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Abstract

In RPC-based communication, we term the interface
the set of remote procedures and the types of their ar-
guments; the presentation is the way these procedures
and types are mapped to the target language environment
in a particular client or server, including semantic re-
quirements. For example, presentation includes the local
names assigned to RPC stubs, the physical representation
of a logical block of data (e.g., in-line, out-of-line, linked
blocks), and trust requirements (e.g., integrity, security).
In existing systems, the presentation of a given RPC con-
struct islargely fixed.

Separating presentation from interface, both in the in-
terface definitionlanguage (IDL) itself and inthe RPC im-
plementation, is the key to interoperability, with many
benefits in the area of elegance, as well. This separation
and resulting cleanliness makes it manageable to gener-
ate specialized kernel code paths for each type of client-
server pair. Thisisakey element of end-to-end optimiza-
tion. The separation should also allow the integration of
disparate RPC optimization techni ques, such as those ap-
plied in LRPC[2] and fbufg 6], into a single system, in a
uniform and fully interoperable way. In initial work we
demongtrate a variant of threaded code generation and
two presentation-based optimizations, transparently acti-
vated by the RPC system. Each of these optimizations
speeds up local RPC by approximately 25%.*

1 Introduction

Remote procedure call (RPC) and interface definition
language (IDL)[10] compilers were first introduced pri-
marily as programming shortcuts: toolsto help automate
the production of networking code. However, with
the growth of client-server computing and large object-
oriented distributed systems, RPC interfaces have changed
from a programming convenienceto abstractionsuseful in
themselves to promote software modularity and interop-
erability. Entire software systems, such as Spring[9], are
designed and built in terms of the RPC interfaces between
their components. IDLs have been elevated from a short-
hand language for networking code to a formalization of
interfaces between modules.
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However, the fundamental design of thelDLs and RPC
implementations we use today, even the IDLs and object
invocation used in modern object-oriented systems, till
reflect the origina purpose of RPC. Our solution to this
mismatch revolves around a basic concept: a notion of
presentation defined separately from RPC interface.

1.1 Presentation

In a typical RPC implementation, client and server
stubs, written automatically by an IDL compiler, cooper-
ate with an underlying data transport mechanism to en-
capsulate communication across protection and network
boundaries.? The stubs “present” interprocess communi-
cation (IPC) inaconvenient, high-level form, easily acces-
siblefromtheclient or server’sgenera-purpose language.
The exact linguistic rules by which the stubs interact with
application code, and the RPC-related semantic require-
mentsof theapplication, arewhat we call the presentation.

In conventional RPC systems, the presentation of an
RPC interface for a particular target language is largely
fixed, defined either explicitly in the RPC system speci-
fication, or implicitly by the stubs produced by the IDL
compiler. For example, if an RPC involves transmitting
ablock of data, the RPC stubs expect the data to be pro-
vided in a certain way, such asin acontinuousbuffer with
itslength specified as an additional argument to the stub.

1.2 Flexible Presentation

We bdieve that much greater presentation flexibility
can be provided by the IDL, and that it can be efficiently
supported in an optimized microkernel RPC implemen-
tation. A flexible presentation enhances interoperability
and should bring a number of benefits: (i) it makes IDLs
simpler by separating out presentation constructs; (ii) it
makes RPC interfaces “ narrower” by eliminatingthe need
for multiple variants of operationsthat differ only in pre-
sentation; (iii) it makes the programmer’sjob easier by of -
floading more of thework of using RPC from the general -
purpose languageto the RPC system; (iv) it givesthe RPC
system as awhole (both the IDL compiler and the under-
lying IPC mechanism) more opportunity for |PC special-

2While RPC is usually synchronous, the concepts described here ap-
ply to any flavor of IPC that allows a languagelayer aboveit, including
asynchronous communication and even multicast.



ization and optimization by providing additional semantic
information in declarative form.

Intherest of thispaper wefirst discuss examples of pre-
sentation and related work, in Section 3 we examine the
IDL aspects of separating presentation, and in Section 4
we do the same for RPC and our implementation.

2 Related Work and Examples

The term “presentation” comes from the OSI network-
ing model, of course, which defines a presentation layer
responsible for providing applications with data in the
locally-preferred representation. The primary presenta
tion emphasisin the OSl model is on data format and ex-
clude semantic attributes, whereas we are concerned with
both types.

We know of two IDLs in which the notion of separate
presentation exists to some degree. DCE IDL’s “Appli-
cation Configuration File” alows specification, separate
fromtheinterface definitionfile, of afew attributessuch as
binding protocol, error condition trestment, and data type
equivalence. The Concert system’'g[1] “endpoint modi-
fier” supports more presentation attributes. Since Con-
cert does not have a separate IDL, the endpoint modifier is
automatically generated by each language's compiler and
only handles the vagaries of the language mapping.

The Subcontract work[9], an elegant and genera
method for extending and specidizing object com-
munication mechanisms and semantics, is largely
complementary to our work. Their Spring system has
separate stub, subcontract, and kernel levels, with the
language-level stubs and kernel 1PC mechanism remain-
ing entirely generic, and all specidization restricted to
the subcontract layer. Therefore, in the general case,
the exact details of presentation to the application code
cannot be specified, varied, or controlled. However, when
an object isaparameter to acall, that object’s subcontract
can speciaize the object’s marshalling and a few other
aspects of presentation. However, it apparently cannot
specialize these based on which method of the target
object is being invoked, losing much of its potential
power. Also, end-end optimization is not possible since
the kernel 1PC mechanism is not specialized.

Our language model for presentation specification is
based on thegeneral concept of subtyping, foundin object-
oriented languages as inheritance. We introduce the con-
cept of “presentation subtypes,” which are types relevant
only totheloca scope of aparticular software modul g; the
boundary between interface and presentation types is the
boundary at which type mismatches no longer affect inter-
operability. Also, in some sensewe are separating “imple-
mentation from interface,” where the“implementation” is
our “presentation” of the interface. However, our initia
exploration of the deeper language issues shows that the
issue is complex, as Cardelli[3] discusses, and is worthy

of aresearch effort initsown right.

Clark et a[5] emphasize the importance of optimiz-
ing the presentation layer in traditional networking, show-
ing that it can dominate processing time. They also em-
phasize that for performance reasons, the necessity of
non-contiguous data location in the recipient is a criti-
cal architectural constraint. This can occur not only in
RPC, where each parameter is scattered in memory, but
in integrated-layer processing of stream-based protocols,
due to dropped packets. Their emphasis is on the latter,
ours the former. Our optimization effort applies the end-
to-end argument[14], which emphasizes the importance,
in amultitude of domains, of considering the total path in
design and implementation.

Operating system interfaces are replete with specia
calls whose only purpose is to accommodate dight vari-
ance in presentation. For example, for performance
reasons OSF added a number of system cals to the
Mach kernel, differing from other cals only in pre-
sentation. Devi ce_read_overwite, mach_nmsg-
overwite,vn_readoverwite,and vmrenmap
only modify memory allocation semantics of parameters.
OSF has aso added new IDL attributeswhich by their na-
tureaffect only presentation, but sincethe concepts are not
separated, affect the entire interface: Physi cal Copy,
Over Wit e, and SaneCount . That these were found
necessary shows the importance of presentation in real-
world situations, but all of these calls and options can be
subsumed by our design.

3 PresentationinIDLs

In theory, there is exactly one interface definition file
per defined interface, and al clients and servers support-
ing that interface use that onefile. However, in practiceit
is often necessary to effect minor changes to the standard
interface, in order to support particular clientsand servers.
For example, in the Mach/MI1G/OSF-1 environment such
changes are made for anumber of reasons. Some of them
are to avoid naming conflicts by renaming the generated
stub routines, to specify user-defined marshaling and un-
marshaling functionsto beinvoked by the stubson certain
data types, to modify the IDL compiler’s behavior based
on whether the generated stubs will be used inside or out-
side of the kernel, and to provide the server with message
sequencing information.

These local deviations do not affect the information
transferred across the RPC interface, only the way in
whichthe RPC stubsinteract with thelocal client or server
implementation: in other words, the presentation.

What is needed is a way to specify presentation sepa-
rately from interface so that the former can bevaried while
the latter remains stable. Since existing IDLs have no di-
rect support for this separation, ad hoc solutions are used
instead. Typically, modifying the interface’s presentation



isaccomplished either by maintainingavariant copy of the
IDL file, or by embedding specid conditional constructs
(#ifdef’s) in the globd interface definition file and using
externally-specified actions (makefile rules) to select the
behavior of a particular run of the IDL compiler. These
often extensiverules and conditions (over 400 linesin the
standard Mach system) are essentially presentation defini-
tions. However, because the presentation isprovided in a
completely ad hoc way, its use and maintenance is infa
mously difficult. These awkward mechanisms are never-
theless used extensively, demonstrating the inherent need
to control presentation separately from interface.

3.1 Adding Presentation Support toan IDL

To demonstrate the benefits of fully supporting separate
specification of presentation and interface, we are creating
anew Mach RPC system, based on the CORBA IDL[13],
Sun’s freely-available IDL compiler, our own IDL com-
piler back-end, and an extension of our migrating threads
RPC mechanism[7].

Aninterface specificationisgenerally intended to bein-
dependent of the languages used to write its client pro-
grams. However, presentation specification isfundamen-
tally language-specific, because it defines the interaction
between client or server code and the IPC system (RPC
stubs). For example, an attribute specifying data buffer
deall ocation semantics would make sense in C, but not in
Lisp, which hasautomatic storage reclamation. Therefore,
it isimportant to cleanly separate interface and presenta-
tion support, bothinthe DL syntax and initscompiler im-
plementation.

In the CORBA IDL, the basic unit of interface defini-
tionisthetype. Both concrete data types such as integers
and structures, and entire interfaces (sets of RPC decla-
rations), are considered types. In our extended version
of the CORBA IDL, defining presentation for aready-
defined types involves creating presentation subtypes of
the “pure” interface types. A presentation subtypeisin-
visibleto all external (remote) software components, ap-
pearing identical tothe pure basetypeit was derived from.
However, itisdistinctinthe view of theloca program for
which the presentation is defined. For example, in Fig-
urel, twolocal presentation subtypes, Si nmpl eDat a and
Fbuf Dat a, specify two different presentations for the
pure interface type Dat aBl ock. All threetypesare dis-
tinct and possibly incompatiblewithin the client or server
using them, but programsonthe“other end” of an RPCin-
terface only see the base type, Dat aBl ock (or their own
independent presentations of that base type).

4 Presentation and Interfacein RPC Imple-
mentation

Many powerful techniques for optimizing IPC have
been demonstrated, such as data transfer with page
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remapping[4, 15], copy-on-write, pairwise shared mem-
ory bufferg2], and memory buffers group-wise shared
across full data paths, leveraging weakened semantics
when possible[6].  These techniques impose various
restrictions on the situations in which they can be used
and on the way the client and server code must be written.
They give up generdity in return for better performance
in specific common cases.

None of these techniques, used aone, will result in an
IPC system that is both fast in the common cases and gen-
eral enough to work throughout a diverse distributed sys-
tem. Only by integrating a variety of these techniques
together in one RPC system, taking advantage of the
strengths of each in their applicable areas, can a truly
genera -purpose, high-performance RPC system be built.
Finding waysto make optimi zationswork together has be-
come a more important challenge than simply finding op-
timizations. It isnot necessary for every possiblecombi-
nation to be fast (only the common cases have to be fast),
but every possible combination must work.

4.1 How Presentation Helps

One of the primary reasons integrating optimized RPC
mechanisms is difficult is because each has different ex-
pectations and requirements in terms of presentation. For
example, fbufs can provide extremely low-overhead data
transfer across an unlimited number of protection bound-
aries, but for optimal performance it requires al partici-
pating clients and servers to handle data blocks scattered
through multipledigoint buffers, as well as knowledge of
weakened semantics when they exist (e.g. mutable data).
Because this presentation does not match the “default”
presentation assumed by typical RPC systems (i.e. con-
tinuousdatabuffers, completely restricted access), andthe
IDL does not provide any way to select between the two
presentations locally, the fbufs optimizations can only be
supported by adding a more-or-less separate, noninterop-



erable “subsystem” to the basic RPC facility. The lack of
presentation support means that a software component’s
interface, and not just its presentation, must be modifiedin
order to alow the optimizationto be applied, thereby mak-
ing the program incompatiblewith other programsthat do
not use fbufs.

By allowing presentation to be explicitly declared in an
IDL separately from the interface, the RPC system can
enable individua IPC optimizations such as LRPC and
fbufs on a connection-by-connection basis, depending on
the presentations of the two endpoints. Since the presen-
tations of the endpointsare independent from the point of
view of the programs using the RPC system, only the ba
sic interfaces must match in order to guarantee interoper-
ability. IPC will be faster if the presentations match more
closdly, but it will always work. In summary, we believe
that the separation of presentation from interface, and the
addition of more declarative presentation flexibility, will
aid IPC optimization by providing a generaized frame-
work for combining a variety of optimization techniques
in afully interoperable way.

Implementation Complexity

If I isthenumber of “interfacevariants’ supported (pro-
cedures, datatypes, etc.), and any interface variant can ap-
pear on each of two endpointswith P “presentation vari-
ants,” the implementation complexity could be as large
as I P2. However, in practice, presentation variants are
largely orthogonal to interface variants: for example, the
way ablock of memory istransferred is largely indepen-
dent of what type of datathe block holds. Thisreducesthe
complexity totheorder of 7+ P2, Finaly, itisalwayspos-
sibleto define some kind of canonical format for IPC data
transfer, depending only on interface and not on presenta
tion. The two “sides’ of the RPC interface then become
independent, each converting data to the common formeat,
resulting in a basic complexity of only 7 + P.

Supporting sophisticated presentation-based optimiza
tions of course requires deviating from the canonical for-
mat, but only the few common-case “cells’ of the P x P
meatrix need to be optimized. The canonica format pro-
vides interoperability, while the common-case optimiza
tions provide performance. Therefore, this kind of RPC
system should be feasible, athough till not “easy.”

Basic | mplementation Requirements

There are two main aspects to an RPC implementation
with full presentation support. First, the IDL compiler
must generate type signatures in addition to the normal
stubroutines. A typesignature containsbothinterface and
presentation information for a particular software compo-
nent. Second, when a communication channel is initial-
ized (bound) at run time, the type signatures of each end-
point must be available to the RPC mechanism. The RPC
mechanism can then enable any 1PC optimizationswhose

congtraints are satisfied by the type signatures.

4.2 Prototype I mplementation

We have implemented a prototype that embodies all
of the basic characteristics of a flexible-presentation
RPC system using binding-time path speciaization. We
demonstrate the value of such a system by measuring base
performance and two classes of presentation-based opti-
mizations, which yield additional improvement. In our
implementation, the Mach kernel does most of thework of
marshaling and unmarshaling data as well as transferring
it across protection boundaries.

Before a Mach port can be used for communication,
as part of binding the client and server must each regis-
ter their respective type signatures with the kernel. The
client's signature is attached to the send right, or object
reference, while the server’s signature is attached to the
port, which is the kernel’s representation of the object it-
self. Multipleclientsthat havereferencesto asingleserver
object can each register adifferent client presentation.

Once both the client and server type signatures are
available, the kernel checks them against each other, ver-
ifying that the interfaces are compatible and searching
for optimizations made possible by the specified presen-
tations. It then builds a combination signature, a special
type signature based on both input signatures. The combi-
nation signatureis completely kernel-privateand acts asa
cache which keeps track of previously implemented RPC
paths. Thus, thekernel only hasto compareregistered type
signatures once; successive uses of a particular RPC path
require no expensive computation. In fact, the combina-
tion signature include a block which threadg[11] together
small blocks of code which perform key parts of the RPC,
such as register saving and restoring. It isimportant to re-
alize that the binding time work needn’t be done by the
kernel; a privileged user process could equally well do it.

4.3 Results

Tests were done on a 66MHz HP 730 (PA-RISC). The
timesincludeall RPC costs, including both user-level stub
code and kernel processing.

Basic threaded code performance: Null loca RPC
now takes 4.6 psecs, and passing one 32-bytei n param-
eter takes 5.9 psecs. This null RPC is now nine times as
fast astraditional Mach RPC and morethan twiceasfast as
our migrating threads implementation[ 7] which relied on
thetraditional Mach message format, RPC isnow twiceas
fast assystem call son native monolithicoperating systems
(BSD, HP-UX). Thisis because the latter are not, in gen-
eral, specialized, but must set up exception handlers and
other rarely used functions.

This excellent base performance was achieved through
arange of optimization techniques (passing parametersin



registers, migrating threads, avoiding register state saving
and restoring) [12, 8, 7], aswell as specialized code. With
full knowledge of both client and server presentation, up
into user code, more optimizations are possible on non-
null RPCs.

Relaxing Mach’'s unique-name requirement: The
standard Mach IPC system aways enforces the semantic
requirement that al references to a particular port from
a particular protection domain (task) have only a single
name within that task. This requirement is required in
some situations, such as authentication, but isunnecessary
for simple object invocation and slows down transfer of
object references from one task to another. The single-
name requirement is clearly a presentation feature, since
it only affects the appearance of a port localy within a
task. Leveraging the presentation semantic constraint of
not needing unique port names resulted in a performance
improvement of 24% when passing a single port (32.4
1Secs reduced to 24.7 11Secs).

Varying Trust Parameters: The trust relationshipsbe-
tween clients and servers also count as “presentation” for
our purposes, because they are useful in optimizing RPC
but should not affect interoperability or the basic RPC in-
terface. Therefore, in our RPC system, we alow each
“side” of a connection to specify the degree to which it
trusts the other side. Three levels of trust are provided:
no trust, trust of confidentiality but not integrity, and full
trust of bothintegrity and confidentiadity. Themiddlielevel
would typically apply between processes owned by the
same user, which want to maintain protection boundaries
but have no information to hide from each other. The full
trust level could be used by clients communicating with
privileged servers, such as a Unix single-server. We im-
plemented relaxed trust levels by requiring less register
saving, restoring, and clearing on the RPC path. Overal,
we achieved 30% speedup with full trust, with intermedi-
ate trust gaining 8%.

5 Summary

Keeping presentation separate from interfaceisan im-
portant design element for both IDLs and communication
systems. When done right, it provides enhanced cleanli-
ness and interoperability, while offering the potentia for
end-to-end optimization of the entire communi cation path.
Thispotential isdue to the extension into user space of the
kernel-known path, aswell astheapplicability of disparate
I PC optimizations.
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