

Breaking Up the
Transport Logjam

Bryan Ford
Max Planck Institute
for Software Systems
and Yale University

baford@mpi-sws.org

Janardhan Iyengar
Franklin & Marshall

College

jiyengar@fandm.edu

TSVAREA Open Meeting, IETF 73, 19 November 2008

Evolutionary Pressures on Transports

● Applications need more fexible abstractions
— many semantic variations [RDP, DCCP, SCTP, SST, ...]

● Networks need new congestion control schemes
— high-speed [Floyd03], wireless links [Lochert07], ...

● Users need better use of available bandwidth
— dispersion [Gustafsson97], multihoming [SCTP],

logistics [Swany05], concurrent multipath [Iyengar06]…

● Operators need administrative control
— Performance Enhancing Proxies [RFC3135],

NATs and Firewalls [RFC3022], traffc shapers

The Transport Layer is
Stuck in an Evolutionary Logjam!

Many Solutions, None Cleanly Deployable

● New transports undeployable
— NATs & frewalls
— chicken & egg: application demand vs kernel support

● New congestion control schemes undeployable
— impassable “TCP-friendliness” barrier
— must work end-to-end, on all network types in path

● Multipath/multifow enhancements undeployable
— “You want how many fows? Not on my network!”
— Fundamentally “TCP-unfriendly”?

The Problem

Traditional transports confate 3 function areas...

To break transport logjam, must separate concerns

Transport
Protocol

Endpoint Identification (port numbers)

Transport Abstraction

Congestion
Control

Semantics, Reliability Concerns
(applications care)

Performance
Concerns

(users, opers care)

Naming, Routing Concerns
(NATs, firewalls care)

Our Proposal

Physical Layer

Data Link Layer

Network Layer

Session Layer

Application Layer

Presentation Layer

Physical Layer

Data Link Layer

Network Layer

Session Layer

Application Layer

Presentation Layer

Endpoint Layer

Flow Regulation Layer

Transport Layer

Transport Layer

Break up the Transport according to these functions:

Endpoint Layer

TCP Header
UDP Header DCCP Header

Endpoint Identifcation via Ports

Current transports have separate port spaces

IP Header

Source
Port

Dest
Port

Source
Port

Dest
Port

Source
Port

Dest
Port

Source IP Address
Dest IP Address

TCP
Port Space

UDP
Port Space

DCCP
Port Space

Network Layer
IP Address Space

But What Are Ports?

Ports are routing info!
— IP address ⇒ Inter-Host Routing
— port numbers ⇒ Intra-Host Routing

Do ports really belong in the Network Layer?
● Firewalls, NATs, traffc shapers need to know ports

— Parse transport headers ⇒ only TCP, UDP get through

● IPv4: ports increasingly just “16 more IP address bits”
— DHCP port borrowing/sharing [Despres, Bajko, Boucadair]

● IPv6: could dispense with ports entirely
— Assign each host a CIDR subnet, low bits = “port #”

A Pragmatic Approach

Factor endpoints into shared Endpoint Layer

Transport Header
Transport Header

IP Header

Source IP Address
Dest IP Address

Endpoint Layer
Port Space

Network Layer
IP Address Space

Endpoint Header

Source
Port

Dest
Port

Transport Header
Transport Header

Surprise!

Workable starting point exists — UDP!

IP Header

Source IP Address
Dest IP Address

Endpoint Layer
Port Space

Network Layer
IP Address Space

UDP Header

Source
Port

Dest
Port

Embrace the Inevitable

It's happening in any case!
● TCP/UDP is “New Waist of the Internet Hourglass”

[Rosenberg 08]
● Every new transport requires UDP encapsulations

— SCTP [Ong 00, Tuexen 07, Denis-Courmont 08]
— DCCP [Phelan 08]

● And a lot of non-transports do too
— IPSEC [RFC 3947/3948], Mobile IP [RFC 3519],

Teredo [RFC 4380], …

...but the new model also has technical benefts...

Practical Benefts

Can now evolve separately:
● Transport functions:

— New transports get through frewalls, NATs, etc.
— Easily deploy new user-space transports,

interoperable with kernel transports
— Application controls negotiation among transports

● Endpoint functions:
— Better cooperation with NATs [UPnP, NAT-PMP, ...]
— identity/locator split, port/service names [Touch06],

security and authentication info ...?

Kernel/User Transport
Non-Interoperability

Network Protocol

Kernel-space
Transport

Application

Network Protocol

User-space
Transport

UDP

Application

K
er

ne
l

U
se

r

K
er

ne
l

U
se

r

Host A Host B

User-space transports are easy to deploy, but
can't talk to kernel implementations of same transport!

(without special privileges, raw sockets, etc.)

Kernel/User Transport
Interoperability

Network Protocol

Kernel-space
Transport

Application

Network Protocol

User-space
Transport

Application

K
er

ne
l

U
se

r

K
er

ne
l

U
se

r

Endpoint ProtocolEndpoint Protocol

Host A Host B

Endpoint layer provides full interoperability,
user-space transports require no special privileges

Transport Negotiation

Many applications support multiple transports,
but can't negotiate them effciently

Host A

“Cautious Negotiation”

Host B Host A Host B

“Shotgun Negotiation”

“TCP or UDP?”

“UDP!”

“Hello!”

“Hello?”

“Hello?”UDP

TCPTCP

UDP

“Hello?”

UDP“Hello!”

TCPRST

“Zero-RTT” Transport Negotiation

When application controls its Endpoint Layer ports,
it can combine transport negotiation with setup

Host A

Transport Negotiation “Meta-SYN”

T1 SYN T2 SYN T3 SYN

T2 SYN/ACK

Host B

B chooses
Transport 2

Future Endpoint Layer Evolution

“Next-Generation Endpoint Layer” could:
● Remain backward-compatible with UDP

— Use same port space, fall back on UDP transparently

● Annotate endpoints with richer information
— Port names [Touch 06], user/service names, auth info, ...?

● Proactively advertise listen sockets [Cheshire?]

— NATs could propagate listener advertisements upstream,
translate inbound connections as policy permits

— Enable cleaner solutions to “NAT signaling” mess?
[UPnP, NAT-PMP, MIDCOM, NSIS, ...]

Flow Layer

Traditional “Flow Regulation”

Transport includes end-to-end congestion control
— regulates fow transmission rate to network capacity

But one E2E path may cross many...
— different network technologies

● Wired LAN, WAN, WiFi, Cellular, AdHoc, Satellite, …
● Each needs different, specialized CC algorithms!

— different administrative domains
● Each cares about CC algorithm in use!

Can't tune performance, fairness in one domain
w/o affecting other domains, E2E semantics [RFC3515]

Proposed Solution

Factor fow regulation into underlying Flow Layer

Transport Layer

Network Layer

Endpoint Layer

Flow Layer

Transport Semantics, Reliability

Flow Performance Regulation

Endpoint Naming

Practical Benefts (1/3)

Can split E2E fow into separate CC segments
— Specialize CC algorithm to network technology
— Specialize CC algorithm within admin domain

… without interfering with E2E transport semantics!

Endpoint

Flow

Host A Host B

Network

Transport

Application

Endpoint

Flow

Network

Transport

Application

Endpoint

Flow

Network

Endpoint

Flow

Network

Flow Middlebox Flow Middlebox

Segment 2
Satellite

Segment 1
WiFi LAN

Segment 3
Internet Core

Ad Hoc
Wireless
Network

Wired
Internet

Mobile
Wireless

Link

Example Scenarios

(1) Last-mile proxies for wireless/mobile links

Flow
MidB

Flow
MidB

Host Host

Mobility-Aware
Congestion Control

[M-TCP, ELFN, ...]
TCP-friendly Congestion Control

[Reno, TFRC, ...]

Ad Hoc Wireless
Congestion Control

[WTCP, ATCP, ...]

LANLAN

Example Scenarios

(2) Lossy Satellite or Long-Distance Wireless Links

Host Host

TCP-friendly CC
[Reno, TFRC, ...]

Flow
MidB

TCP-friendly CC
[Reno, TFRC, ...]

Specialized/High-Performance CC
[HS-TCP, Scalable TCP, BIC-TCP, ...]

Flow
MidB

LANLAN
Host Host

Flow
MidB

Flow
MidB

Site 2 LAN

Example Scenarios

(3) Inter-Site WAN Links in Corporate Networks

Site 1 LAN
Host Host

Flow
MidB

Flow
MidB

TCP-friendly or
Locally Configured
Congestion Control

Explicit Congestion Control
[XCP, manually configured max rate, ...]

Reserved Bandwidth
WAN Link

TCP-friendly or
Locally Configured
Congestion Control

End-to-End Congestion Control,
One Segment at a Time

Net

Source
Host

Flow
Middlebox

Router Router Router Router Target
Host

App

Net

App

Congestion Control Loop 1 Congestion Control Loop 2Transmit
Buffer

Receive
Buffer

Feedback
(ACKs, etc.)

Feedback
(ACKs, etc.)

(1)(1) Link Link
BottleneckBottleneck

(3) (3) “Packets “Packets
Dropped!”Dropped!”

(4)(4) “Slow “Slow
Down!”Down!”

(5)(5) Queue Queue
FillsFills

(6) (6) “Packets “Packets
Dropped!”Dropped!”

(7)(7) “Slow “Slow
Down!”Down!”

(2)(2) Queue Queue
FillsFills

Practical Benefts (2/3)

Incrementally deploy performance enhancements
— multihoming [RFC 4960], multipath [Lee 01],

dispersion [Gustafsson 97], aggregation [Seshan 97], ...

… without affecting E2E transport semantics!

Endpoint Protocol

Host A Host B

Transport Protocol

Application Protocol

Endpoint Protocol

Transport Protocol

Application Protocol

Endpoint Protocol

Flow Middlebox

end-to-end multipath

Endpoint Protocol

Flow Protocol Flow Protocol
Flow Protocol Flow Protocol

per-segment multipath

Flow Middlebox

Practical Benefts (3/3)

Endpoint Protocol

Host A2

Transport Protocol

Application Protocol
Endpoint Protocol

Flow Middlebox

Endpoint Protocol

Flow Protocol

Flow Protocol Flow Protocol

Flow Middlebox

Endpoint Protocol

Host A1

Transport Protocol

Application Protocol

Flow Protocol

Endpoint Protocol

Host B2

Transport Protocol

Application Protocol

Flow Protocol

Endpoint Protocol

Host B1

Transport Protocol

Application Protocol

Flow Protocol

Aggregate
Flow

Shared Access Network
or Wide-Area Link

● Can aggregate fows cleanly within domains for
— Effcient traffc measurement, management
— Fairness at “macro-fow” granularity

“Fairness Enhancing Middleboxes”

Give customers equal shares of upstream BW
independent of # connections per customer

ISP
Network

Home
Network

Host

Flow Aggregation
Middlebox

Upstream Providers

CPE

Host

ISP-controlled CPE
with flow aggregation

Home
Network

Host

CPE

Host

Per-bundle CC,
1:1 BW sharingFTP User BitTorrent User

Developing the Flow Layer

● Two likely “starting points” already exist:
— Congestion Manager [Balakrishnan99]
— DCCP [Kohler06]

(just stop thinking of it as a “transport”)

● Major work areas:
— Support for fow middleboxes, path segmenting
— Interfaces between (new) higher & lower layers

Transport Layer

Transport Layer

Contains “what's left”:
● Semantic abstractions that apps care about

— Datagrams, streams, multi-streams, …

● Reliability mechanisms
— “Hard” acknowledgment, retransmission

● App-driven buffer/performance control
— Receiver-directed fow control
— Stream prioritization
— ...

Epilogue

The Transport Logjam Revisited

● New transports undeployable
— Can traverse NATs & frewalls
— Can deploy interoperably in kernel or user space
— Apps can negotiate effciently among transports

● New congestion control schemes undeployable
— Can specialize to different network types
— Can deploy/manage within administrative domains

● Multipath/multifow enhancements undeployable
— Can deploy/manage within administrative domains

Only the Beginning...
Promising architecture (we think), but
lots of details to work out

— Functionality within each layer
— Interfaces between each layer
— Application-visible API changes

Big, open-ended design space
— We are starting to explore, but

would love to collaborate
— We are interested in learning about

other relevent applications/scenarios

Conclusion

Transport evolution is stuck

To unstick, need to separate functions:
— Endpoint naming/routing into separate Endpoint Layer
— Flow regulation into separate Flow Layer
— Leave semantic abstractions in Transport Layer

Complexity

● More layers
=> increase

● Puts necessary hacks into framework
=> decrease

● What's the balance?

What about the e2e principle?

● Flow layer implements in-network mechanisms that
focus on communication performance
— Precisely the role for which the e2e principle

justifes in-network mechanisms

● All state in the fow middleboxes is performance-
related soft state

● Transport layer retains state related to reliability
— End-to-end fate-sharing is thus preserved

● Transport layer is still the frst end-to-end layer

