
Breaking Up the Transport Logjam

Bryan Ford
Massachusetts Institute of Technology∗

baford@mit.edu

Janardhan Iyengar
Franklin & Marshall College

jiyengar@fandm.edu

ABSTRACT

Current Internet transports conflate transport semantics with

endpoint addressing and flow regulation, creating roadblocks

to Internet evolution that we propose to address with a new

layering model. Factoring endpoint addressing (port numbers)

into a separate Endpoint Layer permits incremental rollout of

new or improved transports at OS or application level, enables

transport-oblivious firewall/NAT traversal, improves transport

negotiation efficiency, and simplifies endpoint address space

administration. Factoring congestion control into a separate

Flow Layer cleanly enables in-path performance optimizations

such as on satellite or wireless links, permits incremental roll-

out of new congestion control schemes within administrative

domains, frees congestion control evolution from the yoke of

“TCP-friendliness,” and facilitates multihoming and multipath

communication. Though this architecture is ambitious, exist-

ing protocols can act as starting points for the new layers—

UDP or UDP-Lite for the Endpoint Layer, and Congestion

Manager or DCCP for the Flow Layer—providing both imme-

diate deployability and a sound basis for long-term evolution.

1. INTRODUCTION

Typical transport protocols combine several functions, such

as identifying application endpoints via port numbers [38, 49],

providing end-to-end congestion control [27], utilizing alter-

nate communication paths [33,46], and implementing reliable/

ordered communication [37, 46, 49]. Lumping these functions

into one layer has made the transport layer brittle and diffi-

cult to evolve, however, by preventing evolution of individ-

ual transport functions without affecting the entire transport

layer. Since firewalls and NATs [45] must understand trans-

port headers to extract port numbers, for example, new trans-

ports [28, 46] are almost undeployable because they cannot

pass through existing middleboxes. Similarly, new conges-

tion control schemes [20] and performance enhancing prox-

ies [11] cannot be deployed on specific segments of a commu-

nication path without breaking end-to-end semantics [41] and

fate-sharing properties [16].

To remove these evolutionary roadblocks, we propose split-

ting the Transport Layer into (at least) three separate layers,

shown in Figure 1. We factor out the function of identifying

logical communication endpoints—traditionally represented as

16-bit port numbers—into an Endpoint Layer protocol to be

shared among transports. We factor out congestion control and

other performance-related mechanisms into a separate Flow

Regulation Layer, or simply Flow Layer. The services remain-

ing in the Transport Layer are limited to providing the end-to-

∗Now at the Max Planck Institute for Software Systems (MPI-SWS)

Figure 1: Breaking up the Transport Layer

end communication semantics needed by higher-level layers,

such as reliability, ordering, and error recovery.

In contrast with prior work that factored out these functions

for specific technical reasons [6, 18, 28, 50], our focus is on

identifying and addressing evolutionary impediments to Trans-

port Layer development. Our primary contribution is a new

architectural model that better facilitates evolution, and that

places a variety of existing, often mutually exclusive “trans-

port hacks” into a clean and interoperable framework.

Section 2 details the purpose, architecture, and practical im-

plications of our Endpoint Layer, and Section 3 similarly de-

tails our Flow Regulation Layer. Section 4 outlines issues in

implementing and further evolving the Endpoint, Flow, and

Transport layers, and Section 5 concludes.

2. THE ENDPOINT LAYER

Our first modification to the classic Internet architecture is

separating the function of identifying logical endpoints or ports

out of transport protocols and into a common underlying End-

point Layer. We view the Endpoint Layer as an extension to the

Network Layer: where the Network Layer provides inter-host

addressing and routing via IP addresses, the Endpoint Layer

provides intra-host addressing and routing via port numbers.

The Endpoint Layer does not otherwise affect the underlying

best-effort delivery service: higher layers are responsible for

congestion control, ordering, and reliability. All higher lay-

ers ideally reside atop a single Endpoint protocol, sharing one

endpoint address space per host.

Our insight is that building new transports atop a common

Endpoint Layer, instead of atop IP as in the current model,

may facilitate flexibility and protocol evolution in several ways.

We first address architectural foundations, followed by practi-

cal benefits of the proposed model. We leave Endpoint Layer

implementation issues to Section 4, which proposes reusing

UDP [38] as an already widely supported “Endpoint Layer pro-

tocol,” and then suggests paths toward richer functionality.



Figure 2: A UDP-based user-space transport cannot inter-

operate with a “native” IP-based kernel-space transport.

2.1 Architectural Perspective

All standard Internet transports [28, 37, 38, 46, 49] multi-

plex transport sessions onto a host’s few IP address(es) via

16-bit port numbers. Each transport implements this multi-

plexing separately and embeds port numbers in its own trans-

port header, making port numbers a common design pattern

but not a shared facility. Nevertheless, each port space tends to

be functionally equivalent; the IANA historically assigns well-

known ports consistently across transports although the port

spaces are technically independent.

Embedding port numbers into transports is consistent with

the OSI reference model [56], where each layer provides its

own space of service access points (SAPs) for higher layers to

bind to: IP addresses correspond to Network-SAPs (NSAPs),

port numbers to Transport-SAPs (TSAPs), and OSI addition-

ally has Session-SAPs and Presentation-SAPs. The full “iden-

tity” of an endpoint consists of the SAPs of all layers bundled

together: IP address and port number on the Internet, all four

SAPs in OSI. This layered multiplexing design has appeal but

causes known problems: Tennenhouse argued against it due to

the difficulty of real-time scheduling across layers [50], and

Feldmeier elaborated on several related issues [18].

An alternative approach is to treat the intra-host addressing

provided by port numbers or SAPs as an extension to the inter-

host addressing already provided by the Network Layer, and

implement this intra-host addressing once in a facility shared

by all higher layers. In Sirpent [14], intra-host addresses (port

numbers) are part of the source routes the network layer uses

for routing. An analogous design with CIDR addressing would

be to assign each physical host or network interface a whole

“virtual subnet” of addresses representing the logical endpoints

on that physical host. It may be too late to merge port numbers

into IP addresses, but our Endpoint Layer revisits the idea of

sharing one endpoint space among upper-level protocols in-

stead of each transport implementing its own.

2.2 Practical Benefits

Independent of the concerns of Tennenhouse and Feldmeier,

factoring out endpoint multiplexing brings several practical ben-

efits that are relevant today: transport implementation flexibil-

ity, firewall/NAT traversal, and transport protocol negotiation.

2.2.1 Transport Implementation Flexibility

The IP header’s 8-bit Protocol field was intended to dis-

tinguish between only a few standard transport protocols, not

between many application-level endpoints, so most operating

systems prohibit unprivileged applications from “hooking” IP

Figure 3: A UDP-based user-space transport interoperates

with a UDP-based kernel-space transport.

Protocol numbers in the way they can allocate and use ports.

The OS thus reserves the right to implement new “first-class”

transports. If an application wishes to deploy its own trans-

port protocol that is not yet supported by the host OS, it must

layer the new transport atop UDP. The resulting application-

level transport not only has second-class status but is unable to

interoperate with a first-class OS-level implementation of the

same transport on another host, as shown in Figure 2. This re-

striction creates a barrier to the deployment of new transports,

since the easiest way to deploy new protocols incrementally is

often to bundle them with the applications that need them.

If new transports are built atop an Endpoint Layer, however,

applications can easily ship with new transports implemented

in user-space libraries requiring no special privilege. Once a

transport begins migrating into OS kernels, kernel-level and

user-level implementations of the same transport can remain

interoperable, as shown in Figure 3.

2.2.2 Transport-Independent Middlebox Traversal

For better or worse, middleboxes such as firewalls and net-

work address translators (NATs) are now ubiquitous, and most

of them are sensitive to the full endpoints of a given flow: not

only IP addresses but port numbers as well. Since each trans-

port traditionally implements its own port space, middleboxes

must parse transport headers, and so only the few already-

ubiquitous transports—TCP and UDP—can traverse most mid-

dleboxes. New transports like SCTP [46] and DCCP [28] that

are designed to run directly atop IP thus cannot traverse most

middleboxes. NAT proliferation has in effect shifted the In-

ternet’s “narrow waist”—the ubiquitous interface atop which

new protocols may be built and reliably deployed—upward to

encompass not just IP but also TCP and UDP [40].

By building new transports atop a shared Endpoint Layer,

middleboxes need to understand only Endpoint Layer and not

Transport Layer headers. Middleboxes can still recognize and

optimize the handling of specific transport protocols if desired,

but doing so is no longer a prerequisite for traversal. The End-

point Layer also provides a clean space for mechanisms al-

lowing hosts to “advertise” endpoints intended to be publicly

reachable, enabling middleboxes to create persistent bindings

for them as policy permits—a demand currently met via ad

hoc, transport-specific mechanisms such as those in UPnP [53].

2.2.3 Negotiation of Alternative Transports

Many application protocols such as RPC and SIP can use

several alternative transports. Every application packet is tra-

ditionally associated with exactly one transport protocol, how-



Figure 4: Applications can negotiate among several UDP-

based transports with no extra round trips.

ever, via the IP header’s Protocol field. Negotiating which

transport to use for a communication session therefore requires

the initiating application either to use a special transport ex-

change just for this negotiation, or to open new sessions “spec-

ulatively” for each supported transport, only to continue using

the most preferred one that succeeds and shut down the rest.

Building transports atop a shared Endpoint Layer with one

port space, in contrast, leaves transport identification and ne-

gotiation under the application’s control. The Internet already

follows this design philosophy for Session Layer and Presen-

tation Layer functions, leaving their negotiation up to applica-

tions (e.g., HTTP’s persistent streams and content encodings);

our architecture extends this flexibility to the Transport Layer.

Without prescribing specific mechanisms, we suggest one

way an application in our model might combine transport ne-

gotiation with the initial exchange of the selected transport,

avoiding unnecessary round-trips or state setup. The appli-

cation first locally requests from each supported transport a

copy of the “SYN” packet the transport would send to initiate

a new session. The application collects the SYN packets for all

such transports, bundles them together into one “Meta-SYN”

packet, and sends the Meta-SYN to the responding endpoint,

as shown in Figure 4. The responding application breaks apart

the Meta-SYN, passes the SYN for some transport it supports

to its implementation of that transport, and subsequent commu-

nication proceeds normally via that transport. This design as-

sumes that packets for different transports are distinguishable

from each other and from Meta-SYN packets; the application

might interpose a minimal header for this purpose if required.

A side effect of making endpoints transport-independent is

to close the debate over whether to allocate well-known ports

across several transports at once. IANA would need to manage

only one port space, and existing applications could adopt new

transports without having to register new ports for each.

3. THE FLOW REGULATION LAYER

Our Flow Regulation Layer, or simply Flow Layer, manages

the performance of a flow between a pair of endpoints. The

Flow Layer takes the underlying best-effort delivery service,

which typically provides limited information about available

bandwidth and other network characteristics, and builds a flow-

regulated best-effort delivery service, which “knows” how to

regulate the flow of packets for best use of the available path(s).

The Flow Layer implements congestion control [27] and may

encapsulate performance-related mechanisms such as perfor-

Figure 5: An end-to-end path composed of multiple Flow

Layer segments. Flow middleboxes can optimize network

performance based on the properties of a specific segment,

such as a satellite link.

mance enhancing proxies [11], end-to-end multihoming [46],

multipath transmission [33], and forward error correction.

The idea of factoring congestion control into a separate pro-

tocol is embodied in the Congestion Manager (CM) [6] and

Datagram Congestion Control Protocol (DCCP) [28]; these

protocols offer starting points for our Flow Layer, as discussed

in Section 4. Beyond merely factoring out congestion control,

our insight is that the Flow Layer is a clean place to imple-

ment many performance-related mechanisms, enabling them to

benefit many transports, and avoiding interference with trans-

port reliability or end-to-end fate-sharing [16]. The following

sections explore several such performance enhancement tech-

niques: dividing communication paths into segments for per-

formance tuning, utilizing multiple redundant communication

paths, and aggregating flows to improve fairness or efficiency.

3.1 Path Segmentation

Our architecture permits devices in the network, called flow

middleboxes, to interpose on Flow Layer communication by

dividing a path into segments, as shown in Figure 5. Flow mid-

dleboxes “split” the path by terminating one segment’s Flow

Layer connection and initiating a new one for the next seg-

ment. Each segment may consist of several Network Layer

hops; path segmentation does not imply hop-by-hop conges-

tion control [34], although the latter may be viewed as a limit

case of path segmentation.

Flow middleboxes do not touch Transport Layer headers

or payloads, so they are compatible with any transport pro-

tocol. Since flow middleboxes affect only communication per-

formance and not transport semantics, they serve in precisely

the role for which the end-to-end principle [41] justifies such

in-network mechanisms. In contrast with the analogous tech-

nique of TCP splitting [4], where transport state may be lost if

a middlebox fails after acknowledging data received on one

segment but before transmitting it on the next, Flow Layer

splitting preserves end-to-end fate-sharing [16] because flow

middleboxes hold only performance-related soft state.

Motivations for splitting a communication path into indi-

vidually congestion-controlled segments include performance

benefits from reduced RTT, specialization to network charac-

teristics, and administrative isolation. We expore each in turn.

3.1.1 Performance Benefits from Reduced RTT

A TCP flow’s throughput is adversely affected by large round-

trip time (RTT), especially in competition with flows of smaller

RTT [19]. In addition, since information requires one RTT to

propagate around the control loop, any end-to-end congestion



control scheme’s responsiveness to changing conditions is lim-

ited by RTT. Subdividing a communication path into indepen-

dently congestion-controlled segments reduces each segment’s

RTT to a fraction of the path’s total RTT, which can improve

both throughput and responsiveness. This benefit has been

noted in the context of hop-by-hop congestion control schemes

for packet-switched [34], cell-switched [29], and wireless net-

works [54]. The Logistical Session Layer [48] similarly lever-

ages this effect to improve wide-area grid performance. Our

Flow Layer thus provides a semantically clean way to obtain

the benefits of shorter RTTs within segmented paths.

3.1.2 Specialization to Network Characteristics

The best congestion control scheme for a communication

path often depends on the characteristics of the underlying net-

work [8]. Classic TCP congestion control [27] performs well

on wired LANs and the Internet core, but poorly on networks

that are loss-prone due to transmission errors or mobility, and

on long-delay connections such as satellite links or wireless

wide-area networks. Since integrating diverse networks is a

fundamental goal of the Internet [16], we must assume that

any communication path may traverse several network types,

each of which might place conflicting requirements on any sin-

gle end-to-end congestion control scheme. New end-to-end

schemes are available for high-bandwidth, long-delay links [20],

and others for mobile ad hoc networks [31], but will any one

scheme perform well on a path that includes links of both types

(and others)? Path segmentation in the Flow Layer provides a

clean method of specializing congestion control to the charac-

teristics of individual path segments while avoiding the pitfalls

of traditional performance enhancing proxies [11].

Other fixes are available for specific performance issues [5],

but we feel that none of them solves the general network path

heterogeneity problem. A “sledgehammer approach” is to open

parallel TCP streams over one path, either at transport [44] or

application level [2], boosting throughput at the cost of fairness

by amplifying TCP’s aggressiveness [21]. TCP snooping [7]

enables intermediate nodes to retransmit lost packets and sup-

press duplicate acknowledgments without violating TCP’s se-

mantics, but this technique is transport-specific and does not

allow adjacent segments to run independent congestion control

schemes. Many approaches assume that only the “last hop” of

a path requires specialization—an assumption violated by im-

portant scenarios such as wireless mesh networks [1]. In con-

trast, our architecture supports any number of segments and

permits independent performance tuning of each.

3.1.3 Administrative Isolation

Even where one end-to-end congestion control scheme may

be technically adequate, the Internet’s inertia makes it polit-

ically difficult to agree on, evolve, and deploy new end-to-

end schemes. Any new scheme encounters resistance unless

it is “TCP-friendly”—no more aggressive than TCP Reno—

since the new scheme’s flows will compete with Reno streams

“in the wild.” But since the Internet does not enforce TCP-

friendliness [21], selfish or unaware users can and do deploy

unfairly aggressive mechanisms anyway—e.g., in the form of

TCP-unfair UDP flows [15] or concurrent TCP flows [30].

Figure 6: Flow Layer multipath communication example.

The multihomed hosts use two end-to-end paths, one pass-

ing through a pair of middleboxes implementing an in-

network multipath segment.

Path segmentation offers an incremental solution to conges-

tion control evolution: split the Flow Layer path at administra-

tive boundaries, and deploy the new scheme only on segments

traversing domains in which the scheme has been adequately

tested and approved, preserving TCP-friendliness on other seg-

ments. Path segmentation allows network administrators to roll

out a new scheme one administrative domain at a time, and ho-

mogenize the congestion control algorithms used within their

domain if desired, ensuring that the new scheme’s flows com-

pete only with each other within the domain and not with Reno

flows or other arbitrary schemes deployed by end hosts.

Even for end-to-end streams not conforming to our archi-

tecture—e.g., flows with congestion control in the Transport

Layer or no congestion control at all—homogeneous conges-

tion control can still be enforced within a domain if needed,

by encapsulating such streams in a Flow Layer “tunnel” while

crossing that domain. Our architecture thus provides a clean

framework for proposed mechanisms that use per-flow state at

border routers to implement new congestion control schemes

within a domain [47], or to enforce TCP-friendliness [39] or

differential service agreements [24].

3.2 Multipath Communication

There are many ways to exploit alternative network paths to

improve reliability [23], balance load [36], or enhance secu-

rity [32]. To be deployable, however, a multipath scheme must

be compatible with upper layer protocols designed assuming

single-path routing, and must remain interoperable with single-

path routing domains. Our architecture addresses these deploy-

ment issues by permitting end hosts and flow middleboxes to

implement multipath communication end-to-end or in the net-

work, as shown in Figure 6.

3.2.1 Flow Layer Multihoming

The Flow Layer provides a clean place to implement end-

to-end multihoming: binding several endpoints together to pro-

vide multiple paths over the existing routing infrastructure. In

contrast with transport multihoming [33, 46], multihoming in

the Flow Layer can benefit any transport without interfering

with transport semantics. An address rewriting mechanism

similar to shim6 [43] in the Flow Layer can make all of a host’s

endpoints appear as one to these transports.

Path segmentation in our architecture can also facilitate the

incremental deployment of multipath routing. A multipath rout-

ing protocol may be deployed within an administrative do-

main, surrounded by flow middleboxes that can exploit avail-



Figure 7: Flow Layer aggregation example containing two

end-to-end flows, which appear as one flow to the interme-

diate network.

able paths in flow segments crossing that domain, without af-

fecting external segments (see Figure 6). Alternatively, or si-

multaneously, a multi-site organization might deploy flow mid-

dleboxes at site boundaries to distribute inter-site traffic across

redundant wide-area links.

3.2.2 Coping with Path Diversity in Upper Layers

Naı̈vely distributing packets among multiple paths with vary-

ing delay, whether end-to-end or in-network, can confuse the

congestion control and reliability mechanisms of existing trans-

ports [10]. In our architecture, a multihomed Flow Layer can

avoid this confusion by implementing per-path congestion con-

trol, but the Transport Layer remains responsible for retrans-

mission and thus vulnerable to similar confusion. To support

arbitrary transports, therefore, a multihomed Flow Layer needs

to preserve the illusion of single-path delivery, either by using

only one path at once as SCTP does [46], or through order-

preserving traffic dispersion [23].

Multipath-aware transports [26] and applications [3] can ben-

efit from the ability to maintain per-path state and explicitly

associate packets with paths. Through a simple path index-

ing mechanism inspired by path splicing [35], which we do

not elaborate here for space reasons, a multipath Flow Layer

in our architecture can expose alternative paths to upper layer

protocols capable of using them, while retaining compatibility

with multipath-oblivious protocols.

3.3 Flow Aggregation

Finally, the Flow Layer provides a clean point at which to

aggregate related flows when desired, so that the intervening

network treats the aggregate as one flow (see Figure 7). Flow

aggregation can provide several benefits including reuse of con-

gestion control state and improved fairness.

3.3.1 Reuse of Congestion Control State

Since an aggregate of many transport instances is typically

longer-lived and represents more traffic than any of its con-

stituents, measurements of the aggregate’s characteristics can

benefit from a longer history and more samples. Transport ex-

tensions have been proposed to aggregate congestion control

state across reincarnations of one transport session [12], across

concurrent sessions [51], across transport protocols [6], and

across hosts in an edge network [55].

Placing optimizations such as these in the Flow Layer al-

lows arbitrary transports to benefit from them, and permits ag-

gregation to be performed cleanly within the network as well

as end-to-end. In our architecture, for example, a flow mid-

dlebox can aggregate congestion control state across the hosts

in an edge network and use that information to optimize flows

crossing that middlebox transparently, without requiring end

host modifications as in TCP/SPAND [55].

3.3.2 Fairness Control

TCP’s per-stream “fairness” notion often fails to match the

expectations of users and network operators [13]; Flow Layer

aggregation may be useful to implement higher-level fairness

policies. For example, an ISP may want each customer to get

equal bandwidth at bottlenecks in its network, regardless of

whether a customer uses few transport instances (web brows-

ing, SSH) or many (BitTorrent). To implement such a pol-

icy, the ISP could deploy flow middleboxes at its borders that

aggregate all segments crossing its network into one “macro-

flow”: since each macro-flow has one congestion control con-

text, each macro-flow gets an equal share of congestion bot-

tleneck bandwidth. Most such macro-flows will connect one

customer’s access router to one of a few upstream network at-

tachment points, so this meta-flow fairness should approximate

a per-customer fairness policy. Flow aggregation can thus im-

plement policies similar to those motivating hierarchical fair

queuing schemes [9], without changing interior routers.

4. IMPLEMENTATION AND EVOLUTION

One of the benefits of the proposed architecture is that exist-

ing protocols already provide starting points for implementing

its new layers. Since these existing protocols were designed in

the traditional architectural framework, however, the fit is not

perfect, so further development will be needed.

• Endpoint Layer: UDP [38] provides a pervasive first ap-

proximation to our Endpoint Layer. Viewing UDP not as

transport but as implementing a common endpoint space to

be shared by all (new) transports, it becomes worthwhile

to consider evolving this shared endpoint space, to sup-

port larger port numbers or service names for instance [52].

Also needed are extensions enabling NATs and firewalls

to detect which endpoints within a private network are in-

tended to be publicly reachable, and create persistent bind-

ings for them as policy permits. Our intent is for the End-

point Layer to provide these services, with incremental de-

ployment facilitated by dual-stack Endpoint Layer gateways

that map between UDP and the new Endpoint Protocol.

• Flow Regulation Layer: Both DCCP [28] and CM [6]

approximately implement our Flow Layer, and each has

unique features we would like to see combined in one pro-

tocol. CM offers aggregation of congestion control state

across flows and a packet transmission API that facilitates

application-layer framing (ALF) [17], whereas DCCP pro-

vides explicit negotiation of congestion control schemes.

We also need to examine how to reposition them atop the

Endpoint Layer, and to develop extensions supporting Flow

Layer optimizations such as path segmentation, multipath

communication, and flow aggregation.

• Transport Layer: Finally, new Transport Layer protocols

will build upon the Flow Layer to offer communication ab-

stractions such as reliable byte streams [49], reliable data-



grams [37], media frames [42], multi-streams [46], or struc-

tured streams [22]. We need to consider how to reposi-

tion transports atop the Flow Layer in an incremental and

backward-compatible way, and how the absence of conges-

tion control in the Transport Layer may impact transport

mechanisms such as (fast) retransmit and receive window

control.

5. CONCLUSION

Although the OSI protocol stack has been dead for years,

its layering model remains the standard frame of reference for

the Internet, and aspects of its layering model have created se-

rious roadblocks to Internet evolution. By factoring endpoint

addressing into a common Endpoint Layer instead of distribut-

ing it among transports as in OSI, we obtain more flexibility in

transport implementation and deployment, transport-oblivious

firewall/NAT traversal, and more efficient transport negotia-

tion. Similarly, by factoring congestion control into an inter-

mediate Flow Layer, we decouple performance-oriented flow

regulation from transport semantics, enabling the clean, mod-

ular, and incremental deployment of a host of performance op-

timizations both end-to-end and in the network, without inter-

fering with transport reliability or fate-sharing. The new ar-

chitectural model therefore appears promising, although many

protocol details remain to be worked out.

Our model may appear to make the Internet architecture

more complex, but we believe this complexity has already been

forced upon us via the patchwork of interposers that have pro-

liferated across the Internet [11, 25]. Our proposal provides a

framework in which to fit these interposers together cleanly,

recognizing and satisfying the needs that have led to the preva-

lence of these middleboxes. This project is ambitious, and

many unresolved issues remain, such as NAT traversal details,

buffering issues in flow middleboxes, APIs and interfaces be-

tween the new layers, and cross-layer dependencies. We hope

to resolve these issues as we work out mechanisms and proto-

cols to implement the new architecture.

6. REFERENCES
[1] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a survey.

Computer Networks, 47(4), Mar. 2005.

[2] M. Allman, H. Kruse, and S. Ostermann. An application-level solution to TCP’s

satellite inefficiencies. In 1st WOSBIS, Nov. 1996.

[3] J. Apostolopoulos et al. On multiple description streaming with content delivery

networks. In INFOCOM, June 2002.

[4] A. V. Bakre and B. Badrinath. Implementation and performance evaluation of

indirect TCP. IEEE Transactions on Computers, 46(3):260–278, Mar. 1997.

[5] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz. A comparison of

mechanisms for improving TCP performance over wireless links. IEEE

Transactions on Networking, 5(6), Dec. 1997.

[6] H. Balakrishnan, H. S. Rahul, and S. Seshan. An integrated congestion

management architecture for Internet hosts. In SIGCOMM, Sept. 1999.

[7] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Improving TCP/IP

performance over wireless networks. In 1st MOBICOM, Nov. 1995.

[8] C. Barakat, E. Altman, and W. Dabbous. On TCP performance in a heterogeneous

network: A survey. IEEE Communications Magazine, 38(1):40–46, Jan. 2000.

[9] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. In

SIGCOMM, pages 143–156, Aug. 1996.

[10] E. Blanton and M. Allman. On making TCP more robust to packet reordering.

Computer Communications Review, 32(1), Jan. 2002.

[11] J. Border et al. Performance enhancing proxies intended to mitigate link-related

degradations, June 2001. RFC 3135.

[12] R. Braden. T/TCP – TCP extensions for transactions, July 1994. RFC 1644.

[13] B. Briscoe. Flow rate fairness: Dismantling a religion. Computer Communications

Review, 37(2):63–74, Apr. 2007.

[14] D. R. Cheriton. Sirpent: A high-performance internetworking approach. In

SIGCOMM, Sept. 1989.

[15] J. Chung, Y. Zhu, and M. Claypool. FairPlayer or FoulPlayer? — head to head

performance of RealPlayer streaming video over UDP versus TCP. Technical

Report WPI-CS-TR-02-17, Worcester Polytechnic Institute, May 2002.

[16] D. D. Clark. The design philosophy of the DARPA Internet protocols. In

SIGCOMM, Aug. 1988.

[17] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new

generation of protocols. In SIGCOMM, pages 200–208, 1990.

[18] D. C. Feldmeier. Multiplexing issues in communication system design. In

SIGCOMM, Sept. 1990.

[19] S. Floyd. Connections with multiple congested gateways in packet-switched

networks, part 1: One-way traffic. ACM CCR, 21(5):30–47, Oct. 1991.

[20] S. Floyd. HighSpeed TCP for large congestion windows, Dec. 2003. RFC 3649.

[21] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the

internet. Transactions on Networking, 7(4):458–472, Aug. 1999.

[22] B. Ford. Structured streams: a new transport abstraction. In SIGCOMM, Aug.

2007.

[23] E. Gustafsson and G. Karlsson. A literature survey on traffic dispersion. IEEE

Network, 11(2):28–36, Mar. 1997.

[24] A. Habib and B. Bhargava. Unresponsive flow detection and control using the

differentiated services framework. In PDCS, Aug. 2001.

[25] M. Holdrege and P. Srisuresh. Protocol complications with the IP network address

translator, Jan. 2001. RFC 3027.

[26] J. R. Iyengar, P. D. Amer, and R. Stewart. Concurrent multipath transfer using

SCTP multihoming over independent end-to-end paths. Transactions on

Networking, 14(5):951–964, Oct. 2006.

[27] V. Jacobson. Congestion avoidance and control. pages 314–329, Aug. 1988.

[28] E. Kohler, M. Handley, and S. Floyd. Datagram congestion control protocol

(DCCP), Mar. 2006. RFC 4340.

[29] H. T. Kung and A. Chapman. The FCVC (flow-controlled virtual channels)

proposal for ATM networks: A summary. In 1st ICNP, Oct. 1993.

[30] Y. Liu, W. Gong, and P. Shenoy. On the impact of concurrent downloads. In WSC,

2001.

[31] C. Lochert, B. Scheuermann, and M. Mauve. A survey on congestion control for

mobile ad-hoc networks. WCMC, 7(5):655–676, June 2007.

[32] W. Lou and Y. Fang. A multipath routing approach for secure data delivery. In

MILCOM, Oct. 2001.

[33] L. Magalhaes and R. Kravets. Transport level mechanisms for bandwidth

aggregation on mobile hosts. In 9th ICNP, Nov. 2001.

[34] P. P. Mishra and H. Kanakia. A hop by hop rate-based congestion control scheme.

In SIGCOMM, Aug. 1992.

[35] M. Motiwala et al. Path Splicing. In SIGCOMM, Aug. 2008.

[36] S. Murthy and J. Garcia-Luna-Aceves. Congestion-oriented shortest multipath

routing. In INFOCOM, Mar. 1996.

[37] C. Partridge and R. Hinden. Version 2 of the reliable data protocol (RDP), Apr.

1990. RFC 1151.

[38] J. Postel. User datagram protocol, Aug. 1980. RFC 768.

[39] A. Rangarajan and A. Acharya. ERUF: Early regulation of unresponsive best-effort

traffic. In 7th ICNP, Oct. 1999.

[40] J. Rosenberg. UDP and TCP as the new waist of the Internet hourglass, Feb. 2008.

Internet-Draft (Work in Progress).

[41] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.

TOCS, 2(4):277–288, Nov. 1984.

[42] H. Schulzrinne et al. RTP: A transport protocol for real-time applications, July

2003. RFC 3550.

[43] Site multihoming by IPv6 intermediation (shim6).

http://www.ietf.org/html.charters/shim6-charter.html.

[44] H. Sivakumar, S. Bailey, and R. Grossman. Psockets: The case for

application-level network striping for data intensive applications using high speed

wide area networks. In SC2000, Nov. 2000.

[45] P. Srisuresh and K. Egevang. Traditional IP network address translator (Traditional

NAT), Jan. 2001. RFC 3022.

[46] R. Stewart, ed. Stream control transmission protocol, Sept. 2007. RFC 4960.

[47] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: A scalable

architecture to approximate fair bandwidth allocations in high speed networks. In

SIGCOMM, Aug. 1998.

[48] M. Swany. Improving throughput for grid applications with network logistics. In

SC2004, Nov. 2004.

[49] Transmission control protocol, Sept. 1981. RFC 793.

[50] D. L. Tennenhouse. Layered multiplexing considered harmful. In 1st International

Workshop on Protocols for High-Speed Networks, May 1989.

[51] J. Touch. TCP control block interdependence, Apr. 1997. RFC 2140.

[52] J. Touch. A TCP option for port names, Apr. 2006. Internet-Draft (Work in

Progress).

[53] UPnP Forum. Internet gateway device (IGD) standardized device control protocol,

Nov. 2001. http://www.upnp.org/.

[54] Y. Yi and S. Shakkottai. Hop-by-hop congestion control over a wireless multi-hop

network. Transactions on Networking, 15(1):133–144, Feb. 2007.

[55] Y. Zhang, L. Qiu, and S. Keshav. Speeding up short data transfers: Theory,

architectural support and simulation results. In 10th NOSSDAV, June 2000.

[56] H. Zimmermann. OSI reference model—the ISO model of architecture for open

systems interconnection. Transactions on Communications, 28(4):425–432, Apr.

1980.


