

Efficient Cross-Layer Negotiation

Bryan Ford
MPI-SWS and
Yale University

Janardhan Iyengar
Franklin & Marshall

College

Presented at HotNets-VIII, October 22, 2009

“Tng: Transport Next Generation” Project
Support: NSF FIND grants CNS-0916413 and CNS-0916678

http://bford.info/tng/
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0916413
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0916678

A Proliferation of Layers
and Layer Combinations

SCTP DCCP

DTLS

IPv6

IPsec

UDP

HTTP DNS RTPFTPApplication

SSLTransport
Security

TCP UDPTransport

IPsec
Network
Security

IPNetwork

Ethernet Token-Ring PPPData
Link

TCP

SSL

HTTP

IPv6

IPsec

IPsec

UDP

Teredo

IPv6

(DirectAccess)

HTTP

SSL

TCP

IP

Ethernet

Future: Ever More
Layers/Combinations?

Application

Stream Stream

Network

Link

Channel

Multi-Streaming
Transports

SCTP [rfc4960],
SST [SIGCOMM'07]

Network

Link

Application

Subflow

Multipath Transport

Subflow

Multipath
Transports

SCTP [rfc4960],
MPTCP [WIP]

Network

Link

Application

Endpoint

Flow

Semantic

Isolation

Further
Decomposition

[“Breaking Up the
Transport Logjam”,

HotNets'08]

The Negotiation Problem

Decisions, decisions!

Network

Transport

Transport
Security

Application

IPv4 IPv6

TCP SCTP

SSL

HTTP

IPv4 IPv6

UDP DCCP

DTLS

SIP IAX

Compatibility and Preference

Which combinations do both endpoints support?

Which combinations do they prefer?

IPv4 IPv6

UDP DCCP

DTLS

SIP IAX

Host A Host B

IPv4 IPv6

UDP DCCP

DTLS

SIP IAX

?

Talk Outline

● Background and Alternatives
● A Model for Negotiation
● Negotiation Transport Protocol
● Discussion, Conclusion

Background
and

Alternatives

Approach 0: Name Encoding

[draft-wood-tae-
specifying-

uri-transports]

http++sctp://
means:

HTTP

SCTP

IP

http++ssl++sctp://
means:

HTTP

SCTP

IP

SSL

?

http://
means:

HTTP

TCP

IP

[rfc2616]

https://
means:

HTTP

TCP

IP

SSL

[rfc2818]

Disadvantages of Name Encoding

Loss of Transparency
– User cares about application, not underlying stack...

but is forced to see and care about underlying stack
– When underlying stack changes, URLs change/break

● redirectors proliferate between http:// and https:// spaces

Loss of Compatibility
– If user puts “http++sctp://...” link on a web page,

legacy browsers break; cannot fall back to TCP

Where Do You Stop?
– “http++tls++tcp++ipv6++ethernet” ???

Approach 1: Try and Fall Back

Host A Host B

SCTP INIT

TCP INIT

SCTP RST

TCP ACK

Challenge 1: Controlling Delay

● Failures can incur timeouts (e.g., due to NATs)
● ...potentially compounded by layering

UDP DCCP

Host A Host B

UDP DCCPTimeout(s)

IPv4 IPv6

DTLS

SIP IAX

IPv4 IPv6

DTLS

SIP IAX

Timeout(s)

Timeout(s)

Timeout(s)

Approach 2: Try in Parallel

Host A Host B

SCTP INIT

TCP INIT

SCTP RST

TCP ACK

Challenge 2a: Redundant State

Host A Host B

SCTP INIT

TCP INIT

SCTP ACK

TCP ACK

SIP
UDP
IPv4

SIP

UDP
IPv4

DTLS IAX
UDP
IPv4

IAX

UDP
IPv4

DTLS

SIP
DCCP
IPv4

SIP

DCCP
IPv4

DTLS IAX
DCCP
IPv4

IAX

DCCP
IPv4

DTLS

SIP
UDP
IPv6

SIP

UDP
IPv6

DTLS IAX
UDP
IPv6

IAX

UDP
IPv6

DTLS

SIP
DCCP
IPv6

SIP

DCCP
IPv6

DTLS IAX
DCCP
IPv6

IAX

DCCP
IPv6

DTLS

Challenge 2b: Combinations

Layering can lead to explosion of choices

IPv4 IPv6

UDP DCCP

DTLS

SIP IAX

Host A

Host B

Approach 3:
Out-of-Band Information

Host A Host B

DNS++ Req

DNS++ Reply

IPv4 IPv6

UDP DCCP

DTLS

SIP IAX

SIP

DCCP
IPv6

DTLS

DNS Server

Challenge 3a: Administration

Host BDNS Server

“Dynamic
 DNS++”?

DNS server must know:
● Name→IP mapping

(as before)
● Entire protocol stack

supported by Host B
● Protocol options...?

⇒ Synchronization
Nightmare?

Challenge 3b: E2E Robustness

If endpoints agree on configuration X, will it work?

IPv4 IPv6

UDP DCCP

DTLS

SIP IAX

Host A Host B

IPv4 IPv6

UDP DCCP

DTLS

SIP IAX

IPv4 IPv6

UDP DCCP

Middlebox

Our Solution: Negotiation
● Hosts explicitly describe possible configurations

during initial “meta-communication” exchange,
before actual communication commences

Host A Host B

“Hi, I speak:

 ”
IPv4 IPv6

UDP DCCP

DTLS

SIP IAX

“Hi, I speak:

 ”IPv4 IPv6

UDP DCCP

DTLS

SIP IAX

A Model
for Negotiation

Negotiation Model Overview

1.Initiator sends a Protocol Graph Proposal

2.Responder returns Revised Protocol Graph

3.(Optional) further protocol graph revision steps

4.Peers commit, Acknowledge Protocol Graph

5.Peers communicate via negotiated protocols

Message 1: Initiator → Responder:
Propose Protocol Graph

TCP DCCP

TLS DTLS

opt1 opt2 opt1 opt2

opt1 opt2 opt1 opt2

(alternatives)

goal (SIP)

opt1 opt2

base (IP)

Negotiation
Message 1

Host A Host B

Negotiation
Message 2

Host A Host B

Message 2: Responder → Initiator:
Revise Protocol Graph

TCP DCCP

TLS DTLS

opt1 opt2 opt1 opt2

opt1 opt2 opt1 opt2

base (IP)

goal (SIP)

opt1 opt2

Message 3: Initiator → Responder:
Acknowledge Protocol Graph

TCP

TLS

opt1

base (IP)

goal (SIP)

opt2

Negotiation
Message 3

Host A Host B

Message 4+:
According to Negotiated Stack

TCP

TLS

SIP

Host A Host B

Normal Packets

Concurrent Protocol Initialization

Whenever feasible:
● embed protocol-specific handshake info into graph
● run handshakes concurrently while negotiating
● commit only negotiated configuration atomically

Host A Host A

TCP DCCP

TLS DTLS
ClientHello ClientHello

INIT Request

SIP
REGISTER

IP

1

TCP DCCP

TLS DTLS
ServerHello ServerHello

INIT-ACK Reply

SIP
200 OK

IP

2

Key Benefits of Negotiation Model

● Supports backward-compatible evolution
– New smart nodes can fall back on old dumb protocols

● Happens strictly between nodes concerned
– Users don't have to care (e.g., between http: & https:)
– Name server administrators don't have to care

● Protocol graph representation scales to handle:
– Arbitrarily deep protocol stacks
– Many alternatives per layer

● Setup whole “layer cakes” in minimal # of RTTs
– Regardless of protocol stack depth

Further Challenges & Extensions
(see paper)

● Multi-Round Negotiation
– due to dependencies, hiding of alternatives, graph size

● Negotiation Across Multiple Contexts
– IPv4 vs IPv6, new protocol vs legacy, UDP encapsulation

● Recursive Negotiation
– negotiate “crypto wrapper” and “contents” concurrently

● Peer-to-Peer Negotiation
– symmetric peers must converge on a configuration

Negotiation
Transport
Protocol

How to Express Protocol Graphs?

Node #2

Node #1

Node #n

...

Child 1 Node ID Child 2 Node ID

Child m Node ID

...

Negotiation Message Node Description

Options LengthNum Children

Protocol-Specifc Data (variable)

Negotiation Options (variable)

Negotiation Message Structure:

How to Convey Protocol Graphs?

Negotiation messages might be big:
– Many layers × many alternatives for each to describe
– Embedded protocol-specific data: crypto keys, etc.

Individual graph nodes may be large or small
– Segment large nodes, aggregate small ones into packets

Receiver probably wants only specific nodes
– Efficiently ignore/drop anything it doesn't understand

⇒ Specialized Negotiation Transport Protocol

Chunk #2

Negotiation Transport:
Packet Structure

Fixed Header

Chunk #n

...

Negotiation
Transport Packet

Chunk #1

Fixed header + multiple chunks [SCTP]
each describing different graph node

Negotiation Transport

Negotiation Protocol Magic Cookie

Transmit Seq

Negotiation Transaction ID

Ack Seq

Transport Header

AckCt

Step Number

–

Msg Type

Negotiation packet sequencing permits
individual packet ack/retransmit [SST]

Negotiation Transport

Node ID

Protocol ID

Chunk Length

Chunk Payload (variable)

Transport Chunk

–

Each chunk describes [part of] a graph node
● Receiver can ack & discard all chunks

for unknown protocols without storing any

Not needed

Let negotiated protocol worry about:
● Connection state machines
● Application-friendly semantics (e.g., streams)
● Flow control
● Congestion control (beyond slow-start)
● ...

Discussion,
Conclusion

What Doesn't (Really) Work

● Encoding protocol stacks in names
– Non-transparent to user; compatibility hell

● Try alternatives serially & fall back
– Delay/timeout hell

● Probe alternatives in parallel
– Redundant protocol instances; combinatorial hell

● Encode alternatives in DNS responses
– Not end-to-end robust; administrative hell

What Might Work

Explicit In-Band Negotiation:
● Get user & third parties out of the loop
● Describe alternatives in compact protocol graphs
● Handshake deep layer cakes concurrently
● Receiver stores only what he understands & wants

“Tng: Transport Next Generation” project

http://bford.info/tng/

Support: NSF FIND grants CNS-0916678 and CNS-0916413

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0916678
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0916413

