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Abstract

An interface definition language (IDL) is a nontraditional
language for describing interfaces between software compo-
nents. IDL compilers generate “stubs” that provide separate
communicating processes with the abstraction of local ob-
ject invocation or procedure call. High-quality stub gener-
ation is essential for applications to benefit from component-
based designs, whether the components reside on a single
computer or on multiple networked hosts. Typical IDL com-
pilers, however, do little code optimization, incorrectly as-
suming that interprocess communication is always the pri-
mary bottleneck. More generally, typical IDL compilers are
“rigid” and limited to supporting only a single IDL, a fixed
mapping onto a target language, and a narrow range of data
encodings and transport mechanisms.

Flick, our new IDL compiler, is based on the insight that
IDLs are true languages amenable to modern compilation
techniques. Flick exploits concepts from traditional pro-
gramming language compilers to bring both flexibility and
optimization to the domain of IDL compilation. Through the
use of carefully chosen intermediate representations, Flick
supports multiple IDLs, diverse data encodings, multiple
transport mechanisms, and applies numerous optimizations
to all of the code it generates. Our experiments show that
Flick-generated stubs marshal data between 2 and 17 times
faster than stubs produced by traditional IDL compilers, and
on today’s generic operating systems, increase end-to-end
throughput by factors between 1.2 and 3.7.
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1 Introduction

An interface definition language (IDL) is a special-purpose
language for describing the interfaces of a software compo-
nent. An IDL specification declares one or more interfaces;
each interface declares a set of operations that may be in-
voked on objects implementing the interface. The input and
output behavior of each operation is given by the IDL specifi-
cation. For example, the following CORBA [18] IDL program
declares a simple interface to an electronic mail service:interface Mail {void send(in string msg);};
A largely equivalent mail system interface would be defined
in the ONC RPC1 [23] IDL by this program:program Mail {version MailVers {void send(string) = 1;} = 1;} = 0x20000001;
As shown by these examples, an IDL program declares a set
of functions or methods but does not describe the computa-
tions that those functions and methods perform. IDLs are typ-
ically independent of the programming language in which the
components are themselves implemented, further decoupling
interface from implementation.

An IDL compiler accepts an IDL interface specification
and outputs an implementation of that specification. Typi-
cally, the implementation is a set of data type declarations
and “stubs” written in a conventional programming language
such as C, C++, or Java. The stubs encapsulate the commu-
nication that must occur between the entity that invokes an
operation (i.e., the client) and the entity that implements the
operation (i.e., the server). The stubs that are output by the1ONC RPC was previously known as Sun RPC, and Sun’s rpcgen is
the standard compiler for the ONC RPC IDL. The numbers in the example
ONC RPC IDL program are chosen by the programmer to identify compo-
nents of the interface.



IDL compiler hide the details of communication and allow
the client and server to interact through a procedural inter-
face. Traditionally, stubs have implemented remote proce-
dure calls (RPC) [3] or remote method invocations (RMI): the
client and server are located in separate processes, and the
stubs in each process communicate by exchanging messages
through a transport medium such as TCP/IP. More recently,
IDLs have become popular for defining high-level interfaces
between program modules within a single process.

IDLs and IDL compilers arose for reasons familiar to
any programming language veteran: descriptive clarity, pro-
grammer productivity, assurance of consistency, and ease of
maintenance. Performance of IDL-generated code, however,
has traditionally not been a priority. Until recently, poor or
mediocre performance of IDL-generated code was acceptable
in most applications: because interprocess communication
was generally both expensive and rare, it was not useful for
an IDL compiler to produce fast code. For performance criti-
cal applications, implementors resorted to hand-coded stubs
— tolerating the accompanying greater software engineering
costs. Some IDL compilers such as MIG [20] struck a mid-
dle ground by providing a language with a restricted set of
structured data types, blended with programmer control over
implementation details. This compromise could be likened
to that provided by a traditional compiler that permits em-
bedded assembly language. Although embedded “hints” can
lead to performance gains, reliance on hints moves the bur-
den of optimization from the compiler to the programmer,
and has the additional effect of making the language non-
portable or useful only within restricted domains.

Today, in almost every respect, IDL compilers lag be-
hind traditional language compilers in terms of flexibility
and optimization. IDL compilers such as Sun’s rpcgen [25]
are generally written “from scratch” and are implemented
without incorporating modern compiler technologies such as
multiple, flexible intermediate representations. The result is
that today’s IDL compilers are “rigid”: they accept only a sin-
gle IDL, they implement only a single, fixed mapping from an
IDL specification to a target language, and they generate code
for only one or two encoding and transport mechanisms. To-
day’s IDL compilers still assume that the transport medium is
inherently slow, and therefore, that optimization of the stubs
will not yield significant speed increases. Modern network
architectures, however, have moved the performance bottle-
necks for distributed applications out of the operating system
layers and into the applications themselves [5, 12, 13].

In this paper we show that in order to solve the prob-
lems inherent to existing IDL compilers, IDL compilation
must evolve from an ad hoc process to a principled process
incorporating techniques that are already well-established
in the traditional programming language community. Al-
though IDL compilation is a specialized domain, IDL compil-
ers can be greatly improved through the application of con-
cepts and technologies developed for the compilation of gen-

eral programming languages. Flick, our Flexible IDL Com-
piler Kit, exploits this idea. Flick is designed as a “toolkit”
of reusable components that may be specialized for partic-
ular IDLs, target language mappings, data encodings, and
transport mechanisms. Flick currently has front ends that
parse the CORBA [18], ONC RPC [23], and MIG [20] IDLs.
Flick compiles an interface specification in any of these lan-
guages through a series of intermediate representations to
produce CORBA-, rpcgen-, or MIG-style C stubs communi-
cating via TCP, UDP, Mach [1] messages, or Fluke [10] kernel
IPC. Flick’s compilation stages are implemented as individ-
ual components and it is easy for a system designer to mix
and match components at IDL compilation time in order to
create the high-performance communication stubs that he or
she needs. Further, the organization of Flick makes it easy to
implement new component front ends, “presentation gener-
ators,” and back ends.

Flick’s design as a traditional language compiler pro-
motes not only flexibility but also optimization. Flick imple-
ments techniques such as code inlining, discriminator hash-
ing, and careful memory management to maximize the speed
at which data can be encoded and decoded (marshaled and
unmarshaled) for communication. Flick’s optimization tech-
niques are similar to those provided by modern optimizing
compilers, but its domain-specific knowledge allows Flick
to implement important optimizations that a general-purpose
language compiler cannot. Most of Flick’s techniques are
implemented by an abstract C++ base class for code gener-
ators, and therefore, all back ends inherit the optimizations
provided by the large code base. The results presented in
Section 4 show that Flick-generated communication stubs
are up to 3.7 times faster than those generated by other IDL

compilers.

2 Flick

The Flick IDL compiler is divided into three phases as illus-
trated in Figure 1. These phases are analogous to those in
a traditional language compiler and correspond to separable
aspects of IDL compilation. Each phase is primarily imple-
mented by a large, shared library of C and C++ code that pro-
vides abstractions for such things as IDL source constructs,
target language data types, and “on the wire” message data
types. Each of Flick’s libraries implements a generic set of
methods to manipulate these abstractions. The libraries are
the bases for specializations that override the generic meth-
ods as necessary in order to implement behaviors peculiar or
specific to a single IDL, language mapping, message format,
or transport facility.

The first phase of the compiler is the front end. The front
end reads an IDL source file and produces an abstract rep-
resentation of the interface defined by the IDL input. This
representation, called an Abstract Object Interface (AOI), de-
scribes the high-level “network contract” between a client
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Figure 1: Overview of the Flick IDL Compiler. Flick is divided into three
compilation phases, and each phase is implemented by a large library of
code. Specialized components are derived from the Flick libraries in order
to parse different IDLs, implement different target language mappings, and
produce code for a variety of message formats and transport systems.

and a server: the operations that can be invoked and the data
that must be communicated for each invocation.

Flick’s second compilation phase, the presentation gen-
erator, reads the network contract produced by the front end
and outputs a separate and lower-level “programmer’s con-
tract.” The programmer’s contract defines the interface be-
tween the programmer’s client or server code and the stubs,
e.g., how parameters are passed between them.

For example, consider the CORBA IDL input shown in
Section 1 that defines a network contract between the client
and server of a Mail interface. Given that input, a CORBA

IDL compiler for C will always produce the following proto-
type describing the programmer’s contract:2void Mail_send(Mail obj, char *msg);
This programmer’s contract declares the C functions and data
types that will connect the client or server code to the stub:
we say that this contract is a presentation of the interface in
the C language.

The presentation shown above conforms to the CORBA

specification for mapping IDL constructs onto the C program-2For clarity, we have omitted the declaration of the Mail object type and
the CORBA Environment parameter to the Mail send function.

ming language. However, it is not the only possible presen-
tation of the Mail interface. For instance, if we depart from
the CORBA mapping rules, the Mail send function could be
defined to take a separate message length argument:void Mail_send(Mail obj, char *msg, int len);
This presentation of the Mail interface could enable opti-
mizations becauseMail sendwould no longer need to count
the number of characters in the message [8, 9]. This change
to the presentation would not affect the network contract be-
tween client and server; the messages exchanged between
client and server would be unchanged. The addition of a sep-
arate len parameter changes only the calling conventions for
the Mail send function. Flick’s ability to handle different
presentation styles can be important for optimization as just
described, but it is also essential for supporting multiple IDLs
in a reasonable way.

To summarize, a presentation describes everything that
client or server code must understand in order to use the func-
tion and data type declarations output by an IDL compiler:
this includes the names of the functions, the types of their ar-
guments, the conventions for allocating memory, and so on.
Because there can be many different presentations of a sin-
gle interface, Flick provides multiple, different presentation
generators, each implementing a particular style of presenta-
tion for a particular target programming language. When C is
the target language, the presentation is described in an inter-
mediate format called PRES C. Because the presentation of
an interface may differ between client and server, a presen-
tation generator creates separate PRES C files for the client-
and server-side presentations of an interface.

The third and final phase of the compiler is the back end.
The back end reads a presentation description (PRES C) and
produces the source code for the C functions that will imple-
ment client/server communication. The generated functions
are specific to a particular message format, message data en-
coding scheme, and transport facility.

Table 1 compares the number of substantive C and C++
source code lines in each of Flick’s libraries with the number
of lines particular to each of Flick’s specialized components.
The number of lines specific to each presentation generator
and back end is extremely small when compared to the size
of the library from which it is derived. Front ends have sig-
nificantly greater amounts of specialized code due to the need
to scan and parse different IDL source languages.

2.1 Front Ends

As just described, the purpose of a Flick front end is to trans-
late an interface description (source IDL program) to an inter-
mediate representation. Each of Flick’s front ends is specific
to a particular IDL. However, each is completely indepen-
dent of the later stages of IDL compilation: the presentation
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Phase Component Lines
Front End Base Library 1797

CORBA IDL 1661 48.0%
ONC RPC IDL 1494 45.4%

Pres. Gen. Base Library 6509
CORBA Library 770 10.6%

CORBA Pres. 3 0.0%
Fluke Pres. 301 4.0%

ONC RPC rpcgen Pres. 281 4.1%
Back End Base Library 8179

CORBA IIOP 353 4.1%
ONC RPC XDR 410 4.8%
Mach 3 IPC 664 7.5%
Fluke IPC 514 5.9%

Table 1: Code Reuse within the Flick IDL Compiler. Percentages show the
fraction of the code that is unique to a component when it is linked with the
code for its base library. The CORBA presentation library is derived from the
generic presentation library; the CORBA and Fluke presentation generators
are derived from the CORBA presentation library.

of the interface that will be constructed, the target program-
ming language that will implement the presentation, the mes-
sage format and data encodings that will be chosen, and the
transport mechanism that will be used. In sum, the output of
a Flick front end is a high-level “network contract” suitable
for input to any presentation generator and any back end.

Flick’s MIG front end, however, is a special case. A MIG

interface definition contains constructs that are applicable
only to the C language and to the Mach message and IPC

systems [20]. Therefore, as illustrated in Figure 1, Flick’s
MIG front end is conjoined with a special MIG presenta-
tion generator that understands these idioms. Flick’s MIG

components translate MIG interface descriptions directly into
PRES C representations; this is different than Flick’s CORBA

and ONC RPC front ends, which produce AOI. This difference
reveals a strength: Flick’s multiple intermediate representa-
tions provide the flexibility that is necessary for supporting a
diverse set of IDLs.

2.1.1 AOI: The Abstract Object Interface

AOI is Flick’s intermediate representation language for de-
scribing interfaces: the data types, operations, attributes, and
exceptions defined by an IDL specification. AOI is applicable
to many IDLs and represents interfaces at a very high level.
It describes constructs independently of their implementa-
tion: for instance, AOI has separate notions of object meth-
ods, attributes, and exceptions, although all of these things
are generally implemented as kinds of messages. AOI sup-
ports the features of typical existing IDLs such as the CORBA

and ONC RPC IDLs, and Flick’s front ends produce similar
AOI representations for equivalent constructs across different
IDLs. This “distillation process” is what makes it possible for
Flick to provide a large and general library for the next stage
of compilation, presentation generation.

2.2 Presentation Generators

Presentation generation is the task of deciding how an inter-
face description will be mapped onto constructs of a target
programming language. Each of Flick’s presentation genera-
tors implements a particular mapping of AOI constructs (e.g.,
operations) onto target language constructs (e.g., functions).
Therefore, each presentation generator is specific to a par-
ticular set of mapping rules and a particular target language
(e.g., the CORBA C language mapping).

A presentation generator determines the appearance and
behavior (the “programmer’s contract”) of the stubs and data
types that present an interface — but only the appearance and
behavior that is exposed to client or server code. The unex-
posed implementation of these stubs is determined later by a
Flick back end. Therefore, the function definitions produced
by a presentation generator may be implemented on top of
any available transport facility, and each presentation gen-
erator is independent of any message encoding or transport.
Moreover, each of Flick’s presentation generators (except for
the MIG generator as described previously) is independent of
any particular IDL. A single presentation generator can pro-
cess AOI files that were derived from several different IDLs.3

Flick currently has two presentation generators that read
AOI files: one that implements the C mapping specified by
CORBA [18] and a second that implements the C mapping
defined by Sun Microsystems’ rpcgen program [25]. Each
of these presentation generators outputs its presentations in
an intermediate representation called PRES C (Presentation
in C). PRES C is a fairly complex description format con-
taining three separate sublanguages as illustrated in Figure 2
(and described separately below): a MINT representation
of the messages that will be exchanged between client and
server, a CAST representation of the output C language dec-
larations, and a set of PRES descriptions that connect pieces
of the CAST definitions with corresponding pieces of the
MINT structures. Of the three intermediate representations
within a PRES C file, only CAST is specific to the C language;
MINT and PRES are applicable to any programming language.
We plan to create intermediate representation languages for
C++ and Java presentations, for example, by replacing CAST

with intermediate representation languages for C++ and Java
source code.

2.2.1 MINT: The Message Interface

The first step of presentation generation is to create an ab-
stract description of all messages, both requests and replies,3Naturally, the ability to process AOI files generated from different IDLs
is somewhat restricted due to the limitations of particular presentations. For
example, the presentation generator that implements the rpcgen presenta-
tion style cannot accept AOI files that use CORBA-style exceptions because
there is no concept of exceptions in standard rpcgen presentations. Simi-
larly, the CORBA presentation generator cannot handle self-referential type
definitions that may occur in an AOI file produced from an ONC RPC IDL

input because CORBA does not support self-referential types.
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Figure 2: Two Examples of PRES C. PRES C is the intermediate representa-
tion that connects C target language data with “on the wire” data encodings.
The first example links a C language int with a 4-byte, big endian encoding.
The second example associates a C string (char *) with a counted array of
packed characters.

that may be exchanged between client and server as part of
an interface. These messages are represented in a type de-
scription language called MINT. A MINT representation of
a data type is a directed graph (potentially cyclic) with each
node representing an atomic type (e.g., an integer), an aggre-
gate type (e.g., a fixed- or variable-length array, structure, or
discriminated union), or a typed literal constant.

MINT types do not represent types in the target program-
ming language, nor do they represent types that may be en-
coded within messages. Rather, MINT types represent high-
level message formats, describing all aspects of an “on the
wire” message except for low-level encoding details. MINT

types serve as glue between transport encoding types and tar-
get language types as illustrated in Figure 2. The first exam-
ple in Figure 2 utilizes a MINT integer type that is defined to
represent signed values within a 32-bit range. The MINT in-
teger type does not specify any particular encoding of these
values, however. Target language issues are specified by the
representation levels above MINT in the figure; “on the wire”
data encodings are specified by the representation level be-
low MINT. The second example in Figure 2 illustrates a MINT

array type containing both a length and a vector of charac-
ters. Again, MINT specifies the ranges of the values within

the type but does not specify any encoding or target language
details.

2.2.2 CAST: The C Abstract Syntax Tree

The second portion of a PRES C file is a description of the
C language data types and stubs that present the interface.
These constructs are described in a language called CAST,
which is a straightforward, syntax-derived representation for
C language declarations and statements. By keeping an ex-
plicit representation of target language constructs, Flick can
make associations between CAST nodes and MINT nodes de-
scribed previously. Explicit representation of target language
constructs is critical to flexibility; this is the mechanism that
allows different presentation generators and back ends to
make fine-grain specializations to the base compiler libraries.
Similarly, explicit representation is critical to optimization
because Flick’s back ends must have complete associations
between target language data and “on the wire” data in order
to produce efficient marshaling and unmarshaling code.

Although Flick’s explicit representation for C language
constructs is ordinary in comparison to the intermediate rep-
resentations used by traditional language compilers, it is
unique in comparison to traditional IDL compilers because
most IDL compilers including rpcgen and ILU [15] maintain
no explicit representations of the code that they produce.

2.2.3 PRES: The Message Presentation

PRES, the third and final component of PRES C, defines the
mapping between the message formats defined in MINT and
the target language-specific, application-level formats de-
fined in CAST. Like MINT and CAST, PRES is a graph-based
description language. A node in a PRES tree describes a re-
lationship between a MINT node and a CAST node: the data
described by the MINT and CAST nodes are “connected” and
marshaling and unmarshaling of data will take place as de-
termined by the connecting PRES node. In language terms,
a PRES node defines a type conversion between a MINT type
and a target language type.

Different PRES node types describe different styles of
data presentation as illustrated in Figure 2. In the first ex-
ample, a MINT integer is associated with a C language inte-
ger through a direct mapping: no special data transformation
is specified. In the second example, a MINT variable-length
array is associated with a C pointer. The PRES node is an
OPT PTR node and specifies that a particular kind of trans-
formation must occur for both data marshaling and unmar-
shaling. Consider the unmarshaling case. The OPT PTR node
defines that when the MINT array size is non-zero, the array
elements will be unmarshaled and the C pointer will be set to
point at the decoded array elements — in this example, char-
acters. If the MINT array size is zero, the C pointer will be set
to null. Reverse transformations occur when the C pointer
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data must be marshaled into a message.
Other PRES node types define similar kinds of presenta-

tion styles, and the set of PRES node types is designed to
cover all of the transformations required by existing presen-
tation schemes. PRES is not specific to any one program-
ming language, although certain node types depend on cer-
tain language features. For instance, OPT PTR nodes only
make sense for target languages that have pointers.

2.2.4 PRES C: The C Presentation

PRES C combines the intermediate representations described
above to create a complete description language for C lan-
guage interface presentations. A PRES C file contains the ar-
ray of stub declarations that will present the interface (to the
client or server, not both). Each stub is associated with its
declaration in CAST, the MINT description of the messages it
receives, the MINT description of the messages it sends, and
two PRES trees that associate pieces of the two MINT trees
with the function’s CAST declaration.

In total, a PRES C file is a complete description of the
presentation of an interface — it describes everything that a
client or server must know in order to invoke or implement
the operations provided by the interface. The only aspect of
object invocation not described by PRES C is the transport
protocol (message format, data encoding, and communica-
tion mechanism) that will be used to transfer data between
the client and the server. This final aspect of IDL compila-
tion is the domain of Flick’s back ends.

2.3 Back Ends

A Flick back end inputs a description of a presentation and
outputs code to implement that presentation in a particular
programming language. For presentations in C, the input to
the back end is a PRES C file and the output is a “.c” file and
a corresponding “.h” file. The output C code implements the
interface presentation for either the client or the server. Be-
cause the output of a presentation generator completely de-
scribes the appearance and exposed behavior of the stubs that
implement an interface, Flick’s back ends are entirely inde-
pendent of the IDL and presentation rules that were employed
to create a presentation.

Each back end is, however, specific to a single program-
ming language, a particular message encoding format, and
a particular transport protocol. All of the currently imple-
mented back ends are specific to C, but Flick’s “kit” architec-
ture will support back ends specific to other languages such
as C++ or Java in the future. Each of Flick’s C back ends
supports a different communication subsystem: the first im-
plements the CORBA IIOP (Internet Inter-ORB Protocol) [18]
on top of TCP; the second sends ONC RPC messages [23,
24] over TCP or UDP; the third supports MIG-style typed
messages sent between Mach 3 ports; and the fourth imple-

ments a special message format for the fast Fluke kernel IPC

facility [10]. Although these four communication subsys-
tems are all very different, Flick’s back ends share a large li-
brary of code to optimize the marshaling and unmarshalingof
data. This library operates on the MINT representations of the
messages. Whereas a presentation generator creates associa-
tions between MINT types and target language types (through
PRES), a back end creates associations between MINT types
and “on the wire” encoding types. The mapping from mes-
sage data to target language is therefore a chain: from en-
coded type to MINT node, from MINT node to PRES node,
and from PRES node to CAST. Flick’s library for C back ends
operates on these chains and performs optimizations that are
common to all transport and encoding systems.

3 Optimization

Flick’s back ends apply numerous domain-specific optimiza-
tion techniques to address the performance problems that
typically hinder IDL-based communication. Flick’s opti-
mizations are complementary to those that are generally im-
plemented by traditional language compilers. While many
of Flick’s techniques have counterparts in traditional compil-
ers, Flick is unique in that it has knowledge of its specialized
task domain and has access to many different levels of in-
formation through its multiple intermediate representations.
This allows Flick to implement optimizations that a general
language compiler cannot. Conversely, Flick produces code
with the expectation that general optimizations (e.g., regis-
ter allocation, constant folding, and strength reduction) will
be performed by the target language compiler. In summary,
Flick implements optimizations that are driven by its task do-
main and delegates general-purpose code optimization to the
target language compiler.

3.1 Efficient Memory Management

Marshal Buffer Management Before a stub can mar-
shal a datum into its message buffer, the stub must ensure
that the buffer has at least enough free space to contain the
encoded representation of the datum. The stubs produced by
typical IDL compilers check the amount of free buffer space
before every atomic datum is marshaled, and if necessary, ex-
pand the message buffer. These repeated tests are wasteful,
especially if the marshal buffer space must be continually ex-
panded. The stubs produced by Flick avoid this waste.

Flick analyzes the overall storage requirements of every
message that will be exchanged between client and server.
This is accomplished by traversing the MINT representation
of each message. The storage requirements and alignment
constraints for atomic types are given by the “on the wire”
data types that are associated with the various MINT nodes.
The storage requirements for aggregate types are determined
by working backward from nodes with known requirements.
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Ultimately, Flick classifies every type into one of three stor-
age size classes: fixed, variable and bounded, or variable and
unbounded.

From this information, Flick produces optimized code to
manage the marshal buffer within each stub. Before mar-
shaling a fixed-size portion of a message, a Flick-generated
stub will ensure that there is enough free buffer space to hold
the all of the component data within the fixed-size message
segment. The code that actually marshals the data is then
free to assume that sufficient buffer space is available. In
cases in which an entire message has a fixed size, Flick gen-
erates a stub that checks the size of the marshal buffer ex-
actly once.4 A different message segment may be variable
in size but bounded by a limit known at stub generation time
or by a limit known at stub execution time. In this case, if
the range of the segment size is less than a predetermined
threshold value (e.g., 8KB), Flick produces code similar to
that for fixed-size message fragments: the generated stub
will ensure that there is enough space to contain the maxi-
mum size of the message segment. If the range is above the
threshold, however, or if the message fragment has no upper
bound at all, then Flick “descends” into the message segment
and considers the segment’s subcomponents. Flick then ana-
lyzes the subcomponents and produces stub code to manage
the largest possible fixed-size and threshold-bounded mes-
sage segments as described above. Overall, our experiments
with Flick-generated stubs have shown that this memory op-
timization technique reduces marshaling times by up to 12%
for large messages containing complex structures.

Parameter Management Another optimization that re-
quires domain knowledge is the efficient management of
memory space for the parameters of client and server stubs.
Just as it is wasteful to allocate marshal buffer space in
small pieces, it is similarly wasteful to allocate memory for
unmarshaled data on an object-by-object or field-by-field
basis. Therefore, Flick optimizes the allocation and deal-
location of memory used to contain the unmarshaled data
that will be presented to clients and servers. For example,
Flick-generated stubs may use the runtime stack to allocate
space for parameter data when this is allowed by the seman-
tics of the interface presentation. In some situations, Flick-
generated stubs use space within the marshal buffer itself to
hold unmarshaled data — this optimization is especially im-
portant when the encoded and target language data formats
of an object are identical. Generally, these optimizations
are valid only for in (input) parameters to the functions in
a server that receive client requests. Further, the semantics
of the presentation must forbid a server function from keep-4Flick-generated stubs use dynamically allocated buffers and reuse those
buffers between stub invocations. This is generally preferable to allocat-
ing a new buffer for each invocation. However, it means that stubs that en-
code fixed-size messages larger than the minimum buffer size must verify
the buffer size once.

ing a reference to a parameter’s storage after the function
has returned. Our experiments have shown that stack alloca-
tion is most important for relatively modest amounts of data
— stack allocation for small data objects can decrease un-
marshaling time by 14% — and that reuse of marshal buffer
space is most important when the amount of data is large.
However, the behavior of stack and marshal buffer storage
means that it is suitable only in certain cases. Flick can iden-
tify these cases because it has access to the behavioral prop-
erties of the presentations that it creates.

3.2 Efficient Copying and Presentation

Data Copying By comparing the encoded representation
of an array with the representation that must be presented to
or by a stub, Flick determines when it is possible to copy ar-
rays of atomic types with the C functionmemcpy. Copying an
object with memcpy is often faster than copying the same ob-
ject component-by-component, especially when the compo-
nents are not the same size as machine words. For instance,
our measurements show that this technique can reduce char-
acter string processing times by 60–70%. In order for this op-
timization to be valid, the encoded and target language data
formats must be identical, and this can be determined by ex-
amining the type chains constructed by the presentation gen-
erator and back end as described in Section 2.3. A more flex-
ible copy optimizer that allows for byte swapping and word
copying of other aggregate types — similar to the optimizer
in USC [19] — will be implemented in a future version of
Flick.

Even when an object cannot be copied with memcpy,
Flick performs an optimization to speed component-by-
component copying. As part of the analysis performed for
optimizing marshal buffer allocation described above, Flick
identifies portions of the message that have fixed layouts. A
message region with a fixed size and a fixed internal layout
is called a chunk. If Flick discovers that a stub must copy
data into or out of a chunk, Flick produces code to set a chunk
pointer to the address of the chunk. Subsequent stub accesses
to components of the chunk are performed by adding a con-
stant offset to the chunk pointer. The chunk pointer itself is
not modified; rather, individual statements perform pointer
arithmetic to read or write data. Flick assumes that the tar-
get language compiler will turn these statements into efficient
pointer-plus-offset instructions. Chunking is a kind of com-
mon subexpression elimination that would not ordinarily be
performed by the target language compiler itself due to the
general difficulty of optimizing pointer-based code. Chunk-
based code is more efficient than code produced by tradi-
tional IDL compilers, which generally increments a read or
write pointer after each atomic datum is processed. Our ex-
periments with Flick-generated stubs show that chunking can
reduce some data marshaling times by 14%.
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Size of Client Size of Server
Compiler Stubs Library Stub Library
Flick 2800 0 2116 0
PowerRPC 2656 2976 2992 2976rpcgen 2824 2976 3796 2976
ILU 7148 24032 6628 24032
ORBeline 14756 16208

Table 2: Object Code Sizes in Bytes. Each IDL compiler produced stubs for
the directory interface described in Section 4 and the generated stubs were
compiled for our SPARC test machines. The sizes of the compiled stubs,
along with the sizes of the library code required to marshal and unmarshal
data, were determined through examination of the object files. Numbers for
MIG are not shown because the MIG IDL cannot express the interface. Li-
brary code for ORBeline is not shown because we had limited access to the
ORBeline runtime.

Specialized Transports Because Flick is a toolkit, it is
straightforward to implement back ends that take advantage
of special features of a particular transport system. For ex-
ample, Flick’s Mach 3 back end allows stubs to communi-
cate out-of-band data [20] and Flick’s Fluke [10] back end
produces stubs that communicate data between clients and
servers in machine registers. A Fluke client stub stores the
first several words of the message in a particular set of reg-
isters; small messages fit completely within the register set.
When the client invokes the Fluke kernel to send the mes-
sage, the kernel is careful to leave the registers intact as
it transfers control to the receiving server. This optimiza-
tion is critical for high-speed communication within many
microkernel-based systems.

3.3 Efficient Control Flow

Inline Code The stubs produced by many IDL compilers
are inefficient because they invoke separate functions to mar-
shal or unmarshal each datum in a message. Those functions
in turn may invoke other functions, until ultimately, func-
tions to process atomic data are reached. This type of code
is straightforward for an IDL compiler to generate. However,
these chains of function calls are expensive and impose a sig-
nificant runtime overhead. Not only are the function calls
wasteful, but reliance on separate, type-specific marshal and
unmarshal functions makes it difficult for an IDL compiler to
implement memory management optimizations such as those
described previously in Section 3.1. A general-purpose mar-
shal function must always check that buffer space is avail-
able; a separate unmarshal function cannot use the runtime
stack to allocate space for the unmarshaled representation
of a data object. Therefore, Flick aggressively inlines both
marshal and unmarshal code into both client- and server-side
stubs. In general, Flick-generated stubs invoke separate mar-
shal or unmarshal functions only when they must handle re-
cursive types such as linked lists or unions in which one of

Compiler Origin IDL Encoding Transportrpcgen Sun ONC XDR ONC/TCP

PowerRPC Netbula ˜CORBA XDR ONC/TCP

Flick Utah ONC XDR ONC/TCP

ORBeline Visigenic CORBA IIOP TCP

ILU Xerox PARC CORBA IIOP TCP

Flick Utah CORBA IIOP TCP

MIG CMU MIG Mach 3 Mach 3
Flick Utah ONC Mach 3 Mach 3

Table 3: Tested IDL Compilers and Their Attributes. rpcgen, PowerRPC,
and ORBeline are commercial products, while ILU and MIG are well known
compilers from research organizations. The PowerRPC IDL is similar to the
CORBA IDL. The target language was C, except for ORBeline which sup-
ports only C++.

the union branches leads back to the union type itself.5 For a
large class of interfaces, inlining actually decreases the sizes
of the stubs once they are compiled to machine code. This
effect is illustrated in Table 2. Inlining obviously removes
expensive function calls from the generated code, but more
importantly, it allows Flick to specialize the inlined code in
context. The memory, parameter, and copy optimizations de-
scribed previously become more powerful as more code can
be inlined and specialized. In total, our experiments with
Flick show that stubs with inlined code can process complex
data up to 60% faster than stubs without this optimization.

Message Demultiplexing A server dispatch function
must demultiplex messages received by the server process
and forward those messages to the appropriate work func-
tions. To perform this task, the dispatch function examines a
discriminator value at the beginning of every message. This
discriminator may be one or more integer values, a packed
character string, or any other complex type, depending on
the message format. Regardless of the type, Flick gener-
ates demultiplexing code that examines machine word-size
chunks of the discriminator insofar as possible. The accept-
able values for a discriminator word are used to produce a
C switch statement; multi-word discriminators are decoded
using nested switches. When a complete discriminator has
been matched, the code to unmarshal the rest of the message
is then inlined into the server dispatch function.

4 Experimental Results

To evaluate the impact of Flick’s optimizations, we com-
pared Flick-generated stubs to those from five other IDL com-
pilers, including three sold commercially. The different IDL

compilers are summarized in Table 3. The first compiler,
Sun’s rpcgen, is in widespread use. PowerRPC [17] is a5A future version of Flick will produce iterative marshal and unmarshal
code for “tail-recursive” data encodings in the marshal buffer.
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new commercial compiler derived from rpcgen. PowerRPC

provides an IDL that is similar to the CORBA IDL; however,
PowerRPC’s back end produces stubs that are compatible
with those produced by rpcgen. ORBeline is a CORBA IDL

compiler distributed by Visigenic, implementing the stan-
dard mapping for CORBA onto C++. ILU and MIG represent
opposite ends of a spectrum: ILU is a very flexible compiler
that produces slow stubs, whereas MIG is a very rigid com-
piler that produces fast stubs.

For the ONC RPC and CORBA IDL-based compilers, we
measured the performance of generated stub functions com-
municating across three different networks: a 10Mbps Eth-
ernet link, a 100Mbps Ethernet link, and a 640Mbps Myrinet
link [4]. For MIG interfaces, we measured Mach IPC speeds
between separate tasks running on a single host.6 For each
transport and compiler, we measured the costs of three dif-
ferent method invocations. The first method takes an input
array of integers. The second takes an input array of “rect-
angle” structures: each structure contains two substructures,
and each substructure holds two integers (i.e., a coordinate
value). The third method takes an input array of variable-size
“directory entry” structures: each directory entry contains a
variable-length string followed by a fixed-size, UNIX stat-
like structure containing 136 bytes of file information (30
4-byte integers and one 16-byte character array). Although
the size of a directory entry is variable, in our tests we al-
ways sent directory entries containing exactly 256 bytes of
encoded data.

These methods were repeatedly invoked in order to mea-
sure both marshaling speed and end-to-end throughput for a
variety of message sizes. The first two methods were invoked
to send arrays ranging in size from 64 bytes to 4MB. The
third method was invoked to send arrays ranging in size from
256 bytes to 512KB.

Marshal Throughput Marshal throughput is a measure
of the time required for a stub to encode a message for trans-
port, independent of other runtime overhead or the time re-
quired to actually transmit the message. To measure marshal
throughput, we instrumented the stubs produced by Flick,rpcgen, PowerRPC, ILU, and ORBeline, and the resultant
throughput measurements are shown in Figure 3. The figure
shows that Flick-generated marshal code is between 2 and 5
times faster for small messages and between 5 and 17 times6Our hosts for the network and marshaling tests were two Sun SPARC-
station 20/50 machines. Each ran at 50MHz, had 20K/16K (I/D, 5/4 set-
associative) L1 caches, no L2 caches, were rated 77 on the SPECint 92
benchmark, and had measured memory copy/read/write bandwidths of
35/80/62 MBps, although the libc bcopy gives only 29MBps. They ran
Solaris 2.5.1. One machine had 64MB DRAM, while the other had 96MB
DRAM. Our host for the MIG tests was a 100MHz Pentium with an 8K/8K
(I/D 2/2 assoc) L1 cache, a 512K direct-mapped L2 cache, both write-back,
and 16MB of DRAM, running CMU Mach 3. It had copy/read/write band-
widths of 36/62/82MBps. All memory bandwidth tests were performed us-
ing lmbench 1.1 [16], and all throughput measurements were performed
with the operating system socket queue size set to 64K.
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Figure 3: Marshal Throughput on a Big Endian (SPARC) Architecture. This
test compares equivalent marshaling functions and avoids any transport-
related bottlenecks. The performance ratios are similar when the tests
are performed on a little endian (Pentium) architecture. Flick’s superior
throughput shows that Flick-generated stubs are suitable for use on high-
performance transports.

faster for large messages. As expected, Flick-generated stubs
process integer arrays more quickly than structure arrays be-
cause Flick performs its memcpy optimization only for arrays
of atomic types. ORBeline stubs use scatter/gather I/O in or-
der to transmit arrays of integers and thereby avoid conven-
tional marshaling [12]; this is why data for ORBeline’s per-
formance over integer arrays are missing from Figure 3.

End-to-End Throughput The gains derived from
greater marshal throughput can only be realized to the extent
that the operating system and network between client and
server do not limit the possible end-to-end throughput of
the system. To show that improved network performance
will increase the impact of an optimizing IDL compiler, we
measured the round-trip performance of stubs produced by
the three compilers supporting ONC transports: rpcgen,
PowerRPC, and Flick, on three different networks. The stubs
produced by the three compilers all have minimal runtime
overhead that is not related to marshaling, thus allowing
a fair comparison of end-to-end throughput.7 Figure 4
shows that the maximum end-to-end throughput of all the
compilers’ stubs is approximately 6.5–7.5Mbps when com-
municating across a 10Mbps Ethernet. Flick’s optimizations
have relatively little impact on overall throughput.

Over fast communication links, however, Flick’s opti-
mizations again become very significant. Figures 5 and 67Unlike stubs produced by Flick, rpcgen, and PowerRPC, stubs gener-
ated by ORBeline and ILU include function calls to significant runtime lay-
ers. These runtime layers perform tasks that are necessary in certain envi-
ronments (e.g., multi-thread synchronization) but which are not required for
basic client/server communication.
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Figure 4: End-to-End Throughput Across 10Mbps Ethernet. The data for
PowerRPC and rpcgen is incomplete because the generated stubs signal an
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Figure 6: End-to-End Throughput Across 640Mbps Myrinet.

show that for stubs communicating across 100Mbps Ethernet
and 640Mbps Myrinet, Flick’s optimizations increase end-
to-end throughput by factors of 2–3 for medium size mes-
sages, factors of 3.2 for large Ethernet messages, and factors
of 3.7 for large Myrinet messages. With Flick stubs, both
100Mbps and 640Mbps transports yield significant through-
put increases. In contrast, PowerRPC and rpcgen stubs did
not benefit from the faster Myrinet link: their throughput was
essentially unchanged across the two fast networks. This in-
dicates that the bottleneck for PowerRPC and rpcgen stubs
is poor marshaling and unmarshaling behavior.

Measurements show that the principal bottlenecks for
Flick stubs are the memory bandwidth of the SPARC test ma-
chines and the operating system’s communication protocol
stack. Flick’s maximum throughput is less than half of the
theoretical Ethernet bandwidth and less than 10% of the the-
oretical Myrinet bandwidth. These results, however, must be
viewed in terms of the effective bandwidth that is available
after memory and operating system overheads are imposed.
As measured by the widely available ttcp benchmark pro-
gram, the maximum effective bandwidth of our 100Mbps
Ethernet link is 70Mbps and the maximum bandwidth of our
Myrinet link is just 84.5Mbps. These low measurements are
due to the performance limitations imposed by the operat-
ing system’s low-level protocol layers [12]. Through calcu-
lations based on these numbers and measured memory band-
width, we have confirmed that the difference between ttcp
throughput and the performance of Flick stubs is entirely due
to the functional requirement to marshal and unmarshal mes-
sage data — which requires memory-to-memory copying
and is thus limited by memory bandwidth. As operating sys-
tem limitations are reduced by lighter-weight transports [6,
7], Flick’s ability to produce optimized marshal code will
have an increasingly large impact.
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Figure 7: End-to-End Throughput for MIG and Flick Stubs. MIG is both
highly specialized for optimizing Mach message communication, and is able
only to support simple data types. At larger-sized messages, Flick-generated
stubs achieve throughput comparable to that of MIG-generated stubs even
though Flick is a much more flexible IDL compiler.

End-to-End Throughput Compared to MIG In Fig-
ure 7 we compare the end-to-end throughput of Flick-
generated stubs to the throughput of stubs generated by MIG,
Mach 3’s native IDL compiler. In this experiment the stubs
transmit arrays of integers; we did not generate stubs to trans-
mit arrays of structures because MIG cannot express arrays
of non-atomic types. MIG is a highly restrictive IDL com-
piler, but it is also highly specialized for the Mach 3 message
communication facility. The effect of this specialization is
that for small messages, MIG-generated stubs have through-
put that is twice that of the corresponding Flick stubs. How-
ever, as the message size increases, Flick-generated stubs
do increasingly well against MIG stubs. Beginning with 8K
messages, Flick’s stubs increasingly outperform MIG’s stubs,
showing 17% improvement at 64K. The results of this exper-
iment demonstrate the potential for further improvements in
Flick and are encouraging because they show that although
Flick is much more flexible and general-purpose than MIG,
Flick-generated stubs can compete against stubs produced by
the operating system’s own IDL compiler. At a current cost
for small and moderate sized messages, Flick allows Mach
programmers to use modern IDLs such as CORBA and sup-
ports many C language presentations (e.g., structures) that
MIG cannot offer.

5 Related Work

Previous work has shown that flexible, optimizing compilers
are required in order to eliminate the crippling communica-
tion overheads that are incurred by many distributed systems.
In a seminal paper in the networking domain, Clark and Ten-

nenhouse [5] identified data representation conversion as a
bottleneck to many communication protocols. They empha-
sized the importance of optimizing the presentation layer of a
protocol stack and showed that it often dominates processing
time. Recent work by Schmidt et al. [12, 21] has quantified
this problem for rpcgen and two commercial CORBA imple-
mentations. On average, due to inefficiencies at the presenta-
tion and transport layers, compiler-generated stubs achieved
only 16–80% of the throughput of hand-coded stubs.

To address these and similar performance issues, sev-
eral attempts have been made to improve the code gener-
ated by IDL compilers. Mach’s MIG [20] compiler generates
fast code but only by restricting the types that it can handle:
essentially just scalars and arrays of scalars. Hoschka and
Huitema [14] studied the tradeoffs between (large, fast) com-
piled stubs and (small, slow) interpreted stubs and suggested
that an optimizing IDL compiler should use both techniques
in order to balance the competing demands of throughput
and stub code size. However, their experimental results ap-
pear to apply only to the extraordinarily expensive type rep-
resentations used in ASN.1, in which type encoding is dy-
namic even for fundamental scalar types such as integers. Of
more relevance to commonly used representations is the Uni-
versal Stub Compiler (USC) work by O’Malley et al. [19].
USC does an excellent job of optimizing copying based on a
user-provided specification of the byte-level representations
of data types. This work is complementary to ours: as the au-
thors state, USC may be used alone to specify simple conver-
sion functions (e.g., for network packet headers) or it may be
leveraged by a higher-level IDL compiler. By incorporating
USC-style representations for all types, Flick could improve
its existing copy optimizations as outlined in Section 3.2.

Recently, Gokhale and Schmidt [13] addressed perfor-
mance issues by optimizing SunSoft’s reference implemen-
tation of IIOP [26]. The SunSoft IIOP implementation does
not include an IDL compiler but instead relies on an inter-
preter to marshal and unmarshal data. The authors opti-
mized the interpreter and thereby increased throughput over
an ATM network by factors of 1.8 to 5 for a range of data
types. Their implementation achieved throughput compara-
ble to that of commercial CORBA systems that utilize com-
piled stubs, including ORBeline [11]. However, since Flick-
generated stubs typically greatly outperform stubs produced
by ORBeline, Flick must also outperform the best current in-
terpretive marshalers.

In the area of flexible IDL compilers, the Inter-Language
Unification [15] (ILU) system from Xerox PARC empha-
sizes support for many target languages, supporting C, C++,
Modula-3, Python, and Common Lisp. However, like most
IDL compilers, ILU uses as its sole intermediate representa-
tion a simple AST directly derived from the IDL input file.
ILU does not attempt to do any optimization but merely tra-
verses the AST, emitting marshal statements for each datum,
which are typically (expensive) calls to type-specific mar-
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shaling functions. Each separate backend is essentially a full
copy of another with only the printfs changed. For Flick
to do similarly, it would simply emit marshaling code as it
traversed an AOI structure. ILU does support two IDLs — its
native, unique IDL and the CORBA IDL — but only by trans-
lating the CORBA language into its own IDL.

Like Flick, the Concert/C distributed programming sys-
tem [2] quite fully develops the concept of flexible presen-
tation. In Concert, the primary purpose of this separation
is to handle the vagaries of RPC mapping to different tar-
get languages, striving for a “minimal contract” in order to
achieve maximal interoperability between target languages.
However, this separation is not leveraged for optimizations.
In earlier work [8, 9] we concentrated on leveraging Flick’s
explicit separation of presentation from interface in order
to produce application-specialized stubs. We showed that
programmer-supplied interface annotations that coerce the
“programmer’s contract” to applications’ needs could pro-
vide up to an order of magnitude speedup in RPC perfor-
mance.

Finally, several techniques used by Flick are similar or
analogous to those in traditional compilers for general pur-
pose programming languages. In addition, it appears that our
work has many similarities to type-based representation anal-
ysis [22] directed to achieving more efficient “unboxed” data
representations whenever possible, and to convert between
such representations.

6 Conclusion

This work exploits the fundamental and overdue recogni-
tion that interface definition languages are indeed program-
ming languages, albeit specialized and non-traditional in
their computational content. This insight is the basis for
Flick, a novel, modular, and flexible IDL compiler that ap-
proaches stub generation as a programming language trans-
lation problem. This, in turn, allows established optimizing
compiler technology to be applied and extended in domain-
specific ways.

Flick exploits many fundamental concepts of modern
compiler organization including carefully designed interme-
diate representations, modularized front and back ends local-
izing source and target language specifics, and a framework
organization that encourages reuse of software implementing
common abstractions and functionality. Our quantitative ex-
perimental results confirm that this approach is indeed effec-
tive for producing high-performance stubs for a wide variety
of communication infrastructures.

Availability

Complete Flick source code and documentation are available
at http://www.cs.utah.edu/projects/flux/flick/.
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