t offset, size_t amount,size_t *out_actual);error_t (*getsize)(blkio_t *io, off_t *out_size);error_t (*setsize)(blkio_t *io, off_t new_size);};#define BLKIO_IID GUID(0x4aa7df81, 0x7c74, 0x11cf, \0xb5, 0x00, 0x08, 0x00, 0x09, 0x53, 0xad, 0xc2)26

Related Work� Extensible systems (SPIN, VINO, exo)� Embedded systems (QNX, VxWorks)� Object-oriented OS's (Choices, Taligent)Typical problems:� New, incompatible OS environments.� Little reuse of existing OS code. 27

