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Motivation
OS research and development has a high costof entry due to mundane infrastructure:� Bootstrapping� Basic kernel runtime environment� Device drivers for diverse hardware� Compatibility with existing systems 2



Reusable Components forOS Development
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Key Concepts
Our approach to component-based OS's:� Don't create a new OS; instead create com-ponents that can be used in other OS's.� Don't rewrite from scratch when possible;reuse existing OS code in a maintainableway by encapsulating it within glue code.� Emphasis on usability and practicality, notreligion or buzzword-compliance. 4



Reusable Components forArbitrary Environments
Component must have some expectations ofits environment.For reusability, expectations should be:� Simple� Well-de�ned� Unconstraining 5



Important Properties of OSKitComponents
Inter-component interfaces based on Microsoft'sComponent Object Model (COM).Minimal interdependencies, no mandatory globalinfrastructure.Common uniprocessor/blocking concurrency model.
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COM interfaces� Similar to Java interfaces� Standardized and well-known in industry� Separates interface from implementation� Supports independent interface extensionand evolution� No required runtime support code 7



Diagram of a COM Interface
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No Implicit Dependencies
Components depend on only a handful of well-de�ned, easily reimplementable functions:� Memory allocation� Synchronization primitives� Error printing/logging� Hardware access (for device drivers)Other facilities used by particular componentsare parameterized through COM interfaces.9



No Implicit Dependencies
e.g., contrasts with:� BSD's VFS and networking architecture:requires common vnode/mbuf code.� Win32-based COM environment:requires various parts of the Win32 API
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OSKit Concurrency Model
De�nes:� How and when component can be invoked� How and when the component can makecallbacks to its surrounding environment.OSKit uses the well-known blocking model,carefully de�ned and documented in a component-centric way. 11
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Encapsulation ofLegacy Code
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Challenges for Encapsulation
Imported code makes many assumptions:� proc/task structures� The \current process" variable� Memory allocation and mapping facilities� Sleep/wakeup facilities� Interrupt priority levels� mbuf, skbuff, vnode infrastructure, etc.14



Solution: Lots of Ugly Magic
To avoid changing the imported code, all ofthese assumptions must be emulated:� Glue routines translate memory allocation,synchronization, and other primitives.� Create dummy proc structures on entry,destroy them on return.� Preprocessor magic to ensure namespacecleanliness(e.g., tsleep ! oskit freebsd tsleep).It's ugly, but the ugliness is con�ned! 15



Current OSKit Components
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E�ciencyTCP throughput (Mbit/sec):Receiver:Linux FreeBSD OSKitSender:Linux 72.4 71.2 71.3FreeBSD 60.0 78.6 78.7OSKit 56.4 68.3 68.2TCP latency (�sec):Server:Linux FreeBSD OSKitClient:Linux 152 168 180FreeBSD 168 197 210OSKit 180 210 222 17



Experiences� Fluke OS� ML-based OS� SR-based OS� Java-based network PC� : : :other users 18



Fluke
First and most closely bound OSKit customerOver half of Fluke comes from the OSKit:� C library� Debugging� File systems (as user-mode servers)� Networking (as user-mode servers)� Device drivers (in supervisor and user mode)19



ML-based OS
ML is a high-level functional language:Lisp with strong typing and a syntax.ML/OS created at MIT AI Lab as �rst externalclient of the OSKit; took a few months.Only uses OSKit's bootstrap support and Clibrary; everything else written in ML.Unique language runtime features that bene�tfrom direct hardware access:� Stackless implementation� Continuation-based multithreading 20



SR-based OS
Parallel/distributed programming language.SR/OS developed by Greg Benson from U.C.Davis, working at Utah.Initial implementation took one week; networksupport took another week.Uses Arizona's x-kernel for networking, but withthe OSKit's Linux network drivers. 21



Java
Developed by Godmar Back at Utah.Uses Ka�e, a free JVM.Took 14 hours to get \Hello World" running;JIT compiler took another day; multithreadedJigsaw web server running in three weeks.Functionally similar to JavaOS, but uses stablenative components instead of rewriting every-thing in Java. 22



Status
Fully functional and fairly well documented.Preliminary release was made earlier this year.Latest version available athttp://www.cs.utah.eduh/projects/flux.
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Future Work� Interoperability with typesafe languages suchas Java and ML.� Direct support for multithreaded code andmultithreaded environments� IDL compiler support for COM interfaces
24



Conclusion
Key ideas:� New reusable OS components instead ofnew OS's� Encapsulation allows unmodi�ed legacy codeto present clean interfaces� Emphasis on practicality and usability� Catalyzes OS research and specialized OSdevelopment. 25



Example COM Interfacetypedef struct blkio {struct blkio_ops *ops;} blkio_t;struct blkio_ops {error_t (*query)(blkio_t *io,const struct guid *iid,void **out_ihandle);unsigned (*addref)(blkio_t *io);unsigned (*release)(blkio_t *io);unsigned (*getblocksize)(blkio_t *io);error_t (*read)(blkio_t *io, void *buf,off_t offset, size_t amount,size_t *out_actual);error_t (*write)(blkio_t *io, const void *buf,off_t offset, size_t amount,size_t *out_actual);error_t (*getsize)(blkio_t *io, off_t *out_size);error_t (*setsize)(blkio_t *io, off_t new_size);};#define BLKIO_IID GUID(0x4aa7df81, 0x7c74, 0x11cf, \0xb5, 0x00, 0x08, 0x00, 0x09, 0x53, 0xad, 0xc2)26



Related Work� Extensible systems (SPIN, VINO, exo)� Embedded systems (QNX, VxWorks)� Object-oriented OS's (Choices, Taligent)Typical problems:� New, incompatible OS environments.� Little reuse of existing OS code. 27


