

Metadata Protection Considerations
for TLS Present and Future

Bryan Ford
Swiss Federal Institute of Technology (EPFL)

Lausanne, Switzerland

TRON Workshop – February 21, 2016

Outline

● Threat Models: Who is the Attacker?

● The Many Levels of Metadata Leakage

● Potential Countermeasures for TLS
– Padding and Record Boundary Hiding

– Encryption of Handshaking Metadata

– Padding considerations for TLS implementations

● Conclusion

Threat Models

Philosophy: Avoid Security Nihilism

Must consider both “strong” and “weak” attackers

● Yes we should do what we can against
the strong, all-seeing attacker

● But weaker, more limited attackers are probably
far more numerous on the real Internet

Just because protection measure X doesn't stop
all-powerful attacker doesn't mean X is useless!

Particular Threat Models of Interest

● Passive Eavesdropper (EVE): can monitor
traffic but not inject packets. Ex: router taps

● Man-On-The-Side (MOTS): can monitor and
inject but not block packets. Ex: WiFi snooper

● Man-In-The-Middle (MITM): can monitor,
inject, and block legit packets. Ex: router

● Man-On-The-Inside (MOTI): can exert some
control over content of encrypted traffic.
Ex: via malicious JavaScript (CRIME attack)

https://zoompf.com/blog/2012/09/explaining-the-crime-weakness-in-spdy-and-ssl

What Does the Attacker Want?

Many possible objectives, e.g.,

● What website(s) or page(s) is this user visiting?
– Bank? How many digits in balance?

● What user(s) are visiting this site?
– Are these TLS flows from same or different users?

● What software, version(s) are endpoints using?
– Pinpoint a version with a known bug we can exploit

● Tor de-anonymization via end-to-end correlation
– Is flow X “going in” same as flow Y “going out”?

Outline

● Threat Models: Who is the Attacker?

● The Many Levels of Metadata Leakage

● Potential Countermeasures for TLS
– Padding and Record Boundary Hiding

– Encryption of Handshaking Metadata

– Padding considerations for TLS implementations

● Conclusion

Sample of Relevant Background

Website fingerprinting: e.g.,

● Dyer et al, “Peek-a-Boo, I Still See You: Why Efficient
Traffic Analysis Countermeasures Fail”,
IEEE Security/Privacy 2012

● Cai et al, “Touching from a distance: Website
fingerprinting attacks and defenses”, CCS '12

● Wang et al, “Effective attacks and provable defenses
for website fingerprinting”, Sec '14

(and many others)

Many Levels of Metadata Leakage

Leakage Level

● Net activity bursts

● Directional patterns

● TLS nego metadata

● TLS record metadata

● TCP metadata

● Endpoints (IP, etc)

Who Can Mitigate?

● TLS impl, application

● TLS implementation

● TLS spec, impl

● TLS spec, impl

● TLS impl, TCP stack

● WiFi, Proxy, VPN, Tor

Network Activity Bursts

Coarse-grained, macroscopic views of flows
based on amount, timing of transmitted bytes

● Easy, efficient for eavesdropper to measure

● But results likely to be noisy, error-prone

Web browsing over TLS:

Audio stream over TLS:

Video stream TLS:

(click) (load) (idle) (click) (load) (idle)

Directional flow & timing patterns

Attacker can use fine-grain upstream/downstream
patterns within each burst of activity

● Much richer, more detailed, less error

(click) (load) (idle) (click) (load) (idle)

(GET .html) (GET logo.png) (GET foo.jpg) (GET bar.js)

(.html) (logo.png) (foo.jpg) (bar.js)

Exposed TLS Negotiation Metadata

Attacker can learn a lot just from the unencrypted
negotiation metadata at beginning of TLS session

● Cyphersuites & groups supported, selected

● Server Name Indication (SNI)

● Reused “ephemeral” keys (link sessions)

Even “innocent” variation (e.g., ordering of fields)
helps attacker fingerprint TLS impls, versions

● Useful for selective blocking, focusing attacks

ClientHello Record

ServerHello, Cert, …

Cert, Finished

Record Record

unencrypted unencrypted

Exposed TLS Record Metadata

Unencrypted 5-byte headers “give away” exact
lengths, boundaries of each TLS record

Application write() boundaries often translate to
readily-visible TLS record boundaries

How important is this leak?

● Depends on how application protocol uses TLS

Encrypted Payload
5-byte
header IV MAC Encrypted Payload

5-byte
header IV MAC

Example: HTTP/1.1 vs HTTP/2.0

HTTP/1.1 without pipelining or fixed-rate padding:

● Individual HTTP request size/pattern visible
either via TLS records or via TCP-level bursts

HTTP/2.0 with pipelining & multi-streaming:

● Concurrent bursts could obscure individual requests...

● Except that TLS record metadata still reveals them

GET

logo.png

GET

foo.js(1)

GET

bar.jpgfoo.js(2)

GET

logo.png

GET

foo.js(1)

GET

foo.js(2)bar.jpg

TCP Segment Metadata

TCP segment boundaries may reveal TLS records

● If TLS write() translates to immediate TCP push

But also may not, as kernel forms MTU-len segs:

● Flow is congestion-limited, TX buffer nonempty

● If TCP_CORK or MSG_MORE options used

TLS

TCP MTU <MTU <MTU MTU <MTU

TLS

TCP MTU MTU MTU MTU MTU

...

...

...

...

IP and Lower-Level Metadata

IP addresses, MAC addresses, HW fingerprints

Can be (partially) addressed via:

● WiFi encryption (if attacker isn’t on same net)

● MAC address randomization

● HTTP proxies

● Corporate VPNs

● Tor

Not TLS’s problem, or for TLS to solve.

Outline

● Threat Models: Who is the Attacker?

● The Many Levels of Metadata Leakage

● Potential Countermeasures for TLS
– Padding and Record Boundary Hiding

– Encryption of Handshaking Metadata

– Padding considerations for TLS implementations

● Conclusion

Measures for TLS Implementations

Many countermeasures could be implemented
without affecting basic TLS protocol spec

● Padding traffic to fixed-rate or maximum-rate

● Padding activity bursts until next idle period

● TCP segment MTU-size normalization

Recommendation: develop, standardize
separate, follow-on “best practices” document for
traffic analysis protection in TLS implementations

Example Padding Policies

1. Pad to fixed-rate or congestion-limited rate

● Effective but probably too costly for most users

● May be practical client↔proxy or client↔VPN,
but not client↔all-domains-a-page-depends-on

(click) (load) (idle) (click) (load) (idle)

http://www.peterbe.com/nodomains/

Example Padding Policies

2. Pad traffic only during “activity bursts”

● Costs probably more tolerable to many users

● But total size/length metrics can still leak info

(click) (load) (idle) (click) (load) (idle)

(GET .html) (GET logo.png) (GET foo.jpg) (GET bar.js)

(.html) (logo.png) (foo.jpg) (bar.js)

Example Padding Policies

3. No special/costly padding measures

● Many users won’t know or care enough
to “pay” almost anything for padding

● Many TLS implementations won’t implement

Can we still get some traffic analysis protection
at low/no cost? (Repeat: avoid security nihilism!)

Example Padding Policies

Can we still get some traffic analysis protection
at low/no cost? (Repeat: avoid security nihilism!)

Yes: HTTP/2.0 will help, if TLS doesn’t undermine

● Traffic analysis gets a lot harder/noisier if hard
to distinguish individal requests/replies

GET

logo.png

GET

foo.js(1)

GET

foo.js(2)bar.jpg

Measures for TLS Specification

Two relevant potential countermeasures

● Hide record boundaries

● Hide handshake metadata

Ideal: “encrypt everything”

● All parts of stream look uniformly random
to any eavesdropper without relevant keys

Too ambitious for TLS 1.3, but baby steps...

Outline

● Threat Models: Who is the Attacker?

● The Many Levels of Metadata Leakage

● Potential Countermeasures for TLS
– Padding and Record Boundary Hiding

– Encryption of Handshaking Metadata

– Padding considerations for TLS implementations

● Conclusion

Hiding TLS Record Boundaries?

Feasible for TLS to hide its record boundaries?

● Leave nothing unencrypted after handshake

Main challenge: how receiver finds record length?

● Normally the only “important” part of header

● Need to separately/specially encrypt length?

Simpler alternative approach described in
TLS mail list messages Dec 1 and Dec 12

https://www.ietf.org/mail-archive/web/tls/current/msg18524.html
https://www.ietf.org/mail-archive/web/tls/current/msg18710.html

TLS Record Format Evolution

5-byte
header

IV MACEncrypted Record Payload

5-byte
header

Nonce MACAEAD-Encrypted Record Payload Padding

Encrypted
Content
Type (1B)

TLS 1.2 Record

TLS 1.3 Record (Current)

header
optional Nonce MACAEAD-Encrypted Record Payload Padding

Encrypted
Content
Type (1B)TLS 1.3 Record (Proposed)

Next Record
Length (1-2B)

Optional Headers in TLS 1.3

Proposed header rules:

● First record always has usual 5-byte header

● If Next Record Length field == 0,
following record also has usual 5-byte header

● If Next Record Length field != 0,
following record has indicated length, no header

Upshot: sender gets to omit next record’s header,
but must decide next record’s length in advance

Design Advantages

● Minimal new receiver logic (1 state variable)

● Sender logic optional (can just set NextRec = 0)

● Sender logic trivial using fixed-length records

● Replace N L-byte records w/ N×L-byte record

– Reduce per-record compute, bandwidth costs

● Can disable if middleboxes really want headers

● Can save 3-4 bytes per record, FWIW

Transmission Example

Example: say we want to pad all records to 512 bytes

Current TLS 1.3 stream would look like this:

Proposed TLS 1.3 streams could instead look like this:

Or like this, without leaking anything to traffic analysis:

512B 512B 512B 512B 512B 512B

512B 512B 512B 512B 512B 512B

512B 2048B 512B

Prototype Implementation

Delta against NSS/NSPR available on GitHub

● https://github.com/bford/nss

Complexity metrics:

● TLS 1.2 → TLS 1.3 record format: 78-line delta

● TLS 1.3 → optional headers: 32-line delta

Further information: see Dec 12 mailing list post

● “[TLS] Prototype of TLS 1.3 records, padding,
and optional headerless records”

https://github.com/bford/nss
https://github.com/bford/nss/pull/1/files
https://github.com/bford/nss/pull/2/files
https://www.ietf.org/mail-archive/web/tls/current/msg18710.html

Outline

● Threat Models: Who is the Attacker?

● The Many Levels of Metadata Leakage

● Potential Countermeasures for TLS
– Padding and Record Boundary Hiding

– Encryption of Handshaking Metadata

– Padding considerations for TLS implementations

● Conclusion

Towards Encrypted Handshaking

Could TLS encrypt everything from byte 0?

● Probably too ambitious for TLS 1.3,
but worth considering for TLS 1.4 or 2.0?

ClientHello Record

ServerHello, Cert, …

Cert, Finished

Record Record

unencrypted unencrypted

Encrypted Handshaking: Feasible?

Key challenges:

● Client needs to have some cryptographic info
(public keys) about server to start with

● Bootstrapping key agreement: e.g.,
making ephemeral DH keys uniformly random

● Negotiating multiple cyphersuites, groups, keys
under encryption

Finding Server Public Keys

Client needs to have some cryptographic info
(public keys) about server to start with.

At least two promising sources of this info:

● Cached information from previous sessions:
same info clients need anyway for 0-RTT
– Provide “enhanced TOFU” property:

attacker who didn’t see first session doesn’t learn
anything from subsequent handshakes

● Learn key(s) via DNSSEC/DANE lookups

Encrypted Key Agreement

Bootstrapping key agreement: e.g.,
making ephemeral DH keys uniformly random

● For RSA-based or DH-based key agreement,
theoretically “straightforward”

● For ECDH-based key agreement,
that’s what Elligator techniques are for

Works as long as client “just knows” (or guesses)
correct ciphersuite, group, etc to use.

Ephemeral
ECDH point Symmetric-key encrypted data

http://elligator.cr.yp.to/

Multi-Suite/Group/Key Handshaking

What if client “not sure” what crypto info to use?

● Has several possible server public keys,
some may be obsolete, may have preferences

Simple solution: try each w/ separate TCP conn

Fancier solution: can build Elligator-style header
decryptable via multiple suites, groups, keys

● Motivated by offline PGP-style encryption,
but could be used in TLS handshaking too

● Further info: long, dense openpgp list E-mail

https://mailarchive.ietf.org/arch/msg/openpgp/TfV8pAs001mXwna_k_26vIcubSY

Outline

● Threat Models: Who is the Attacker?

● The Many Levels of Metadata Leakage

● Potential Countermeasures for TLS
– Padding and Record Boundary Hiding

– Encryption of Handshaking Metadata

– Padding considerations for TLS
implementations

● Conclusion

How to Pad Activity Bursts?

Balance cost in wasted bandwidth versus
amount of information leaked by padded length

(click) (load) (idle) (click) (load) (idle)

(GET .html) (GET logo.png) (GET foo.jpg) (GET bar.js)

(.html) (logo.png) (foo.jpg) (bar.js)

Leak via Total Size/Time

Burst Padding Policies, Revisited

Goal: minimize information leakage via length

● Can we formally bound Shannon entropy?

Simple approach: pad burst to next power-of-two

● Reduces leakage from O(log n) to O(log log n)

But:

● Incurs up to 2×, avg 1.5× bandwidth overhead

● Bad leak if attacker can force close-to-boundary

Reducing Bandwidth Waste

Allow lengths representable as floating-point
with mantissa bit-length ≤ exponent bit-length

● Still limits max leakage to O(log log N)

● But wastes max 11%, smaller for big bursts

k-bit exponent k-bit mantissa

Padded sizes vs padding waste
Length Length bits Leak bits Length inc Max waste

1 1 0 1 0.00%
2 2 1 1 0.00%
4 3 2 1 0.00%
8 4 2 2 11.11%

16 5 3 2 5.88%
32 6 3 4 9.09%
64 7 3 8 10.77%

128 8 3 16 11.63%
256 9 4 16 5.84%
512 10 4 32 6.04%

1024 11 4 64 6.15%
2048 12 4 128 6.20%
4096 13 4 256 6.22%
8192 14 4 512 6.24%

16384 15 4 1024 6.24%
32768 16 4 2048 6.25%
65536 17 5 2048 3.12%

131072 18 5 4096 3.12%
262144 19 5 8192 3.12%
524288 20 5 16384 3.12%

1048576 21 5 32768 3.12%
2097152 22 5 65536 3.12%
4194304 23 5 131072 3.12%
8388608 24 5 262144 3.12%

Example: 1-byte Next Record Len

4-bit exponent, 4-bit mantissa

● Compute actual length = mantissa << (exp - 4)

● Rep lengths up to 1.1111b×2^15 (> TLS max)

Randomized Internal Padding

Randomized padding: worthwhile?

● Weak by itself due to statistical leakage, but...

Add small random amount of padding before
padding to next standardized burst length

● Reduces per-burst information leakage
even if attacker can control internal layout,
arrange for important info to be “on boundary”

● Stronger against “Man-On-The-Inside” attacks
(e.g., malicious JavaScript, as used in CRIME)

Outline

● Threat Models: Who is the Attacker?

● The Many Levels of Metadata Leakage

● Potential Countermeasures for TLS
– Padding and Record Boundary Hiding

– Encryption of Handshaking Metadata

– Padding considerations for TLS implementations

● Conclusion

Conclusion

Traffic analysis protection is a hard problem, but
let’s avoid security nihilism and take baby steps

TLS record hiding: simple measure that can help

● With HTTP/2.0, obscure individual transactions

● Makes padding more efficient for multi-records

Longer-term goals to consider:

● Best-practices doc for traffic analysis protection

● Eventually: encrypt everything from byte 0?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

