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A Proliferation of Layers
and Layer Combinations
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Future: Ever More 
Layers/Combinations?
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The Negotiation Problem

Decisions, decisions!
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Compatibility and Preference

Which combinations do both endpoints support?

Which combinations do they prefer?
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Talk Outline

● Background and Alternatives
● A Model for Negotiation
● Negotiation Transport Protocol
● Discussion, Conclusion



  

Background
and

Alternatives



  

Approach 0: Name Encoding
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Disadvantages of Name Encoding

Loss of Transparency
– User cares about application, not underlying stack...

but is forced to see and care about underlying stack
– When underlying stack changes, URLs change/break

● redirectors proliferate between http:// and https:// spaces

Loss of Compatibility
– If user puts “http++sctp://...” link on a web page,

legacy browsers break; cannot fall back to TCP

Where Do You Stop?
– “http++tls++tcp++ipv6++ethernet” ???



  

Approach 1: Try and Fall Back
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Challenge 1: Controlling Delay

● Failures can incur timeouts (e.g., due to NATs)
● ...potentially compounded by layering
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Approach 2: Try in Parallel

Host A Host B
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Challenge 2a: Redundant State
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Layering can lead to explosion of choices
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Approach 3:
Out-of-Band Information
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Challenge 3a: Administration

Host BDNS Server

“Dynamic
  DNS++”?

DNS server must know:
● Name→IP mapping

(as before)
● Entire protocol stack

supported by Host B
● Protocol options...?

⇒ Synchronization
Nightmare?



  

Challenge 3b: E2E Robustness

If endpoints agree on configuration X, will it work?
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Our Solution: Negotiation
● Hosts explicitly describe possible configurations

during initial “meta-communication” exchange,
before actual communication commences
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A Model
for Negotiation



  

Negotiation Model Overview

1.Initiator sends a Protocol Graph Proposal

2.Responder returns Revised Protocol Graph

3.(Optional) further protocol graph revision steps

4.Peers commit, Acknowledge Protocol Graph

5.Peers communicate via negotiated protocols



  

Message 1: Initiator → Responder:
Propose Protocol Graph
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Negotiation
Message 2

Host A Host B

Message 2:  Responder → Initiator:
Revise Protocol Graph
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Message 3: Initiator → Responder:
Acknowledge Protocol Graph
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Negotiation
Message 3
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Message 4+:
According to Negotiated Stack
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Concurrent Protocol Initialization

Whenever feasible:
● embed protocol-specific handshake info into graph
● run handshakes concurrently while negotiating
● commit only negotiated configuration atomically
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Key Benefits of Negotiation Model

● Supports backward-compatible evolution
– New smart nodes can fall back on old dumb protocols

● Happens strictly between nodes concerned
– Users don't have to care (e.g., between http: & https:)
– Name server administrators don't have to care

● Protocol graph representation scales to handle:
– Arbitrarily deep protocol stacks
– Many alternatives per layer

● Setup whole “layer cakes” in minimal # of RTTs
– Regardless of protocol stack depth



  

Further Challenges & Extensions
(see paper)

● Multi-Round Negotiation
– due to dependencies, hiding of alternatives, graph size

● Negotiation Across Multiple Contexts
– IPv4 vs IPv6, new protocol vs legacy, UDP encapsulation

● Recursive Negotiation
– negotiate “crypto wrapper” and “contents” concurrently

● Peer-to-Peer Negotiation
– symmetric peers must converge on a configuration



  

Negotiation
Transport
Protocol



  

How to Express Protocol Graphs?

Node #2

Node #1

Node #n

...

Child 1 Node ID Child 2 Node ID

Child m Node ID

...

Negotiation Message Node Description

Options LengthNum Children

Protocol-Specifc Data (variable)

Negotiation Options (variable)

Negotiation Message Structure:



  

How to Convey Protocol Graphs?

Negotiation messages might be big:
– Many layers × many alternatives for each to describe
– Embedded protocol-specific data: crypto keys, etc.

Individual graph nodes may be large or small
– Segment large nodes, aggregate small ones into packets

Receiver probably wants only specific nodes
– Efficiently ignore/drop anything it doesn't understand

⇒ Specialized Negotiation Transport Protocol



  

Chunk #2

Negotiation Transport:
Packet Structure

Fixed Header

Chunk #n

...

Negotiation
Transport Packet

Chunk #1

Fixed header + multiple chunks [SCTP]
each describing different graph node



  

Negotiation Transport

Negotiation Protocol Magic Cookie

Transmit Seq

Negotiation Transaction ID

Ack Seq

Transport Header

AckCt

Step Number

–

Msg Type

Negotiation packet sequencing permits
individual packet ack/retransmit [SST]



  

Negotiation Transport

Node ID

Protocol ID

Chunk Length

Chunk Payload (variable)

Transport Chunk

–

Each chunk describes [part of] a graph node
● Receiver can ack & discard all chunks

for unknown protocols without storing any



  

Not needed

Let negotiated protocol worry about:
● Connection state machines
● Application-friendly semantics (e.g., streams)
● Flow control
● Congestion control (beyond slow-start)
● ...



  

Discussion,
Conclusion



  

What Doesn't (Really) Work

● Encoding protocol stacks in names
– Non-transparent to user; compatibility hell

● Try alternatives serially & fall back
– Delay/timeout hell

● Probe alternatives in parallel
– Redundant protocol instances; combinatorial hell

● Encode alternatives in DNS responses
– Not end-to-end robust; administrative hell



  

What Might Work

Explicit In-Band Negotiation:
● Get user & third parties out of the loop
● Describe alternatives in compact protocol graphs
● Handshake deep layer cakes concurrently
● Receiver stores only what he understands & wants

“Tng: Transport Next Generation” project

http://bford.info/tng/

Support: NSF FIND grants CNS-0916678 and CNS-0916413

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0916678
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0916413

